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Abstract: We propose Context-aware Feature Transformer Network (CaFTNet), a novel network

for human pose estimation. To address the issue of limited modeling of global dependencies in

convolutional neural networks, we design Transformerneck to strengthen the expressive power of

features. Transformerneck directly substitutes the 3 × 3 convolution in bottleneck of HRNet with

Contextual Transformer (CoT) block, while reducing the complexity of the network. Specifically,

CoT first produces keys with static contextual information through 3 × 3 convolution. Then,

relying on the query and contextualization keys, the dynamic contexts are generated through two

concatenated 1 × 1 convolutions. Static and dynamic contexts are eventually fused as an output.

Additionally, for the multi-scale networks, in order to further refine the features of the fusion output,

we propose an Attention Feature Aggregation Module(AFAM). Technically, given an intermediate

input, AFAM successively deduces attention maps along channel and spatial dimensions. Then,

Adaptive refinement module(ARM) is exploited to activate the obtained attention maps. Finally, the

input undergoes adaptive feature refinement through multiplication with the activated attention

maps. Through the above studies, our lightweight network provides a powerful clue for detection of

keypoints. Experiments are implemented on the COCO and MPII datasets. The model achieves 76.2

AP on the COCO val2017. Compared to other methods with the CNN as the backbone, CaFTNet

reduces the number of parameters by 72.9 %. On the MPII, our method uses only 60.7% of the number

of parameters, acquiring semblable results to other methods with the CNN as the backbone.

Keywords: human pose estimation; expressive power of features; feature refinement; global

dependencies

1. Introduction

The goal of human pose estimation is to predict keypoints of human anatomy in the images. It

has extensive applications in the field of computer vision for instance human action recognition [1–4],

human pose tracking [5–9], 3D human pose estimation [10–13] and so on.

CNNs have obtained praiseworthy accomplishments in human pose estimation [14–18]during a

recent period of time. However, the convolution’s receptive field is confined, which makes the CNNs

unable to capture the dependence of remote interaction information. Recently, different methods

[19–23] have been presented to remedy the shortcomings of the convolution limitation problem. A

typical solution is to expand the receptive field to learn the global dependency information, for

example by increasing the network depth [24–26]. However, deepening of the network will lead

to a sharp increase in the number of parameters. Recently, Transformer [27] with self-attention has

become a novel choice for a variety of visual tasks [28–30] for its capturing interactions between any

pairwise positions. For human pose estimation, we expect to leverage global dependencies captured

by self-attention to provide contextual clues for occluded keypoints. Because the body keypoints

themselves have certain connections, as shown in Figure 1, global dependencies are able to improve
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the ability to locate difficult keypoints depending on easily detecting keypoints, thereby enhancing

the performance of the overall network. There have been some recent works in CNN [31,32] directly

model global dependencies with self-attention instead of convolution. For instance, CoT [32] encodes

contextual information into the self-attention module, increasing representation ability of features.

CoT can substitute 3 × 3 convolutions in ResNet [33], while owning fewer parameters.

Figure 1. Attention map for position of each predicted keypoint. We can find that the motorcycle

coveres the people’s left ankle. The left ankle is predicted by relying on contextual information around

the knee and the right leg joint.

In order to fully leverage the advantages of CNNs and self-attention mechanisms, some

researchers have combined [34,35]them to extract features. However, there are still some drawbacks

for multi-scale networks [36–39]. Each subnetwork of multi-scale neural networks has a different

resolution in order to exchange information between multiple resolution representations in feature

fusion. High resolution features with more attention to detail information can precisely locate the

position information of the keypoints. Low resolution features with a larger receptive field can capture

global information about the human pose. In feature fusion, the accuracy of keypoints detection will

be enhanced if our model can fully exploit the benefits of high and low resolution. However, some

existing methods [40,41] ignore the differences between features at different resolutions, resulting in

undesired fusion of noise features. To bridge the differences between features at different resolutions,

an effective approach is to utilize the attention mechanism. Because attention can make the network to

stress or restrain information through learning, so that the network can better grasp the information

we need to pay attention to. Recently, some scholars have conducted relevant research [42–44]. For

example, CBAM [45]considers channel and spatial relationships and generates spatial attention maps

finally. Therefore, we also expect our model to have the ability to learn information in both channel

and spatial orientations.

Based on the above studies, in this article, we put forth a Lightweight Context-aware Feature

Transformer Network (CaFTNet) built upon HRNet, to improve network efficacy by enhancing the

localization accuracy of occluded keypoints. Firstly, to strengthen the semantic features of contextual

information, we design a Transformerneck structure. Transformerneck directly replaces the 3 × 3

convolution in bottleneck with Contextual Transformer (CoT) block, while reducing the complexity of
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the network. Then inspired by the CBAM, to further refine the features of the fusion output, we design

an Attention Feature Aggregation Module(AFAM). Due to the diversity of human poses, CBAM is

still insufficient for spatial processing as it only employs a 7 × 7 convolution filter for feature fusion,

while spatial attention is decided by the value of each pixel, not the region of 7 × 7. So, we propose an

ARM to activate the obtained features. Therefore, our method further reinforces the feature fusion

of multi-scale networks and ameliorates the output features. On the COCO [46], our model achieves

better result than other methods with the CNN as the backbone. What’s more, notably, the model

reduces the number of parameter by 72.9%. On the MPII [47], our method takes advantage of 60.7%

of the number of parameters, acquiring semblable results to other methods with the CNN as the

backbone.

2. Related Work

2.1. Human Pose Estimation

Currently, CNNs have gained tremendous success in the field of human pose estimation.

Hourglass [36] belongs to an hourglass type of network structure, which can perceive more global

information. CPN [48] has two stages: GlobalNet and RefineNet, which can alleviate the detection

problem of hard keypoints. Simple baseline [24] adds some transpose convolutional layers to restore

the resolution. It indicates importance of high resolution feature maps. HRNet [14] proposes a network

with high-resolution representations through the whole process, which repeats multi-scale fusions to

improve the representation power of feature maps. Accordingly, HRNet achieves impressive results

in multiple benchmark datasets. However, HRNet still falls within the category of CNNs, facing the

issue of limited receptive fields. Therefore, global information needs to be ameliorated.

2.2. Attention enhanced Convolution

Convolution is dependent on a well-sized convolution kernel to gather information, which leads

to the inability of the CNNs to establish global dependencies. The existing multiple approaches to

image attention mechanisms suggest that they can compensate for the problem of confining of the

convolution receptive field. Therefore, many scholars have explored the apply of attention to improve

the capability of CNNs. SENet [43] models the interactions between the channels by using global

mean pooling and two fully-connected layers. On the basis of SENet, ECANet [44] is came up with.

Local cross-channel interaction strategy without decreasing the dimension is designed, which further

improves the performance. CBAM [45] calculates attention maps on the channel and spatial directions

to better learn useful information in the feature maps.

Recently, with the rise of the self-attention of Transfomer, the interest is aroused due to the

powerful global dependence modeling ability of self-attention. Some works [49–52] have shown

that self-attention modules are proposed as individual blocks, which can wholly substitute for the

convolutions in HRNet. Although self-attention can effectively capture interactions between any

paired positions. However, the pairwise query-key relationships are learned individually on isolated

query-key pairs, without taking into account the abundant contextual information between them

during the learning process.This seriously restricts the self-attention learning ability of two-dimensional

feature maps for visual representation learning. Most recently, [31] displaces 3 × 3 convolutions with

self-attention in the final stage of the network. [32] replaces 3 × 3 convolution in each bottleneck by

leveraging the CoT block, which can take full advantage of the context of the query-key to model

global dependencies.

2.3. HRNet

HRNet [14] utilizes a stem to fastly downsample the input feature. As shown in Figure 2, the

HRNet network can be segmented into four stages. The first stage mainly has a high-resolution

subnetwork. And from the second stage, a low-resolution subnetwork is added to each stage. The
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resolution of the new subnetwork is half of the lowest resolution of the previous stage. Each stage will

interact with information through multi-resolution blocks.

Conv.unitDown samp.Down samp.

Up samp.Feature mapsFeature maps

Conv.unitDown samp.

Up samp.Feature maps

Figure 2. The architecture of HRNet.

HRNet has achieved remarkable success as a feature extractor. The problem of the limited

receptive field inherent to the convolution operation needs to be improved. HRNet is unable to

establish long-term dependencies, resulting in incorrect estimation of some human poses. For this

reason, this paper proposes a Lightweight Context-aware Feature Transformer Network(CaFTNet).

CaFTNet firstly capitalizes on the CoT block to enhance the expressiveness of the features. Then in

feature fusion, the CaFTNet exploits AFAM to enhance the representative power of the output feature

maps. And our final results are also better.

3. Methods

In this section, we put forward a CaFTNet to better perform the feature extraction. Figure 3

depicts the framework of our presented model. To begin with, we briefly review framework of our

CaFTNet. Then, we introduce Transformerneck and AFAM in detail.

H
e

a
d

Transformer

 Encoder

H
e

a
d

Transformer

 Encoder
Mid-HRNet

Keypoint Heatmaps

Input Image

Mid-HRNet

Transformerneck

AFAM

Transformerneck

AFAMMid-HRNet

Transformerneck

AFAM

Figure 3. The overview of CaFTNet. Firstly, Transformerneck is used to extract preliminary input

features with contextual information. Secondly, the input features continue to encode the feature

information through the Mid-HRNet. Then AFAM further refines the contextual features. Next,

Transformer Encoder Layer encodes position representation of keypoints. Finally, a head predicts

keypoints heatmaps. Mid-HRNet refers to the second and third stages of the HRNet.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 January 2024                   doi:10.20944/preprints202401.0836.v1

https://doi.org/10.20944/preprints202401.0836.v1


5 of 17

3.1. Context-aware Feature TransformerNetwork(CaFTNet)

The aim of this paper is to enhance the representational ability of the feature maps and lighten

network model in pose estimation. The overall architecture of CaFTNet is revealed in Figure 3 . The

CaFTNet puts HRNet as the backbone and enhances it with the presented Transformerneck and

Attention Feature Aggregation Module(AFAM).

First, our proposed Transformerneck is used to extract preliminary input features with contextual

information. It is represented by a blue dashed line box. Transformerneck is to replace the 3 × 3

convolution with CoT while keeping the bottleneck framework unchanged. Secondly, this input

features continue to encode the feature information through the Mid-HRNet. Then, we place the

AFAM on the head of the neural networks to further refine the enriched contextual features. AFAM is

represented by a green dashed line box. AFAM successively deduces attention maps along channel and

spatial directions. Adaptive refinement module(ARM) is exploited to activate the obtained attention

maps. The input undergoes adaptive feature refinement through multiplication with the activated

attention maps. Next, output of the AFAM goes through Transformer Encoder Layer to encode position

representation of keypoints. Finally, a head is attached to Transformer Encoder output to predict

keypoints heatmaps.

Transformerneck

1×1

BN+ReLU

CoT

1×1

BN+ReLU

1×1

BN

ReLUReLU

V

1 × 1

Q K

3 × 3

Concat

1 × 11 × 1

Fusion

X

Y

H

Z

Figure 4. The overall structure of Transformerneck.
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3.2. Transfomerneck

For a middle input X ∈ RH×W×C , an output H is first obtained through a 1 × 1 convolution

and a nonlinear activation layer. The output H is sent into the CoT (As shown in the green rectangle

enclosed in Figure 4). H is represented as:

H = ReLU(BN(Conv1×1(X))). (1)

H will then be defined the K, Q and V along three different paths. The K first produces contextualized

K1 through 3 × 3 convolutions. The formula of K1 is described as follows:

K1 = Conv3×3 (K) . (2)

Then, K1 and Q are conducted the operation of concatenation. And the result of the operation generates

the attention map M by two series of 1 × 1 convolutions. The formula of M is calculated :

M = Conv1×1 (ReLU (Conv1×1 (Concat (K1, Q)))) . (3)

Next, V first passes through a 1 × 1 convolution to obtain V1, the feature map K2 can be computed as

follows:

V1 = Conv1×1 (V) , (4)

K2 = F (V1 ⊗ M) , (5)

where F(⊗) denotes the matrix multiplication operation. The final output Z of CoT is thus calculated

as the fusion of K1 and K2 . Z continues to produce T through a nonlinear activation layer and a 1 × 1

convolution layer. The T and a shortcut connection are added element-wise to produce Y with context

relations. Finally, Y is sent to the next module via the Relu activation function.

CS

attention map

1×1

1×1

1×1



Sigmoid

ARM
1×1

1×1

Figure 5. The overall structure of Attention Feature Aggregation Module. CS: Channel Attention

Module, Spatial Attention Module.

3.3. Attention Feature Aggregation Module(AFAM)

To begin with, we consider feature map F ∈ RH×W×C as input in Figure 5. F through a cs module,

generating the spatial attention map Fs that we need. This process can be described as two steps in

Figure 6. The first step, Fc can be described as:

Fc = Sigmoid (MLP (AvgPool (F)) + MLP (MaxPool (F)))⊗ F. (6)

The second step, the Fc was fed to the spatial attention model to gain the Fs. The Fs is adopted as:

Fs = Sigmoid (Conv7×7 ([AvgPool (Fc) ; MaxPool (Fc)]))⊗ Fc. (7)
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 A     Channel Attention
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Figure 6. The overall structure of Convolution Block Attention Module.

Next, Fs is reshaped to feature sequences Fq, Fk and Fv in order to model the spatial context relations of

the corresponding features. Detailed description of this process is as follows: (1)Fs obtains the spatial

context feature Fv through a 1 × 1 convolution and a sigmoid layer in the last row. Fv is represented as:

Fv = Sigmoid (Conv1×1 (Fs)) . (8)

(2)Fs rearranges the spatially related context features together respectively through two 1 × 1

convolutions and a non-linear activation layer to obtain Fq and Fk. Fq and Fk are represented as:

Fq = Con1×1 (ReLU (Conv1×1 (Fs))) , (9)

Fk = Con1×1 (ReLU (Conv1×1 (Fs))) . (10)

(3)The Fq and Fk are multiplied element-wise to obtain an attention map with contextual relationships,

which is subsequently applied to feature for recalibrating the output feature F1. F1 is represented as:

F1 = Fv ⊗ Sigmoid
(

Fq ⊗ Fk

)

. (11)

Finally, F1 and F are added element-wise to achieve F′. The F′ is adopted as:

F′ = F1 ⊕ F. (12)

4. Experiments

This section may be divided by subheadings. It should provide a concise and precise description

of the experimental results, their interpretation as well as the experimental conclusions that can be

drawn.

4.1. Model Variants

Based on HRNet, we present Lightweight Context-aware Feature Transformer Network. In

our structure, there are two different depths of CNNs to extract the input features. Detailed setup

information are presented in Table 1. The network utilized by CaFTNet-R is ResNet. The backbone

network utilized by CaFTNet-H4 is the HRNet-W48. From Table 2, we can find that the model reaches

best result when the network employs CaFTNet-H4.

4.2. Technical details

Our model takes advantage of the top-down [53–55] approach. The experimental environment

configuration is shown as follows: Two RTX 2080s are deployed. Python Version is 3.7. Framework is

PyTorch 1.10.0. The network model is optimized utilizing the Adam [56] optimizer during training,

with an initial learning rate of 0.001 and 0.00001 at 220 rounds. The network is trained 230 rounds with
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a batchsize of 16 for each GPU. Because the size of the pictures in the dataset is different, the pictures

are modified by image pre-processing. Here, images are cropped to 256 × 192 on the COCO and 256 ×

256 on the MPII.

Table 1. Parameter configuration information for the different CaFTNet models.

Model Backbone Layers Heads Flops Params

CaFTNet-R ResNet 4 8 5.29G 5.55M
CaFTNet-H3 HRNet-W32 4 1 8.46G 17.03M
CaFTNet-H4 HRNet-W48 4 1 8.73G 17.30M

Table 2. Ablation study on different Backbone.

Model Backbone AP AR Flops Params

CaFTNet-R ResNet 73.7 79.0 5.29G 5.55M
CaFTNet-H3 HRNet-W32 75.6 80.9 8.46G 17.03M
CaFTNet-H4 HRNet-W48 76.2 81.2 8.73G 17.30M

4.3. Results on COCO

4.3.1. Dataset and Evaluation Metrics

The COCO [46] has more than 200,000 images and 250,000 instances, each containing up to 17

human keypoints. The network model is trained on the train2017 dataset, and the network model is

verified and tested on val2017 (including 5,000 images) and test-dev2017 (including 20,000 images).

Our model is measured by Object Keypoint Similarity (OKS) on the COCO dataset. OKS defines the

similarity between different human keypoints, AP50 indicates the accuracy of the keypoints at OKS =

0.5, and AP75 is the accuracy of the keypoints at OKS = 0.75. The mAP is defined as the mean accuracy

value of the predicted keypoints at the 10 thresholds of OKS = 0.50, 0.55 ... 0.90, 0.95. APM is utilized to

describe the accuracy of the detection of medium size keypoints, and APL represents the accuracy of

large size keypoints. The formula of OKS is described as:

OKS =
∑i exp

(

−d2
i /2s2k2

i

)

δ (vi > 0)

∑i δ (vi > 0)
, (13)

where di is the Euclidean distance between the i-th predicted keypoint coordinate and the

corresponding groundtruth, vi is the visibility flag of the keypoint, s is the object scale, and ki is

a keypoint-specific constant.
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Table 3. Comparison results with different other methods on the COCO val2017. CaFTNet-R and

CaFTNet-H * reach good results in terms of parameter number and calculation speed.

Model Input Size AP AR Flops Params

ResNet-50[33] 256×192 70.4 76.3 8.9G 34.0M
ResNet-101[33] 256×192 71.4 76.3 12.4G 53.0M
ResNet-152[33] 256×192 72 77.8 35.3G 68.6M

TransPose-R-A3[57] 256×192 71.7 77.1 8.0G 5.2M
TransPose-R-A4[57] 256×192 72.6 78.0 8.9G 6.0M

CaFTNet-R 256×192 73.7 79.0 5.29G 5.55M

HRNet-W32[14] 256×192 74.7 79.8 7.2G 28.5M
HRNet-W48[14] 256×192 75.1 80.4 14.6G 63.6M

TransPose-H-A4[57] 256×192 75.3 80.3 17.5G 17.3M
TransPose-H-A6[57] 256×192 75.8 80.8 21.8G 17.5M

TokenPose-L/D6[58] 256×192 75.4 80.4 9.1G 20.8M
TokenPose-L/D24[58] 256×192 75.8 80.9 11.0G 27.5M

CaFTNet-H3 256×192 75.6 80.9 8.46G 17.03M
CaFTNet-H4 256×192 76.2 81.2 8.73G 17.30M

4.3.2. Quantitative Results

The models are compared for their performance on the COCO val2017, and the results are

shown in Table 3. Where the number of parameters and GFLOPs are calculated from the human

pose estimation network model. The experimental results show that the CaFTNet model gains good

performance with less number of parameters and GFLOPs. CaFTNet-H4 acquires 76.2 AP scores

with an input size of 256×192, better than other models with the same input size. In contrast to the

TransPose-R-A4 [57], CaFTNet-R has an 8.3% drop in the number of parameters, but increasing AP

scores by 1.1. In contrast to the ResNet-152 [33], our CaFTNet-R obtains better performance, utilizing

only 7.2% of the model parameters. With the complex network model of HRNet-W48 [14] contrast,

CaFTNet acquires a good AP score with much lower complexity. Table 4 exhibitions the results of our

approach and the other approaches on the COCO test-dev2017. Our CaFTNet-H4 reaches 75.5 AP. Due

to the effective perceptual context semantic information, CaFTNet achieves a good balance between

accuracy and complexity.

4.3.3. Qualitative Comparisons

Different keypoints rely on different regions. We can find that for the keypoints of the head like the

nose, the eyes, etc. Their positioning depends mainly on the interdependencies between the keypoints,

and it is worth noting that the prediction of the wrist or knees depend on the favorable cues around

them. For instance, the prediction of the right knee depends on the left knee and the right lower limb.

A closer look shows that our network has the ability to derive useful information from its relevant

parts for keypoints to predict targets. In this way, we can understand why the model can predict the

occluded keypoints(e.g. the occluded right knee in Figure 7 (a) ).
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(a) Visualization of image 1.

(b) Visualization of image 2.

Figure 7. Visualization of heatmaps predicting keypoints locations and their dependent regions for

different input pictures according to the CaFTNet-R model.

Visualization. Contrast the results for more visualizations are revealed on COCO in Figure . The

source image is displayed at the top of the picture, and the middle row displays the HRNet results, and

our results are displayed in the last row. The objects (enclosed in red circles) that were not detected by

HRNet in the first and second columns of images are likely due to occlusion by other objects. HRNet

may have treated the undetected objects as background during the detection process. In comparison,

the proposed AFAM in this paper can weight the features during information fusion output, allowing

for better prediction of occluded objects. Images of in the third column, our approach can accurately

detect occluded keypoints. This is because our model introduce CoT, which allows for better capture

of contextual information, providing beneficial cues for detecting occluded keypoints. As a result, our

approach achieves superior results.
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Table 4. Comparison results with different other methods on the COCO test-dev2017. CaFTNet-R and

CaFTNet-H * reach good results in terms of parameter number and calculation speed.

Model Input Size AP AP50 AP75 APm APl Params

G-RMI[18] 357×257 64.9 85.5 71.3 62.3 70.0 42.6M
Integral[59] 256×256 67.8 88.2 74.8 63.9 74.0 45.0M

CPN [48] 384×288 72.1 91.4 80.0 68.7 77.2 58.8M
RMPE[16] 320×256 72.3 89.2 79.1 68.0 78.6 28.1M

SimpleBaseline[24] 384×288 73.7 91.9 81.8 70.3 80.0 68.6M
HRNet-W32[14] 384×288 74.9 92.5 82.8 71.3 80.9 28.5M
HRNet-W48[14] 256×192 74.2 92.4 82.4 70.9 79.7 63.6M

TransPose-H-A4[57] 256×192 74.7 91.6 82.2 71.4 80.7 17.3M
TransPose-H-A6[57] 256×192 75.0 92.2 82.3 71.3 81.1 17.5M
TokenPose-L/D6[58] 256×192 74.9 90.0 81.8 71.8 82.4 20.8M

TokenPose-L/D24[58] 256×192 75.1 90.3 82.5 72.3 82.7 27.5M

CaFTNet-H3 256×192 75.0 90.0 82.0 71.5 82.5 17.03M
CaFTNet-H4 256×192 75.5 90.4 82.8 72.5 83.3 17.30M

CaFTNet

HRNet

Source Images

Figure 8. Qualitative comparisons on COCO.

4.4. Results on MPII

4.4.1. Dataset and Evaluation metric

MPII[47] is a single-person pose estimation dataset that captures the whole-body pose of people in

real scenes, including 28,821 training images, 11,701 test images, a benchmark dataset in single-person

pose estimation. The division of the training and validation sets are 22,246 and 2958 images,
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respectively. The standard evaluation index of MPII is PCKh (head-normalized percentage of correct

keypoint), using the head segment length as the normalization reference. PCKh is described as:

PCKhi =
∑p δ

(

dpi

Lhead
p

≤ 0.5

)

∑p1
, (14)

PCKhmean =
∑p ∑i δ

(

dpi

Lhead
p

≤ 0.5

)

∑p ∑i1
, (15)

where i represents the i-th keypoint, p represents the p-th pedestrian, dpi is the Euclidean distance

between the p-th individual’s i-th predicted keypoint coordinate and the corresponding groundtruth,

δ (·) represents the indicator function, Lhead
p indicates the p-th head segment length. We report

PCKh@0.5 (α = 0.5) score for fair comparison with other methods.

4.4.2. Quantitative Results

Table 7 presents the contrast results of the different approaches on the MPII, which can find

that the approaches in this paper exceed the HRNet. In more detail, we can find from the Table 7

that although our final results are only higher than 0.1 of the baseline method. Especially for ankles

detection, our method is 0.3 higher than the TokenPose-L/D24. And each test result of our method

outperforms the baseline method. And thus proves that our method achieves better performance on

this dataset. More importantly, our method uses only 61 percent of the number of baseline method

parameters. Our results are better compared to SimpleBaseline-Res152, and number of our parameter

decreases by 74.8%.

4.4.3. Qualitative Comparisons

We reveal some contrasting results on the MPII dataset in Figure 9. The source image is displayed

at the top of the picture, and the middle row displays the HRNet results, and our results are displayed

in the last row. From the visualization results of the third line, our method can correctly detect the

keypoints of the occlusion not detected by HRNet. Mainly because our model can better capture

the contextual information and provide favorable clues for blocking keypoints. Thus, our approach

achieves better results.
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Figure 9. Qualitative comparisons on MPII.

4.5. Ablation experiments

The ablation experiments are chosen for training validation on the COCO dataset, considering

the role of Transformerneck and AFAM in the network model.

4.5.1. Transformerneck

In this paper, two sets of ablation experiments are devised to verify the effect of employing

bottleneck or Transformerneck separately based on our different network models. When implementing

our network model with CaFTNet-H, we replace the bottleneck structure with our proposed

Transformerneck, while keeping the other structures unchanged. The structures using Transformerneck

reached 75.7 AP in Table 5. We also report the results of replacing bottleneck with Transformerneck

when employing CaFTNet-R. Results with Transformerneck yield 0.6 more values than results

employing bottleneck. The results illuminate the fundamentality of excavating the contextual

information for decoding the subsequent features.

4.5.2. Attention Feature Aggregation Module(AFAM)

We investigate the effects of different attention on the experimental results, for example (i)SENet;

(ii)ECANet; (iii)CBAM; (iv)AFAM. Due to their different operation of the feature map, the influence on

the results of the experiment is also different. SENet [43] models the interactions between the channels

by using global mean pooling and two fully-connected layers. On the basis of SENet, [44] proposes

ECANet. Local cross-channel interaction strategy without decreasing the dimension is designed, which

further improves the performance. [45] puts forward CBAM to focus more on spatial attention maps.

AFAM compensates for the lack of spatial processing of CBAM, and it keeps the network focused at our

more desired features. Table 6 presents the contrasting results from our different settings. Although

the difference between them is small, we can become conscious of our proposed AFAM at 0.5 higher
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than using SE. The results expose that more spatial information is needed when solving the feature

fusion problems.

Table 5. The effects of CoT for different models on the COCO dataset.

Model bottleneck Transformerneck AP

CaFTNet-R ✓ 72.6
CaFTNet-R ✓ 73.2
CaFTNet-H ✓ 75.3
CaFTNet-H ✓ 75.7

Table 6. Contrasting results for the COCO under different attentions.

Model Baseline SE ECA CBAM AFAM AP

CaFTNet-R ✓ 72.6
CaFTNet-R ✓ ✓ 72.7
CaFTNet-R ✓ ✓ 72.8
CaFTNet-R ✓ ✓ 73.0
CaFTNet-R ✓ ✓ 73.2

Table 7. Results on the MPII validation set (PCKh@0.5).

Model Hea Sho Elb Wri Hip Kne Ank Mean Params

SimpleBaseline-Res50[24] 96.4 95.3 89.0 83.2 88.4 84.0 79.6 88.5 34.0M
SimpleBaseline-Res101[24] 96.9 95.9 89.5 84.4 88.4 84.5 80.7 89.1 53.0M
SimpleBaseline-Res152[24] 97.0 95.9 90.0 85.0 89.2 85.3 81.3 89.6 68.6M

HRNet-W32[14] 97.1 95.9 90.3 86.4 89.1 87.1 83.3 90.3 28.5M
TokenPose-L/D24[58] 97.1 95.9 90.4 86.0 89.3 87.1 82.5 90.2 28.1M

CaFTNet-H4 97.2 96.1 90.5 86.5 89.3 86.9 82.8 90.4 17.3M

5. Conclusions

In this article, we put forth the Lightweight Context-aware Feature Transformer Network

(CaFTNet) for enhancing the efficacy of human pose estimation models. Since CNNs cannot capture

long-range dependencies between global regions, we devise Transformerneck. Furthermore, to bolster

the representation power of the fusion output feature maps, we design Attention Feature Aggregation

Module(AFAM). Extensive experiments carried out on the COCO and MPII corroborate the availability

of the proposed approach.

6. Patents

Funding: This work is supported by The Natural Science Foundation of Hebei Province (F2019201451).

Abbreviations

The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute

DOAJ Directory of open access journals

TLA Three letter acronym

LD Linear dichroism
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