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Abstract: We propose Context-aware Feature Transformer Network (CaFTNet), a novel network
for human pose estimation. To address the issue of limited modeling of global dependencies in
convolutional neural networks, we design Transformerneck to strengthen the expressive power of
features. Transformerneck directly substitutes the 3 x 3 convolution in bottleneck of HRNet with
Contextual Transformer (CoT) block, while reducing the complexity of the network. Specifically,
CoT first produces keys with static contextual information through 3 x 3 convolution. Then,
relying on the query and contextualization keys, the dynamic contexts are generated through two
concatenated 1 x 1 convolutions. Static and dynamic contexts are eventually fused as an output.
Additionally, for the multi-scale networks, in order to further refine the features of the fusion output,
we propose an Attention Feature Aggregation Module(AFAM). Technically, given an intermediate
input, AFAM successively deduces attention maps along channel and spatial dimensions. Then,
Adaptive refinement module(ARM) is exploited to activate the obtained attention maps. Finally, the
input undergoes adaptive feature refinement through multiplication with the activated attention
maps. Through the above studies, our lightweight network provides a powerful clue for detection of
keypoints. Experiments are implemented on the COCO and MPII datasets. The model achieves 76.2
AP on the COCO val2017. Compared to other methods with the CNN as the backbone, CaFTNet
reduces the number of parameters by 72.9 %. On the MPII, our method uses only 60.7% of the number
of parameters, acquiring semblable results to other methods with the CNN as the backbone.

Keywords: human pose estimation; expressive power of features; feature refinement; global
dependencies

1. Introduction

The goal of human pose estimation is to predict keypoints of human anatomy in the images. It
has extensive applications in the field of computer vision for instance human action recognition [1-4],
human pose tracking [5-9], 3D human pose estimation [10-13] and so on.

CNN’s have obtained praiseworthy accomplishments in human pose estimation [14-18]during a
recent period of time. However, the convolution’s receptive field is confined, which makes the CNNs
unable to capture the dependence of remote interaction information. Recently, different methods
[19-23] have been presented to remedy the shortcomings of the convolution limitation problem. A
typical solution is to expand the receptive field to learn the global dependency information, for
example by increasing the network depth [24-26]. However, deepening of the network will lead
to a sharp increase in the number of parameters. Recently, Transformer [27] with self-attention has
become a novel choice for a variety of visual tasks [28-30] for its capturing interactions between any
pairwise positions. For human pose estimation, we expect to leverage global dependencies captured
by self-attention to provide contextual clues for occluded keypoints. Because the body keypoints
themselves have certain connections, as shown in Figure 1, global dependencies are able to improve
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the ability to locate difficult keypoints depending on easily detecting keypoints, thereby enhancing
the performance of the overall network. There have been some recent works in CNN [31,32] directly
model global dependencies with self-attention instead of convolution. For instance, CoT [32] encodes
contextual information into the self-attention module, increasing representation ability of features.
CoT can substitute 3 x 3 convolutions in ResNet [33], while owning fewer parameters.

.

Figure 1. Attention map for position of each predicted keypoint. We can find that the motorcycle

coveres the people’s left ankle. The left ankle is predicted by relying on contextual information around
the knee and the right leg joint.

In order to fully leverage the advantages of CNNs and self-attention mechanisms, some
researchers have combined [34,35]them to extract features. However, there are still some drawbacks
for multi-scale networks [36-39]. Each subnetwork of multi-scale neural networks has a different
resolution in order to exchange information between multiple resolution representations in feature
fusion. High resolution features with more attention to detail information can precisely locate the
position information of the keypoints. Low resolution features with a larger receptive field can capture
global information about the human pose. In feature fusion, the accuracy of keypoints detection will
be enhanced if our model can fully exploit the benefits of high and low resolution. However, some
existing methods [40,41] ignore the differences between features at different resolutions, resulting in
undesired fusion of noise features. To bridge the differences between features at different resolutions,
an effective approach is to utilize the attention mechanism. Because attention can make the network to
stress or restrain information through learning, so that the network can better grasp the information
we need to pay attention to. Recently, some scholars have conducted relevant research [42—44]. For
example, CBAM [45]considers channel and spatial relationships and generates spatial attention maps
finally. Therefore, we also expect our model to have the ability to learn information in both channel
and spatial orientations.

Based on the above studies, in this article, we put forth a Lightweight Context-aware Feature
Transformer Network (CaFTNet) built upon HRNet, to improve network efficacy by enhancing the
localization accuracy of occluded keypoints. Firstly, to strengthen the semantic features of contextual
information, we design a Transformerneck structure. Transformerneck directly replaces the 3 x 3
convolution in bottleneck with Contextual Transformer (CoT) block, while reducing the complexity of
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the network. Then inspired by the CBAM, to further refine the features of the fusion output, we design
an Attention Feature Aggregation Module(AFAM). Due to the diversity of human poses, CBAM is
still insufficient for spatial processing as it only employs a 7 x 7 convolution filter for feature fusion,
while spatial attention is decided by the value of each pixel, not the region of 7 x 7. So, we propose an
ARM to activate the obtained features. Therefore, our method further reinforces the feature fusion
of multi-scale networks and ameliorates the output features. On the COCO [46], our model achieves
better result than other methods with the CNN as the backbone. What’s more, notably, the model
reduces the number of parameter by 72.9%. On the MPII [47], our method takes advantage of 60.7%
of the number of parameters, acquiring semblable results to other methods with the CNN as the
backbone.

2. Related Work

2.1. Human Pose Estimation

Currently, CNNs have gained tremendous success in the field of human pose estimation.
Hourglass [36] belongs to an hourglass type of network structure, which can perceive more global
information. CPN [48] has two stages: GlobalNet and RefineNet, which can alleviate the detection
problem of hard keypoints. Simple baseline [24] adds some transpose convolutional layers to restore
the resolution. It indicates importance of high resolution feature maps. HRNet [14] proposes a network
with high-resolution representations through the whole process, which repeats multi-scale fusions to
improve the representation power of feature maps. Accordingly, HRNet achieves impressive results
in multiple benchmark datasets. However, HRNet still falls within the category of CNNSs, facing the
issue of limited receptive fields. Therefore, global information needs to be ameliorated.

2.2. Attention enhanced Convolution

Convolution is dependent on a well-sized convolution kernel to gather information, which leads
to the inability of the CNNSs to establish global dependencies. The existing multiple approaches to
image attention mechanisms suggest that they can compensate for the problem of confining of the
convolution receptive field. Therefore, many scholars have explored the apply of attention to improve
the capability of CNNs. SENet [43] models the interactions between the channels by using global
mean pooling and two fully-connected layers. On the basis of SENet, ECANet [44] is came up with.
Local cross-channel interaction strategy without decreasing the dimension is designed, which further
improves the performance. CBAM [45] calculates attention maps on the channel and spatial directions
to better learn useful information in the feature maps.

Recently, with the rise of the self-attention of Transfomer, the interest is aroused due to the
powerful global dependence modeling ability of self-attention. Some works [49-52] have shown
that self-attention modules are proposed as individual blocks, which can wholly substitute for the
convolutions in HRNet. Although self-attention can effectively capture interactions between any
paired positions. However, the pairwise query-key relationships are learned individually on isolated
query-key pairs, without taking into account the abundant contextual information between them
during the learning process.This seriously restricts the self-attention learning ability of two-dimensional
feature maps for visual representation learning. Most recently, [31] displaces 3 x 3 convolutions with
self-attention in the final stage of the network. [32] replaces 3 x 3 convolution in each bottleneck by
leveraging the CoT block, which can take full advantage of the context of the query-key to model
global dependencies.

2.3. HRNet

HRNet [14] utilizes a stem to fastly downsample the input feature. As shown in Figure 2, the
HRNet network can be segmented into four stages. The first stage mainly has a high-resolution
subnetwork. And from the second stage, a low-resolution subnetwork is added to each stage. The
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resolution of the new subnetwork is half of the lowest resolution of the previous stage. Each stage will
interact with information through multi-resolution blocks.

% % %
@ Feature maps  Upsamp. L _______________

\« Down samp. —  Conv.unit i i

Figure 2. The architecture of HRNet.

HRNet has achieved remarkable success as a feature extractor. The problem of the limited
receptive field inherent to the convolution operation needs to be improved. HRNet is unable to
establish long-term dependencies, resulting in incorrect estimation of some human poses. For this
reason, this paper proposes a Lightweight Context-aware Feature Transformer Network(CaFTNet).
CaFTNet firstly capitalizes on the CoT block to enhance the expressiveness of the features. Then in
feature fusion, the CaFTNet exploits AFAM to enhance the representative power of the output feature
maps. And our final results are also better.

3. Methods

In this section, we put forward a CaFTNet to better perform the feature extraction. Figure 3
depicts the framework of our presented model. To begin with, we briefly review framework of our
CaFTNet. Then, we introduce Transformerneck and AFAM in detail.

———————————————— 1 e ]

|
| |
| |
| . | Transformer
-0~ ==
| |
| | I |

peaH

Mid-HRNet AFAM

—> Transformerneck

Keypoint Heatmaps

Figure 3. The overview of CaFTNet. Firstly, Transformerneck is used to extract preliminary input
features with contextual information. Secondly, the input features continue to encode the feature
information through the Mid-HRNet. Then AFAM further refines the contextual features. Next,
Transformer Encoder Layer encodes position representation of keypoints. Finally, a head predicts
keypoints heatmaps. Mid-HRNet refers to the second and third stages of the HRNet.
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3.1. Context-aware Feature TransformerNetwork(CaFTNet)

The aim of this paper is to enhance the representational ability of the feature maps and lighten
network model in pose estimation. The overall architecture of CaFTNet is revealed in Figure 3 . The
CaFTNet puts HRNet as the backbone and enhances it with the presented Transformerneck and
Attention Feature Aggregation Module(AFAM).

First, our proposed Transformerneck is used to extract preliminary input features with contextual
information. It is represented by a blue dashed line box. Transformerneck is to replace the 3 x 3
convolution with CoT while keeping the bottleneck framework unchanged. Secondly, this input
features continue to encode the feature information through the Mid-HRNet. Then, we place the
AFAM on the head of the neural networks to further refine the enriched contextual features. AFAM is
represented by a green dashed line box. AFAM successively deduces attention maps along channel and
spatial directions. Adaptive refinement module(ARM) is exploited to activate the obtained attention
maps. The input undergoes adaptive feature refinement through multiplication with the activated
attention maps. Next, output of the AFAM goes through Transformer Encoder Layer to encode position
representation of keypoints. Finally, a head is attached to Transformer Encoder output to predict
keypoints heatmaps.

v
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Figure 4. The overall structure of Transformerneck.
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3.2. Transfomerneck
For a middle input X € RH*W*C an output H is first obtained through a 1 x 1 convolution
and a nonlinear activation layer. The output H is sent into the CoT (As shown in the green rectangle

enclosed in Figure 4). H is represented as:

H = ReLU(BN(Convix1(X))). (1)

H will then be defined the K, Q and V along three different paths. The K first produces contextualized
Kj through 3 x 3 convolutions. The formula of K; is described as follows:

Kl = C0n273><3 (K) . (2)

Then, K; and Q are conducted the operation of concatenation. And the result of the operation generates
the attention map M by two series of 1 X 1 convolutions. The formula of M is calculated :

M = Convy 1 (ReLU (Convyx1 (Concat (Ky,Q)))) - 3)

Next, V first passes through a 1 x 1 convolution to obtain Vi, the feature map K, can be computed as
follows:

V] = COTIU]Xl (V) ’ (4)

Ky =F(Vi®M), 5)

where F(®) denotes the matrix multiplication operation. The final output Z of CoT is thus calculated
as the fusion of K; and Kj . Z continues to produce T through a nonlinear activation layer and a 1 x 1
convolution layer. The T and a shortcut connection are added element-wise to produce Y with context
relations. Finally, Y is sent to the next module via the Relu activation function.

rARM attention map

| 1x1 = 1x1 = Fy _{

I 1x1 wepp 1x] =p Fj

cs ‘
II.? / \Fs 1x] | Sigmoid e F —>®j" F1 *g?_’ F !

Figure 5. The overall structure of Attention Feature Aggregation Module. CS: Channel Attention
Module, Spatial Attention Module.

3.3. Attention Feature Aggregation Module(AFAM)

To begin with, we consider feature map F € R*"W*C a5 input in Figure 5. F through a cs module,
generating the spatial attention map F; that we need. This process can be described as two steps in
Figure 6. The first step, F. can be described as:

F. = Sigmoid (MLP (AvgPool (F)) + MLP (MaxPool (F))) ® F. (6)
The second step, the F; was fed to the spatial attention model to gain the F;. The F; is adopted as:

Fs = Sigmoid (Convyyy ([AvgPool (F.) ; MaxPool (F;)])) ® Fe. (7)
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Figure 6. The overall structure of Convolution Block Attention Module.

Next, F; is reshaped to feature sequences F;, Fi and F, in order to model the spatial context relations of
the corresponding features. Detailed description of this process is as follows: (1)F; obtains the spatial
context feature F, through a 1 X 1 convolution and a sigmoid layer in the last row. F, is represented as:

F, = Sigmoid (Convy 1 (Fs)) . 8)

(2)F; rearranges the spatially related context features together respectively through two 1 x 1
convolutions and a non-linear activation layer to obtain F; and Fy. F; and F; are represented as:

F, = Conyx1 (ReLU (Convix1 (F))), )

Fk = CO1’11><1 (RELU (Conlel (Fs))) . (10)

(3)The F; and F; are multiplied element-wise to obtain an attention map with contextual relationships,
which is subsequently applied to feature for recalibrating the output feature F;. F; is represented as:

F; = F, ® Sigmoid (F; ® Fy) . (11)

Finally, F; and F are added element-wise to achieve F’. The F’ is adopted as:
F=F&F. (12)

4. Experiments

This section may be divided by subheadings. It should provide a concise and precise description
of the experimental results, their interpretation as well as the experimental conclusions that can be
drawn.

4.1. Model Variants

Based on HRNet, we present Lightweight Context-aware Feature Transformer Network. In
our structure, there are two different depths of CNNs to extract the input features. Detailed setup
information are presented in Table 1. The network utilized by CaFTNet-R is ResNet. The backbone
network utilized by CaFTNet-H4 is the HRNet-W48. From Table 2, we can find that the model reaches
best result when the network employs CaFTNet-H4.

4.2. Technical details

Our model takes advantage of the top-down [53-55] approach. The experimental environment
configuration is shown as follows: Two RTX 2080s are deployed. Python Version is 3.7. Framework is
PyTorch 1.10.0. The network model is optimized utilizing the Adam [56] optimizer during training,
with an initial learning rate of 0.001 and 0.00001 at 220 rounds. The network is trained 230 rounds with
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a batchsize of 16 for each GPU. Because the size of the pictures in the dataset is different, the pictures
are modified by image pre-processing. Here, images are cropped to 256 x 192 on the COCO and 256 x
256 on the MPII.

Table 1. Parameter configuration information for the different CaFTNet models.

Model Backbone  Layers Heads Flops Params
CaFTNet-R ResNet 4 8 529G 5.55M
CaFTNet-H3 HRNet-W32 4 1 8.46G 17.03M
CaFTNet-H4 HRNet-W48 4 1 8.73G  17.30M

Table 2. Ablation study on different Backbone.

Model Backbone AP AR Flops Params

CaFTNet-R ResNet 737 790 529G 5.55M
CaFTNet-H3 HRNet-W32 75.6 809 846G 17.03M
CaFTNet-H4 HRNet-W48 762 812 873G 17.30M

4.3. Results on COCO

4.3.1. Dataset and Evaluation Metrics

The COCO [46] has more than 200,000 images and 250,000 instances, each containing up to 17
human keypoints. The network model is trained on the train2017 dataset, and the network model is
verified and tested on val2017 (including 5,000 images) and test-dev2017 (including 20,000 images).
Our model is measured by Object Keypoint Similarity (OKS) on the COCO dataset. OKS defines the
similarity between different human keypoints, AP*” indicates the accuracy of the keypoints at OKS =
0.5, and AP”’ is the accuracy of the keypoints at OKS = 0.75. The mAP is defined as the mean accuracy
value of the predicted keypoints at the 10 thresholds of OKS = 0.50, 0.55 ... 0.90, 0.95. APM is utilized to
describe the accuracy of the detection of medium size keypoints, and AP represents the accuracy of
large size keypoints. The formula of OKS is described as:

_ Yiexp (—d?/2s%k2) 5 (v; > 0)
Yid (i >0) '
where d; is the Euclidean distance between the i-th predicted keypoint coordinate and the

corresponding groundtruth, v; is the visibility flag of the keypoint, s is the object scale, and k; is
a keypoint-specific constant.

(13)
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Table 3. Comparison results with different other methods on the COCO val2017. CaFTNet-R and
CaFTNet-H * reach good results in terms of parameter number and calculation speed.

Model Input Size AP AR Flops  Params
ResNet-50[33] 256x192 704 763 8.9G 34.0M
ResNet-101[33] 256x192 714 763 124G 53.0M
ResNet-152[33] 256x192 72 778  35.3G 68.6M

TransPose-R-A3[57] 256192 717 771 8.0G 52M
TransPose-R-A4[57] 256x192 726 780 8.9G 6.0M

CaFTNet-R 256x192 73.7 79.0 5.29G 5.55M
HRNet-W32[14] 256x192 747 798 7.2G 28.5M
HRNet-W48[14] 256192 751 804 14.6G 63.6M

TransPose-H-A4[57] 256x192 753 803 17.5G 17.3M
TransPose-H-A6[57] 256x192 758  80.8 21.8G 17.5M

TokenPose-L/D6[58] 256192 754 804 9.1G 20.8M
TokenPose-L/D24[58]  256x192 758 809 11.0G 27.5M

CaFTNet-H3 256x192 75.6  80.9 8.46G  17.03M
CaFTNet-H4 256192 762 812 8.73G 17.30M

4.3.2. Quantitative Results

The models are compared for their performance on the COCO val2017, and the results are
shown in Table 3. Where the number of parameters and GFLOPs are calculated from the human
pose estimation network model. The experimental results show that the CaFI'Net model gains good
performance with less number of parameters and GFLOPs. CaFTNet-H4 acquires 76.2 AP scores
with an input size of 256 X192, better than other models with the same input size. In contrast to the
TransPose-R-A4 [57], CaFTNet-R has an 8.3% drop in the number of parameters, but increasing AP
scores by 1.1. In contrast to the ResNet-152 [33], our CaFTNet-R obtains better performance, utilizing
only 7.2% of the model parameters. With the complex network model of HRNet-W48 [14] contrast,
CaFTNet acquires a good AP score with much lower complexity. Table 4 exhibitions the results of our
approach and the other approaches on the COCO test-dev2017. Our CaFTNet-H4 reaches 75.5 AP. Due
to the effective perceptual context semantic information, CaFTNet achieves a good balance between
accuracy and complexity.

4.3.3. Qualitative Comparisons

Different keypoints rely on different regions. We can find that for the keypoints of the head like the
nose, the eyes, etc. Their positioning depends mainly on the interdependencies between the keypoints,
and it is worth noting that the prediction of the wrist or knees depend on the favorable cues around
them. For instance, the prediction of the right knee depends on the left knee and the right lower limb.
A closer look shows that our network has the ability to derive useful information from its relevant
parts for keypoints to predict targets. In this way, we can understand why the model can predict the
occluded keypoints(e.g. the occluded right knee in Figure 7 (a) ).
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(a) Visualization of image 1.
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(b) Visualization of image 2.

Figure 7. Visualization of heatmaps predicting keypoints locations and their dependent regions for
different input pictures according to the CaFTNet-R model.

Visualization. Contrast the results for more visualizations are revealed on COCO in Figure . The
source image is displayed at the top of the picture, and the middle row displays the HRNet results, and
our results are displayed in the last row. The objects (enclosed in red circles) that were not detected by
HRNet in the first and second columns of images are likely due to occlusion by other objects. HRNet
may have treated the undetected objects as background during the detection process. In comparison,
the proposed AFAM in this paper can weight the features during information fusion output, allowing
for better prediction of occluded objects. Images of in the third column, our approach can accurately
detect occluded keypoints. This is because our model introduce CoT, which allows for better capture
of contextual information, providing beneficial cues for detecting occluded keypoints. As a result, our
approach achieves superior results.
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Table 4. Comparison results with different other methods on the COCO test-dev2017. CaFTNet-R and
CaFTNet-H * reach good results in terms of parameter number and calculation speed.

Model Input Size AP AP AP’5  AP™ AP Params
G-RMI[18] 357x257 649 855 71.3 62.3 70.0 42.6M
Integral[59] 256 %256 67.8 882 74.8 639 74.0 45.0M
CPN [48] 384 %288 721 914 80.0 68.7 772 58.8M
RMPE[16] 320%x256 723  89.2 79.1 68.0 78.6 28.1M
SimpleBaseline[24] 384 <288 737 919 81.8 70.3  80.0 68.6M
HRNet-W32[14] 384 <288 749 925 82.8 713 809 28.5M
HRNet-W48[14] 256x192 742 924 824 709 797 63.6M

TransPose-H-A4[57] 256x192 747 916 822 714 807 17.3M
TransPose-H-A6[57] 256x192 750 922 823 713 811 17.5M
TokenPose-L/D6[58] 256x192 749  90.0 81.8 718 824 20.8M
TokenPose-L/D24[58]  256x192 751 903 825 723 827  27.5M

CaFTNet-H3 256192 75.0  90.0 82.0 71.5 82,5 17.03M
CaFTNet-H4 256x192 75.5 90.4 82.8 72.5 833 17.30M

Source Images

HRNet

L N “FJ/’

CaFTNet

Figure 8. Qualitative comparisons on COCO.

4.4. Results on MPII

4.4.1. Dataset and Evaluation metric

MPII[47] is a single-person pose estimation dataset that captures the whole-body pose of people in
real scenes, including 28,821 training images, 11,701 test images, a benchmark dataset in single-person
pose estimation. The division of the training and validation sets are 22,246 and 2958 images,
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respectively. The standard evaluation index of MPII is PCKh (head-normalized percentage of correct
keypoint), using the head segment length as the normalization reference. PCK#h is described as:

dpi
£y <09)

PCKh; =
Chl Zpl 7

(14)

d,:
0| g <05
Zp Zl < Lgend — >
Zp Zi 1
where i represents the i-th keypoint, p represents the p-th pedestrian, d;; is the Euclidean distance
between the p-th individual’s i-th predicted keypoint coordinate and the corresponding groundtruth,

0 (-) represents the indicator function, Lzead indicates the p-th head segment length. We report
PCKh@0.5 (« = 0.5) score for fair comparison with other methods.

PCKhyoqn = , (15)

4.4.2. Quantitative Results

Table 7 presents the contrast results of the different approaches on the MPII, which can find
that the approaches in this paper exceed the HRNet. In more detail, we can find from the Table 7
that although our final results are only higher than 0.1 of the baseline method. Especially for ankles
detection, our method is 0.3 higher than the TokenPose-L/D24. And each test result of our method
outperforms the baseline method. And thus proves that our method achieves better performance on
this dataset. More importantly, our method uses only 61 percent of the number of baseline method
parameters. Our results are better compared to SimpleBaseline-Res152, and number of our parameter
decreases by 74.8%.

4.4.3. Qualitative Comparisons

We reveal some contrasting results on the MPII dataset in Figure 9. The source image is displayed
at the top of the picture, and the middle row displays the HRNet results, and our results are displayed
in the last row. From the visualization results of the third line, our method can correctly detect the
keypoints of the occlusion not detected by HRNet. Mainly because our model can better capture
the contextual information and provide favorable clues for blocking keypoints. Thus, our approach
achieves better results.
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Source Images

HRNet

CaFTNet

Figure 9. Qualitative comparisons on MPIL

4.5. Ablation experiments

The ablation experiments are chosen for training validation on the COCO dataset, considering
the role of Transformerneck and AFAM in the network model.

4.5.1. Transformerneck

In this paper, two sets of ablation experiments are devised to verify the effect of employing
bottleneck or Transformerneck separately based on our different network models. When implementing
our network model with CaFTNet-H, we replace the bottleneck structure with our proposed
Transformerneck, while keeping the other structures unchanged. The structures using Transformerneck
reached 75.7 AP in Table 5. We also report the results of replacing bottleneck with Transformerneck
when employing CaFTNet-R. Results with Transformerneck yield 0.6 more values than results
employing bottleneck. The results illuminate the fundamentality of excavating the contextual
information for decoding the subsequent features.

4.5.2. Attention Feature Aggregation Module(AFAM)

We investigate the effects of different attention on the experimental results, for example (i)SENet;
(i) ECANet; (iii)CBAM; (iv)AFAM. Due to their different operation of the feature map, the influence on
the results of the experiment is also different. SENet [43] models the interactions between the channels
by using global mean pooling and two fully-connected layers. On the basis of SENet, [44] proposes
ECANet. Local cross-channel interaction strategy without decreasing the dimension is designed, which
further improves the performance. [45] puts forward CBAM to focus more on spatial attention maps.
AFAM compensates for the lack of spatial processing of CBAM, and it keeps the network focused at our
more desired features. Table 6 presents the contrasting results from our different settings. Although
the difference between them is small, we can become conscious of our proposed AFAM at 0.5 higher
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than using SE. The results expose that more spatial information is needed when solving the feature
fusion problems.

Table 5. The effects of CoT for different models on the COCO dataset.

Model bottleneck Transformerneck AP

CaFTNet-R v 72.6
CaFTNet-R v 73.2
CaFTNet-H v 75.3
CaFTNet-H v 75.7

Table 6. Contrasting results for the COCO under different attentions.

Model Baseline SE ECA CBAM AFAM AP

CaFTNet-R v 72.6
CaFTNet-R v v 72.7
CaFTNet-R v v 72.8
CaFTNet-R v v 73.0
CaFTNet-R v v 73.2

Table 7. Results on the MPII validation set (PCKh@0.5).

Model Hea Sho EIlb Wri Hip Kne Ank Mean Params
SimpleBaseline-Res50[24] 96.4 953 89.0 832 884 840 79.6 88.5 34.0M
SimpleBaseline-Res101[24] 96.9 959 895 844 884 845 80.7 89.1 53.0M
SimpleBaseline-Res152[24] 97.0 959 90.0 850 892 853 813 89.6 68.6M

HRNet-W32[14] 971 959 903 864 89.1 871 83.3 90.3 28.5M
TokenPose-L/D24[58] 971 959 904 860 893 871 82.5 90.2 28.1M
CaFTNet-H4 97.2 961 905 86.5 893 869 828 90.4 17.3M

5. Conclusions

In this article, we put forth the Lightweight Context-aware Feature Transformer Network
(CaFTNet) for enhancing the efficacy of human pose estimation models. Since CNNs cannot capture
long-range dependencies between global regions, we devise Transformerneck. Furthermore, to bolster
the representation power of the fusion output feature maps, we design Attention Feature Aggregation
Module(AFAM). Extensive experiments carried out on the COCO and MPII corroborate the availability
of the proposed approach.

6. Patents
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Abbreviations

The following abbreviations are used in this manuscript:

MDPI  Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals

TLA Three letter acronym

LD Linear dichroism
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