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Abstract: Traditional image steganography conceals secret messages into unprocessed natural images

by modifying the pixel value, causing the obtained stego different from the original image in terms

of statistical distribution, thereby could be detected by a well-trained classifier for steganalysis. To

ensure the steganography is imperceptible and and in line with the trend of art images produced by

Artificial General Intelligence (AGI) becoming popular in social networks, this paper proposes to

embed hidden information throughout the process of the generation of an art-style image by designing

an image style transformation neural network with steganography function. The proposed scheme

takes a content image, an art-style image, and messages to be embedded as inputs, processing them

with an encoder-decoder model, and finally generates a styled image containing the secret messages

at the same time. An adversarial training technique is applied to enhance the imperceptibility of the

generated art-styled stego image with from plain style-transferred images. The lack of the original

cover image makes it difficult for the opponent learning a steganalyzer to identify the stego. The

recommended approach can successfully withstand existing steganalysis techniques and attain the

embedding capacity of 3 bits per pixel for a color image, according to experimental results.

Keywords: Generative Adversarial Network (GAN); image steganography; style transfer

1. Introduction

Image steganography is a concealed communication method that uses seemingly benign digital

images to conceal sensitive information. The image with hidden messages is known as a stego. The

mainstream of existing approaches for image steganography is content-adaptive, which embeds secrets

to highly textured or noisy regions by minimizing a heuristically defined distortion function that

measures the statistical detectability or distortion. Based on the near-optimal steganographic coding

scheme [1,2], numerous efficient steganographic cost functions have been put forth over the years,

many of them are based on statistical models [6,7] or heuristic principles [3–5]. The performance of

steganography could also be enhanced by taking into account the correlations between nearby picture

elements, such as [8–11].
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Figure 1. Comparison with traditional image steganography and style tranfer steganography.

Image steganalysis, on the other hand, seeks to identify the presence of a hidden message inside

an image. Traditional steganalysis methods based on statistical analysis or training a classifier [12]

based on hand-craft features [13–15]. In recent years, the deep neural network is proposed for

steganalysis [16–20] and their performance outperforms traditional methods, which challenges the

security of the steganography. To defend against steganalysis, some researchers proposed embedding

secret messages by deep neural networks and simulating the rivalry between steganography and

steganalysis by a GAN (Generative Adversarial Network), which alternatively updates a generator and

a discriminator. By which enhanced cover images or distortion costs could be learned. However, since

these methods embed messages based on an existing image, it is possible for the adversary generates

cover-stego pairs, which will provide more information for steganalysis. To solve this problem, some

works utilize GAN to learn how to map pieces of secret information to the stego and directly produce

stego images without the cover [21–35]. But the images obtained by GAN is not of satisfying in terms

of visual quality due to the difficulty of image generation task.

Figure 2. Framework of hiding information in style transform network.
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The goal of the above-mentioned methods is to keep the stego images indistinguishable from

unprocessed natural images since the transfer of natural images is a common phenomenon in recent

years. Recently, as the rapid growth of AGI, the well performed image generation and image processing

models emerge in large numbers, such as dalle2 [36], stable diffusion [37], arousing the attention of

steganography of the AI generated or processed images [38,39]. Among the images produced by

AI, the art-style images become more popular in social network, thereby generating stegos that are

indistinguishable from style-transferred images could be a new way for high capacity and secure

steganography. In [46], Zhong et al. proposed a steganography method in stylized images, they

produced two similar stylized images with different parameters, one of them is used for embedding

and another one is employed as a reference. However, because it remains dependent on the framework

of embedding distortion and STC coding, the adversary may detect the stego by generating cover-stego

pairs and training a classifier, thereby the stego images face the risk of being detected. In this paper, we

propose to encode the secret messages into the images at the same time of generate style-transferred

images. The contribution of the paper are concluded as below:

1. We design a framework for image steganography during the process of image style transfer. The

proposed method is more secure compared to traditional steganography since it is difficult for

steganalysis without corresponding cover-stego pairs.
2. We validate the effectiveness of the proposed method by experiments. The results show

the proposed approach can successfully embed 1 bpcpp, and the generated stego cannot be

distinguished from clean style transferred images generated by a model without steganography.

The accuracy of the recovered information is 99%. Though it is not 100%, it can be solved by

coding secret information using error correction codes before hiding them in the image.

2. Related Works

2.1. Image Steganography

The research on steganography is usually based on the "prisoner’s problem" model, which was

proposed by American scholar Simmons in 1983, and is described as follows: "Assuming Alice and

Bob are held in different prisons and wish to communicate with each other to plan their escape, but all

communication must be checked by the warden Wendy." The steganographic communication process

is shown in Figure 2.1. The sender Alice hides the message in a seemingly normal carrier by selecting

a carrier that Wendy allows and using the key shared with the receiver Bob. This process can be

represented as:

Emb(c, m, k) = s (1)

Then, the carrier is transmitted to the receiver Bob through a public channel. Bob receives the carrier

containing the message and uses a shared key to extract the message:

Ext(s, k) = m. (2)

Wendy, the monitor in the public channel, aims to detect the presence of covert communication.

Existing steganography methods could be divided into three categories: 1) cost based

steganography, 2) model based steganography and 3) generative steganography.

2.1.1. Cost Based Steganography

Each cover element i ∈ 1, · · · N of the cover is allocated a cost ρi ≥ 0 and a probability βi for

modifying its value according to the image content, techniques such as UNIWARD, WOW, and HILL

propose a variety of cost designing methods. The objective of cost based steganography is to embed

the secret message into the cover in a way that minimizes the sum of the predicted costs of all modified

pixels, which is calculated by d = ∑
N
i=1 βiρi. To this end, the problem of secret embedding is recognized
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as source coding with fidelity constraint, and near optimal1 coding scheme Syndrome-Trellis Codes

(STC) and Steganographic Polar Codes (SPC) have been developed [1,2]. Cost based steganography

adaptively embedding secrets hence the steganography is imperceptible. However, the costs are

occasionally determined via heuristic methods and cannot be mathematically associated with the

potential of changes in embedding being detected. Moreover, when a well-informed adversary is

cognizant of the changing rates of the embedding, which is taken as a kind of side information

in steganalysis, and could be used by the adversary to improve steganalysis accuracy by utilizing

selection-channel-aware features or convolutional neural networks.

2.1.2. Model Based Steganography

Model-based steganography establishes a mathematical model for the distribution of carriers,

aiming to embed messages while preserving the inherent distribution model as much as possible.

MiPOD is an example of the model based steganographic scheme. It assumes the noise residuals in a

digital image follow a Gaussian distribution with zero mean and variances σ2
i , which are estimated

for each cover element i. The messages are embedded aim by reducing the effectiveness of the most

advanced detector that an adversary can create. While this approach is theoretically secure, challenges

arise due to variations in distribution models among multimedia data, such as images and videos,

acquired by different sensors. Furthermore, the influence of distinct temporal and environmental

factors on pixel distribution complicates the identification of a universally applicable model for

accurately fitting real-world distributions.

2.1.3. Coverless Steganography

Unlike cost based method or model based method, where a prepared cover object is used to

hide data by modifying the pixel values, coverless steganography based on the principle that natural

carriers may carry the secret information that both parties want to transmit in secret communication.

They do not require to prepare the cover to be modified, but aims to embed information directly within

the carrier medium itself, without relying on modifying a distinct cover. Traditional methods achieve

this by selecting the image that suitable with the message to be transmitted. With the development of

the generative model, recent research proposed to embed the messages in the interim of the image

generation or procession.

2.2. Image Style Transfer

Image style conversion methods can be divided into non realistic rendering (Non) Photorealistic

Rendering (NPR) method and computer vision method. The NPR method has developed into an

important field in the field of computer graphics, but most NPR stylization algorithms are designed

for specific artistic styles, not easy to expand to other styles. The method of computer vision regards

style transformation as a texture synthesis problem, that is, the extraction and transformation from

the source texture to the target texture. The framework of "image analogy" achieves universal style

conversion by analogizing learning from examples of provided unshaped and stereotyped images.

But these methods only use low-level image patterns.

Physical features cannot effectively obtain advanced image structural features. Inspired by

Convolutional Neural Network (CNN), Gatys et al. first studied how to use convolutional neural

networks to transform natural images into famous painting styles, such as Van Gogh’s Starry Night.

They proposed modeling the content of photos as intermediate layer features of pre trained CNNs,

and modeling artistic styles as statistics of intermediate layer features.

With the rapid development of style transition networks based on CNN, the efficiency of image

style conversion has gradually improved, and image processing software such as Prisma and Deep

Forger have become popular, making sending artistic style images on social platforms a common

phenomenon. Therefore, covert communication using stylized images as carriers should not be easily

suspected. Based on this, this chapter proposes a steganography method for image style transfer,
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which embeds secret messages while image stylization, making the generated encrypted image

indistinguishable from the clean stylized image, improving steganography security and capacity.

3. Proposed Methods

It is shown that deep neural networks can learn to encode a wealth of relevant information by

invisible perturbations [25]. Therefore, we encode the secret information during the process of image

style transfer, directly creating a stylized image with hidden secret messages, as opposed to first

computing the steganographic cost and then applying encoding methods to the image.

As shown in Figure 2, the network architecture consists of four parts: 1) a generator G, which

takes the content image and the to-be-embedded message as inputs, simultaneously achieving style

transformation and information embedding; 2) a message extractor E, which trained along with G and

takes the stego image as input and precisely retrieves hidden information; 3) a discriminator A which

is iteratively updated with the generator and extractor; and 4) a style transformer loss computing

network L, which is a pretrained VGG model, it is employed to determine the resulting image’s style

and content loss. The whole model is trained by the sender, and when the model is well trained, the

message extraction network E is shared with the receiver to extract secret messages that are hidden in

the received image. The implementation details of each part are as follows.

3.1. Generator

In our implementation, we adopt the architecture of image transformation networks in [44] as the

generator G, it first utilize two stride-2-convolutions to down-sample the input, followed by several

residual blocks, then two convolutional layers with stride 1/2 is used to upsample, followed by a

stride-1 convolutional layer which uses a 9 × 9 kernel. The Instance Normalization [48] is added to the

start and the end of the network.

Table 1. Structure of Message Embedding Network.

Network Layer Output Size

input 3 × 256 × 256
padding(40 × 40) 3 × 336 × 336

32 × 9 × 9 conv, step 1 32 × 336 × 336
secret message 3 × 336 × 336
message concat 35 × 336 × 336

64 × 3 × 3 conv, step 2 64 × 168 × 168
128 × 3 × 3 conv, step 2 128 × 84 × 84

residual block, 128 filters 128 × 80 × 80
residual block, 128 filters 128 × 76 × 76
residual block, 128 filters 128 × 72 × 72
residual block, 128 filters 128 × 68 × 68
residual block, 128 filters 128 × 64 × 64
64 × 3 × 3 conv, step 1/2 64 × 128 × 128
32 × 3 × 3 conv, step 1/2 32 × 256 × 256

3 × 9 × 9 conv, step 1 3 × 256 × 256

To encode secret messages during the image style transfer, we concatenate the message M of size

Cm × H × W with the output of the first convolutional layer with respect to the input content image

Xc of size C × H × W, and take the resultant tensor as the input of the second convolutional layer, by

this way, we obtain a feature map which contains both the secret messages and the input content. The

following architecture is like an encoder-decoder, which first combines and condenses the information

and then restores an image with the condensed feature. The final output of G is a style-transferred

image Ys of size C ∗ H ∗ W, which also contains secret messages.
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3.2. Style Transfer Loss Computing

The resultant images should possess similar content as Xc, and possess the target style which is

defined by a target style image Xs. For this reason, we apply a loss calculation network L to quantify

in high-level content difference between resultant image and Xc, style difference between resultant

image and Xs, respectively. L is implemented as a 16-layer VGG network [49] which is pre-trained on

the ImageNet dataset for image classification task in advance. To achieve style transfer, two perceptual

loss are designed, namely content reconstruction loss and style reconstruction loss.

3.2.1. Content Reconstruction Loss

we define the content reconstruction loss as the difference between the activations of intermediate

layers of L with respect to Xc and Ys as inputs. The activation maps of the j-th layer of the network in

terms of the input image x is represented as φj(x), then the content loss is defined as the mean squared

error between the activation map of Ys and Xc, represented as:

Lcont(Xc, Ys, j) =
1

CjHjWj
∑
i,j

∥φ(Xc)− φ(Ys)∥2 (3)

It is shown in [43] that the high-level content of the image is kept in the responses of the higher

layers of the network, while detailed pixel information is kept in the responses of the lower layers.

Therefore, we calculate the perceptual loss for style transfer at high layers. It does not require that the

output image Ys perfectly match Xc, instead, it encourages it to be perceptually similar to Xc, hence

there is extra room for us to implement style transfer and steganography.

3.2.2. Style Reconstruction Loss

To implement style transfer, except for content loss, style reconstruction loss is also required to

penalize the differences in style such as colors and textures between Ys and Xs when Ys deviates from

the input Xc in terms of style. To this end, we first define the Gram matrix G
φ
j (x) to be the matrix of

size Cj × Cj, the elements of G
φ
j (x) are defined as:

G
φ
j (x)c,c′ =

1

Cj × Hj × Wj

Hi

∑
h=1

Wi

∑
w=1

φj(x)h,w,cφj(x)h,w,c′ (4)

To achieve better performance, we calculate the style loss Lsty from a set of layers J instead of

a single layer j. Specifically, Lsty is defined as the sum of losses for each layer j ∈ J, as described

in Equation (5).

Lsty = ∑
j∈J

∥

∥

∥
G

φ
j (Xsty)− G

φ
j (Ys)

∥

∥

∥

2
(5)
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Figure 3. Comparison of style transferred clean images without steganography (columns (c) and (d))

and style transferred stego images (columns (e) and (f)).

3.3. Extractor

To accurately recover the embedded information, a message extraction network E which has the

same architecture with the generator G is trained together with G. It takes the generated image, i.e., Ys

as the input, and outputs O of size Cm × H × W, the revealed message M′ is obtained according to O:

M′
i,j,k =

{

0 if Oi,j,k < 0

1 if Oi,j,k ≥ 0
(6)

The loss for information reveal is defined as the mean square error between the embedded message M

and the extracted message M′:

Lext =
∥

∥M − M′
∥

∥

2
(7)

When the model is well trained, E is shared between Alice and Bob for convert communication,

which plays the role of the secret key. Therefore, it is crucial to keep the secret of the trained E.

Table 2. Structure of Message Extraction Network.

network layer output size

3 × 9 × 9 conv, step 1 3 × 256 × 256
32 × 3 × 3 conv, step 1/2 32 × 128 × 128

64 × 3 × 3 conv, step 1 64 × 64 × 64
residual block, 128 filters 128 × 64 × 64
residual block, 128 filters 128 × 68 × 68
residual block, 128 filters 128 × 72 × 72
residual block, 128 filters 128 × 76 × 76
residual block, 128 filters 128 × 80 × 80
128 × 3 × 3 conv, step 2 128 × 84 × 84
64 × 3 × 3 conv, step 2 64 × 168 × 168
32 × 9 × 9 conv, step 2 32 × 336 × 336
3 × 9 × 9 conv, step 1 3 × 336 × 336
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3.4. Adversary

To enhance the resulting Ys’s visual quality, adversarial training technique is applied, where

SRNet [19] is applied as a discriminator to classify the generated style-transferred images containing

secret messages and clean-styled images generated by a style transfer network without steganography

function. The cross-entropy loss is applied to measure the performance of the discriminator, which is

defined as Equation (8).

Ladv = ylogφ(x) + (1 − y)log(1 − φ(x)) (8)

When updating the generator, the object is to maximize Ladv, while when updating the discriminator

the object is to minimize Ladv.

Figure 4. Comparison of style transferred clean images without steganography (columns (c) and (d))

and style transferred stego images (columns (e) and (f))

3.5. Traning

In the training process, we iteratively update the parameters of the generator and adversary.

Each iteration contains two epochs, in the first epoch, we fix the parameters of the discriminator

unchanged and update the parameters of the first convolution layer, the generator, and the extractor

by minimizing the content loss Lcont, style loss Lsty and message extraction loss Lext but maximizing

the discriminator’s loss Ladv, hence the total loss for training is defined as follow:

Ltotal = αLcont + βLsty + λLext − γLadv, (9)

where α, β, λ and γ are hyper-parameters to balance the content, style, message extraction accuracy,

and the risk being detected by the discriminator. In the second epoch, we update the parameters of the

adversary by using the loss defined in Equation (8) while keeping the remaining parameters fixed.

4. Experiments

To verify the efficiency of the suggested approach, we randomly choose a style image from the

WikiArt dataset as the target style and randomly take 20,000 content images from the COCO [50],

10,000 for training and 10,000 for testing. We repeat the experiments 10 times. All the images are

resized to 512 × 512 pixels with the channel of 3, and the messages to be embedded are binary data

with the size of 3 × 512 × 512, i.e., the payload is set as 1 bit per channel per pixel (bpcpp). In the

training, the Adam optimizer is applied and the learning rate is set as 1 × 10−4. We train the network
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for 200 epochs. The performance of the proposed method are evaluated from the two aspects: 1) the

accuracy rate of message extraction and 2) the ability to resist steganalysis.

4.1. Message Extraction Accuracy Analysis

We assume the sender and the receiver share the parameters and architecture of extractor, the

adversary knows the algorithm for data hiding and can train a model by herself but will obtain

mismatched parameters. We explore that in such a situation whether the hidden message can be

extracted accurately by the receiver and whether the secret messages could be leaked to the adversary.

We trained five models of the same architecture but with different random seeds, the

architecture of them are illustrated in Figure 2, and the well-trained networks are represented as

Net1, Net2, Net3, Net4, Net5 respectively. We randomly split the content dataset into two separate

sets, one for testing and the other for training. The secret messages to be embedded are randomly

generated binary sequences and are reshaped as 3 × 256 × 256. In the testing stage, we extract the

hidden messages by using extractors from different trained models. The results are displayed in

Table 3, from which we can infer that the matched extractor can successfully extract the concealed

message, and the accuracy rate of the extracted message reaches 99.2%, demonstrating the receiver

could accurately recover the messages. But an adversary cannot steal the secret messages hidden by

the proposed method since the mismatched extractor can only recover less than 50% messages.

Table 3. Message recover accuracy using different extractors

Nettrain Nettest Net1 Net2 Net3 Net4 Net5

Net1 0.99 0.39 0.31 0.28 0.32
Net2 0.37 0.99 0.28 0.23 0.38
Net3 0.31 0.19 0.99 0.33 0.41
Net4 0.40 0.29 0.31 0.99 0.34
Net5 0.29 0.32 0.37 0.19 0.98

1 The results of using matched extractor is represented in bold font.
2 Net1,Net2,Net3,Net4,Net5 are with the same architecture as illustrated in Figure 2.

4.2. Security in Resisting Steganalysis

To verify the security of the embedded secret messages, we compare the generated styled stegos

with the clean-styled images generated by the style transfer network without steganography [44]. We

train four networks Mc1, Mc2, Ms1, and Ms2. Ms1, Ms2 are in the same architecture proposed in this

paper but with different parameters, Mc1, Mc2 are style transfer networks without steganography [44].

The generated images are displayed in Fig. 2, where it is clear that the message embedding has no

effect on the image visually.

It should be noted that the difference between generated style-transferred stegos and

style-transferred images without hidden messages is not only caused by the message embedding but

also due to the different parameters of the model, e.g., images generated by M1 are different from

those by M2, but are also different from M3 and M4. Thereby it is difficult to tell whether the image is

produced by a style-transfer network with steganography function or by another ordinary style-transfer

network without steganography. To verify the security of the proposed method, we assume the attacker

is trying to distinguish the generated stego from the cover generated by other normal style transfer

networks without the steganography function. According to the Kerckhoff principle, we consider a

powerful steganalyzer who knows the target style image and all the knowledge of the model (i.e.,

architecture and parameters) the steganographer used. In this case, the attacker can generate the same

stego as the steganographer, taking the generated stegos as positive samples and the covers generated

by models as negative samples to train a binary classifier. We apply different steganalysis methods,

including using traditional SPAM [14] and SRM [15] features to train a classifier, as well as using

deep learning methods XuNet [17] and SRNet [19]. Similar to steganalysis, we preserve the cover and

stego of the same content in the same batch when train of deep learning-based steganalyzer. Table 4
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contains the experimental findings, the average testing error is all about 0.5, confirming the safety of

the suggested procedure.

Table 4. Average Error of stego with 1 bpp under the detection of different steganalysis method.

Steganalysis
Method

SPAM
[14]

SRM
[15]

XuNet
[17]

SRNet
[19]

PE 0.48 0.49 0.51 0.47

5. Conclusions

In this study, we suggest a high-capacity and safe method for image steganography. We hide

secret messages into an art-style image in the process of image generation by a GAN model. It has

been verified by experiments that the proposed approach can achieve a high capacity of 1bpcpp, and

the generated images cannot be distinguished from the clean image of the same content and style.

Though the message recovery accuracy does not achieve 100%, it can be solved by performing error

correction coding on secret messages before steganography. We will keep improving the accuracy of

message recovery and explore hiding messages in the diffusion-based AIGC model in the future.
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