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Abstract: Digital-Radio-Frequency-Memory (DRFM) has emerged as an advanced technique to achieve diverse 
jamming signals, due to its capability of intercepting waveforms within a short time. Multiple-Input Multiple-
Output (MIMO) radars can transmit agile orthogonal waveform sets for different pulses to combat the DRFM-
based jamming, where any two groups of waveform sets are also orthogonal. In order to design multiple groups 
of orthogonal waveform sets at the same time, this article formulates a group orthogonal waveforms optimal 
design model, whose objective function is the weighted sum of the intra- and inter-group orthogonal 
performances metrics. To solve this optimization problem, this article proposes a group orthogonal waveforms 
design algorithm. Based on a primal-dual type method and proper relaxations, the proposed algorithm 
transforms the original problem into a series of simple sub-problems. Numerical results demonstrate that the 
proposed algorithm has the ability to balance the intra- and inter-group orthogonal performances by adjusting 
the weighting factors, which is not available using other state-of-the-art orthogonal waveform design algorithms. 

Keywords: waveform design; optimization; MIMO radar; group orthogonal; phase coded; radar 
countermeasures 
 

1. Introduction 

Multiple-Input Multiple-Output (MIMO) radar utilizes waveform diversity and multi-antenna 
technologies to improve its angular resolution, anti-jamming ability and other target detection 
performances [1–4]. By transmitting orthogonal waveform sets, MIMO radar can separate the 
received waveforms transmitted by different antennas. Generally, MIMO radar uses matched filter 
bank to process the echoes. Thus, the cross-correlation functions among the orthogonal waveforms 
should be as low as possible. Meanwhile, in order to achieve good pulse compression performance, 
the auto-correlation functions side-lobes should also be as low as possible. 

Designing multiple different phase coding sequences with low cross-correlation is one of the 
most common ways to realize orthogonal waveform set [5–7]. With a large number of transmit 
waveforms, the phase coded waveform set is difficult to be intercepted by traditional jammers. 
Integrated Side-lobe Level (ISL) and Peak Side-lobe Level (PSL) are two commonly used metrics for 
orthogonal MIMO radar phase coded waveform set [9–11]. Aiming at ISL minimization, the 
researchers proposed Multi-CAN, MM-Corr, ISL-New, ADMM and other optimization algorithms 
[12–15], which cannot minimize the PSL. The PSL minimization is more complex and harder than ISL 
minimization. So far, some researchers have proposed effective PSL optimization algorithms [16–20], 
where the method based on Primal-Dual has the best performance [18]. All the above-mentioned ISL 
and PSL optimization algorithms design a single set of orthogonal waveforms. With the well-
designed orthogonal phase coded waveform set, MIMO radar is able to obtain high waveform 
diversity gain and low probability of intercept. 

With the advent of Digital-Radio-Frequency-Memory (DRFM) [21,22], more advanced jamming 
technologies have been developed rapidly. The DRFM-based jammers pose a great threat to MIMO 
radar, which can carry out read, copy and diverse parameters modulation (like delay, Doppler, etc.) 
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within a short time. Therefore, the DRFM-based jammers would seriously affect the operational 
capabilities of MIMO radar in the future. 

Transmitting agile waveform is an effective way to combat modern DRFM-based jamming 
[23,24]. Although the DRFM-based jammers have a strong ability of intercepting waveforms, they 
must delay at least one pulse repetition time (PRT) to complete jamming signal generation steps. So, 
if the correlation between adjacent pulses is low, it is difficult for the DRFM-based jammers to 
interfere with the waveforms. From the perspective of orthogonality, MIMO radar should transmit 
orthogonal waveform set intra each pulse. In different pulse intervals, the waveform sets should also 
be orthogonal to each other. Thus, even though the jammers have intercepted the waveforms in the 
previous pulse, it cannot interfere with the subsequent pulses. Therefore, this article models the 
MIMO radar anti-jamming agile waveform as multiple groups of orthogonal waveform sets. 

In practice, above-mentioned PSL and ISL optimization algorithms can be used to design all 
groups of waveforms directly. However, they could not finely control the intra- and inter-group 
orthogonal performances. In order to overcome the shortcomings of the existing methods, this article 
proposes an optimal model for designing group orthogonal waveforms. Considering that the target 
detection is based on the judgment of the correlation peak, the proposed model formulates the 
objective function considering the following two aspects. One is to minimize the cross-correlation 
peak and auto-correlation side-lobe peak within each group of orthogonal waveform set, which can 
be evaluated by the traditional PSL metric. The other is to minimize the cross-correlation peak among 
the different groups of orthogonal waveforms, which can be evaluated by the peak cross-correlation 
level (PCL) metric. The objective function of the proposed model is the weighted sum of PSL and 
PCL metrics. 

Minimizing the correlation function peak in the proposed model is difficult. Based on some 
relaxations, literature [18] divides the origin PSL minimization problem into a series of convex sub-
problems. Inspired by the relaxation approach in [18], this article processes the intra- and inter-group 
correlation functions separately and transforms the proposed optimization model into series solvable 
sub-problems. After deriving the solutions of each sub-problem, this article proposes a group 
orthogonal waveforms optimal design algorithm. Numerical results show that the proposed 
algorithm can effectively design multiple groups of orthogonal waveform sets. The cross-correlation 
functions between the waveform sets are also low. The anti-jamming simulation results demonstrate 
that the designed group orthogonal waveforms can balance the DRFM-based deceptive jamming 
suppression and range compression performances of MIMO radar by adjusting the weighting factors. 

2. Problem Formulation 

The optimization variables of the group orthogonal waveforms design are G groups of 
waveforms with each group consisting of M waveforms. Considering phase coded waveform design, 
the group orthogonal waveforms with intra- and inter-group orthogonality can be realized by 
assigning different waveforms with different phase coded sequences. Since the pulse length, chip 
length, carrier frequency and other radar system parameters have little effect on the correlation 
function side-lobe level, this article models the group orthogonal waveforms 1{ }GM

i ix  as 

,[ ] exp(j ),     1,2,..., , 1,2,...,i i nx n φ i GM n N       (1)

where N is sequence length. The phase value is continuous satisfying , [ , )i nφ π π  . The correlation 

functions of 1{ }GM
i ix  are defined as 

1
[ ] [ ] [ ],  1,..., 1N

ij i jn
r k x n k x n k N N


       (2)

where rij[k] is auto- or cross-correlation function and ( )  represents complex conjugate. The set of the 
indexes of intra- and inter-group correlation functions values is defined as 
{ , , , 1,2,..., , 1,..., 1}i j k i j GM k N N     . 
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To evaluate the correlation properties of the group orthogonal waveforms, we consider the intra- 
and inter-group correlation functions separately. We use the traditional Peak Side-lobe Level (PSL) 
metric [9–11] to evaluate the waveforms intra each group. The PSL metric for the g-th group is defined 
as 

 

2

2 , ,

1PSL max [ ] ,    1,2,...,
g

g iji j k
r k g G

N 



  (3)

 , , , ( 1) 1,  ,    or 0g i j k i j M g Mg i j k          (4)

where set g  contains the correlation functions indexes intra the g-th group of waveforms, except 
the indexes of auto-correlation peak values that identically equal to N. Because there are only cross-
correlation functions between different groups of waveforms, the following Peak Cross-correlation 
Level (PCL) is defined for evaluating the inter-group cross-correlation peak. 

 

2

2 , ,

1PCL max [ ]iji j k
r k

N 
  (5)

 1
, , ( , , ) ,  G

gg
i j k i j k i j


     (6)

The set   in equation (6) contains all the indexes of inter-group cross-correlation functions. 
The object of the group orthogonal waveforms design is to minimize the PSL1, PSL2,…, PSLG and 

PCL metrics, which are the functions of the optimization variables 1{ }GM
i ix . Thus, the optimization 

model can be expressed as 

 1 1 2min   ({ } ) PSL ,PSL , ,PSL ,PCL

  s.t.  [ ] 1,    1,2,..., , 1,2,...,

GM
i i G

ix n i GM n N
 

  

f x

   


 (7)

where f represents the objective function vector, which contains the convolution and max(·) 
operations. Besides, the waveforms 1{ }GM

i ix  have constant modulus constraints. The optimization 
model (7) is a complex minimax problem with non-convex constraints. In order to simplify the 
problem (7), we introduce the variables ε1, ε2,…, εG and γ to constrain the PSL1, PSL2,…, PSLG and 
PCL metrics values respectively. Meanwhile, in order to balance the intra- and inter-group 
orthogonal performances, we introduce a weighting factor w, thereby transforming the origin 
problem into the following single objective problem. 

   

 
 

 
 

2 2
1

2 2

2 2

min   1

  s.t.  [ ] ,   , , ,   1,2,...,

          [ ] ,    , ,

         ( ) [ ] [ ],   , ,

        [ ] 1,     ,

G
gg

g ij g

ij

ij i jn

i

w ε G w γ

ε r k N i j k g G

γ r k N i j k

r k x n k x n i j k

x n i n


   

   

  

  

 







  (8)

Note that the convolution operations and constant modulus constraints in problem (8) are not 
conducive to solving this problem. Inspired by literature [18], we introduce the auxiliary variables 

1{ }GM
i ih  and ρij(k) to decompose the complex nonlinear convolutions. Then, the correlation functions 

constraints are replaced by the following linear equality constraints. 

 
2

2

( ) [ ] [ ],   , ,

,   ,   

ij i jn

H
i i i

ρ k x n k h n i j k

N N i

   


  


h x h

 (9)

In equation (9), if hi=xi holds for all i=1, 2,…, GM, then ρij(k) are equal to the correlation functions rij(k). 
This equivalent constraint condition in equation (9) is correct according to the proposition below. 
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Proposition 1. The constraints 
2

2
,  H

i i iN N h x h  are equivalent to the constraint hi=xi for all i=1, 2,…, 
GM. 

Proof of Proposition 1. According to the Cauchy-Schwartz inequality 

2 2 2
H H
i i i i i i iN N   h x h x h x h  (10)

Meanwhile, 
2i Nh  holds, then inequality (10) implies 

2i Nh . Using the equality 
condition of the Cauchy-Schwartz inequality, we get 

,     i iκ κ x h   (11)

According to equation (11) and H
i i Nh x , it is not difficult to find 1κ  . Thus, hi=xi is obtained and 

the proof is complete. □ 

By introducing the variables 1{ }GM
i ih , ρij(k), the nonlinear constraints are relaxed to linear convex 

constraints. However, the constant modulus constraints of 1{ }GM
i ix  in problem (8) are still coupled 

with its other constraints, which poses difficulties of solving for 1{ }GM
i ix . Therefore, we introduce the 

variables 1{ }GM
i iy  to simplify the sub-problem about 1{ }GM

i ix . The following conditions are added to 
ensure the obtained waveforms are constant modulus. 

[ ] [ ],  [ ] 1,  ( , )i i ix n y n y n i n    (12)

Then, the constant modulus constraints are transferred to the sub-problem about 1{ }GM
i iy , which is 

easy to be solved even with the constant modulus constraints. The sub-problem about 1{ }GM
i ix  

becomes an unconstrained convex problem. 
After introducing series auxiliary variables into the optimization model (8), we formulate the 

following group orthogonal waveforms optimal design model. 

   
 
 

 

2 2
1

2

2

min   1

  s.t.  ( ) ,   , , ,  1,2,...,

         ( ) ,   , ,

          ( ) [ ] [ ],   , ,

          ,   ,   

          [ ] [ ],   [ ] 1,   

G
gg

ij g g

ij

ij i jn

H
i i i

i i i

w ε G w γ

ρ k ε i j k g G

ρ k γ i j k

ρ k x n k h n i j k

N N i

x n y n y n


   

   

  

  

  

  




h x h





 ,i n

 (13)

The weighting factor w can balance the intra- and inter-group correlation peak values. The 
optimization variables include 1{ }GM

i ix , 1{ }GM
i iy , 1{ }GM

i ih , ρij(k), γ and εg, g=1, 2,…, G. Although the 
dimension of the optimization variables is increased, the intractable nonlinear and non-convex 
constraints in the optimization model (8) are relaxed into a series of linear and convex constraints. 

3. Proposed Group Orthogonal Waveform Design Algorithm 

Based on the characteristics of the objective function and constraints in the optimization model 
(13), we formulate an augmented Lagrange function [25] and transform the problem (13) into the 
following constrained minimization problem. 
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 
 
 

 

1

2

2

min   ,..., , ,{ ( )},{ },{ },{ },{ },{ },{ }

  s.t.  ( ) ,   , , ,  1,2,...,

         ( ) ,    , ,

         ,     

         [ ] 1,     ,

G ij i i i i ijk in

ij g g

ij

i

i

L ε ε γ ρ k λ α β

ρ k ε i j k g G

ρ k γ i j k

N i

y n i n

   

  

 

 

x y h

h



  (14)

The augmented Lagrange function L can be expressed as 

     
  

   
 

1

1

2 2
1

, ,

21
,

2
2

, ,

3

1 Re

Re ( ) [ ] [ ]

Re [ ] [ ]
2

( ) [ ] [ ]
2

[ ] [
2

G
gg

G
gg

G H
g i i ig i

ijk ij i ji j k n

H
in i i i ii n i

ij i ji j k n

i i

L w ε G w γ λ N

α ρ k x n k h n

θ
β x n y n N

θ
ρ k x n k h n

θ
x n y







  
 

  
 

        
     

     

    
 

 

 

 

 

 

h x

h x

 

 









 2

,
]

i n
n

 (15)

where Re[·] represents the real part of a complex number. θ1, θ2, θ3 are penalty parameters. {λi}, {αijk}, 
{βin} are Lagrangian multipliers, also dual variables. To solve the problem (14), we propose a group 
orthogonal waveforms design algorithm based on a primal-dual type method. The proposed 
algorithm decomposes the problem (14) into series simple sub-problems. By sequentially updating 
the optimization variables and dual variables, the proposed algorithm minimizes the augmented 
Lagrange function L in equation (15) after iterations. According to the optimization model (13), the 
variables ( )

1{ }l GM
i ix , 1{ }GM

i iy  and ( )
1{ }l GM

i ih  will converge to the same point. The convergence condition 

is 
2 2( ) ( ) ( )

2 2

l l l
i i ii i

η  h x x . Algorithm 1 summarizes the proposed algorithm. The sub-problems 

of the proposed group orthogonal waveforms design algorithm can be expressed as follows. 

 
 

1( 1)
1 ( )

( ) ,  , , , 1,2 ,...,
( ) ,  , ,  

, , , , ( )
{ , , , , ( )} arg min

{ , , , , , }
ij g g

ij

G ijl
G ij l

i i i i ijk inρ k ε i j k g G
ρ k γ i j k

ε ε γ ρ k
ε ε γ ρ k L

λ α β


   

  

 
 
 
 x y h




  

(16)

2
2

( 1)
1( 1)

( )
,  

{ , , , , ( )} ,
{ } arg min

{ },{ , , , , }
i

l
G ijl

i l
N i i i i i ijk in

ε ε γ ρ k
L

λ α β





 

 
 
 
 

h
h x yh


 (17)

 ( 1){ } arg min ...,{ },...l
i iL x x  (18)

 
 ( 1)

[ ] 1,  ,
{ } arg min ...,{ },...

i

l
i i

y n i n
L

 

y y  (19)

 
 
 

( 1) ( ) ( 1) ( 1)
1

( 1) ( ) ( 1) ( 1) ( 1)
2

( 1) ( ) ( 1) ( 1)
3

( )

( ) [ ] [ ]

[ ] [ ]

l l l H l
i i i i

l l l l l
ijk ijk ij i jn

l l l l
in in i i

λ λ cθ N

α α cθ ρ k x n k h n

β β cθ x n y n

  

   

  

   
    


  


h x

 (20)

The parameter c in equation (20) is the step length. The superscript (l) represents the values of 
variables at the l-th iteration. Except for the sub-problem (16), the sub-problems (17-19) are actually 
the same as the Primal-Dual algorithm [18], which can be solved using similar methods as Primal-
Dual. The rest of this section introduces the methods to solve the sub-problems. 
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Algorithm 1 Group Orthogonal Waveforms Design Algorithm 
Initialization 

Select randomly (0)
1{ }GM

i ix  (Constant modulus is not required). 

Set constant modulus (0)
1{ }GM

i iy  using the phases of (0)
1{ }GM

i ix . 

Select randomly {λi}, {αijk}, {βin} and (0)
1{ }GM

i ih , set l=0. 

Repeat 

Compute ( 1)
1{ , , , , ( )} l

G ijε ε γ ρ k   by solving sub-problem (16). 

Compute ( 1){ } l
i

h  by solving sub-problem (17). 

Compute ( 1){ } l
i

x  by solving sub-problem (18). 

Compute ( 1){ } l
i

y  by solving sub-problem (19). 

Compute ( 1) ( 1) ( 1), ,l l l
i ijk inλ α β    using (20), l=l+1. 

Until 
2 2( ) ( ) ( )

2 2

l l l
i i ii i

η  h x x . 

3.1. Solving sub-problem (16) 
According to the augmented Lagrange function (15), the sub-problem (16) can be separated into 

two independent parts as follow. 

 
 

22

( ) , ,

min ( ) Re ( )

1,2,...,
ij g g

g ijk ij ijk ij
ρ k ε i j k

wε G a ρ k b ρ k

g G

 

    




  (21)

 
 

22

( ) , ,

min (1 ) ( ) Re ( )
ij

ijk ij ijk ij
ρ k γ i j k

w γ a ρ k b ρ k
 

     


 (22)

where ( ) ( ) ( )
2 22 ,  [ ] [ ]l l l

ijk ijk ijk i jn
a θ b α θ x n k h n     . Considering the problem (21), when εg is fixed, 

the optimal solution of ρij(k) for every index (i,j,k) can be expressed as 

   
 

2 ,     2
( )

,           others

ijk ijk ijk ijk g

ijk g

ijk ijk g

b a b a ε
ρ ε

b b ε


  


 (23)

where ( )ijk gρ ε  is a function of εg. According to equation (23), the problem (21) is equivalent to 

 

2

0
, ,

min ( ) ( ),  1,2,...,
g

g

g g ijk gε
i j k

f ε wε G f ε g G




 


  (24)

where 

 
   

2

2

2

( ) ( ) Re ( )

4 ,        2

,         others

ijk g ijk ijk g ijk ijk g

ijk ijk ijk ijk g

ijk g ijk g

f ε a ρ ε b ρ ε

b a b a ε

a ε b ε

   

  
 

 (25)

Because ( ) ( )g gf ε f ε  , the condition 0gε   can be ignored. The optimal gε  can be determined by 
solving the following equation. 

 
 , ,

( ) 2 min 2 ,0 0
g

g g ijk g ijk
i j k

f ε wε a ε b


    


 (26)
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Because 2 2 0ijka θ  , ( )gf ε  is a monotonically increasing function of εg. The optimal ( 1)l
g gε ε   

can be obtained efficiently by bisection method. Similarly, the optimal solution ( 1)lγ γ   of problem 
(22) can be obtained by solving the following equation. 

 
 , ,

2(1 ) min 2 ,0 0ijk ijk
i j k

w γ a γ b


   


 (27)

3.2. Solving sub-problem (17) 
According to equation (15), sub-problem (17) is separable for each hi, i=1, 2,..., GM. The 

minimization problem can be expressed as 

 2
2

min ( ) Re
i

H H
i i i i i iN

f



h

h h Α h t h  (28)

where 

  ( ) ( )
2 ,( ) ,( ),

2 l l H
i j k j kj k

θ   Α x x  (29)

 ( ) ( ) ( ) ( ) ( 1) ( )
1 2 ,( ),

( )l l l l l l
i i i i jik ji j kj k

λ θ N α θ ρ k
   t x x x  (30)

where xj,k represents the aperiodic delayed copy of the discrete signal xj. For 0k  , 
T

, 1( [ 1], [ 2], , [ ], )j k j j j kx k x k x N   x 0 , for 0k  , T
, 1( , [1], [2], , [ ])j k j j jk x x x N k x 0  . The 

augmented Lagrange function of problem (28) can be expressed as follows. 

     2

2
, ReH H

i i i i i i i iL λ λ N   h h Α h t h h  (31)

The Karush-Kuhn-Tucker (KKT) conditions for problem (28) are as follows. 

 
2 *

2
2*

2

,   2 2 0

0,            0

i i i i i

i

N λ

λ λ N

  

 

    


  


h Α h t h

h
 (32)

Obviously, when 0λ  , the KKT conditions (32) is equivalent to 
2 1

2
    2i i i iN    h h Α t，  (33)

If condition (33) is true, then ( 1)l
i i
 h h , otherwise, the optimal solution should solved under the 

condition of 0λ  . 
When 0λ  , condition (32) is equivalent to 

  12

2
,     2 2i i i iN λ

     h h Α I t  (34)

In order to solve equation (34), the value of λ* should be determined. According to equation (31), for 
any fixed value of 0λ  , the optimal v(λ) with minimal Li(v(λ), λ) is below. 

  1
( ) 2 2i iλ λ


  v Α I t  (35)

If 0 λ λ  , then 

( ( ), ) ( ( ), )
( ( ), ) ( ( ), )

i i

i i

L λ λ L λ λ
L λ λ L λ λ

 
   

v v
v v

 (36)

According to the function (31), and sum the two inequalities in (36), then 

   2 2

2 2
( ) ( )λ λ λ λ λ λ    v v  (37)
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Therefore, 
2

2
( )λv  is a monotone decreasing function of λ. Solving the KKT conditions when 0λ   

is equivalent to find the zero of the function 
2

2
( )λ Nv , which can be solved by the bisection 

method. 

3.3. Solving sub-problem (18) 
According to equation (15), sub-problem (18) can be separated into following unconstrained 

convex problem for each xi, i=1, 2,…, GM. 

 min ( ) Re
i

H H
i i i i i if x h x C x d x  (38)

where 

   ( 1) ( 1)
2 , , 3,

2 2l l H
i j k j kj k

θ θ   C h h I  (39)

 ( ) ( 1) ( ) ( 1) ( ) ( 1) ( 1) ( )
1 2 , 3,

( )l l l l l l l l
i i i i i ijk ij j k ij k

λ θ N α θ ρ k θ        d h β h h y  (40)

where hj,k represents the periodic delayed copy of hj, similar to the xj,k in equation (29) and (30). It is 
easy to find that the Ci in equation (39) is an N×N positive definite matrix. Therefore, the sub-problem 
(38) is an unconstrained quadratic optimization problem, whose optimal solution is 

( 1) 1 2l
i i i i
    x x C d  and can be found efficiently by conjugate gradient methods. 

3.4. Solving sub-problem (19) 
According to equation (15), sub-problem (19) can be separated for each yi[n], i=1, 2,…, GM, n=1, 

2,…, N, as follow. 

[ ] 1min Re [ ]
i in iy n u y n     (41)

where 
( ) ( 1)

3 [ ]l l
in in iu β θ x n    (42)

Define exp(j )in in inu u   , then the solution of the sub-problem (41) can be expressed as 
( 1)[ ] [ ] exp(j (π ))l
i i iny n y n      . 

4. Numerical Results 
In order to demonstrate the effectiveness of Algorithm 1, this section performs a series of 

numerical simulations. The parameters are initialized as c=0.5, θ1=θ2=10. The parameter is set as 
5

3 max{10,min{2( 1),10 }}θ l  , where l is the current iteration. The parameter of the convergence 
condition is η=0.5×10−3. All experiments are implemented with MATLAB that runs on a PC with one 
Intel Core i7-7700 CPU and 16 GB RAM. All the obtained correlation function values and PSL, PCL 
metrics values in dB are calculated as 10log10(|rij(k)|2/N2). 

4.1. Effect of weighting factor w 
Under different parameters, Figure 1 shows the convergence curves of the variables γ and εg, 

g=1, 2,…, G. The computational complexity per iteration of the proposed algorithm is 
2 2 2( log )MGN M G N N . The algorithm running time under M=2, G=2, N=256 is around 700 

seconds on average. The convergence curves of the variables γ and εg are not monotonically 
decreasing because the proposed algorithm minimizes the augmented Lagrange function L in 
equation (15). When the convergence condition is satisfied, the variables ( )

1{ }l GM
i ix  and ( )

1{ }l GM
i ih  are 

almost the same, and the correlation function rij(k) of the optimal waveforms 1{ }GM
i ix  satisfies 

rij(k)=ρij(k). Thus, the PCL, PSL1, PSL2,…, PSLG metrics are minimized effectively with the help of the 
auxiliary variables. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 January 2024                   doi:10.20944/preprints202401.0790.v1

https://doi.org/10.20944/preprints202401.0790.v1


 9 

 

  

(a) (b) 

Figure 1. The convergence curves of γ and εg, g=1,2,…,G. (a) w=0.1, M=2, G=2, N=256; (b) w=0.7, M=8, 
G=8, N=256. 

In order to analyze the effect of the weighting factor w on the metrics values, Figure 2(a) shows 
the PSL1, PSL2, and PCL metrics values obtained under different values of w, with fixed parameters 
of M=2, G=2 and N=256. Figure 2(b) performs the similar results under M=8, G=8 and N=256. Because 
the number of waveforms is large, the maximum and minimum values among PSL1, PSL2,…, PSLG 
are shown, denoted by PSLmax and PSLmin respectively. It can be seen that the smaller the value of w, 
the lower the obtained intra-group PSL metrics values, and the higher the obtained inter-group PCL 
metric value. The results in Figure 2 demonstrate that the proposed algorithm is able to adjust the 
weighting factor w to balance the intra- and inter-group correlation functions performances for 
different requirements in MIMO radar applications. 

  
(a) (b) 

Figure 2. The convergence curves of γ and εg, g=1,2,…,G. (a) M=2, G=2, N=256; (b) M=8, G=8, N=256. 

4.2. Obtained correlation functions 
This subsection plots the intra- and inter-group correlation functions curves. Under different 

parameters, the obtained waveforms by the proposed group orthogonal waveforms algorithm are 
compared to other advanced orthogonal waveforms. In Figure 3, the Random-Set represents the 
waveforms generated directly by random numbers. The Primal-Dual algorithm is the current best 
PSL optimization algorithm for single orthogonal waveform set. The Up- and Down-Chirp signals 
have the lowest cross-correlation function when M=2. Therefore, by setting the same time-bandwidth 
product equal to N=256, the Up- and Down-Chirp signals can be compared to the intra-group 
orthogonal performance of the waveforms when M=2. 

Under M=2, G=2 and N=256, Figure 3(a) shows the auto-correlation function peak value of the 
GM waveforms. Figure 3(b) shows the intra-group cross-correlation function peak value. Figure 3(c) 
shows the inter-group cross-correlation function peak value. Obviously, when w=0.1, the intra-group 
correlation side-lobe peak value obtained by the proposed algorithm is the lowest, compared to other 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 January 2024                   doi:10.20944/preprints202401.0790.v1

https://doi.org/10.20944/preprints202401.0790.v1


 10 

 

waveforms, with relatively higher inter-group cross-correlation function peak value. When w=0.875, 
although the intra-group auto- and cross-correlation functions of the waveforms obtained by the 
proposed algorithm are relatively high, its inter-group cross-correlation functions are the lowest. The 
results under w=0.3 lie between those under w=0.1 and w=0.875. Figure 3(d), 3(e), 3(f) show the results 
under M=8, G=8, N=256. 

The results in Figure 3 demonstrate that, under typical parameters, the proposed group 
orthogonal waveforms design algorithm is able to balance the intra- and inter-group correlation 
functions performances effectively. To brief sum up, compared with designing all the GM waveforms 
directly using the Primal-Dual algorithm, the proposed group orthogonal waveforms design 
algorithm is able to obtaining the lower intra-group PSL metrics by sacrificing a small quantity of 
inter-group cross-correlation performance, or vice versa. Therefore, for the applications of anti-
jamming agile waveform, the proposed algorithm is more flexible. The proposed group orthogonal 
waveform design algorithm is able to design multiple groups of orthogonal waveform sets at the 
same time. 

  
(a) (d) 

  
(b) (e) 
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(c) (f) 

Figure 3. The correlation peak value obtained by the proposed algorithm. When M=2, G=2, N=256: (a) 
auto-correlation; (b) intra-group cross-correlation; (c) inter-group cross-correlation. When M=8, G=8, 
N=256: (d) auto-correlation; (e) intra-group cross-correlation; (f) inter-group cross-correlation. 

4.3. Effect of parameters M, N, G 
Figure 4(a), 4(b) analyzes the effect of phase coding sequence length N on the results. The 

simulation keeps the weighting factor w and the waveform parameters M=2, G=2 unchanged. The 
waveforms are obtained by the proposed algorithm under N=32, 64, 96, 128, 160, 192, 224, 256. After 
calculating the PCL and intra-group PSL metrics (The PSL metrics are denoted by PSL1 and PSL2 
because G=2), Figure 4(a), 4(b) show the obtained metrics values under w=0.3 and w=0.875 
respectively. The results demonstrate that the larger the sequence length, the lower the obtained PCL 
and PSL metrics values. 

Figure 4(c), 4(d) analyzes the effects of the number of groups G and the number of intra-group 
waveforms M on the results. Firstly, set the weighting factor as w=0.5 and the parameters as M=8, 
N=256. Then, perform the proposed algorithm to obtain the waveforms under G=2, 3, 4, 5, 6, 7, 8. 
Finally, calculate the PCL metric value and the maximum and minimum values among the PSL1, 
PSL2,…, PSLG. The results are shown in Figure 4(c). It can be seen that the PCL is higher with the 
increase of G, because the total number of waveforms GM increases. Meanwhile, the obtained intra-
group PSL metrics values change little with the increase of G, because the number of intra-group 
waveforms M=8 remains unchanged. Figure 4(d) keeps the parameter G=8 unchanged and performs 
the proposed algorithm under parameters M=2, 3, 4, 5, 6, 7, 8. It can be seen that the intra-group PSL 
metrics values are higher with the increase of M. Overall, the PCL metric value mainly depends on 
the total number of waveforms GM. The intra-group PSL metric values mainly depend on the 
parameter M. 

  
(a) (b) 

  
(c) (d) 
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-20
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Figure 4. The effect of parameters M, N, G on the obtained metrics values. (a) w=0.3, M=2, G=2; (b) 
w=0.875, M=2, G=2; (c) w=0.5, M=8, N=256; (d) w=0.5, G=8, N=256. 

4.4. Anti-jamming simulation 
In this section, the deceptive jamming suppression performances of MIMO radar using different 

waveforms in Table 1 are simulated. The radar is located at the origin of coordinates, whose carrier 
wavelength λ is 1 m and size of range bins is 100 m. The range corresponding to the first bin is 50 km. 
The angles, ranges and signal-to-noise ratios of the simulated four true targets are (−15°, 400, 3 dB), 
(0°, 400, 3 dB) (20°, 400, 3 dB) and (20°, 50, 5 dB), where the range parameters are in unit of range bin. 
The DRFM-based deceptive jamming causes 2 false targets, whose angles, ranges and jamming-to-
noise ratios are (−15°, 50, 5 dB) and (0°, 50, 5 dB). The noise is Gaussian random white noise. The 
uniform linear array consists of 3 transmit elements spaced at 16λ apart, and 16 receive elements 
spaced at 0.5λ apart. Assumed that one pulse of the waveform has been intercepted, Figure 5 shows 
the angle-range images formed with MIMO radar using the adjacent pulse echoes. The results show 
that the proposed algorithm is able to balance the anti-jamming and range compression performances 
by adjusting the weighing factor. On this basis, MIMO radar could maximize the waveform diversity 
gain by selecting proper waveform set as a best response to flexible adaptive deceptive jamming [26]. 

  
(a) (b) 

  
(c) (d) 

Figure 5. Angle-range images formed with MIMO radar using fixed and agile waveforms under 
DRFM-based deceptive jamming. (a) Fixed waveform; (b) Primal-Dual; (c) w=0.9, M=3, G=2, N=256; 
(d) w=0.1, M=3, G=2, N=256. 

Table 1. Parameters and performance metrics of the simulated waveforms. 

Waveforms Design methods Title 2 Title 3 
Fixed Waveform M=3, N=256 PSL=−23.22 dB 
Primal-Dual [18] MG=6, N=256 PSL=−20.18 dB 
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Proposed methods when 
w=0.9 

M=3, G=2, N=256 
PSL1=−19.18 dB 
PSL2=−19.39 dB 
PCL=−25.56 dB 

Proposed methods when 
w=0.1 

M=3, G=2, N=256 
PSL1=−25.64 dB 
PSL2=−25.88 dB 
PCL=−18.51 dB 

5. Conclusions 
Transmitting agile group orthogonal waveforms is an effective way for MIMO radar to combat 

DRFM jamming. Aiming at designing group orthogonal waveforms, the proposed model in this 
article formulates a weighted sum objective function, which separates the waveforms performances 
into two parts. One is the peak value of intra-group auto- and cross-correlation functions. The other 
is the peak value of the inter-group cross-correlation functions. To solve this optimization problem, 
after proper relaxations, the proposed algorithm in this article transforms the minimization of the 
augmented Lagrange function into series sub-problems. The numerical results showed the proposed 
algorithm can minimizes the intra- and inter-group correlation functions effectively. The anti-
jamming simulation results showed that the proposed algorithm is able to trade-off the DRFM-based 
deceptive jamming suppression and range compression performances. The proposed algorithm is 
flexible and has the potential in adaptive anti-jamming applications for MIMO radar. 
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