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Abstract: Digital-Radio-Frequency-Memory (DRFM) has emerged as an advanced technique to achieve diverse
jamming signals, due to its capability of intercepting waveforms within a short time. Multiple-Input Multiple-
Output (MIMO) radars can transmit agile orthogonal waveform sets for different pulses to combat the DRFM-
based jamming, where any two groups of waveform sets are also orthogonal. In order to design multiple groups
of orthogonal waveform sets at the same time, this article formulates a group orthogonal waveforms optimal
design model, whose objective function is the weighted sum of the intra- and inter-group orthogonal
performances metrics. To solve this optimization problem, this article proposes a group orthogonal waveforms
design algorithm. Based on a primal-dual type method and proper relaxations, the proposed algorithm
transforms the original problem into a series of simple sub-problems. Numerical results demonstrate that the
proposed algorithm has the ability to balance the intra- and inter-group orthogonal performances by adjusting
the weighting factors, which is not available using other state-of-the-art orthogonal waveform design algorithms.

Keywords: waveform design; optimization, MIMO radar; group orthogonal; phase coded; radar
countermeasures

1. Introduction

Multiple-Input Multiple-Output (MIMO) radar utilizes waveform diversity and multi-antenna
technologies to improve its angular resolution, anti-jamming ability and other target detection
performances [1-4]. By transmitting orthogonal waveform sets, MIMO radar can separate the
received waveforms transmitted by different antennas. Generally, MIMO radar uses matched filter
bank to process the echoes. Thus, the cross-correlation functions among the orthogonal waveforms
should be as low as possible. Meanwhile, in order to achieve good pulse compression performance,
the auto-correlation functions side-lobes should also be as low as possible.

Designing multiple different phase coding sequences with low cross-correlation is one of the
most common ways to realize orthogonal waveform set [5-7]. With a large number of transmit
waveforms, the phase coded waveform set is difficult to be intercepted by traditional jammers.
Integrated Side-lobe Level (ISL) and Peak Side-lobe Level (PSL) are two commonly used metrics for
orthogonal MIMO radar phase coded waveform set [9-11]. Aiming at ISL minimization, the
researchers proposed Multi-CAN, MM-Corr, ISL-New, ADMM and other optimization algorithms
[12-15], which cannot minimize the PSL. The PSL minimization is more complex and harder than ISL
minimization. So far, some researchers have proposed effective PSL optimization algorithms [16-20],
where the method based on Primal-Dual has the best performance [18]. All the above-mentioned ISL
and PSL optimization algorithms design a single set of orthogonal waveforms. With the well-
designed orthogonal phase coded waveform set, MIMO radar is able to obtain high waveform
diversity gain and low probability of intercept.

With the advent of Digital-Radio-Frequency-Memory (DRFM) [21,22], more advanced jamming
technologies have been developed rapidly. The DRFM-based jammers pose a great threat to MIMO
radar, which can carry out read, copy and diverse parameters modulation (like delay, Doppler, etc.)
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within a short time. Therefore, the DRFM-based jammers would seriously affect the operational
capabilities of MIMO radar in the future.

Transmitting agile waveform is an effective way to combat modern DRFM-based jamming
[23,24]. Although the DRFM-based jammers have a strong ability of intercepting waveforms, they
must delay at least one pulse repetition time (PRT) to complete jamming signal generation steps. So,
if the correlation between adjacent pulses is low, it is difficult for the DRFM-based jammers to
interfere with the waveforms. From the perspective of orthogonality, MIMO radar should transmit
orthogonal waveform set intra each pulse. In different pulse intervals, the waveform sets should also
be orthogonal to each other. Thus, even though the jammers have intercepted the waveforms in the
previous pulse, it cannot interfere with the subsequent pulses. Therefore, this article models the
MIMO radar anti-jamming agile waveform as multiple groups of orthogonal waveform sets.

In practice, above-mentioned PSL and ISL optimization algorithms can be used to design all
groups of waveforms directly. However, they could not finely control the intra- and inter-group
orthogonal performances. In order to overcome the shortcomings of the existing methods, this article
proposes an optimal model for designing group orthogonal waveforms. Considering that the target
detection is based on the judgment of the correlation peak, the proposed model formulates the
objective function considering the following two aspects. One is to minimize the cross-correlation
peak and auto-correlation side-lobe peak within each group of orthogonal waveform set, which can
be evaluated by the traditional PSL metric. The other is to minimize the cross-correlation peak among
the different groups of orthogonal waveforms, which can be evaluated by the peak cross-correlation
level (PCL) metric. The objective function of the proposed model is the weighted sum of PSL and
PCL metrics.

Minimizing the correlation function peak in the proposed model is difficult. Based on some
relaxations, literature [18] divides the origin PSL minimization problem into a series of convex sub-
problems. Inspired by the relaxation approach in [18], this article processes the intra- and inter-group
correlation functions separately and transforms the proposed optimization model into series solvable
sub-problems. After deriving the solutions of each sub-problem, this article proposes a group
orthogonal waveforms optimal design algorithm. Numerical results show that the proposed
algorithm can effectively design multiple groups of orthogonal waveform sets. The cross-correlation
functions between the waveform sets are also low. The anti-jamming simulation results demonstrate
that the designed group orthogonal waveforms can balance the DRFM-based deceptive jamming
suppression and range compression performances of MIMO radar by adjusting the weighting factors.

2. Problem Formulation

The optimization variables of the group orthogonal waveforms design are G groups of
waveforms with each group consisting of M waveforms. Considering phase coded waveform design,
the group orthogonal waveforms with intra- and inter-group orthogonality can be realized by
assigning different waveforms with different phase coded sequences. Since the pulse length, chip

length, carrier frequency and other radar system parameters have little effect on the correlation

GM

function side-lobe level, this article models the group orthogonal waveforms {x.}”] as

xi[n]:exp(j(piln), i=12,.,.GM, n=1,2,..,N (1)

where N is sequence length. The phase value is continuous satisfying ¢, , €[-7, 7). The correlation

}GM

functions of {x,};”] are defined as

r,[k]= Z X [n+kJE [n], k=-N+1,..,N-1 ()

where ri[k] is auto- or cross-correlation function and 6 represents complex conjugate. The set of the
indexes of intra- and inter-group correlation functions values is defined as
{i,j,kli,j=12,.,GM,k=-N+1,..,,N-1}.
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To evaluate the correlation properties of the group orthogonal waveforms, we consider the intra-
and inter-group correlation functions separately. We use the traditional Peak Side-lobe Level (PSL)
metric [9-11] to evaluate the waveforms intra each group. The PSL metric for the g-th group is defined

as
pSL, 2L max ‘r[k] =1,2,..,G
g - NZ( ]k)e)C 7 g_ 7 ey (3)
K, ={i,jkli,je[M(g-1)+1, Mg], i#jork=0} @)

where set K, contains the correlation functions indexes intra the g-th group of waveforms, except

the indexes of auto-correlation peak values that identically equal to N. Because there are only cross-
correlation functions between different groups of waveforms, the following Peak Cross-correlation
Level (PCL) is defined for evaluating the inter-group cross-correlation peak.

A 1 2
PCL £ 7 max k] ®)
G={ijk

The set G in equation (6) contains all the indexes of inter-group cross-correlation functions.

ik UK, i# ] | ©

The object of the group orthogonal waveforms design is to minimize the PSL1, PSL»,..., PSLc and
PCL metrics, which are the functions of the optimization variables {xi}i’\f . Thus, the optimization

model can be expressed as

min f({x,}?¥')=(PSL,,PSL,,---,PSL,PCL)

1 i _ )
st |x[n]=1, i=12,.,GM, n=12,.,N

where f represents the objective function vector, which contains the convolution and max(-)

GM

operations. Besides, the waveforms {x,}”] have constant modulus constraints. The optimization

=1
model (7) is a complex minimax problem with non-convex constraints. In order to simplify the
problem (7), we introduce the variables ¢1, ¢2,..., €6 and y to constrain the PSL1, PSL»,..., PSLc and
PCL metrics values respectively. Meanwhile, in order to balance the intra- and inter-group
orthogonal performances, we introduce a weighting factor w, thereby transforming the origin

problem into the following single objective problem.
min w(zc 1€§/G)+ 1-w)-y*
st e, >r[k /N2 v(i,jk)ek, g§=12,.,G
[k]‘ /N2 (i,j,k) G )
<k) Z L+ k), v (i k)
|x [n]|— (i, n)

Note that the convolution operations and constant modulus constraints in problem (8) are not

conducive to solving this problem. Inspired by literature [18], we introduce the auxiliary variables
{hi}i'\f and pij(k) to decompose the complex nonlinear convolutions. Then, the correlation functions

constraints are replaced by the following linear equality constraints.

p; (k)= Z [n+klh[n], V(i) k)

hix =N, [b[} <N, vi ©)

In equation (9), if h=xi holds for all i=1, 2,..., GM, then pij(k) are equal to the correlation functions ri(k).
This equivalent constraint condition in equation (9) is correct according to the proposition below.
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h, ||§ <N are equivalent to the constraint h=xi for all =1, 2,...,

Proposition 1. The constraints h]'x, =N,
GM.

Proof of Proposition 1. According to the Cauchy-Schwartz inequality
hi'x, =N = |herf| <|my, x|, = */N”hf"z (10)

Meanwhile, ||h,,||2 <JN holds, then inequality (10) implies "hi"2 =JN . Using the equality

condition of the Cauchy-Schwartz inequality, we get

x,=xh;, xeC (11)

According to equation (11) and h!'x, = N, it is not difficult to find « =1. Thus, h=xi is obtained and

the proof is complete. o

By introducing the variables {h.}?%', pi(k), the nonlinear constraints are relaxed to linear convex

GM

constraints. However, the constant modulus constraints of {x,}”; in problem (8) are still coupled

with its other constraints, which poses difficulties of solving for {x.} . Therefore, we introduce the

GM

“M to simplify the sub-problem about {x,}7% . The following conditions are added to

variables {y,}

ensure the obtained waveforms are constant modulus.

x,[n]=y.[nl,

y,-[”]| = 1/ v(ll 7’1) (12)

Then, the constant modulus constraints are transferred to the sub-problem about {yi}i’\f , which is

GM

easy to be solved even with the constant modulus constraints. The sub-problem about {x,}

becomes an unconstrained convex problem.
After introducing series auxiliary variables into the optimization model (8), we formulate the
following group orthogonal waveforms optimal design model.

min w-(Z;le;/G)+(1—w)-y2

st |p,(0|<e,, v(ijk)ek, §=12,..,G
0|y, ¥(ijk)eg
p; (k)= x[n+klh[n], V(i jk)
h'x, =N, [n]. <N, vi

yi[n]|:1, V(i,n)

(13)

x[n]=y,[n],

The weighting factor w can balance the intra- and inter-group correlation peak values. The
optimization variables include {x,}7" , {y,}7, {h}7, pi(k), ¥ and e g=1, 2,..., G. Although the
dimension of the optimization variables is increased, the intractable nonlinear and non-convex
constraints in the optimization model (8) are relaxed into a series of linear and convex constraints.

3. Proposed Group Orthogonal Waveform Design Algorithm

Based on the characteristics of the objective function and constraints in the optimization model
(13), we formulate an augmented Lagrange function [25] and transform the problem (13) into the
following constrained minimization problem.
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min. L(e,,..eq,7, (0, (KL 1} Ay, b (0L (AL ) 4B, )

st |o,(0|<e,, V(ijk) ek, §=1,2..G
(0| <y, ¥(ijk)eg (14)
<N, v
ly[n]=1, v(i,n)

The augmented Lagrange function L can be expressed as

L= w-(Z;ls;/G)+(1—w)~y2 +Re[zixi (hini —N)]
+Re|:2(i,j,k)e[U§1)CX)Ug ai]‘k (pii(k) _ani[n+k]}_li[n]):|

+Re[zm B. (xi[n]—yi[n])J+6—21(zi|hf’xi _N|2) 15)

0, _ P
T DIINTRCE SO

63
+?(Zi,n

where Re[-] represents the real part of a complex number. 01, 02, 05 are penalty parameters. {Ai}, {aix},
{Bin} are Lagrangian multipliers, also dual variables. To solve the problem (14), we propose a group
orthogonal waveforms design algorithm based on a primal-dual type method. The proposed
algorithm decomposes the problem (14) into series simple sub-problems. By sequentially updating
the optimization variables and dual variables, the proposed algorithm minimizes the augmented

Lagrange function L in equation (15) after iterations. According to the optimization model (13), the

GM

variables {x"}™, {y 17" and {h"} will converge to the same point. The convergence condition

-y, ] )

is Zi"hf.l) —x!" "2 / Zi"xf,” ”2 < 1. Algorithm 1 summarizes the proposed algorithm. The sub-problems

of the proposed group orthogonal waveforms design algorithm can be expressed as follows.

. E 00, € /V/P,-'(k)
{ey, - e,y,0,()" = argmin L[ ' ¢ ' "

Py (k)<e,, V(i k)eky, §=1,2,..,G {xi’yi’hi’/\i’aijk’ in} (16)
p; (D<y, V(i.j,k)eg
{é‘ €6 Y Py k }(IH),
{(h )} =argminL| '~ ¢ 7Py " (17)
<N, vi {hi}/{xi/Yi//\i/aijk’ i
{x,)"V =argmin (..., {x },...) (18)
{y,}"" = argmin L(...,{yl,},...) (19)

‘yi[n]‘:l, V(i,n)

/\(ilﬂ) - /\(il) + Cel ((hEIH) )Hx(l+‘l) _ N)

i

00 =a) +c0, (pl (k)= x [+ kIh ! [n]) (20)

1+1 1 1+1 1+1
oD = g +c(93(xf+ [n]-y** )[n])

in

[04

The parameter ¢ in equation (20) is the step length. The superscript (I) represents the values of
variables at the I-th iteration. Except for the sub-problem (16), the sub-problems (17-19) are actually
the same as the Primal-Dual algorithm [18], which can be solved using similar methods as Primal-
Dual. The rest of this section introduces the methods to solve the sub-problems.
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Algorithm 1 Group Orthogonal Waveforms Design Algorithm

Initialization

Select randomly {x!”}?"" (Constant modulus is not required).

GM

(0)GM
} i=1

Set constant modulus {y”}*¥" using the phases of {x{"}

Select randomly {A#}, {aix}, {Bn} and {h{”}7, set I=0.
Repeat
Compute {e,,-,&;,7,p,(k)}**" by solving sub-problem (16).
Compute {h }"*" by solving sub-problem (17).
Compute {x.}*" by solving sub-problem (18).
Compute {y,}'"? by solving sub-problem (19).

Compute A", af”, B, using (20), I=I+1.

untit 3 00 -0 /3 0 <.

3.1. Solving sub-problem (16)

According to the augmented Lagrange function (15), the sub-problem (16) can be separated into
two independent parts as follow.

min we” /G + [ (k)| +Re (k) }
‘Pi](k)‘ﬁfg 8 (1 /7ex, r]k ‘plj ‘ ( rlkpl] ) (21)
¢=12,.,G
\pn(}l)\rjv(l wy +(r jk)eg [ i ‘p”(k)‘ +Re( ']kp”(k))} (22)
where a, =0,/2, b, =ai} -6,- > x"[n+k]h"[n]. Considering the problem (21), when & is fixed,
the opt1ma1 solution of pij(k) for every index (i,j,k) can be expressed as
bl]k /( 1]k ) 4 bijk /(zuqk ) g (23)

p:jk (&)= B (bi]‘k /‘bijk D £, others

where p;k (¢,) isa function of &;. According to equation (23), the problem (21) is equivalent to

mmf(e ) £ we /G+ fl]’fk(eg), g=L2,.,G (24)
(1 i k)EK
where
2 —
fie) =i )| +Re(Bypie,))
2
_‘bijk‘ / 4aijk ’ bijk/(zuz]k) & (25)

A€, ‘b,]k‘ €, others

Because f (e,)< f (=¢,), the condition €,20 can be ignored. The optimal 8; can be determined by

solving the following equation.

Vf(e,) =2we, + > min{Zaijkeg—

(i,jk)ek,

j=0 (26)

ik |7
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Because a, =6,/2>0, Vf(e,) is a monotonically increasing function of ¢;. The optimal (" = ¢}

can be obtained efficiently by bisection method. Similarly, the optimal solution """ =y* of problem
(22) can be obtained by solving the following equation.

2(1-w)y + Z min {Zaijky -

(i.j,k)eg

ijk | } =0 (27)
3.2. Solving sub-problem (17)

According to equation (15), sub-problem (17) is separable for each h; =1, 2,.., GM. The
minimization problem can be expressed as

. AL H H
min, . f(h) ZhIAR, +Re(t/'h,) (28)
where
A, =(6,/2)- 20 XXl (29)
=X 0N T (a0 )L @0

where xjx represents the aperiodic delayed copy of the discrete signal x;. For k=0 ,
X, = ([k+1],x[k+2],x[NL0,,)" , for k<0 , x,,=(0,,,x[1]x][2]-x[N-[)" . The

augmented Lagrange function of problem (28) can be expressed as follows.

1x[K 7

L (h,A)=h!Ah, +Re(t/n, )+ A(|n ] —N) (31)

1

The Karush-Kuhn-Tucker (KKT) conditions for problem (28) are as follows.

b <N, 2Ah +t,+24'h =0
. e g2 (32)
A =0, /\(h,z—N):O
Obviously, when A" =0, the KKT conditions (32) is equivalent to
2
hi| <N, hi=-At/2 (33)

If condition (33) is true, then h!'*Y =h’, otherwise, the optimal solution should solved under the

condition of A" >0.
When A" >0, condition (32) is equivalent to
2

h’

tliz2

=N, h=—(A +2/T) /2 (34)

In order to solve equation (34), the value of A" should be determined. According to equation (31), for
any fixed value of A >0, the optimal v(A) with minimal Li(v(A), A) is below.

v(A) =—(A, +2A1)"t, /2 (35)
If 0<A’'<A, then

L (v(A),A) < L (v(A), A)

L (v(A), A") < L, (v(A), ') (36)

According to the function (31), and sum the two inequalities in (36), then

~M) e, < (A=) vl (37)

doi:10.20944/preprints202401.0790.v1
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Therefore, v(/\)"z is a monotone decreasing function of A. Solving the KKT conditions when A" >0

is equivalent to find the zero of the function ||V(A)||z — N, which can be solved by the bisection

method.

3.3. Solving sub-problem (18)

According to equation (15), sub-problem (18) can be separated into following unconstrained
convex problem for each x;, i=1, 2,..., GM.

min, f(h,)£x/Cx, +Re(d'x, (38)

where
C, =(0,/2)- 2, "0 +(0,/2)1 (39)
d, = APh{"Y +B" —O,Nh("" -3 | (045}2 +6,p; " (k)) h{" -0,y (40)

where hjk represents the periodic delayed copy of hj, similar to the xjt in equation (29) and (30). It is
easy to find that the Ci in equation (39) is an NxN positive definite matrix. Therefore, the sub-problem
(38) is an unconstrained quadratic optimization problem, whose optimal solution is

X" =x* =~C;'d, /2 and can be found efficiently by conjugate gradient methods.

3.4. Solving sub-problem (19)

According to equation (15), sub-problem (19) can be separated for each yi[n], i=1, 2,..., GM, n=1,
2,..., N, as follow.

min‘y}[u]‘:l Re I:ﬁinyi[n]:l (41)
where

, ==, =0.x"n] (42)
Define u, =|u, -exp(j@,) , then the solution of the sub-problem (41) can be expressed as

y!Vln] = y;[n] = exp(j-(t—4,) -

4. Numerical Results

In order to demonstrate the effectiveness of Algorithm 1, this section performs a series of
numerical simulations. The parameters are initialized as c=0.5, 61=02=10. The parameter is set as
0, = max{10,min{2(+1),10°}}, where [ is the current iteration. The parameter of the convergence
condition is 7=0.5x10-3. All experiments are implemented with MATLAB that runs on a PC with one

Intel Core i7-7700 CPU and 16 GB RAM. All the obtained correlation function values and PSL, PCL
metrics values in dB are calculated as 10logio( | 7ij(k) | 2/N2).

4.1. Effect of weighting factor w

Under different parameters, Figure 1 shows the convergence curves of the variables y and &g,
g=1, 2,..., G. The computational complexity per iteration of the proposed algorithm is
O(MGN? + M’G’NlogN) . The algorithm running time under M=2, G=2, N=256 is around 700
seconds on average. The convergence curves of the variables y and &g are not monotonically
decreasing because the proposed algorithm minimizes the augmented Lagrange function L in

equation (15). When the convergence condition is satisfied, the variables {x"}7} and {h{"} are

almost the same, and the correlation function ri(k) of the optimal waveforms {xi}i’\f satisfies
rii(k)=piji(k). Thus, the PCL, PSL1, PSLs,..., PSLc metrics are minimized effectively with the help of the

auxiliary variables.

doi:10.20944/preprints202401.0790.v1
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-30 : : : : : : :
0 500 1000 1500 2000 0 2000 4000 6000 8000
iterations iterations
(a) (b)
Figure 1. The convergence curves of y and ¢, ¢=1,2,...,G. (a) w=0.1, M=2, G=2, N=256; (b) w=0.7, M=8,
G=8, N=256.

In order to analyze the effect of the weighting factor w on the metrics values, Figure 2(a) shows
the PSL1, PSL2, and PCL metrics values obtained under different values of w, with fixed parameters
of M=2, G=2 and N=256. Figure 2(b) performs the similar results under M=8, G=8 and N=256. Because
the number of waveforms is large, the maximum and minimum values among PSLi1, PSLy,..., PSLc
are shown, denoted by PSLmax and PSLmin respectively. It can be seen that the smaller the value of w,
the lower the obtained intra-group PSL metrics values, and the higher the obtained inter-group PCL
metric value. The results in Figure 2 demonstrate that the proposed algorithm is able to adjust the
weighting factor w to balance the intra- and inter-group correlation functions performances for
different requirements in MIMO radar applications.

m m
=18 S .4
(0] (0]
> > .
- 3 |
=20 RS [ SRS S
e £
° °
b 22 b -18 |
= =
w2 5]
224 s 201
() [
(=¥ =
=i c
S 26} S -2
g 8
® | e
£ 28 * £ .4
S 0 02 04 06 08 1 S 0
w w
(a) (b)

Figure 2. The convergence curves of y and ¢y, ¢=1,2,...,G. (a) M=2, G=2, N=256; (b) M=8, G=8, N=256.

4.2. Obtained correlation functions

This subsection plots the intra- and inter-group correlation functions curves. Under different
parameters, the obtained waveforms by the proposed group orthogonal waveforms algorithm are
compared to other advanced orthogonal waveforms. In Figure 3, the Random-Set represents the
waveforms generated directly by random numbers. The Primal-Dual algorithm is the current best
PSL optimization algorithm for single orthogonal waveform set. The Up- and Down-Chirp signals
have the lowest cross-correlation function when M=2. Therefore, by setting the same time-bandwidth
product equal to N=256, the Up- and Down-Chirp signals can be compared to the intra-group
orthogonal performance of the waveforms when M=2.

Under M=2, G=2 and N=256, Figure 3(a) shows the auto-correlation function peak value of the
GM waveforms. Figure 3(b) shows the intra-group cross-correlation function peak value. Figure 3(c)
shows the inter-group cross-correlation function peak value. Obviously, when w=0.1, the intra-group
correlation side-lobe peak value obtained by the proposed algorithm is the lowest, compared to other
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waveforms, with relatively higher inter-group cross-correlation function peak value. When w=0.875,
although the intra-group auto- and cross-correlation functions of the waveforms obtained by the
proposed algorithm are relatively high, its inter-group cross-correlation functions are the lowest. The
results under w=0.3 lie between those under w=0.1 and w=0.875. Figure 3(d), 3(e), 3(f) show the results
under M=8, G=8, N=256.

The results in Figure 3 demonstrate that, under typical parameters, the proposed group
orthogonal waveforms design algorithm is able to balance the intra- and inter-group correlation
functions performances effectively. To brief sum up, compared with designing all the GM waveforms
directly using the Primal-Dual algorithm, the proposed group orthogonal waveforms design
algorithm is able to obtaining the lower intra-group PSL metrics by sacrificing a small quantity of
inter-group cross-correlation performance, or vice versa. Therefore, for the applications of anti-
jamming agile waveform, the proposed algorithm is more flexible. The proposed group orthogonal
waveform design algorithm is able to design multiple groups of orthogonal waveform sets at the

same time.
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(0) (f)

Figure 3. The correlation peak value obtained by the proposed algorithm. When M=2, G=2, N=256: (a)
auto-correlation; (b) intra-group cross-correlation; (c) inter-group cross-correlation. When M=8, G=8,
N=256: (d) auto-correlation; (e) intra-group cross-correlation; (f) inter-group cross-correlation.

4.3. Effect of parameters M, N, G

Figure 4(a), 4(b) analyzes the effect of phase coding sequence length N on the results. The
simulation keeps the weighting factor w and the waveform parameters M=2, G=2 unchanged. The
waveforms are obtained by the proposed algorithm under N=32, 64, 96, 128, 160, 192, 224, 256. After
calculating the PCL and intra-group PSL metrics (The PSL metrics are denoted by PSL1 and PSLz
because G=2), Figure 4(a), 4(b) show the obtained metrics values under w=0.3 and w=0.875
respectively. The results demonstrate that the larger the sequence length, the lower the obtained PCL
and PSL metrics values.

Figure 4(c), 4(d) analyzes the effects of the number of groups G and the number of intra-group
waveforms M on the results. Firstly, set the weighting factor as w=0.5 and the parameters as M=8,
N=256. Then, perform the proposed algorithm to obtain the waveforms under G=2, 3, 4, 5, 6, 7, 8.
Finally, calculate the PCL metric value and the maximum and minimum values among the PSLs,
PSLy,..., PSLc. The results are shown in Figure 4(c). It can be seen that the PCL is higher with the
increase of G, because the total number of waveforms GM increases. Meanwhile, the obtained intra-
group PSL metrics values change little with the increase of G, because the number of intra-group
waveforms M=8 remains unchanged. Figure 4(d) keeps the parameter G=8 unchanged and performs
the proposed algorithm under parameters M=2, 3, 4, 5, 6, 7, 8. It can be seen that the intra-group PSL
metrics values are higher with the increase of M. Overall, the PCL metric value mainly depends on
the total number of waveforms GM. The intra-group PSL metric values mainly depend on the
parameter M.
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Figure 4. The effect of parameters M, N, G on the obtained metrics values. (a) w=0.3, M=2, G=2; (b)
w=0.875, M=2, G=2; (c¢) w=0.5, M=8, N=256; (d) w=0.5, G=8, N=256.

4.4. Anti-jamming simulation

In this section, the deceptive jamming suppression performances of MIMO radar using different
waveforms in Table 1 are simulated. The radar is located at the origin of coordinates, whose carrier
wavelength A is 1 m and size of range bins is 100 m. The range corresponding to the first bin is 50 km.
The angles, ranges and signal-to-noise ratios of the simulated four true targets are (-15°, 400, 3 dB),
(0°, 400, 3 dB) (20°, 400, 3 dB) and (20°, 50, 5 dB), where the range parameters are in unit of range bin.
The DRFM-based deceptive jamming causes 2 false targets, whose angles, ranges and jamming-to-
noise ratios are (-15°, 50, 5 dB) and (0°, 50, 5 dB). The noise is Gaussian random white noise. The
uniform linear array consists of 3 transmit elements spaced at 16A apart, and 16 receive elements
spaced at 0.5A apart. Assumed that one pulse of the waveform has been intercepted, Figure 5 shows
the angle-range images formed with MIMO radar using the adjacent pulse echoes. The results show
that the proposed algorithm is able to balance the anti-jamming and range compression performances
by adjusting the weighing factor. On this basis, MIMO radar could maximize the waveform diversity
gain by selecting proper waveform set as a best response to flexible adaptive deceptive jamming [26].
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Figure 5. Angle-range images formed with MIMO radar using fixed and agile waveforms under
DRFM-based deceptive jamming. (a) Fixed waveform; (b) Primal-Dual; (c) w=0.9, M=3, G=2, N=256;
(d) w=0.1, M=3, G=2, N=256.

Table 1. Parameters and performance metrics of the simulated waveforms.

Waveforms Design methods Title 2 Title 3

Fixed Waveform M=3, N=256 PSL=-23.22 dB
Primal-Dual [18] MG=6, N=256 PSL=-20.18 dB
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PSL1=-19.18 dB
M=3, G=2, N=256 PSL>=-19.39 dB
PCL=-25.56 dB
PSL:=-25.64 dB
M=3, G=2, N=256 PS1>=-25.88 dB
PCL=-18.51 dB

Proposed methods when
w=0.9

Proposed methods when
w=0.1

5. Conclusions

Transmitting agile group orthogonal waveforms is an effective way for MIMO radar to combat
DRFM jamming. Aiming at designing group orthogonal waveforms, the proposed model in this
article formulates a weighted sum objective function, which separates the waveforms performances
into two parts. One is the peak value of intra-group auto- and cross-correlation functions. The other
is the peak value of the inter-group cross-correlation functions. To solve this optimization problem,
after proper relaxations, the proposed algorithm in this article transforms the minimization of the
augmented Lagrange function into series sub-problems. The numerical results showed the proposed
algorithm can minimizes the intra- and inter-group correlation functions effectively. The anti-
jamming simulation results showed that the proposed algorithm is able to trade-off the DRFM-based
deceptive jamming suppression and range compression performances. The proposed algorithm is
flexible and has the potential in adaptive anti-jamming applications for MIMO radar.
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