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Abstract: Numerous experimental and theoretical studies undertaken to determine the effective-stress
coefficient for seismic velocities in rocks stem from the importance of this geomechanical parameter both for
monitoring changes in rock saturation and pore pressure distribution in connection with reservoir production,
and for overpressure prediction in reservoirs and formations from seismic data. The present work pursues a
task to determine, in the framework of a low-frequency laboratory study, the dependence of the elastic moduli
of n-decane saturated sandstone on the relationship between pore and confining pressures. The study was
conducted on a sandstone sample with high quartz and notable clay content in the quasi-static regime, when
the 100 ml tank filled with n-decane was directly connected to the pore space of the sample. The measurements
were carried out at a seismic frequency of 2 Hz and strains, controlled by semiconductor strain gauges, not
exceeding 10. The study was performed using a forced-oscillation laboratory apparatus utilizing stress-strain
relationship. The dynamic elastic moduli have been measured in two sets of experiments: at constant pore
pressures of 0, 1 and 5 MPa and differential pressure (defined as a difference between confining and pore
pressures) varied from 3 to 19 MPa; and at a constant confining pressure of 20 MPa and pore pressure varied
from 1 to 17 MP. It was shown that the elastic moduli obtained in the measurements are in good agreement
with the Gassmann moduli calculated for the range of differential pressures used in our experiments, which
corresponds to the effective-stress coefficient equal to unity.

Keywords: strain gauges; elastic properties; wave propagation; seismic frequency

1. Introduction

The combined effect of confining stress and pore pressure on rock parameters is commonly
described by the concept of an effective stress [1,2], which is fundamental to the study of fluid-
saturated rock deformations under pressure. The knowledge of the effective stress for rock masses is
of great significance to numerous geotechnical applications, including quantitative interpretation of
time-lapse seismic measurements [3,4], geothermal extraction [5], and seismic reservoir
characterization [6].

In general, the effective stress concept considers rock properties as functions of a linear
combination of confining stress and pore pressure presented by the tensor [7-11]
of/) = afj = ndyp, (1)
where af}-f I are the effective stresses, i
and &;; is the Kronecker delta, n is the effective stress coefficient.

In recent decades, the concepts of the effective stress and effective stress coefficient have been a

are the total confining stresses, p is the pore pressure,

subject of intensive research of both theoretical (see, e.g., [12-18]) and experimental nature [7,14,19-
23]. As was demonstrated in a number of studies [16,24-26], all rock properties cannot be described
by a single effective stress coefficient, and different values of the coefficient should be introduced for
different physical quantities. Furthermore, the values of the effective stress coefficients are dependent
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on micro-heterogeneity of rocks associated primarily with the rock mineral content and pore
structure [14,16,18,26,27]. As was shown by Ciz et al. [27] and Glubokovskikh and Gurevich [18], the
effective stress coefficient for bulk modulus of a rock is sensitive to the contrast between the moduli
of the rock mineral constituents and can vary over a wide range. However, theoretical analyses by
Gardner et al. [14], Gurevich [17], and Pride [28] demonstrate that in the case of a linearly-elastic
micro-homogeneous grain material, the effective-stress coefficient for the elastic moduli is equal to
unity. Since the same micro-homogeneous material was used in the Gassmann theory [29], the
validity of such analyses, as pointed out by Berryman [16], is based on an implicit assumption that,
just as a natural rock can be satisfactorily substituted by an equivalent homogeneous rock in the
Gassmann model, it can also be substituted in a similar way in the effective-stress analytical model.
When such a substitution is possible, we can expect that the effective-stress coefficients are equal to
unity for all the scale-invariant physical quantities (i.e., quantities dependent on the pore space
geometry and grain material moduli, but not dependent on the absolute value of the pore space),
including porosity, as well as the low- and high-frequency limits of the poroelastic moduli [16,28].

However, despite the similarity in approach to the Gassmann theory, which is well confirmed
by numerous experiments (see, e.g., the recent review by Sevostianov [30]), the effective-stress model
based on the equivalent homogeneous rock substitution has not found significant support in most
published experimental studies, and, in particular, in studies devoted to measuring the effective
stress coefficient for elastic moduli or velocities [20-22,31].

On the other hand, it has to be noted that the great majority of laboratory measurements
presented in literature are performed at ultrasonic frequencies under conditions of an uncontrolled
level of dynamic strain in tested specimens [32]. As was demonstrated in a number of studies [33-
35], the inelasticity of such a complex material as rock is a strain-dependent parameter controlled by
internal friction inside the crystalline body of the rock. The main sources of the internal friction
resulting from sliding interfaces that are in contact within the rock [33,34], and dislocation-breakaway
damping [33], become negligible if amplitudes of strains caused by acoustic waves are less than 10-.
Such a strain amplitude limit better corresponds to the real conditions of seismological measurements
and imposes important restrictions on experimental measurements of the elastic/anelastic properties
of rocks in the laboratory. However, due to the complexity of the technical implementation of strain-
level control in ultrasonic systems, most ultrasonic measurements are performed without strain-
amplitude control, which often leads to inadequate values of the measured elastic moduli [36].

To our knowledge, the only effective-stress study at the strain level below 10 was conducted at
low frequency on Savonnieres limestone for the effective pressure coefficient for porosity by Tan et
al. [23]. Analysing the drained-to-undrained transition of bulk modulus in n-decane-saturated
Savonnieres limestone observed in forced-oscillation experiments with varying dead volume, Tan et
al. [23]. demonstrated that the prediction of the poroelastic model is highly consistent with the
experimental data if the effective-stress coefficient for porosity is equal to unity.

The goal of the present paper is to determine the stress-effective coefficient for elastic moduli of
a polymineral sandstone sample at a seismic frequency with dynamic strains controlled throughout
the entire experiment by semiconductor strain gauges at a level not exceeding 10-. In addition to the
predominant mineral presented by quartz, the sample selected for our measurements (Mungaroo
Formation, Western Australia) contains a number of other minerals, including a significant amount
of clay minerals. We present the results of the laboratory measurements of the elastic properties of
rock performed using a forced-oscillation apparatus at a frequency of 2 Hz. We have examined the
dependences of the elastic moduli of the sandstone and extensional attenuation on the differential
pressure, which is defined as the difference between confining and pore pressures, and determined
the effective-stress coefficient for elastic moduli. To avoid lacerations of strain gauges due to the high
compressibility of the sample, we had to limit our measurements to an upper confining pressure of
20 MPa. The measurements were carried out in two sets: the first set of the measurements was
conducted at pore pressures equal to 0, 1 and 5 MPa and a differential pressure gradually increasing
from 3 MPa to 19 MPa and, and the second set was performed at a constant confining pressure of 20
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MPa and a pore pressure varying from 1 to 17 MPa; in both sets of the measurements, n-decane was
used as the pore fluid. In all measurements, the dynamic strains did not exceed 10-°.

2. Experimental Setup

In this study experiments at seismic frequencies were performed using a low-frequency
laboratory apparatus with the longitudinal type of the forced oscillations described in detail by
Mikhaltsevitch et al. [32]. The apparatus operates at frequencies of 0.01 Hz to 100 Hz and strain
amplitudes of 10 to 10¢. The apparatus measures the elastic parameters of rock samples at confining
or uniaxial pressures from 0 to 70 MPa.

The mechanical assembly and electrical schematic of the low-frequency setup are presented in
Figure 1. The assembly consists of a steel frame and a column of units located in the center of the
frame. The column includes a hydraulic actuator, a Hoek triaxial cell (model 45-D0554, Controls
Group), a piezoelectric stack actuator P-035.10P (Physik Instrumente GmbH & Co. KG), an aluminum
calibration standard, and two steel plugs with passages for a fluid injection. A specimen to be tested
is placed inside a sleeve made of elastomer and mounted within the triaxial cell. Two manual
hydraulic pumps (model P392, Enerpac) connected with the cell and hydraulic actuator (model
RCS201, Enerpac) provide static lateral and axial forces to the specimen. The use of hydraulic oil as a
confining fluid instead of compressed gas (such as nitrogen or helium) allows a very high pressure
to be applied safely in the experiment which is an advantage of the apparatus. The dynamic stress
applied to the sample and the strains in the rock are measured by three semiconductor strain gauges
(KSP-6-350-E4, Kyowa Ltd). One gauge is glued to the aluminum standard and the other two glued
to the sample with epoxy adhesive (Selleys Araldite Super Strength).

The strain gauge on the aluminum standard is orientated in the axial direction, and the two
strain gauges attached to the test sample are orientated along the axis and circumference of the
sample. Through a set of electric bridges (BCM-1 Wheatstone Bridge, Omega Engineering Ltd), the
strain gauges are connected with an analog-to-digital converter (model 100, InstruNet, Omega
Engineering). The electrical connection of the gauges on the specimen is implemented with a
feedthrough assembly (Spectite WES).

The multilayer piezoelectric actuator transforms the periodic voltage, applied by a function
generator via a power amplifier, into mechanical stress, which causes a dynamic modulation of the
conductivity of the strain gauges attached to the aluminum standard and tested specimen. The
electric bridges transform the modulated conductivity into electric signals, which, after digitizing by
the analogue-to-digital converter, are received by an acquisition computer, where the signals are
averaged and processed.

loading frame

hydraulic
to manual pump <= ] actuator | axial
pressure
[~1 1 ﬁ-— piezoelectric
function o ] actuator
generator amplifier - strain gauge
{}ﬂ_ﬂ |~ <= pore fluid
analog-to- ) | | .
computer [<jdignal <93 glggtncal T strain gauges
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%/ —1==to manual pump
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Figure 1. The mechanical assembly and electrical schematics of the low-frequency laboratory
apparatus.

Inasmuch as the voltage signals obtained from the axial and circumferential strain gauges
coupled to the sample and standard are proportional to the axial and radial strains, Young’s modulus
Eand Poisson’s ratio v of the sample can be found as

E=Et )

V=1 b ®)

After finding E and v, the bulk K and shear p moduli can be found as follows:

K =335 (4)
p= ks ©)

The extensional attenuation Qz! in the sample is derived from as the phase shift Ap between
the harmonic stress applied to the sample and resulting strain detected in the sample [32]:

Qz' = Ap. (6)

The low-frequency measurements presented below were conducted at an oscillating frequency
of 2 Hz. During the measurements, the stress-strain readings for every 100 oscillations were averaged
to improve the signal-to-noise ratio of the signals obtained from strain gauges. The uncertainty of the
extensional attenuation measurements is +0.003.

3. Sample Description and Experimental Procedure

The sandstone sample measured in the present study was retrieved from the Triassic Mungaroo
Formation, Western Australia. Its mineral composition obtained using X-ray fluorescence and
diffraction analysis is presented in Table 1. Cementation of the framework grains in the Mungaroo
sandstone is mainly associated with the presence of quartz overgrowths and kaolinite [37].

The homogeneity of the sample was verified using an X-ray microscope VersaXRM-500, Xradia
Ltd (Figure 2). Based on the obtained X-ray images, we assume that the sandstone sample tested in
this study is homogeneous on a macroscopic (gauge-length size) scale.

Figure 2. 2D mutually perpendicular X - ray cross-sections of the Mungaroo sandstone sample.

The physical parameters of the sample are as follows. The length of the test sample is equal to
75.2 mm and the diameter is 37.8 mm. The mass and density of the dry/wet sample are 190.48/198.9
g and 2268/2368 kg/m?, respectively. The difference in density of the sample in dry and wet states
corresponds to a pore space of 11.5 cm? or porosity of 13.7%. The permeability of the sandstone is
equal to 1.9 mD.

The experimental procedure was organized in the following way. For avoiding the influence of
moisture trapped between contacts, which can be significant in sandstones [38], prior to the
measurements, the sample was vacuum-dried in an oven at a temperature of ~60° C. Then the sample
was placed in the elastomer sleeve mounted inside the triaxial cell, where it was saturated with n-
decane at a confining pressure of 10 MPa. To ensure the full saturation at least five pore volumes of
liquid were pumped through the sample. The flow rate of liquid during saturation did not exceed
0.02 cm3/s (1.2 cm3/min).
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After saturation, we studied the pressure dependences of the elastic and anelastic parameters,
such as Young’s, bulk and shear moduli, Poisson ratio, and extensional attenuation on confining
pressure at seismic frequency of 2 Hz in the drained regime, when the fluid line connected to the top
end of the sample was open. The measurements of the static strains in the sample and standard
during this experiment (see Figure 3) demonstrate that the changes of radial and axial strains in
response to an increase in confining pressure are virtually equivalent, which also confirms the
homogeneity of the sample. The uncertainty of the strain measurements is mainly determined by the
uncertainty of the strain-gauge factor and equal +3%. Then, the same measurements as in the drained
regime were repeated at a pore pressure equal successively to 1 and 5 MPa, when the 100 ml tank of
the syringe pump (model 100DX, Teledyne ISCO) filled with n-decane was directly connected to the
pore space of the sample to minimise pore-pressure fluctuations and their effect on the grain contacts
in the sample during the experiment. Finally, we conducted the last set of measurements, when the
confining pressure was fixed at the level of 20 MPa, and pore pressure was gradually increasing from
1 MPa to 17 MPa. The accuracy of the obtained experimental data is directly dependent on the
uncertainty of the dynamic strain measurements, which is mainly determined by the uncertainty of
the strain-gauge factor and equal +3%.

Table 1. The petrographic data for the Mungaroo sandstone sample.

Mineral Content (volume), % Bulk modulus, GPa
Mineral Content (volume), % Bulk modulus, GPa
Quartz 72 36.6 [39]
K-feldspar 2 57 [40]
Micrite 4 71 [41]
Illite 5 21 [42]
Kaolinite 12 11 [43]
Calcite 4 76.8 [39]
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Figure 3. The dependences of static strains in the sample and standard on confining pressure
measured in the drained regime.

4. Results and Discussion

4.1. Measurements with Variable Confining Pressure

In the experiments with variable confining pressure, the effective-stress coefficient for the elastic
moduli of the Mungaroo sandstone sample was estimated by comparison of the elastic moduli
obtained in the experiments with constant non-zero pore pressures with the elastic moduli obtained
in the drained regime, which are considered as reference parameters in our study. The experiments
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with constant non-zero pore pressures include the measurements with two pore pressures of 1 and 5
MPa conducted under the differential pressure corresponding to the confining pressure of the
drained regime, which was varying from 3 to 19 MPa.

The direct results of our measurements can be presented as dependences of the Young's
modulus, Poisson’s ratio, extensional attenuation, and dynamic strains in the standard and rock on
differential pressure and shown in Figures 4-6. The measurement uncertainties given in the graphs
were estimated according to the uncertainty analysis procedure developed for the forced-oscillation
measurements by Adam et al. [44] and Adam et al. [45].

The bulk and shear moduli calculated on the basis of Equations (4) and (5) are shown in Figure
7. The slight discrepancy between drained bulk modulus and bulk moduli measured at pore
pressures of 1 and 5 MPa is due to the finite size of the syringe-pump tank, which can be verified
using the modified Gassmann model considering a dead volume, i.e., a pore-fluid volume external
to the test sample [32].

The mineral bulk modulus of the sample can be computed as the Voigt-Reuss-Hill average [39]:

K, =227, (7)
where

K, =XLifiKi  Ko=1/ZE, 2 (®)

Here, f; is the volume fraction of the i-th component of the solid phase of the rock and K; is
the bulk modulus corresponding to this component.

Using the mineral bulk moduli of the Mungaroo sandstone presented in Table 1, we find

K, =33.1 GPa. )
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Figure 4. The dependences of Young’s modulus (a) and Poisson’s ratio (b) on differential pressure,
measured on the Mungaroo sandstone sample at a frequency of 2 Hz.
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Figure 5. The dependence of the extensional attenuation on differential pressure, measured on the
Mungaroo sandstone sample at a frequency of 2 Hz.
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Figure 6. The dependences of the dynamic strains measured on the sample and standard on
differential pressure, obtained for the Mungaroo sandstone sample at a frequency of 2 Hz.
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Figure 7. The dependences of the bulk modulus (a) and shear modulus (b) on differential pressure,
computed using Equations (4) and (5).

The bulk modulus of the n-decane-saturated sample can be found using the following modified
Gassmann equation [46]:
(1-7H?

a 1-¢ K, d’
s
where K; is the drained bulk modulus, Ky=1.15 GPa is bulk modulus of n-decane [47], ¢ is the
sample porosity, @« = ¢ + Vp/V;, Vp and V; are the dead volume and sample volume, respectively.

A comparison of the Gassmann moduli computed for the drained moduli obtained at differential

Ksar = Kg + (10)

pressures of 3 to 17 MPa with bulk moduli measured at non-zero constant pore pressures is presented
in Figure 8.

—o—drained
--+-pore pressure=1 MPa
4r —=—pore pressure=5 MPa
2 | ——@Gassmann

Bulk Modulus, GPa

O L L L I 1 L I I L 1 I I L 1 1 L L L L J
0 5 10 15 20

Differential Pressure, MPa

Figure 8. The experimental dependences of the bulk moduli on differential pressure, obtained using
Equation (4), and the pressure dependence of the bulk modulus, computed using modified Gassmann
Equation (10).

As can be seen from Figure 8, there is good agreement between the experimental moduli with
non-zero pore pressures and the Gassmann modulus.

4.2. Measurements with variable pore pressure

The second series of the experiments conducted in this study includes the measurements
performed at 2 Hz under a confining pressure of 20 MPa and a pore pressure raising gradually from
1 to 17 MPa. Note that the order of measurements corresponds to the reverse order of increasing
values along the differential pressure axis. The direct results of these measurements are shown in
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Figures 9-11 together with the data obtained in the drained experiment. The bulk and shear moduli
calculated in accordance with Equations (3) and (4) are given in Figure 12.
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Figure 9. The dependences of the Young’s modulus (a) and Poisson’s ratio (b) on differential pressure,
measured on the n-decane saturated Mungaroo sandstone sample at a frequency of 2 Hz under a
confining pressure of 20 MPa and a pore pressure varied from 1 to 17 MPa.
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Figure 10. The dependence of the extensional attenuation on differential pressure, measured on the
n-decane saturated Mungaroo sandstone sample at a frequency of 2 Hz and presented with the
attenuation obtained in the drained mode.
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Figure 11. The differential pressure dependences of the dynamic strains measured on the n-decane
saturated Mungaroo sandstone sample and standard at a frequency of 2 Hz.
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Figure 12. The dependences of the bulk modulus (a) and shear modulus (b) on differential pressure,
corresponding to the data presented in Figure 9.

4.3. Discussion

The bulk/shear moduli and Poisson’s ratio obtained in the first set of the experiments at pore
pressures of 1 and 5 MPa and in the second set of the experiments with variable pore pressure are
compared in Figures 13 and 14.

As follows from the pressure dependences presented in Figure 13, the bulk and shear moduli do
not depend on the measurement technique and are uniquely determined as functions of the
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differential pressure, which coincides with the effective stress in the case when the effective-stress
coefficient is equal to unity.

The good agreement of the experimental elastic moduli with the Gassmann moduli, obtained in
the range of differential pressures used in this study, with the exception of minor deviations at lower
pressure values, indicates that the material of the studied rock can be satisfactorily substituted in the
Gassmann model by an equivalent homogeneous material for each differential pressure. The
dependences of the elastic moduli on pressure shown in Figure 13 convincingly demonstrate that the
real rock material cannot be considered as linearly elastic. However, at each point of differential
pressure the real rock can be replaced by an equivalent homogeneous rock of the same porosity that
satisfies the Gassmann model, but whose elastic properties differ from the properties of equivalent
rocks at other pressures.

Let us now analyse the discrepancy between the bulk moduli that occurs at lower differential
pressures of 3 to 7 MPa (Figure 13a) and reaches a maximum of 6 percent at a differential pressure of
3 MPa for bulk moduli measured with variable pore pressure and with a pore pressure equal to 1
MPa. This discrepancy can be explained as follows. First, note that the experiments with variable
pore pressure start from the higher differential pressures and finish at lower differential pressures,
whereas the experiments with the constant pore pressures are carried out in the reversed order. Due
to the duration of the low-frequency measurements, which last, as a rule, for many hours, the sample
was experiencing creep under stress for a much longer period of time before the measurements at
lower pressures began than in the first set of experiments. The long-time creep minimizes
dislocations, closes microcracks and makes stress in the pores more uniform, which increases the
measured moduli. Generally, the difference in bulk moduli obtained in two sets of the experiments
similar to the difference in drained bulk moduli measured under loading and unloading conditions
by Pimienta et al. [48], where the variation between loading/unloading moduli reached more than
30% in Fontainebleau sandstone at differential pressures <8 MPa.

As can be seen from Figure 14, the Poisson’s ratios obtained at constant pore pressures of 1 and
5 MPa display a sharp rise with differential pressure, whilst the Poisson’s ratio measured at the
variable pore pressure remains virtually pressure independent. The latter confirms that the state of
the solid framework of the rock at the lower pressures is not as different from that at higher pressures
during the experiments with variable pore pressure as in the experiments with constant pore
pressures. Note also that the bulk moduli and Poisson's ratios obtained in both series of experiments
converge significantly with increasing pressure, as shown in Figure 13a and 14.

According to Equations (3) and (4), the effect of changing the Poisson’s ratio has a much smaller
effect on the change in shear modulus than on the change in bulk modulus, which is confirmed by
negligible discrepancy of shear moduli at lower differential pressures, as can be observed in Figure
13b.

Let us point out that the dependences of the extensional attenuation on differential pressure
obtained in both sets” experiments with non-zero pore pressures and presented in Figure 15 are also
in a good match, which demonstrates that these dependences are functions of the effective stress with
the effective-stress coefficient equal to unity (see Equation (1)). The difference between the
dependences corresponding to the drained and undrained regimes can be attributed to friction
caused by n-decane moving freely in and out of the sample to ensure constant zero pore pressure
under the applied forced oscillations.
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Figure 13. The dependences on differential pressure obtained for the bulk modulus (a) and shear
modulus (b) in the measurements with variable and constant pore pressures.
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5. Conclusions

We present the results of the laboratory study carried out to investigate the dependence of the
elastic moduli of fluid saturated sandstone on the relationship between pore and confining pressures.
The study was conducted on a sandstone sample with high quartz and substantial clay content
saturated with n-decane, where a tank approximately equal to 10 times the size of the pore volume,
filled with n-decane, was directly connected to the pore space of the sample to smooth out pore
pressure variations. The experiments were carried out in the quasi-static regime at a seismic
frequency of 2 Hz, using a forced-oscillation laboratory apparatus based on a longitudinal type of
forced oscillations. The strains in the sample were controlled by semiconductor strain gauges and
maintained at a level not exceeding 10¢. The dynamic elastic moduli have been measured in the
drained regime with zero pore pressure, as well as in the experiments with non-zero constant pore
pressures of 1 and 5 MPa at differential pressure varied from 3 to 19 MPa, and with pore pressure
changed from 1 to 17 MP at a constant confining pressure of 20 MPa. It was shown that the
measurement results of elastic moduli are in good agreement with the Gassmann moduli calculated
for the range of differential pressure used in this study, which corresponds to the effective-stress
coefficient equal to unity. It was also demonstrated that the results of the measurements of
extensional attenuation obtained at non-zero pore pressures are in good agreement with each other
and are uniquely determined as a function of differential pressure.
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