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Article 
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*  Correspondence: M.Lebedev@ecu.edu.au 

Abstract:  Numerous  experimental  and  theoretical  studies  undertaken  to  determine  the  effective‐stress 
coefficient for seismic velocities in rocks stem from the importance of this geomechanical parameter both for 
monitoring changes in rock saturation and pore pressure distribution in connection with reservoir production, 
and for overpressure prediction in reservoirs and formations from seismic data. The present work pursues a 
task to determine, in the framework of a low‐frequency laboratory study, the dependence of the elastic moduli 
of n‐decane saturated sandstone on  the relationship between pore and confining pressures. The study was 
conducted on a sandstone sample with high quartz and notable clay content in the quasi‐static regime, when 
the 100 ml tank filled with n‐decane was directly connected to the pore space of the sample. The measurements 
were carried out at a seismic frequency of 2 Hz and strains, controlled by semiconductor strain gauges, not 
exceeding 10‐6. The study was performed using a forced‐oscillation laboratory apparatus utilizing stress‐strain 
relationship. The dynamic elastic moduli have been measured  in  two sets of experiments: at constant pore 
pressures of 0, 1 and 5 MPa and differential pressure  (defined as a difference between confining and pore 
pressures) varied from 3 to 19 MPa; and at а constant confining pressure of 20 MPa and pore pressure varied 
from 1 to 17 MP. It was shown that the elastic moduli obtained in the measurements are in good agreement 
with the Gassmann moduli calculated for the range of differential pressures used in our experiments, which 
corresponds to the effective‐stress coefficient equal to unity. 

Keywords: strain gauges; elastic properties; wave propagation; seismic frequency 
 

1. Introduction 

The  combined effect of  confining  stress and pore pressure on  rock parameters  is  commonly 
described by  the  concept of  an  effective  stress  [1,2], which  is  fundamental  to  the  study of  fluid‐
saturated rock deformations under pressure. The knowledge of the effective stress for rock masses is 
of great significance to numerous geotechnical applications, including quantitative interpretation of 
time‐lapse  seismic  measurements  [3,4],  geothermal  extraction  [5],  and  seismic  reservoir 
characterization [6].   

In  general,  the  effective  stress  concept  considers  rock  properties  as  functions  of  a  linear 
combination of confining stress and pore pressure presented by the tensor [7–11] 

 𝜎௜௝௘௙௙ ൌ 𝜎௜௝௖ െ 𝑛𝛿௜௝𝑝,                      (1) 
where  𝜎௜௝௘௙௙  are  the effective  stresses,  𝜎௜௝௖   are  the  total confining  stresses,    𝑝  is  the pore pressure, 
and  𝛿௜௝  is the Kronecker delta,  𝑛  is the effective stress coefficient. 

In recent decades, the concepts of the effective stress and effective stress coefficient have been a 
subject of intensive research of both theoretical (see, e.g., [12–18]) and experimental nature [7,14,19–
23]. As was demonstrated in a number of studies [16,24–26], all rock properties cannot be described 
by a single effective stress coefficient, and different values of the coefficient should be introduced for 
different physical quantities. Furthermore, the values of the effective stress coefficients are dependent 
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on  micro‐heterogeneity  of  rocks  associated  primarily  with  the  rock  mineral  content  and  pore 
structure [14,16,18,26,27]. As was shown by Ciz et al. [27] and Glubokovskikh and Gurevich [18], the 
effective stress coefficient for bulk modulus of a rock is sensitive to the contrast between the moduli 
of the rock mineral constituents and can vary over a wide range.   However, theoretical analyses by 
Gardner et al.  [14], Gurevich  [17], and Pride  [28] demonstrate  that  in  the case of a  linearly‐elastic 
micro‐homogeneous grain material, the effective‐stress coefficient for the elastic moduli is equal to 
unity.  Since  the  same micro‐homogeneous material was  used  in  the Gassmann  theory  [29],  the 
validity of such analyses, as pointed out by Berryman [16], is based on an implicit assumption that, 
just as a natural  rock can be satisfactorily substituted by an equivalent homogeneous  rock  in  the 
Gassmann model, it can also be substituted in a similar way in the effective‐stress analytical model.   
When such a substitution is possible, we can expect that the effective‐stress coefficients are equal to 
unity  for  all  the  scale‐invariant  physical  quantities  (i.e.,  quantities dependent  on  the  pore  space 
geometry and grain material moduli, but not dependent on the absolute value of the pore space), 
including porosity, as well as the low‐ and high‐frequency limits of the poroelastic moduli [16,28].   

However, despite the similarity in approach to the Gassmann theory, which is well confirmed 
by numerous experiments (see, e.g., the recent review by Sevostianov [30]), the effective‐stress model 
based on the equivalent homogeneous rock substitution has not found significant support in most 
published  experimental  studies, and,  in particular,  in  studies devoted  to measuring  the  effective 
stress coefficient for elastic moduli or velocities [20–22,31].   

On  the  other  hand,  it  has  to  be  noted  that  the  great majority  of  laboratory measurements 
presented in literature are performed at ultrasonic frequencies under conditions of an uncontrolled 
level of dynamic strain in tested specimens [32]. As was demonstrated in a number of studies [33–
35], the inelasticity of such a complex material as rock is a strain‐dependent parameter controlled by 
internal  friction  inside  the  crystalline body of  the  rock. The main  sources of  the  internal  friction 
resulting from sliding interfaces that are in contact within the rock [33,34], and dislocation‐breakaway 
damping [33], become negligible if amplitudes of strains caused by acoustic waves are less than 10‐6. 
Such a strain amplitude limit better corresponds to the real conditions of seismological measurements 
and imposes important restrictions on experimental measurements of the elastic/anelastic properties 
of rocks in the laboratory. However, due to the complexity of the technical implementation of strain‐
level  control  in ultrasonic  systems, most ultrasonic measurements  are performed without  strain‐
amplitude control, which often leads to inadequate values of the measured elastic moduli [36].   

To our knowledge, the only effective‐stress study at the strain level below 10‐6 was conducted at 
low frequency on Savonnieres limestone for the effective pressure coefficient for porosity by Tan et 
al.  [23].  Analysing  the  drained‐to‐undrained  transition  of  bulk  modulus  in  n‐decane‐saturated 
Savonnieres limestone observed in forced‐oscillation experiments with varying dead volume, Tan et 
al.  [23]. demonstrated  that  the  prediction  of  the  poroelastic model  is  highly  consistent with  the 
experimental data if the effective‐stress coefficient for porosity is equal to unity. 

The goal of the present paper is to determine the stress‐effective coefficient for elastic moduli of 
a polymineral sandstone sample at a seismic frequency with dynamic strains controlled throughout 
the entire experiment by semiconductor strain gauges at a level not exceeding 10‐6. In addition to the 
predominant mineral presented by quartz,  the sample selected  for our measurements  (Mungaroo 
Formation, Western Australia) contains a number of other minerals, including a significant amount 
of clay minerals. We present the results of the laboratory measurements of the elastic properties of 
rock performed using a forced‐oscillation apparatus at a frequency of 2 Hz. We have examined the 
dependences of the elastic moduli of the sandstone and extensional attenuation on the differential 
pressure, which is defined as the difference between confining and pore pressures, and determined 
the effective‐stress coefficient for elastic moduli. To avoid lacerations of strain gauges due to the high 
compressibility of the sample, we had to limit our measurements to an upper confining pressure of 
20 MPa. The measurements were  carried  out  in  two  sets:  the  first  set  of  the measurements was 
conducted at pore pressures equal to 0, 1 and 5 MPa and a differential pressure gradually increasing 
from 3 MPa to 19 MPa and, and the second set was performed at a constant confining pressure of 20 
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MPa and a pore pressure varying from 1 to 17 MPa; in both sets of the measurements, n‐decane was 
used as the pore fluid. In all measurements, the dynamic strains did not exceed 10‐6. 

2. Experimental Setup 

In  this  study  experiments  at  seismic  frequencies  were  performed  using  a  low‐frequency 
laboratory  apparatus with  the  longitudinal  type  of  the  forced  oscillations described  in detail  by 
Mikhaltsevitch et al.  [32]. The apparatus operates at  frequencies of 0.01 Hz  to 100 Hz and  strain 
amplitudes of 10‐8 to 10‐6. The apparatus measures the elastic parameters of rock samples at confining 
or uniaxial pressures from 0 to 70 MPa.   

The mechanical assembly and electrical schematic of the low‐frequency setup are presented in 
Figure 1. The assembly consists of a steel frame and a column of units  located in the center of the 
frame. The  column  includes a hydraulic actuator, a Hoek  triaxial  cell  (model 45‐D0554, Controls 
Group), a piezoelectric stack actuator P‐035.10P (Physik Instrumente GmbH & Co. KG), an aluminum 
calibration standard, and two steel plugs with passages for a fluid injection. A specimen to be tested 
is  placed  inside  a  sleeve made  of  elastomer  and mounted within  the  triaxial  cell.  Two manual 
hydraulic  pumps  (model P392,  Enerpac)  connected with  the  cell  and  hydraulic  actuator  (model 
RCS201, Enerpac) provide static lateral and axial forces to the specimen. The use of hydraulic oil as a 
confining fluid instead of compressed gas (such as nitrogen or helium) allows a very high pressure 
to be applied safely in the experiment which is an advantage of the apparatus. The dynamic stress 
applied to the sample and the strains in the rock are measured by three semiconductor strain gauges 
(KSP‐6‐350‐E4, Kyowa Ltd). One gauge is glued to the aluminum standard and the other two glued 
to the sample with epoxy adhesive (Selleys Araldite Super Strength).   

The strain gauge on  the aluminum standard  is orientated  in  the axial direction, and  the  two 
strain gauges  attached  to  the  test  sample  are orientated  along  the  axis  and  circumference of  the 
sample. Through a set of electric bridges (BCM‐1 Wheatstone Bridge, Omega Engineering Ltd), the 
strain  gauges  are  connected with  an  analog‐to‐digital  converter  (model  100,  InstruNet, Omega 
Engineering).  The  electrical  connection  of  the  gauges  on  the  specimen  is  implemented  with  a 
feedthrough assembly (Spectite WFS).   

The multilayer piezoelectric  actuator  transforms  the periodic voltage,  applied by  a  function 
generator via a power amplifier, into mechanical stress, which causes a dynamic modulation of the 
conductivity  of  the  strain  gauges  attached  to  the  aluminum  standard  and  tested  specimen.  The 
electric bridges transform the modulated conductivity into electric signals, which, after digitizing by 
the analogue‐to‐digital converter, are  received by an acquisition computer, where  the  signals are 
averaged and processed.   
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Figure  1.  The  mechanical  assembly  and  electrical  schematics  of  the  low‐frequency  laboratory 
apparatus. 

Inasmuch  as  the  voltage  signals  obtained  from  the  axial  and  circumferential  strain  gauges 
coupled to the sample and standard are proportional to the axial and radial strains, Young’s modulus 𝐸and Poisson’s ratio  𝜈  of the sample can be found as   𝐸 ൌ 𝐸௦௧ ఌೌೣೞ೟ఌೌೣ,                          (2) 𝜈 ൌ ఌೝೌ೏ఌೌೣ .                          (3) 

After finding  𝐸  and  𝜈, the bulk 𝐾  and shear µ   moduli can be found as follows: 𝐾 ൌ ாଷሺଵିଶఔሻ,                          (4) 

  𝜇 ൌ ாଶሺଵାఔሻ  .                         (5) 

The extensional attenuation  𝑄ாି ଵ  in the sample is derived from as the phase shift  Δ𝜑  between 
the harmonic stress applied to the sample and resulting strain detected in the sample [32]: 𝑄ாି ଵ ൌ Δ𝜑.                          (6) 

The low‐frequency measurements presented below were conducted at an oscillating frequency 
of 2 Hz. During the measurements, the stress‐strain readings for every 100 oscillations were averaged 
to improve the signal‐to‐noise ratio of the signals obtained from strain gauges. The uncertainty of the 
extensional attenuation measurements is ±0.003. 

3. Sample Description and Experimental Procedure 

The sandstone sample measured in the present study was retrieved from the Triassic Mungaroo 
Formation, Western  Australia.  Its  mineral  composition  obtained  using  X‐ray  fluorescence  and 
diffraction analysis is presented in Table 1. Cementation of the framework grains in the Mungaroo 
sandstone is mainly associated with the presence of quartz overgrowths and kaolinite [37]. 

The homogeneity of the sample was verified using an X‐ray microscope VersaXRM‐500, Xradia 
Ltd (Figure 2). Based on the obtained X‐ray images, we assume that the sandstone sample tested in 
this study is homogeneous on a macroscopic (gauge‐length size) scale. 

 
Figure 2. 2D mutually perpendicular X ‐ ray cross‐sections of the Mungaroo sandstone sample. 

The physical parameters of the sample are as follows. The length of the test sample is equal to 
75.2 mm and the diameter is 37.8 mm. The mass and density of the dry/wet sample are 190.48/198.9 
g and 2268/2368 kg/m3, respectively. The difference in density of the sample in dry and wet states 
corresponds to a pore space of 11.5 cm3 or porosity of 13.7%. Тhe permeability of the sandstone is 
equal to 1.9 mD. 

The experimental procedure was organized in the following way. For avoiding the influence of 
moisture  trapped  between  contacts,  which  can  be  significant  in  sandstones  [38],  prior  to  the 
measurements, the sample was vacuum‐dried in an oven at a temperature of ~60° C. Then the sample 
was placed in the elastomer sleeve mounted inside the triaxial cell, where it was saturated with n‐
decane at a confining pressure of 10 MPa.    To ensure the full saturation at least five pore volumes of 
liquid were pumped through the sample. The flow rate of liquid during saturation did not exceed 
0.02 cm3/s (1.2 cm3/min). 
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After saturation, we studied the pressure dependences of the elastic and anelastic parameters, 
such as Young’s, bulk and  shear moduli, Poisson  ratio, and extensional attenuation on confining 
pressure at seismic frequency of 2 Hz in the drained regime, when the fluid line connected to the top 
end of  the sample was open. The measurements of  the  static  strains  in  the  sample and  standard 
during  this experiment  (see Figure 3) demonstrate  that  the  changes of  radial and axial  strains  in 
response  to  an  increase  in  confining  pressure  are  virtually  equivalent, which  also  confirms  the 
homogeneity of the sample. The uncertainty of the strain measurements is mainly determined by the 
uncertainty of the strain‐gauge factor and equal ±3%. Then, the same measurements as in the drained 
regime were repeated at a pore pressure equal successively to 1 and 5 MPa, when the 100 ml tank of 
the syringe pump (model 100DX, Teledyne ISCO) filled with n‐decane was directly connected to the 
pore space of the sample to minimise pore‐pressure fluctuations and their effect on the grain contacts 
in the sample during the experiment. Finally, we conducted the last set of measurements, when the 
confining pressure was fixed at the level of 20 MPa, and pore pressure was gradually increasing from 
1 MPa  to  17 MPa. The  accuracy  of  the  obtained  experimental data  is directly dependent on  the 
uncertainty of the dynamic strain measurements, which is mainly determined by the uncertainty of 
the strain‐gauge factor and equal ±3%.   

Table 1. The petrographic data for the Mungaroo sandstone sample. 

Mineral  Content (volume), %  Bulk modulus, GPa 
Mineral  Content (volume), %  Bulk modulus, GPa 
Quartz  72  36.6 [39] 

K‐feldspar  2  57 [40] 
Micrite  4  71 [41] 
Illite  5  21 [42] 

Kaolinite  12  11 [43] 
Calcite  4  76.8 [39] 

 
Figure  3.  The  dependences  of  static  strains  in  the  sample  and  standard  on  confining  pressure 
measured in the drained regime. 

4. Results and Discussion 

4.1. Measurements with Variable Confining Pressure 

In the experiments with variable confining pressure, the effective‐stress coefficient for the elastic 
moduli  of  the Mungaroo  sandstone  sample was  estimated  by  comparison  of  the  elastic moduli 
obtained in the experiments with constant non‐zero pore pressures with the elastic moduli obtained 
in the drained regime, which are considered as reference parameters in our study. The experiments 
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with constant non‐zero pore pressures include the measurements with two pore pressures of 1 and 5 
MPa  conducted  under  the  differential  pressure  corresponding  to  the  confining  pressure  of  the 
drained regime, which was varying from 3 to 19 MPa. 

The  direct  results  of  our measurements  can  be  presented  as  dependences  of  the  Young’s 
modulus, Poisson’s ratio, extensional attenuation, and dynamic strains in the standard and rock on 
differential pressure and shown in Figures 4–6. The measurement uncertainties given in the graphs 
were estimated according to the uncertainty analysis procedure developed for the forced‐oscillation 
measurements by Adam et al. [44] and Adam et al. [45]. 

The bulk and shear moduli calculated on the basis of Equations (4) and (5) are shown in Figure 
7.  The  slight  discrepancy  between  drained  bulk modulus  and  bulk  moduli  measured  at  pore 
pressures of 1 and 5 MPa is due to the finite size of the syringe‐pump tank, which can be verified 
using the modified Gassmann model considering a dead volume, i.e., a pore‐fluid volume external 
to the test sample [32]. 

The mineral bulk modulus of the sample can be computed as the Voigt‐Reuss‐Hill average [39]: 
 𝐾௦ ൌ ௄ೡା௄ೝଶ ,                          (7) 

where   𝐾௩ ൌ ∑ 𝑓௜𝐾௜ே௜ୀଵ ,      𝐾௥ ൌ 1/∑ ௙೔௄೔ே௜ୀଵ .                  (8) 

Here,  𝑓௜  is the volume fraction of the i‐th component of the solid phase of the rock and  𝐾௜  is 
the bulk modulus corresponding to this component. 

Using the mineral bulk moduli of the Mungaroo sandstone presented in Table 1, we find 
 𝐾௦ ൌ 33.1 GPa.                        (9) 

 

 
Figure 4. The dependences of Young’s modulus (a) and Poisson’s ratio (b) on differential pressure, 
measured on the Mungaroo sandstone sample at a frequency of 2 Hz. 
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Figure 5. The dependence of the extensional attenuation on differential pressure, measured on the 
Mungaroo sandstone sample at a frequency of 2 Hz. 

 
Figure  6.  The  dependences  of  the  dynamic  strains  measured  on  the  sample  and  standard  on 
differential pressure, obtained for the Mungaroo sandstone sample at a frequency of 2 Hz. 
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Figure 7. The dependences of the bulk modulus (a) and shear modulus (b) on differential pressure, 
computed using Equations (4) and (5). 

The bulk modulus of the n‐decane‐saturated sample can be found using the following modified 
Gassmann equation [46]: 

 𝐾௦௔௧ ൌ 𝐾ௗ ൅ ሺଵି಼೏಼ೞሻమഀ಼೑ାభషഝ಼ೞ ି಼೏಼ೞమ,                            (10) 

where 𝐾ௗ  is the drained bulk modulus,  𝐾௙=1.15 GPa is bulk modulus of n‐decane [47],    𝜙  is the 
sample porosity,  𝛼 ൌ 𝜙 ൅ 𝑉஽ 𝑉௦⁄ ,  𝑉஽  and  𝑉௦  are the dead volume and sample volume, respectively.   

A comparison of the Gassmann moduli computed for the drained moduli obtained at differential 
pressures of 3 to 17 MPa with bulk moduli measured at non‐zero constant pore pressures is presented 
in Figure 8.   

 
Figure 8. The experimental dependences of the bulk moduli on differential pressure, obtained using 
Equation (4), and the pressure dependence of the bulk modulus, computed using modified Gassmann 
Equation (10). 

As can be seen from Figure 8, there is good agreement between the experimental moduli with 
non‐zero pore pressures and the Gassmann modulus. 

4.2. Measurements with variable pore pressure 

The  second  series  of  the  experiments  conducted  in  this  study  includes  the measurements 
performed at 2 Hz under a confining pressure of 20 MPa and a pore pressure raising gradually from 
1  to 17 MPa. Note  that  the order of measurements corresponds  to  the reverse order of  increasing 
values along the differential pressure axis. The direct results of these measurements are shown  in 
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Figures 9–11 together with the data obtained in the drained experiment. The bulk and shear moduli 
calculated in accordance with Equations (3) and (4) are given in Figure 12.   

 

 
Figure 9. The dependences of the Young’s modulus (a) and Poisson’s ratio (b) on differential pressure, 
measured on  the n‐decane saturated Mungaroo sandstone sample at a  frequency of 2 Hz under a 
confining pressure of 20 MPa and a pore pressure varied from 1 to 17 MPa. 

 
Figure 10. The dependence of the extensional attenuation on differential pressure, measured on the 
n‐decane  saturated Mungaroo  sandstone  sample  at  a  frequency  of  2 Hz  and presented with  the 
attenuation obtained in the drained mode. 
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Figure 11. The differential pressure dependences of the dynamic strains measured on the n‐decane 
saturated Mungaroo sandstone sample and standard at a frequency of 2 Hz. 

 

 
Figure 12. The dependences of the bulk modulus (a) and shear modulus (b) on differential pressure, 
corresponding to the data presented in Figure 9. 

4.3. Discussion 

The bulk/shear moduli and Poisson’s ratio obtained in the first set of the experiments at pore 
pressures of 1 and 5 MPa and in the second set of the experiments with variable pore pressure are 
compared in Figures 13 and 14.   

As follows from the pressure dependences presented in Figure 13, the bulk and shear moduli do 
not  depend  on  the  measurement  technique  and  are  uniquely  determined  as  functions  of  the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 January 2024                   doi:10.20944/preprints202401.0739.v1

https://doi.org/10.20944/preprints202401.0739.v1


  11 

 

differential pressure, which coincides with the effective stress in the case when the effective‐stress 
coefficient is equal to unity.   

The good agreement of the experimental elastic moduli with the Gassmann moduli, obtained in 
the range of differential pressures used in this study, with the exception of minor deviations at lower 
pressure values, indicates that the material of the studied rock can be satisfactorily substituted in the 
Gassmann  model  by  an  equivalent  homogeneous  material  for  each  differential  pressure.  The 
dependences of the elastic moduli on pressure shown in Figure 13 convincingly demonstrate that the 
real  rock material  cannot be  considered as  linearly elastic. However, at each point of differential 
pressure the real rock can be replaced by an equivalent homogeneous rock of the same porosity that 
satisfies the Gassmann model, but whose elastic properties differ from the properties of equivalent 
rocks at other pressures. 

Let us now analyse the discrepancy between the bulk moduli that occurs at lower differential 
pressures of 3 to 7 MPa (Figure 13a) and reaches a maximum of 6 percent at a differential pressure of 
3 MPa for bulk moduli measured with variable pore pressure and with a pore pressure equal to 1 
MPa. This discrepancy can be explained as  follows. First, note  that  the experiments with variable 
pore pressure start from the higher differential pressures and finish at lower differential pressures, 
whereas the experiments with the constant pore pressures are carried out in the reversed order. Due 
to the duration of the low‐frequency measurements, which last, as a rule, for many hours, the sample 
was experiencing creep under stress for a much longer period of time before the measurements at 
lower  pressures  began  than  in  the  first  set  of  experiments.  The  long‐time  creep  minimizes 
dislocations, closes microcracks and makes stress  in  the pores more uniform, which  increases  the 
measured moduli. Generally, the difference in bulk moduli obtained in two sets of the experiments 
similar to the difference in drained bulk moduli measured under loading and unloading conditions 
by Pimienta et al. [48], where the variation between loading/unloading moduli reached more than 
30% in Fontainebleau sandstone at differential pressures ≤ 8 MPa.   

As can be seen from Figure 14, the Poisson’s ratios obtained at constant pore pressures of 1 and 
5 MPa display a  sharp  rise with differential pressure, whilst  the Poisson’s  ratio measured at  the 
variable pore pressure remains virtually pressure independent. The latter confirms that the state of 
the solid framework of the rock at the lower pressures is not as different from that at higher pressures 
during  the  experiments with  variable  pore  pressure  as  in  the  experiments with  constant  pore 
pressures. Note also that the bulk moduli and Poissonʹs ratios obtained in both series of experiments 
converge significantly with increasing pressure, as shown in Figure 13a and 14. 

According to Equations (3) and (4), the effect of changing the Poisson’s ratio has a much smaller 
effect on the change in shear modulus than on the change in bulk modulus, which is confirmed by 
negligible discrepancy of shear moduli at lower differential pressures, as can be observed in Figure 
13b. 

Let us point out  that  the dependences of  the extensional attenuation on differential pressure 
obtained in both sets’ experiments with non‐zero pore pressures and presented in Figure 15 are also 
in a good match, which demonstrates that these dependences are functions of the effective stress with 
the  effective‐stress  coefficient  equal  to  unity  (see  Equation  (1)).  The  difference  between  the 
dependences  corresponding  to  the  drained  and  undrained  regimes  can  be  attributed  to  friction 
caused by n‐decane moving freely in and out of the sample to ensure constant zero pore pressure 
under the applied forced oscillations.   
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Figure 13. The dependences on differential pressure obtained  for  the bulk modulus  (a) and shear 
modulus (b) in the measurements with variable and constant pore pressures. 

 
Figure 14. The dependences on differential pressure obtained for Poisson’s ratio in the measurements 
with variable and constant pore pressures. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 January 2024                   doi:10.20944/preprints202401.0739.v1

https://doi.org/10.20944/preprints202401.0739.v1


  13 

 

 
Figure 15. The dependences on differential pressure obtained for the extensional attenuation in the 
experiments with variable and constant pore pressures. 

5. Conclusions 

We present the results of the laboratory study carried out to investigate the dependence of the 
elastic moduli of fluid saturated sandstone on the relationship between pore and confining pressures. 
The  study was  conducted  on  a  sandstone  sample with high quartz  and  substantial  clay  content 
saturated with n‐decane, where a tank approximately equal to 10 times the size of the pore volume, 
filled with n‐decane, was directly connected  to  the pore  space of  the  sample  to  smooth out pore 
pressure  variations.  The  experiments  were  carried  out  in  the  quasi‐static  regime  at  a  seismic 
frequency of 2 Hz, using a forced‐oscillation laboratory apparatus based on a longitudinal type of 
forced oscillations. The strains in the sample were controlled by semiconductor strain gauges and 
maintained at a  level not exceeding 10‐6. The dynamic  elastic moduli have been measured  in  the 
drained regime with zero pore pressure, as well as in the experiments with non‐zero constant pore 
pressures of 1 and 5 MPa at differential pressure varied from 3 to 19 MPa, and with pore pressure 
changed  from  1  to  17 MP  at  a  constant  confining  pressure  of  20 MPa.  It was  shown  that  the 
measurement results of elastic moduli are in good agreement with the Gassmann moduli calculated 
for  the range of differential pressure used  in  this study, which corresponds  to  the effective‐stress 
coefficient  equal  to  unity.  It  was  also  demonstrated  that  the  results  of  the  measurements  of 
extensional attenuation obtained at non‐zero pore pressures are in good agreement with each other 
and are uniquely determined as a function of differential pressure.   
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