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Abstract: Persistently, urban regions grapple with the ongoing challenge of vehicular traffic, a

predicament fueled by the incessant expansion of the population and the rise in the number of

vehicles on the roads. The recurring challenge of vehicular congestion casts a negative influence

on urban mobility, thereby diminishing the overall quality of life for residents. It is hypothesized

that a dynamic clustering method of vehicle trajectory data can provide an accurate and up-to-date

representation of real-time traffic behavior. To evaluate this hypothesis, data were collected from

three different cities: San Francisco, Rome and Guayaquil. A dynamic clustering algorithm was

applied to identify traffic congestion patterns and an indicator was applied to identify and evaluate

the congestion conditions of the areas. The findings indicate a heightened level of precision and recall

in congestion classification when contrasted with an approach relying on static cells.

Keywords: congestion; dynamic clustering; classification; GPS trajectories; road networks

1. Introduction

Examining and analyzing urban vehicular traffic is an extremely important issue in contemporary

society. The persistent growth of urban populations and the subsequent rise in vehicular volume

create notable impediments to effective traffic management within urban landscapes [1]. This area

of management must address crucial aspects, such as environmental impact and road safety, and is

fundamental to improving the quality of life of citizens.

Efficient traffic management becomes imperative to improve road flow, reduce travel times and

minimize pollutant emissions. It is important to note that traditional approaches may not be agile

enough to adapt to variations in traffic conditions, which can be significant throughout the day.

In this environment, the imperative to comprehend the real-time interactions of vehicles and

pedestrians in urban landscapes necessitates the comprehensive collection of data from diverse

outlets, such as traffic sensors and navigation systems. The utilization of clustering techniques proves

indispensable in effectively portraying these data streams, enabling the discernment of traffic patterns,

the structuring of data into clusters founded on similarities, and the anticipation of forthcoming trends

in urban traffic dynamics. Vital for crafting traffic plans and managing intricacies, these techniques are

pivotal in tailoring approaches to meet the distinct demands of individual areas.

Thus, the succeeding research queries come into play: How to identify dynamically patterned

traffic areas? How does the use of a clustering algorithm influence the identification of realistic
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congestion? What is the impact of using a congestion indicator in the process of classifying congested

areas? The resolution to these inquiries is reserved for the conclusion of this investigative inquiry.

The focal point in this scenario is the development of a method for identifying and classifying

congested areas based on a dynamic clustering algorithm and a congestion indicator. This method will

process vehicle trajectory data and road network maps in order to identify and classify congestion

zones accurately and efficiently.

This article unfolds in the following manner: Section 2 delves into pertinent literature, dissecting

related works and proposing diverse solutions; Section 3 articulates the details of the proposed method;

Section 4 showcases the acquired results; Section 5 engages in a discourse on the outcomes; and finally,

Section 6 elucidates the conclusions drawn and outlines future avenues of research.

2. Related Work

The exploration of vehicular trajectory data streams in research has been thorough, with numerous

studies devising clustering methods tailored to diverse applications [2–4]. Through the use of data

streams, alternatives have been proposed to improve traffic management by analyzing the spatial

structure and extracting traffic-related features [5]. The improvement in efficient traffic management is

evidenced by the enriched analysis of data streams when users actively participate, providing feedback

that contributes to improve the systems [6].

While there are challenges such as scalability and the volume of data present in the processing

that can impact the identification objectives, several researches have proposed alternatives to overcome

them, such as techniques that deal with data validation to process more compact data sets without

impacting the quality or performance of the processing [7–9].

Many of the methods have proven useful in identifying clusters with similarities and analyzing

their collective behavior [10], enabling the discernment of patterns and structures within vehicle

trajectory data, encompassing the identification of areas prone to congestion.

Previous research has proposed strategies that combine trajectory segmentation [11] with the

clustering process in order to obtain higher quality clusters [12,13]. In the field of vehicular trajectory

analysis, researchers have frequently adjusted classical clustering algorithms, such as k-means [2] and

DBSCAN [14], incorporating similarity metrics tailored to address the intricacies inherent in vehicular

trajectories [15,16].

There are identification proposals for static clustering that use, as a basis, a fixed grid-based

technique to process data streams from various features [17,18]. Although this processing method leads

to the identification of different congestion patterns in a simple way [19], they have the disadvantage

that they keep in the background the temporal characteristic present in the data of the trajectories, this

disadvantage causes that the information of the clusters can present persistent patterns that should not

be present if it is analyzed temporally.

Conversely, emphasizing the need to account for the dynamics of vehicular flow in traffic

management, one viable option is to handle trajectory data in brief, periodic flows, allowing for

more frequent updates to the clusters [20], this alternative has the disadvantage that these results entail

a slight delay to keep the clusters updated for each period, being unfavorable for cases where it is

required to show results in real time.

In addition, researchers have delved into the realm of dynamic clustering algorithms to manage

the continuous influx of trajectory data and dynamically adjust to shifts in traffic patterns over

time. Through the implementation of these dynamic approaches, timely identification of emerging

congestion is possible [21,22].

In the most current studies, the combination of machine learning and data mining methodologies

has been employed to unearth concealed patterns and anomalies within the dynamics of traffic

circulation [23–25], as well as to predict vehicle flow in real time. Integrating clustering approaches

with diverse analytical methods affords a holistic and systematic perspective on vehicular movement

across different scenarios [26–28].
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In parallel, traffic congestion assessment has established itself as a critical component in the

effective management of road networks. Numerous investigations have devised methodologies

and approaches for accurately pinpointing congested zones, employing a diverse array of criteria,

spanning intricate elements like delay constraints to more straightforward factors such as traffic speeds

[23,27,29–31]. In addition, machine learning has proven effective in making use of both historical and

real-time data to detect recurring congestion and anticipate congestion conditions in real time [32,33].

Due to the continuous increase of information that in certain cases can make it challenging to

visualize results, effective and innovative ways to represent traffic congestion trends are being sought

[34].

In examining data flows from vehicular trajectories, a dual approach is evident, with a primary

focus on both assessing traffic congestion and employing clustering algorithms [35–37]. The

convergence of these perspectives represents a promising area of research, offering an effective

approach to vehicular flow analysis.

A multitude of papers have showcased diverse solutions, including a methodology for examining

vehicular flow in defined zones, identifying speed ranges, and upkeeping an interactive map that stays

current, aiding in the manual inspection of congestion-prone regions [18]. Although this representation

provides a summarized view of real-time traffic, it is essential to incorporate additional information

to enrich the analysis of vehicular flow [38], such as information from the road infrastructure or

information from different sensors.

The present study introduces an approach for examining vehicular movement, involving the

clustering of vehicle trajectory data alongside GPS coordinates. Clusters are used to identify areas

with diverse vehicle patterns. The dynamic refreshment of clusters ensures the availability of current

data, promoting a realistic approach to the management of vehicular congestion. Furthermore, a traffic

congestion metric is applied to assess traffic saturation, presenting a dynamic overview of the traffic

status across different geographical areas.

The proposed method offers promising solutions to address the aforementioned challenges,

making use of methods such as distance-based clustering and evaluation of a congestion indicator.

Distinguished by its capacity to adjust to traffic fluctuations, it guarantees the periodic update of

clusters with minimal activity, preventing the buildup of outdated data.

3. Materials and Methods

Figure 1 represents the relationship between the components of the method presented in this

study, which is composed of two main components that operate independently: : one dedicated to

identifying areas where vehicular traffic has similar characteristics and the other focused on analyzing

whether these areas have congestion or not. In addition to the previous components, there are two

complementary components for the operation of the method, the first one is in charge of generating

preloaded areas to be used for the congestion evaluation and the second one is in charge of the

visualization of the results.
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Figure 1. Components of the proposed method.

3.1. Component 1: Preloaded Area Generator

This component is in charge of generating preloaded areas with dimensions similar to the size

of the clusters, in order to reduce the processing cost necessary to analyze different road geometries,

in addition, it contains referential information from historical data necessary for the congestion

indicator that will be used later. The execution of this component is done a priori to the clustering

and classification components, this component only needs to be executed once and the information it

generates can be applied to different situations.

First the definition of uniformly distributed points that serve as reference to locate each area is

made, then a projection around the point is made, this will be the extension of the area for the road

analysis.

A projection is made on the road networks of this area and the identification of all roads is carried

out. Subsequently, the geometry of the roads intersecting the defined area is cut out. This process

involves the identification of all roads crossing the study area, which often requires the use of high

precision geographic information systems (GIS). The trimming ensures that only the relevant roads are

considered in the analysis of the specified area.

Once the geometry of the networks is delineated, discrete data streams of historical trajectories

are analyzed by reviewing vehicle movement data with GPS devices. The objective is to understand

vehicle behavior in each area, identifying relevant information related to roadway capacities.

During the execution of this component, the maximum number of vehicles and the maximum

allowed speeds per road are determined, these are essential values to evaluate the capacity of the road

infrastructure in each area. The generated data are efficiently stored in memory and can be saved in

specialized database management systems to ensure integrity and availability for future experiments.

This data generated from preloaded areas contributes to improve the performance of the method

as it is a resource that is generated prior to clustering and does not require updating during the

processing of new data streams.

Algorithm 1 summarizes the process described above.
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Algorithm 1 Preloaded area generator component.

Input: RList: list of road networks; HList: list of historical GPS points; maxX: maximum number of
X-axis centers; maxY: maximum number of Y-axis centers; maxinst: maximum number of historical
instants to be captured

Output: AREASList: list of precharged areas

1: AREASList ← ∅ {list of preloaded areas}

2: for CELDxy to x := maxX, y := maxY do

3: CENTER = (longitude, latitude)← establish the center of the area

4: LList ← calculating minimum and maximum limits based on CENTER

5: CList ← cut out RList intersecting LList

6: PList ← filter HList within LList

7: DList ← ∅ {list of historical densities}

8: for Ii to i := maxinst do

9: DATAList ← filter PList according to the period of Ii

10: for all CList do

11: CList.v← assign vehicles near roads (DATAList)

12: CList.d← calculate density (CList.v, CList.longitude)

13: DList ← add CList.d

14: end for

15: end for

16: for all CList do

17: Calculate maximum density from DList

18: Extract speed limit

19: end for

20: CELDxy = (id(x, y), CENTER, LList, CList)
21: AREASList ← add CELDxy

22: end for

3.2. Component 2: Dynamic Point Clustering Algorithm

To process in real time a steady stream of GPS trajectories in this study, an agile and efficient data

processing process was implemented.

For this work, a steady stream was simulated and processed by a spatial clustering method to

group trajectories with similar motion characteristics. This method allows to efficiently process the

steady flow of GPS trajectories and use the resulting information for analysis.

3.2.1. Cluster Formation

A cluster consists of a set of GPS points represented by an average centroid or location. The

coverage area of the cluster will be determined by an area called a hyperbox. The centroid is

characterized as the geographical reference point that serves as the central representation within

the cluster’s set of points. Utilized as a representative focal point for the cluster, this central marker

eases the comprehension and analysis of the spatial arrangement. The hyperbox is characterized as

a rectangular geometric structure in a two-dimensional space. Its position in space is determined

by the centroid of the cluster to which it is associated; the center of the hyperbox coincides with the

centroid of the cluster. The incorporation of this rectangular model offers a method to demarcate a

region centered on the centroid, streamlining the spatial depiction of the cluster in the analysis while

specifying its sphere of influence within the examination.

In Figure 2, a visual illustration showcases the composition of a cluster, providing a graphical

overview of its elements.
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Figure 2. Elements that compose a cluster.

Each GPS point extracted from the flow is processed individually and contains information on

geographic coordinates (latitude and longitude), vehicle identifier and time of entry. Executing the

clustering task involves applying a similarity criterion centered on Euclidean distance, harnessing the

geographical coordinates of latitude and longitude from the processed data.

Analysis is conducted on every GPS point, computing the Euclidean distance from the point

to the centroids of all currently established clusters. Identification is made of the cluster exhibiting

the minimal spatial separation between the examined point and its centroid. If the coordinate of the

analyzed GPS point coincides within the hyperbox area of the selected cluster, the point is affiliated

with the cluster and will be considered an integral part of the cluster. With the incorporation of new

GPS points into a given cluster, the centroid undergoes an update to reflect the evolving spatial center

of the cluster. During this process, the clusters that receive new points will be updated and in scenarios

devoid of proximate clusters, the system generates new clusters.

If the point is not situated within the hyperbox area, a fresh cluster comes into existence Once a

point forms an association with a specific cluster, any reassignment to another cluster is precluded.

Within Figure 3, the central details comprising a cluster’s content are depicted.

Figure 3. Cluster-related information.
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3.2.2. Percentage of data forgotten

To ensure that the system is up to date and does not retain data that is too old, a forgetting

mechanism is introduced, utilizing a percentage approach tied to the entry time of the most recent

point.

This forgetting mechanism indicates the percentage of data relevance for each unit of time in

seconds elapsed, using Equation 1 to determine this percentage.

F = e−1×λ×δt (1)

where, e corresponds to a function of exponential nature, λ (lambda) is the parameter that

regulates the pace at which the decay unfolds. The decay unfolds more rapidly as λ attains higher

values. Lastly, δt represents the time gap in seconds between the timestamp of the analyzed point and

that of the most recent point assimilated into the cluster.

Each cluster has a numerical indicator that reflects the number of points to remember, this

indicator first decreases by a percentage calculated by the forgetting mechanism from each second of

time that has elapsed since the last point entered the cluster and then increases by 1 in case a new GPS

point is added.

Establishing a 5% tolerance threshold linked to the most effective lambda parameter setting

facilitate the choice of this parameter in terms of elapsed time, this threshold has been established

from simulations that determine approximately how much percentage of data should be considered

according to the time you want to keep data.

This forgetting mechanism is used to filter data or results, focusing attention on those that exceed

the tolerance threshold and discarding those that do not. By applying a 5% tolerance cap, we seek to

ensure that only values that have a significant degree of importance are remembered in the cluster

analysis.

Within the clustering procedure, this mechanism defines the count of GPS points that will endure

within the cluster. This will ensure that the system adapts to changes in traffic and avoids accumulation

of obsolete data. Those clusters whose GPS points have lost importance due to not receiving a sufficient

amount of new GPS points are removed in order to maintain an up-to-date analysis of the traffic

situation. At the same time, those active clusters that continue to receive new GPS points will be kept

up to date for proper traffic analysis.

A visual representation of the percentage of forgetting and relevance that is considered during the

forgetting mechanism is shown in Figure 4, it can be seen that with a time difference of zero seconds the

relevance is 100%, and as the elapsed time difference in seconds increases, the percentage of relevance

decreases.

The area with the relevant percentage is marked with a green background, and when the

percentage falls below the tolerance threshold set at 5%, it is considered not relevant, this area is

marked with a red background.

The percentage forgetting mechanism is applied each time a point is added to a cluster.

Additionally the forgetting mechanism is applied periodically to clusters that have not received

recent points, in order to ensure that these particular clusters are kept up to date.

Algorithm 2 summarizes the process of component 2.
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Figure 4. Percentage of forgetting and relevance of data per unit of elapsed time for a lambda value set

at 0.05.

Algorithm 2 Dynamic point clustering component.

Input: S: data stream; ti: initial data capture time; te: final data capture time; lambd: lambda value
Output: IList: list of snapshots, CLUSTERING: clustering status

1: GList ← ∅ {cluster list}

2: T ← ∅ {general environment time}

3: while S 6= NULL do

4: CLUSTERING ← TRUE

5: P = (x, y, time, speed, id)← extract (S)

6: T ← P.time

7: G ← nearest cluster (GList, Px,y) using Euclidean distance
8: if G > 0 then

9: O← calculate forgetting (lambd, G.time, P.time)

10: G.n← G.n ∗O

11: G.LSx,y ← G.LSx,y ∗O

12: G.n← G.n + 1

13: G.LSx,y ← G.LSx,y + Px,y

14: G.centroidx,y ← update centroid (G.LSx,y, G.n)

15: G.points← filter (G.points, G.n)

16: G.time← P.time

17: else

18: G = (time, centroidx,y, n, LSx,y, pointsList)← ∅

19: G.n← 1

20: G.LSx,y ← Px,y

21: G.centroidx,y ← update centroid (G.LSx,y, G.n)

22: G.time← P.time

23: GList ← añadir (G)

24: end if

25: Periodic updating of clusters (GList, T)

26: Perform periodic elimination of clusters (GList, T)

27: Capture and Save snapshot (IList, GList)

28: end while

29: CLUSTERING ← FALSE

3.3. Component 3: Cluster Classifier

Through the execution of this component, it becomes possible to individually examine and

categorize each cluster based on its congestion level, assisting in the recognition of problematic regions

and those displaying improved traffic circulation. While the clustering of the data is performed in real

time, a parallel process is used to capture the results of the clustering periodically, using an "Observer".
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3.3.1. Observer

The observer assumes a vital function in the recurrent oversight and categorization of the clusters

based on their conditions, it is responsible for taking periodic snapshots of the state of the clusters at

regular intervals.

The incorporation of the Observer ensures that the information about the state of the clusters that

was captured by the snapshots is the most recent and that the classification is based on recent data.

This plays a pivotal role in ensuring result accuracy and a thorough comprehension of how traffic

congestion evolves across the study areas as time progresses.

At each capture, the Observer records relevant variables describing the status of the clusters. This

includes information such as geographic location, number of vehicles present in the area, average

speed, and other data related to traffic congestion.

Each snapshot capture is stored in memory, thus minimizing the waiting times required to store

each snapshot without affecting the clustering process and avoiding to a large extent the loss of GPS

points in the flow. This storage is essential for analyzing trends over time and detecting patterns in

traffic congestion.

After each capture, the Observer runs the process of classifying the clusters into congested and

non-congested categories. The classification of the clusters is kept up to date with each new capture,

thus providing a dynamic view of traffic congestion. This periodic update makes it possible to detect

changes over time and analyze how congestion varies according to different conditions and events.

3.3.2. Classification

In this component, the classification of the clusters is carried out in two main categories: those

that were congested and those that were not. Unlike the clustering component, the classification is

not performed in real time, it is related to the frequency in which the snapshots are generated, so

this parameter has a direct impact and can cause additional waiting times if it is set to low frequency

values, this factor must be taken into account if you want to show results very close to real time.

The process of analyzing each snapshot involves the iterative execution of each cluster of processes

described below:

First, we proceed to the identification of the closest preloaded area, with a precise focus on

determining which preloaded area has the greatest similarity with respect to the area that is covered

by the cluster being analyzed. Achieving this involves computing the Euclidean distance between

the preloaded areas’ centers and the centroids associated with the scrutinized clusters. This metric

provides an objective measure of the proximity of each cluster to the preloaded areas, ensuring that

the choice of the closest preloaded area determines the reference conditions to be used for the cluster

congestion analysis.

Once the nearest preloaded area is identified, detailed information about the road networks

present in that area is retrieved. This includes data on the topology of the roads, their maximum

capacity, maximum allowable speed and other relevant attributes that facilitate an analysis of the road

infrastructure in the area.

Subsequently, the points that make up each cluster are analyzed and these points are assigned to

the road segments closest to each point. This process makes it possible to clearly establish to which

road network each point in the cluster is associated, which in turn simplifies subsequent analyses.

With the assignment of points completed, average densities and speeds are calculated for each road

segment. This provides a quantitative description of roadway operation and allows the identification

of segments with a higher vehicular flow and, therefore, a higher probability of congestion.

Density and speed indices are then calculated from the average density and speed data for each

road segment. These indices serve as key indicators to assess the state of congestion in the areas of

interest.

The classification of the clusters is done based on the values obtained in the TCC, which allows

for a detailed characterization of traffic congestion in each area.
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3.3.3. Calculation of the Traffic Congestion Coeficient (TCC)

The Traffic Congestion Coefficient (TCC) is an indicator used to measure the level of traffic

congestion or saturation in a given area or roadway. The TCC provides a quantitative measure of traffic

saturation that reflects how much traffic flow is affected at a given location as a function of vehicle

density and speeds. A higher TCC value correlates with increased congestion, whereas a lower TCC

value is indicative of reduced congestion and a more seamless traffic flow. To compute this indicator on

a road segment, it is essential to account for the potential overlap of a cluster’s hyperbox with multiple

segments. Initially, the TCC indicator is individually calculated for each segment, and a cohesive

value, determined as a percentage based on the length of segments with at least one registered vehicle,

results in a distinctive TCC value for each cluster. The TCC is calculated by the relationship between

two indexes as shown in Equation 2.

TCC = IND/INV (2)

where, IND serves as an indicator of area density, while INV functions as an indicator of the area

velocity of the analyzed region.

3.3.4. Density Index

This metric serves as a numerical representation of the vehicular count observed on a designated

road segment or within a specified area over a defined time interval. This numerical indicator is

computed by dividing the observed vehicle count within the analyzed region by the highest number

of vehicles recorded at the same location. The formula for the Density Index is shown in Equation 3.

IND = d/Dmax (3)

where, d indicates number of vehicles per length of traveled route and Dmax indicates the

maximum vehicle density recorded historically.

Established through historical records or thorough traffic assessments specific to the region, this

upper threshold for density plays a pivotal role in understanding and analyzing traffic patterns. For

this work the value of the maximum density of each road segment is obtained in the component that

generates the areas preloaded with this information from historical data. The traffic density index of

the different roads in the cluster is then calculated.

The maximum capacity may vary according to the size of the road and other relevant factors. In

instances where the Density Index approximates 1 or reaches 1, it denotes that the quantity of vehicles

on the studied thoroughfare is approaching or surpassing the maximum capacity observed, suggesting

a significant likelihood of traffic congestion. That is, the greater the number of vehicles relative to

maximum capacity, the higher the density index and, therefore, the greater the congestion.

3.3.5. Speed Index

This metric denotes the mean velocity of vehicles traversing the surveyed roadways. Quantifying

the mean velocity of all trajectories in the examined section or region, this index provides a measure

of vehicle movement. It is determined by taking the average vehicle velocities and dividing it by

the maximum speed allowed according to the regulations in the given city or area. The maximum

allowable speed is usually defined by traffic laws and regulations to ensure road safety and proper

traffic flow. The formula for the Speed Index is presented in Equation 4.

INV = v/Vmax (4)

where, v indicates average speed of the recorded vehicles and Vmax indicates maximum allowable

speed on the road on which the vehicle traveled.
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If this metric approaches, equals or exceeds the value of 1, it indicates that vehicles are operating

at the velocity at which significant traffic congestion is unlikely to occur. If the average speed is low,

the speed index will be lower, indicating higher congestion and slower traffic.

Algorithm 3 summarizes the process of component 3. The algorithm concludes its operation

based on the execution state of component 2 and the presence of snapshots ready for processing.

Algorithm 3 Cluster classifier component.

Input: IList: list of snapshots, CLUSTERING: clustering status; AREASList: list of precharged areas
Output: IList: list of snapshots

1: while CLUSTERING is true or ∃I ∈ IList do

2: if ∃I ∈ IList then

3: for all G = (time, centroidx,y, n, LSx,y, pointsList) ∈ I = GList do

4: A = CList ← nearest preload area (G.centroidx,y, AREASList)

5: for all C ∈ A do

6: C.IND ← calculate density index (G.pointsList, C)

7: C.INV ← calculate speed index (G.pointsList, C)

8: C.TCC ← calculate TCC (C.IND, C.INV)

9: end for

10: G.TCC ← calculate proportional TCC (A)

11: if G.TCC ≥ 1 then

12: G.estado ← 1 {"Congested"}

13: else if G.TCC ≥ 0 and G.TCC < 1 then

14: G.estado ← 0 {"Non-Congested"}

15: end if

16: end for

17: IList ← Update (I)

18: Execute component: Results viewer (IList)

19: else

20: Wait

21: end if

22: end while

3.4. Component 4: Results viewer

This study involves the periodic analysis of trajectory data, enabling the precise identification of

fluctuations in vehicular traffic.

An interactive map has been devised to dynamically present the outputs of each clustering

process. This map is generated using snapshots created during clustering or can be examined utilizing

the congestion indicator. Through this map, one can conduct real-time graphical scrutiny of pertinent

details within each cluster. Distinct colors on the map delineate areas sharing similar traits, as depicted

in the illustration found in Figure 5.

Algorithm 4 summarizes the process of component 4.
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Figure 5. Clusters projected on the map.

Algorithm 4 Results viewer component

Input: IList: list of snapshots
Output: Mi: snapshot maps

1: for each I = GList ∈ IList do

2: M← ∅ {Empty map rendering}

3: for all G = (time, centroidx,y, n, LSx,y, pointsList, estado) ∈ I do

4: C ← ∅ {Empty layer}

5: C ← add G.centroidx,y

6: C ← add G.pointsx,y

7: C ← add general statistics

8: M← add C

9: end for

10: Store M

11: end for

4. Results

4.1. Used Data

4.1.1. San Francisco Dataset

The data set for the city of San Francisco was collected on June 02, 2008; it contains 290 trajectories

recorded by cabs using GPS devices. Each record contains the following data: trajectory id, latitude,

longitude, time, speed and direction. For this set of trajectories, the analysis included all the trajectories

recorded between 12:30 p.m. and 13:30 p.m. As a result of this filtering process, 2382 records were

obtained, representing 290 trajectories from the entire data set.

These trajectories have been reconstructed by applying a routing and interpolation method every

5 meters from which a total of 182559 points have been obtained.
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4.1.2. Rome Dataset

The data set for the city of Rome was collected on February 12, 2014 and contains 137 trajectories

performed by cabs collected by GPS devices with an average time interval of 10 seconds between

consecutive points. Each record contains trajectory id, latitude, longitude, time, speed, direction.

For this second set of trajectories, the analysis was performed between 18:00 and 19:00 hs. As a

result of this filtering process, 33793 records were obtained, representing 137 trajectories of the entire

data set.

These trajectories have been reconstructed by applying a routing and interpolation method every

5 meters from which a total of 7790 points have been obtained.

4.1.3. Guayaquil Dataset

This dataset was collected on October 28, 2017 and corresponds to 218 trajectories performed by

university students traveling by some means of transportation such as cab, motorcycle, metro-via. The

GPS points in this dataset were collected by smartphones with an average time interval of 5 seconds

between consecutive points. Each record contains id, latitude, longitude, time, user name, email and

type of transportation.

Given that this is a small set of trajectories, the analysis was carried out between 16:30 and 18:30

hrs as it was considered to be the time with the highest concentration of records. As a result of this

filtering process, 30557 records were obtained, representing 206 trajectories of the entire data set.

These trajectories have been reconstructed by applying a routing and interpolation method every

5 meters from which a total of 135237 points have been obtained.

4.2. Model Parameter Selection

Within this study, a two-dimensional space has been defined for analysis, spanning an area

of 1200 × 800 square meters. Hyperboxes, each with a consistent size of around 35 × 25 meters,

were employed, collectively representing approximately 3% of the designated area. The capture and

analysis of intantaneas is performed at a frequency of 1 minute each. The similarity measure used

is the Euclidean distance, and the lambda parameter (λ) was set to 0.068, which means that the GPS

points of the clusters are considered relevant until 45 seconds, GPS points that exceed that time are

considered not relevant and are eliminated. Updating at 30-second intervals, clusters characterized by

low activity are maintained, while those clusters lacking GPS points for a duration of at least 2 minutes

are removed from the system.

4.3. Comparison Method

In this study, two methods for analyzing vehicular flow were compared: dynamic clusters and a

static grid, using the TCC to classify congestion.

In the dynamic clustering method, data from vehicle trajectories with similar patterns were

grouped and evaluated to determine congestion based on speed and number of vehicles. Employing

the static grid method, we partitioned the study area into uniform cells, each characterized by speed

and vehicle count information, assessed in accordance with the TCC.

For the dynamic clusters, the cluster hyperbox was projected, as seen in Figure 6 and the TCC

values of the overlapping cells were adjusted, considering a tolerance derived from the inherent

variability observed in traffic data.

Introducing a tolerance factor offers the flexibility needed to correct potential TCC values

influenced by the inherent variability of the data, thereby preventing the misclassification of congestion

or non-congestion situations.
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Figure 6. Cluster projected on the grid.

This adjustment increases the matching matches in the comparison. For congested clusters, the

TCC tolerance of the cells is added, and for non-congested, it is subtracted.

An assessment is carried out, comparing the congested and non-congested states within cells and

clusters. Recorded are matches deemed valid when, at a minimum, one cell aligns its classification

with that of the cluster.

4.4. Validation of the Model

An initial experiment was undertaken to showcase the dynamic method’s superiority over its

static counterpart, illustrating its distinct advantages. The objective of this experiment was to analyze

how each method handles the evolving characteristics of traffic information and the circulation of

vehicles within a road system. The analysis was conducted to identify specific situations where

one method outperforms the other. The experiment is poised to furnish precise data, facilitating a

comprehension of variances, and underscoring the superiority of the dynamic approach outlined in

this study.

To carry out this experiment, we worked with a representative data set of the city of San Francisco

that contemplates 6 minutes of execution, capturing snapshots every one minute in an area of 100

× 100 meters. Randomly chosen from the experiment’s data cluster, a group underwent a detailed

comparative analysis. Special focus was placed on the characteristics of the proposed dynamic method,

highlighting how it adapts to variations in data distribution over time. These results were compared

with a static method based on a fixed grid, highlighting notable differences in its responsiveness to

changing traffic conditions and data distribution.

In the proposed dynamic method, the ability to adapt to changing conditions of the spatial

distribution of data is a crucial feature. Figure 7 illustrates the adaptive and precise adjustments of the

centroid and hyperbox location at various time instances, ensuring coverage along road segments and

adeptly capturing changes in both cluster density and shape. This update not only reflects the current

distribution of the data, but also allows the model to adjust for possible deviations and changes in the

shape of the clusters over time.

A representation of the dynamism over a cluster over four consecutive seconds of processing GPS

points is shown in Figure 7, the new points that are integrated into the cluster update the centroid and

hyperbox causing a slight displacement of both according to the coordinates of the new GPS points. It

can also be identified that the oldest GPS points lose relevance as time goes by (in the graph they are
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marked in red) and are the ones that will eventually be removed from the cluster in future instants

(marked with red edges).

Figure 7. Dynamism of a cluster as a function of elapsed time.

In this method the data are processed in time order, which is important to distinguish old points

and to keep the cluster location updated, the points processed for each time instant in the clustering can

be visualized in Figure 8. A representation of the hyperbox of the analyzed cluster has been projected

to identify the points that have been assigned to this particular cluster, moreover, as the points can

only be assigned to a single cluster, the other points that are displayed and are outside the projected

hyperbox are assigned to some other cluster than the analyzed one. The points displayed with black

color correspond to points that entered at one time instant, while the points with red borders are points

that entered at the previous time instant.

Figure 8. Processed data flow in function of time.

On the other hand, the static method, which is based on a fixed grid, has certain limitations in

terms of adaptability. In Figure 9 it can be seen how the data are assigned to predefined cells in the

grid. GPS points transiting a road are assigned and analyzed as part of a cell and this cell serves a

certain specific region, therefore, several cells are required to analyze a large road and GPS points

will be distributed among the different cells. The distribution of cells in a fixed grid ensures complete

coverage allowing an understanding of the spatial dynamics of roads in their respective areas and

the consideration of how GPS points are distributed between cells suggests attention to efficiency

in spatial data management. But, in a fixed grid the need to use several cells to analyze a road that

traverses multiple areas also presents its own disadvantages, for example, the road may appear to be

divided which may affect the understanding of its whole, this management of cells may require more

computational and storage resources, in addition, some risks of errors may occur when coordinating

data between cells.
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Figure 9. Static grid showing the distribution of the cells that make it up.

As for the dynamism of the data when analyzing the snapshots using the classifier component, the

dynamic method shows a clear advantage. In the Figure 10 shows the selection of road segments for

the snapshots captured at minutes 1 (Figure 10a), 3 (Figure 10b) and 5 (Figure 10c) used for congestion

assessment, this capacity to flexibly adapt to shifts in data location and make adjustments to centroids

and hyperboxes as required positions it as an excellent option for identifying segments affected by

changes in vehicular flow and traffic density. On the other hand, the static method grapples with

managing these dynamics, as the rigid lattice fails to adjust effectively to fluctuations.

Figure 10. Selection of dynamic road segments at the snapshots of minutes 1 (a), 3 (b) and 5 (c).

In real scenarios, such as a road network traversing an urban area with multiple routes and traffic

patterns, diverse situations arise. During peak traffic hours, roads can fill up with a large number

of vehicles, resulting in congestion. In contrast, during off-peak times, the number of vehicles on

the roads decreases. If we focus on a static method that does not consider these fluctuations in data

flows, as can be seen in Figure 11 the road segments being analyzed remain fixed at all times, there

is a possibility that roads with very different traffic volumes will be incorrectly selected for each cell.

This erroneous choice may result in an imprecise portrayal of how vehicles behave throughout various

periods within the day.
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Figure 11. Choosing road segments to establish fixed cells.

During this initial experiment, a salient feature of the dynamic approach can be observed, in

contrast to the static alternative that computes the congestion indicator using all observed points but

without considering the evolution of the vehicle route. , the static method only retains the recent points

considered relevant to the vehicles, as these are the ones that approximate a real time route of the

vehicles.

Within the dynamic approach, as vehicles navigate and fresh GPS data is logged, the clustering

algorithm assimilates these GPS points into their designated clusters, thereby triggering an autonomous

update of the centroid. This suggests that the definition of real-time congestion is more significantly

influenced by the most recent GPS points, while the relevance of earlier GPS data gradually diminishes.

This differentiation is crucial, since in one trip, a vehicle may cross multiple cells and its trajectory

may span a variety of GPS points. If all these GPS points were considered without taking into account

temporal dynamics, erroneous conclusions about congestion could be reached, identifying congestion

that does not actually exist. Consequently, the dynamic method secures a real-time assessment of

congestion that is both precise and adaptable, effectively responding to the dynamic nature of vehicle

mobility on urban roadways.

4.5. Obtained Results

In order to measure the effectiveness of this method, a table has been generated with the execution

times. This table provides a detailed and objective view of how the method behaves in practical

conditions.

In the parallel execution process, it is relevant to note that the times of the clustering component

are measured independently, while the classification and visualization components are evaluated

together and separately to the classification component, the results of the execution times are shown

in Table 1 for 60-second snapshots and in Table 2 for 30-second snapshots both in unit of measure

in minute and are obtained from running one hour of data in the cities of San Francisco, Rome

and Guayaquil. This individualized measurement strategy allows a more precise analysis of each

component and its contribution to the total run time. In addition, in parallel executions it is common

to observe that the maximum time of the processes to be measured is taken as a reference.
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Table 1. Execution times (minutes) of the proposed method for snapshots of 60 seconds.

Component San Francisco Rome Guayaquil

Clustering 28:23 10:46 18:32
Classification 19:11 8:30 7:40

Maximum time 28:23 10:46 18:32

Table 2. Execution times (minutes) of the proposed method for 30-second snapshots.

Component San Francisco Rome Guayaquil

Clustering 27:34 11:02 18:37
Classification 39:01 15:13 31:41

Maximum time 39:01 15:13 31:41

The results show significant differences in the execution times of the clustering and classification

components in the cities of San Francisco, Rome and Guayaquil. Although areas of very similar

dimensions were used, there are several reasons that may explain these disparities.

In the case of the clustering component, the experiments with 60-second snapshots showed that

the city of San Francisco shows the longest time, at 28 minutes and 23 seconds. This could be due to

the complexity of the data in that city or a larger amount of data requiring processing. On the other

hand, Rome and Guayaquil show shorter times, 10 minutes and 46 seconds and 18 minutes and 32

seconds, respectively.

Experiments with 30-second snapshots showed that the city of San Francisco requires 27 minutes

and 34 seconds for clustering, while the city of Rome requires 11 minutes and 2 seconds, and the city

of Guayaquil requires 18 minutes and 37 seconds.

This could indicate a higher efficiency in the clustering process in those cities or a lower workload

that could be directly related to the number of trajectories. In the experiments with 60-second snapshots,

San Francisco was processed with 290 trajectories and has obtained the longest processing time,

Guayaquil with 218 trajectories has obtained a shorter time than San Francisco, and finally Rome

obtained the shortest processing time by processing 137 trajectories, this trend is also present in the

30-second experiments which reaffirms that there is a direct relationship between processing time and

the amount of clustered trajectories.

The storage of each snapshot takes less than 0.02 seconds, during this time the clustering stops

momentarily, however, this time is relatively small which does not affect the clustering processing time

since if compared to the time between snapshots which is 60 seconds, this time represents 0.03%.

As for the classification component, the experiments performed with 60-second snapshots show

that the Guayaquil dataset stands out with the lowest time, 7 minutes and 40 seconds, followed by

Rome with 8 minutes and 30 seconds. San Francisco, in this case, shows the longest time, 19 minutes

and 11 seconds. For the experiments with 30-second snapshots, the order is preserved with respect to

the time required to classify each cluster, obtaining 39 minutes and 1 second in the city of San Francisco,

31 minutes and 41 seconds in the city of Guayaquil, and 15 minutes and 13 seconds for the city of

Rome. These times could be related to the availability of processing resources in each location or the

complexity of the road networks found in the areas used for classification in each city.

The variability in the layout of the available roads in a city can directly influence the performance

of the system, some examples are given to illustrate some cases faced by the cluster classification

component, Figure 12a shows the simplest case that will require the least amount of resources to

analyze, the case of Figure 12b is a scenario with a very common urban distribution between cities that

will require more time to obtain the traffic valuation, and Figure 12c shows the case of a complex road

network that is composed of multiple intersecting roads.
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Figure 12. Example of different network complexities: (a) A single road; (b) four roads; and (c) eleven

roads.

From the perspective of parallel execution, these results highlight the importance of considering

the performance of each component separately. Parallel execution allows the workload to be distributed

efficiently, but execution times vary depending on the processing power of each component and how

they interact with each other.

To verify the precision of the clustering classification, an evaluation is applied based on the

observed results, which are reflected in different confusion matrices for each city evaluated. The

confusion matrix delivers a compact portrayal of the classification model’s effectiveness in gauging

TCC grid congestion. It quantifies the instances of correct and incorrect predictions within the

respective TCC categories.

Table 3 exhibits the findings of the confusion matrixes using from 60-second snapshots for the

San Francisco dataset. For a tolerance of 0.2, the matrix reveals that the model was able to correctly

identify 11237 cases of congestion and 2503 cases of non-congestion. However, in the cases of incorrect

classifications, there are 166 cases in which scenarios without congestion are identified when the static

method indicates that they are congested scenarios, while in the other category there are 1748 cases in

which congested scenarios are identified, but the static method indicates that these scenarios are not

congested.

For a tolerance of 0.1, the matrix reveals that the model was able to correctly identify 10614 cases

of congestion and 2492 cases of non-congestion. However, in the cases of incorrect classifications, there

are 176 cases in which scenarios without congestion are identified when the static method indicates

that they are congested scenarios, while in the other category there are 2371 cases in which congested

scenarios are identified, but the static method indicates that these scenarios are not congested.

For a tolerance of 0, the matrix reveals that the model was able to correctly identify 10029 cases of

congestion and 2457 cases of non-congestion. However, in the cases of incorrect classifications, there

are 211 cases in which scenarios without congestion are identified when the static method indicates

that they are congested scenarios, while in the other category there are 2956 cases in which congested

scenarios are identified, but the static method indicates that these scenarios are not congested.

Table 3. Consolidated results using 60-second snapshots with the San Francisco data set.

Tolerance Cluster classification Congested TCC Non-congested TCC

0.2
Congested cluster 11237 1748

Non-congested cluster 166 2503

0.1
Congested cluster 10614 2371

Non-congested cluster 176 2492

0
Congested cluster 10029 2956

Non-congested cluster 211 2457
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Table 4 exhibits the findings of the confusion matrixes using from 30-second snapshots for the

San Francisco dataset. For a tolerance of 0.2, the matrix reveals that the model was able to correctly

identify 14184 cases of congestion and 3294 cases of non-congestion. However, in the cases of incorrect

classifications, there are 1227 cases in which scenarios without congestion are identified when the static

method indicates that they are congested scenarios, while in the other category there are 7062 cases in

which congested scenarios are identified, but the static method indicates that these scenarios are not

congested.

For a tolerance of 0.1, the matrix reveals that the model was able to correctly identify 13335 cases

of congestion and 3258 cases of non-congestion. However, in the cases of incorrect classifications, there

are 1263 cases in which scenarios without congestion are identified when the static method indicates

that they are congested scenarios, while in the other category there are 7911 cases in which congested

scenarios are identified, but the static method indicates that these scenarios are not congested.

For a tolerance of 0, the matrix reveals that the model was able to correctly identify 12471 cases of

congestion and 3234 cases of non-congestion. However, in the cases of incorrect classifications, there

are 1287 cases in which scenarios without congestion are identified when the static method indicates

that they are congested scenarios, while in the other category there are 8775 cases in which congested

scenarios are identified, but the static method indicates that these scenarios are not congested.

Table 4. Consolidated results using 30-second snapshots with the San Francisco data set.

Tolerance Cluster classification Congested TCC Non-congested TCC

0.2
Congested cluster 14184 7062

Non-congested cluster 1227 3294

0.1
Congested cluster 13335 7911

Non-congested cluster 1263 3258

0
Congested cluster 12471 8775

Non-congested cluster 1287 3234

The results of the confusion matrixes for the city of Rome using 60-second snapshots are shown

in Table 5. Specifically for a tolerance of 0.2, the model was able to get 3195 cases of congestion and 412

cases of non-congestion correct. However, in the cases of incorrect classifications, there are 30 cases

in which scenarios without congestion are identified when the static method indicates that they are

congested scenarios, while in the other category there are 309 cases in which congested scenarios are

identified, but the static method indicates that these scenarios are not congested.

For a tolerance of 0.1, the matrix reveals that the model was able to correctly identify 3089

congested cases and 412 non-congested cases. However, in the cases of incorrect classifications, there

are 30 cases in which scenarios without congestion are identified when the static method indicates

that they are congested scenarios, while in the other category there are 415 cases in which congested

scenarios are identified, but the static method indicates that these scenarios are not congested.

For a tolerance of 0, the matrix reveals that the model was able to correctly identify 2994 cases of

congestion and 408 cases of non-congestion. However, in the cases of incorrect classifications, there

are 34 cases in which scenarios without congestion are identified when the static method indicates

that they are congested scenarios, while in the other category there are 510 cases in which congested

scenarios are identified, but the static method indicates that these scenarios are not congested.
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Table 5. Consolidated results using 60-second snapshots with the Rome data set.

Tolerance Cluster classification Congested TCC Non-congested TCC

0.2
Congested cluster 3195 309

Non-congested cluster 30 412

0.1
Congested cluster 3089 415

Non-congested cluster 30 412

0
Congested cluster 2994 510

Non-congested cluster 34 408

The results of the confusion matrixes for the city of Rome using 30-second snapshots are shown

in Table 6. Specifically for a tolerance of 0.2, the model was able to hit 4689 cases of congestion and 509

cases of non-congestion. However, in the cases of incorrect classifications, there are 390 cases in which

scenarios without congestion are identified when the static method indicates that they are congested

scenarios, while in the other category there are 2159 cases in which congested scenarios are identified,

but the static method indicates that these scenarios are not congested.

For a tolerance of 0.1, the matrix reveals that the model was able to correctly identify 4594

congested cases and 508 non-congested cases. However, in the cases of incorrect classifications, there

are 391 cases in which scenarios without congestion are identified when the static method indicates

that they are congested scenarios, while in the other category there are 2254 cases in which congested

scenarios are identified, but the static method indicates that these scenarios are not congested.

For a tolerance of 0, the matrix reveals that the model was able to correctly identify 4497 cases of

congestion and 500 cases of non-congestion. However, in the cases of incorrect classifications, there

are 399 cases in which scenarios without congestion are identified when the static method indicates

that they are congested scenarios, while in the other category there are 2351 cases in which congested

scenarios are identified, but the static method indicates that these scenarios are not congested.

Table 6. Consolidated results using 30-second snapshots with the Rome data set.

Tolerance Cluster classification Congested TCC Non-congested TCC

0.2
Congested cluster 4689 2159

Non-congested cluster 390 509

0.1
Congested cluster 4594 2254

Non-congested cluster 391 508

0
Congested cluster 4497 2351

Non-congested cluster 399 500

The results of the confusion matrixes for the city of Guayaquil, using 60-second snapshots, are

shown in Table 7. In particular, for a tolerance of 0.2, the model was successful in 2576 congestion

situations and 1912 cases of no congestion. However, in the cases of incorrect classifications, there

are 146 cases in which scenarios without congestion are identified when the static method indicates

that they are congested scenarios, while in the other category there are 276 cases in which congested

scenarios are identified, but the static method indicates that these scenarios are not congested.

For a tolerance of 0.1, the matrix reveals that the model was able to correctly identify 2535

congested cases and 1891 non-congested cases. However, in the cases of incorrect classifications, there

are 167 cases in which scenarios without congestion are identified when the static method indicates

that they are congested scenarios, while in the other category there are 317 cases in which congested

scenarios are identified, but the static method indicates that these scenarios are not congested.

For a tolerance of 0, the matrix reveals that the model was able to correctly identify 2459 cases of

congestion and 1872 cases of non-congestion. However, in the cases of incorrect classifications, there
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are 186 cases in which scenarios without congestion are identified when the static method indicates

that they are congested scenarios, while in the other category there are 393 cases in which congested

scenarios are identified, but the static method indicates that these scenarios are not congested.

Table 7. Consolidated results using 60-second snapshots with the Guayaquil data set.

Tolerance Cluster classification Congested TCC Non-congested TCC

0.2
Congested cluster 2576 276

Non-congested cluster 146 1912

0.1
Congested cluster 2535 317

Non-congested cluster 167 1891

0
Congested cluster 2459 393

Non-congested cluster 186 1872

The results of the confusion matrixes for the city of Guayaquil, using 60-second snapshots, are

shown in Table 8. In particular, for a tolerance of 0.2, the model was successful in 3364 congestion

situations and 2328 cases of no congestion. However, in the cases of incorrect classifications, there

are 1193 cases in which scenarios without congestion are identified when the static method indicates

that they are congested scenarios, while in the other category there are 1622 cases in which congested

scenarios are identified, but the static method indicates that these scenarios are not congested.

For a tolerance of 0.1, the matrix reveals that the model was able to correctly identify 3270

congested cases and 2312 non-congested cases. However, in the cases of incorrect classifications, there

are 1209 cases in which scenarios without congestion are identified when the static method indicates

that they are congested scenarios, while in the other category there are 1716 cases in which congested

scenarios are identified, but the static method indicates that these scenarios are not congested.

For a tolerance of 0, the matrix reveals that the model was able to correctly identify 3155 cases of

congestion and 2281 cases of non-congestion. However, in the cases of incorrect classifications, there

are 1240 cases in which scenarios without congestion are identified when the static method indicates

that they are congested scenarios, while in the other category there are 1831 cases in which congested

scenarios are identified, but the static method indicates that these scenarios are not congested.

Table 8. Consolidated results using 30-second snapshots with the Guayaquil data set.

Tolerance Cluster classification Congested TCC Non-congested TCC

0.2
Congested cluster 3364 1622

Non-congested cluster 1193 2328

0.1
Congested cluster 3270 1716

Non-congested cluster 1209 2312

0
Congested cluster 3155 1831

Non-congested cluster 1240 2281

In all cases, it was observed that the accuracy in detecting matching categorizations in the clusters

resulting from clustering is high compared to the categorization of the grid cells.

Upon evaluating the veracity of positive outcomes, specifically measuring the proficiency to

accurately identify the status of traffic congestion, the clusters demonstrated a noteworthy degree of

correlations when juxtaposed with the grid cells experiencing congestion in each city subject to scrutiny.

This underscores the clusters’ efficacy in discerning and matching instances of traffic congestion across

diverse urban environments.
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Concerning the true negative rate, associated with the precision in recognizing the uncongested

status of traffic, a discernibly elevated quantity of concordances became apparent in contrast to

non-congested cells within the stationary grid.

5. Discussion

The method used to identify congestion zones, based on one hour of data in each city, offers a

valuable approach to understanding and addressing traffic problems in urban areas. This method is

based on real-time data collection and analysis, this approach enables an adaptive evaluation of traffic

dynamics across diverse regions. Some of the advantages and limitations of this method are discussed

below, taking into account the results obtained in the cities of San Francisco, Rome and Guayaquil.

This method presents notable advantages, such as spatial and temporal precision, since the

analysis of data at a specific time in each city provides an accurate and real-time view of traffic

conditions, allowing the identification of congested areas in great detail. Real-time detection is

essential, as it makes it possible to take immediate action, such as adjusting routes or managing traffic,

which in turn contributes to reducing congestion and improving urban mobility. In addition, this

method is highly flexible and adaptable to different urban scenarios, making it a versatile tool to

address traffic challenges in different cities.

However, it is relevant to consider its limitations. The representativeness of the data is a concern,

as the choice of a specific time may not fully reflect traffic conditions throughout the day, especially at

peak times or special events. Reliance on real-time data may be an obstacle in areas with less advanced

data collection infrastructure. Finally, the location of traffic monitoring stations can influence the

representativeness of the results, leading to missing data in specific areas or lack of representation in

less traveled areas.

The results of contrasting the congestion prediction method based on a clustering algorithm

with the categorization method utilizing fixed cell regions in San Francisco, Rome, and Guayaquil are

explored within this section. The assessment criteria, comprising accuracy, precision, and recall rates,

contribute to a thorough comprehension of how well both methods perform.

The accuracy percentages are shown in Table 9. The evaluation of method accuracy aimed to

assess the ratio of accurate predictions to the overall predictions generated. These values indicate

the ability of the proposed method to make accurate categorizations, but also reflect variations in its

performance in each city.

Using 60-second snapshots with the San Francisco dataset, results reveal accuracy rates of 79.77%

using a tolerance of zero, 83.73% using a tolerance of 0.1, and 87.77% using a tolerance of 0.2. For

30-second snapshots, the percentages decreased to 60.95% using a tolerance of zero, 64.40% using a

tolerance of 0.1 and 67.83% using a tolerance of 0.2.

In the city of Rome, accuracy rates using 60-second snapshots are presented with percentages of

86.21% using a tolerance of zero, 88.72% using a tolerance of 0.1 and 91.41% using a tolerance of 0.2.

For 30-second snapshots, the percentages decreased to 64.50% using a tolerance of zero, 65.86% using

a tolerance of 0.1 and 67.10% using a tolerance of 0.2.

For the city of Guayaquil using 60-second snapshots, accuracy rates were 88.21% using a tolerance

of zero, 90.14% using a tolerance of 0.1 and 91.41% using a tolerance of 0.2. For 30-second snapshots,

the percentages decreased to 63.90% using a tolerance of zero, 62.62% using a tolerance of 0.1 and

66.91% using a tolerance of 0.2.
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Table 9. Accuracy of the method.

City Tolerance 60-second snapshots 30-second snapshots

San Francisco
0.2 87.77% 67.83%
0.1 83.73% 64.40%
0 79.77% 60.95%

Rome
0.2 91.41% 67.10%
0.1 88.72% 65.86%
0 86.21% 64.50%

Guayaquil
0.2 91.41% 66.91%
0.1 90.14% 65.62%
0 88.21% 63.90%

Table 10 presents the precision and recall metrics outcomes pertaining to clusters marked under

the congested category. When analyzing the precision in the city of San Francisco with congested

situations, it is observed that the clustering algorithm using 60-second snapshots achieved rates of

77.24%, 81.74% and 86.54% for tolerances of 0, 0.1 and 0.2 respectively. These results decreased in

the results using 30-second snapshots to 58.70%, 62.76% and 66.76% for the 0, 0.1 and 0.2 tolerances,

respectively.

When analyzing the precision in the city of Rome with congested situations, it is observed that the

clustering algorithm using 60-second snapshots achieved rates of 85.45%, 88.16% and 91.18% for the 0,

0.1 and 0.2 tolerances, respectively. These results decreased in the results using 30-second snapshots to

65.67%, 67.09% and 68.47% for the 0, 0.1 and 0.2 tolerances, respectively.

When analyzing the precision in the city of Guayaquil with congestion situations, it is observed

that the clustering algorithm using 60-second snapshots reached rates of 86.22%, 88.88% and 90.32%

for the 0, 0.1 and 0.2 tolerances, respectively. These results decreased in the results using 30-second

snapshots to 63.28%, 65.58% and 67.47% for the 0, 0.1 and 0.2 tolerances, respectively.

The recall in congestion situations indicates the proportion of real congestion situations correctly

identified by the clustering algorithm. In the city of San Francisco using 60-second snapshots, the

values obtained were 97.94%, 98.37% and 98.54%, for tolerances 0, 0.1 and 0.2, respectively. Using

60-second snapshots, the values obtained were 90.65%, 91.35% and 92.04% for tolerances 0, 0.1 and 0.2,

respectively.

In the city of Rome using 60-second snapshots, the values obtained were 98.88%, 99.04% and

99.07%, for tolerances 0, 0.1 and 0.2, respectively. Using 60-second snapshots, the values obtained were

91.85%, 92.16% and 92.32% for tolerances 0, 0.1 and 0.2, respectively.

In the city of Guayaquil using 60-second snapshots, the values obtained were 92.97%, 93.82% and

94.64%, for tolerances 0, 0.1 and 0.2, respectively. Using 60-second snapshots, the values obtained were

71.79%, 73.01% and 73.82% for tolerances 0, 0.1 and 0.2, respectively.

The precision results highlight the algorithm’s ability to accurately identify congestion situations

and make accurate predictions, while the recall results show the algorithm’s effectiveness in capturing

congestion situations present in the data.
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Table 10. Precision and recall of the congested category.

City Tolerance
60-second snapshots 30-second snapshots

Precision Recall Precision Recall

San Francisco
0.2 86.54% 98.54% 66.76% 92.04%
0.1 81.74% 98.37% 62.76% 91.35%
0 77.24% 97.94% 58.70% 90.65%

Rome
0.2 91.18% 99.07% 68.47% 92.32%
0.1 88.16% 99.04% 67.09% 92.16%
0 85.45% 98.88% 65.67% 91.85%

Guayaquil
0.2 90.32% 94.64% 67.47% 73.82%
0.1 88.88% 93.82% 65.58% 73.01%
0 86.22% 92.97% 63.28% 71.79%

Table 11 presents the precision and recall metrics outcomes pertaining to clusters marked under

the non-congested category. When considering non-congested situations, the precision and recall

metrics indicate the ability of the clustering algorithm to categorize these situations where traffic is

smooth.

In San Francisco with 60-second snapshots, for tolerance values 0, 0.1 and 0.2, the precision rates

were respectively 92.09%, 93.40% and 93.78% and the recall rates were 45.39%, 51.24% and 58.88%.

While the results with 30-second snapshots, for tolerance values 0, 0.1 and 0.2, the precision rates were

respectively 71.53%, 72.06% and 72.86% and the recall rates were 26.93%, 29.17% and 31.81%.

In Rome with 60-second snapshots, for tolerance values 0, 0.1 and 0.2, the precision rates were

respectively 92.31%, 93.21% and 93.21% and the recall rates were 44.44%, 49.82% and 57.14%. While

the results with 30-second snapshots, for tolerance values 0, 0.1 and 0.2, the precision rates were

respectively 55.62%, 56.51% and 56.62% and the recall rates were 17.54%, 18.39% and 19.08%.

In Guayaqyuil with 60-second snapshots, for tolerance values 0, 0.1 and 0.2, the precision rates

were respectively 90.96%, 91.89% and 92.91% and the recall rates were 82.65%, 85.64% and 87.39%.

While the results with 30-second snapshots, for tolerance values 0, 0.1 and 0.2, the precision rates were

respectively 64.78%, 65.66% and 66.12% and the recall rates were 55.47%, 57.40% and 58.94%.

These results reinforce the ability of the algorithm to differentiate congestion-free situations.

However, in the particular case of this category, a considerable decrease in the recall metric is observed

compared to the previously mentioned values. This decrease in sensitivity indicates that a considerable

amount of false negatives have been encountered in which real non-congested situations are not being

correctly identified and underlines a deficiency of the method to detect and capture a number of the

true negative cases within this classification.

Table 11. Precision and precision of the non-congested category.

City Tolerance
60-second snapshots 30-second snapshots

Precision Recall Precision Recall

San Francisco
0.2 93.78% 58.88% 72.86% 31.81%
0.1 93.40% 51.24% 72.06% 29.17%
0 92.09% 45.39% 71.53% 26.93%

Roma
0.2 93.21% 57.14% 56.62% 19.08%
0.1 93.21% 49.82% 56.51% 18.39%
0 92.31% 44.44% 55.62% 17.54%

Guayaquil
0.2 92.91% 87.39% 66.12% 58.94%
0.1 91.89% 85.64% 65.66% 57.40%
0 90.96% 82.65% 64.78% 55.47%
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Through a comprehensive review of the results, it becomes evident that the clustering algorithm

plays a pivotal role in not only identifying but also forecasting vehicular congestion. This sets it apart

from the static cell region-based method. The discernible advantage lies in the algorithm’s adaptability

to real-time changes in traffic patterns, enhancing its utility in dynamic congestion management

scenarios. The robust match rates, as reflected in accuracy, precision, and recall, affirm the algorithm’s

proficiency in identifying patterns of congestion within the dataset in order to anticipate future

scenarios.

Looking at the comparison performed in the initial experiment, it becomes evident that the

inability of the static method to adapt to evolving data and shifts in clusters, has the potential to exert

an impact on the overall quality of the acquired outcomes. In the absence of adaptability, inaccuracies

in identifying congestion and traffic flow data may compromise the reliability of pinpointing congested

areas.

In contrast to conventional methods, the dynamic approach stands out by adeptly handling the

complexities of road dynamics. Notably, its strength lies in the holistic utilization of information

from various recorded vehicles within the cluster, significantly enhancing the accuracy and

comprehensiveness of the representation of road dynamics. This marks a substantial advancement in

our ability to understand and respond to the intricacies of the traffic environment.

6. Conclusions

The results obtained indicate that the dynamic clustering method is effective and accurate in

identifying vehicle congestion compared to the fixed cell method. The ability to dynamically cluster

vehicle trajectory data into clusters and perform a specific analysis for each cluster allows for better

identification of patterns and similarities in vehicle flow, it is aimed at the timely and accurate

identification of problem areas with potential congestion situations.

It has been identified that a strategy with great potential can be the combination of some data

mining methods including clustering and classification, both cases focused on the processing of

dynamic vehicle patterns. These methods adapt to the constant evolution of traffic in urban areas,

identifying changing travel behaviors. The introduction of the forgetting feature has enabled more

efficient information management, allowing the clustering to be constantly updated by carefully

selecting the most recent GPS points and removing the oldest ones. The implementation of this method

not only ensures an accurate representation of current traffic variations in the clusters, but also enables

the early detection of congestion in formation.

The results obtained underline the positive impact and usefulness of the proposed approach,

highlighting it as a useful tool to increase the efficiency of managing traffic in urban contexts.

Based on these results, it is relevant to highlight that the clustering algorithm demonstrated

performance with high hit rates in both categories compared to the fixed cell-based method. The

higher accuracy, precision and recall rates indicate that the algorithm is effective in identifying and

classifying congestion situations. This can be attributed to its ability to learn behavioral patterns in the

data and adapt to temporal variations.

With its outstanding adaptability to traffic fluctuations, the dynamic clustering-based method

provides a comprehensive and always updated overview of current car patterns in urban environments.

This innovative approach not only improves traffic management, but also presents a dynamic element

that contributes to the in-depth understanding of constantly evolving urban dynamics.

For future work, we propose to improve the adaptability of the algorithm in complex

urban environments, prioritizing optimization for intersections and road diversity, and addressing

vehicle-pedestrian interaction. We also seek to investigate the causes of decreased recall in

non-congested areas, analyzing factors such as variability in speeds, vehicle density, infrastructure or

weather conditions.Experiments in extended urban areas, considering severe conditions and complex

scenarios, will allow us to evaluate the scalability and robustness of the algorithm.
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In addition to vehicular data, the integration of multimodal data, including public transport,

points of interest, traffic lights and pedestrians, is considered as essential for a complete view of urban

mobility. Finally, it considers the implementation of predictive models based on artificial intelligence,

supported by historical and real-time data, as a key way to anticipate and prevent congestion patterns.
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