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Abstract: We extend the concept of metallic ratios to the real argument n ∈ R considered as a

dimension by analytic continuation showing that they are defined by an argument of a normalized

complex number, and for rational n ̸= {0,±2}, they are defined by Pythagorean triples. We further

extend the concept of metallic ratios to metallic angles.

Keywords: metallic ratios; metallic angles; Pythagorean triples; emergent dimensionality;

mathematical physics

1. Introduction

Each rectangle contains at least one square with an edge h equal to the shorter edge of the rectangle.

If a rectangle contains n such squares and its edges nh + d and h satisfy

M(n) :=
nh + d

h
=

h

d
, (1)

they satisfy a metallic ratio; the golden ratio for n = 1, the silver ratio for n = 2, shown in Figure 1, the

bronze ratio for n = 3, etc.

Figure 1. Silver rectangle an ratio M(2)+ = (2h + d)/h = h/d.

Solving the relation (1) for M(n) leads to the quadratic equation

M(n)2
± − nM(n)± − 1 = 0, (2)

having roots

M(n)± =
n ±

√
n2 + 4

2
, (3)

shown in Figure 2 for n ∈ R.
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Figure 2. Metallic ratios: positive M(n)+ (red), negative M(n)− (green) as continuous functions of

−5 ≤ n ≤ 5.

Metallic ratios (3) have interesting properties, such as

1. M(n)−M(n)+ = −1,

2. M(n)− + M(n)+ = n,

3. − M(−n)− = M(n)+, or

4. M(n)± = ±earcsinh(±n/2).

(4)

Furthermore, as n goes to ifinity, the factor +4 in the square root becomes negligible, and M(n)± ≈
{n, 0} for large n.

It was shown [1] that for n ̸= {0, 2} positive metallic ratios (3) can be expressed by primitive

Pythagorean triples, as

M(n)+ = cot

(

θ

4

)

, (5)

and for n ≥ 3

n = 2

√

c + b

c − b
, (6)

where θ is the angle between a longer cathetus b and hypotenuse c of a right triangle defined by a

Pythagorean triple, as shown in Figure 3, whereas for n = {3, 4} it is the angle between a hypotenuse
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and a shorter cathetus a ({M(3)+, M(10)+} and {M(4)+, M(6)+} are defined by the same Pythagorean

triples, respectively, (5, 12, 13) and (3, 4, 5)), and

M(1)+ = cot

(

π − θ(3,5)

4

)

. (7)

For example the Pythagorean triple (20, 21, 29) defines M(5)5+, the Pythagorean triple (3, 4, 5) defines

M(6)+, the Pythagorean triple (28, 45, 53) defines M(7)+, and so on.

Figure 3. Right triangle showing a longer (b), shorter (a) hypotenuse, catheti (c) and angles θ = θ(b,c)

and θ(a,c).

Since the edge lengths of a metallic rectangle are assumed to be nonnegative, generally only

the positive principal square root M(n)+ of (2) is considered. However, the nonnegativity of

distances (corresponding to the ontological principle of identity of indiscernibles) does not hold

for the LK-metric [2], for example; such an axiomatization is misleading [3]. Furthermore, fractal

dimensions have been verified to be consistent with experimental observations [4,5] which justifies the

analytic continuation of metallic ratios to the real argument n considered as a dimension [6,7]. This

is discussed in Section 2. Section 3 extends the concept of metallic ratios to metallic angles of a real

argument n. Section 4 concludes the findings of this study.

2. Metallic Ratios of a Real Number

Theorem 1. The metallic ratio M(n)± of n ∈ R is defined by an acute angle of a right triangle 0 < θ < π/2.

Proof. We express the RHS of the Equation (5) using half-angle formulas and substituting ϕ := θ/2

cot

(

θ

4

)

= cot
( ϕ

2

)

=
1 + cos ϕ

sin ϕ
=

1 + cos
(

θ
2

)

sin
(

θ
2

) =

=
1 + sgn

(

cos
(

θ
2

))
√

1+cos θ
2

sgn
(

sin
(

θ
2

))
√

1−cos θ
2

= M(n)+,

(8)

since 0 < θ < π/2 (we exclude degenerated triangles), so sgn(sin (θ/2)) = sgn(cos (θ/2)) = 1.

Multiplying the numerator and denominator of (8) by
√

(1 + cos θ)/2 and performing some basic

algebraic manipulations, we arrive at the quadratic equation for M(θ)

sin (θ) M(θ)2 − 2 [1 + cos (θ)] M(θ)− sin (θ) = 0, (9)

having roots

M(θ+)± =
(1 + cos (θ+))±

√

2 (1 + cos (θ+))

sin (θ+)
, (10)

corresponding to the metallic ratios (3) for 0 < θ+ < π/2.
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We can extend the domain of Theorem 1 by analytic continuation to 0 < θ+ < π as

sgn(sin (θ+/2)) = sgn(cos (θ+/2)) = 1 in this range. However, extending it further to −π < θ− < 0

we note that in this range sgn(sin (θ−/2)) = −1. Thus, the quadratic Equation (9) becomes

sin (θ−) M(θ−)2 + 2 [1 + cos (θ−)] M(θ−)− sin (θ−) = 0, (11)

and its roots are

M(θ−)± =
− (1 + cos (θ−))±

√

2 (1 + cos (θ−))
sin (θ−)

. (12)

Theorem 2. The metallic ratio of n ∈ R is defined by an angle −π < θ ≤ π.

Proof. Equating relations (3) and (10) and solving for n gives

n+ =
2 (1 + cos (θ+))

sin (θ+)
, (13)

for 0 < θ+ < π. This identity can also be obtained directly from the second property (4) applied to the

ratio (10). Solving the relation (13) for θ+ yields

n+ + 2i

n+ − 2i
= eiθ+ = cos θ+ + i sin θ+ =

a

c
+

b

c
i := z(n+), (14)

Similarly, applying the second property (4) to the ratio (12) gives

n− =
−2 (1 + cos (θ−))

sin (θ−)
, (15)

for −π < θ− < 0. Solving the relation (15) for θ− yields

n− − 2i

n− + 2i
= e−iθ− =

a

c
− b

c
i := z(n−) = z(n+), (16)

as a conjugate of the relation (14). The relations (14) and (16) remove the singularity of θ = lπ, l ∈ Z in

the relations (13), (15), and limn+→±∞ arg(z(n+)) = limn+→±∞ arg(z(n+)) = 0.

Equations (14) and (16) relate n± ∈ R which defines a metallic ratio (3) to the normalized complex

number z(n+). The angles θ+ = arg(z(n+)) and θ− = arg(z(n+)) are shown in Figure 4. There are

two axes of symmetry.
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Figure 4. Phases of the complex number z(n) (red, n+) and its conjugate z(n) (green, n−) for −7 ≤
n ≤ 7. θ(±2) = ±π/2, θ(0) = π.

In summary, metallic ratios as functions of θ are

M(θ±)± =
± (1 + cos (θ±))±

√

2 (1 + cos (θ±))
sin (θ±)

, (17)

where the first ± defines the range of θ and the second ± corresponds to positive or negative form

of the ratio. Therefore, the first and second properties (4) hold for M(θ±)−M(θ±)+ = −1 and

M(θ±)− + M(θ±)+ = n± but the third property (4) holds as −M(−θ±)± = M(θ±)±.

Figure 5 shows metallic ratios (10) and (12) as functions of −1.2π ≤ θ ≤ 1.2π, θ+ = arg(z(n+)),

and θ− = arg(z(n+)).

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 February 2024                   doi:10.20944/preprints202401.0551.v4

https://doi.org/10.20944/preprints202401.0551.v4


6 of 10

Figure 5. Metallic ratios: positive M(θ+)+ (red), negative M(θ+)− (green) as a function of −1.2π ≤
θ ≤ 1.2π (dotted), and θ = arg(z(n+)) (solid), and θ = arg(z(n+)) (positive: solid blue; negative: solid

cyan) for 0 ≤ n+ ≤ 2.2.

Theorem 3. For n ̸= {0,±2}, n ∈ Q, the triple {a, b, c} corresponding to the angle θ (14), (16) is a

Pythagorean triple.

Proof. Plugging rational n := l/m, m ̸= 0, l, m ∈ Z into the relation (14) gives

l2 − 4m2

l2 + 4m2
+

4lm

l2 + 4m2
i =

a

c
+

b

c
i, (18)

and a = l2 − 4m2, b = 4lm, c = l2 + 4m2, a, b, c ∈ Z is a possible solution. It is easy to see that

a2 + b2 = c2, which is valid ∀l, m ̸= 0 ∈ {R, I}. n = 0 implies l = 0 and a = −c = −4m2, b = 0;

n = ±2 implies l = ±2m and a = 0, b = ±8m2, c = 8m2.

Table 1 shows the generalized Pythagorean triples that define the metallic ratios for n =

{0.1, 0.2, . . . , 7}.
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Table 1. Pythagorean triples associated with metallic ratios for rational n = {0.1, 0.2, . . . , 7}.

n a b c n a b c

0.1 -399 40 401 3.6 28 45 53
0.2 -99 20 101 3.7 969 1480 1769
0.3 -391 120 409 3.8 261 380 461
0.4 -12 5 13 3.9 1121 1560 1921
0.5 -15 8 17 4 3 4 5
0.6 -91 60 109 4.1 1281 1640 2081
0.7 -351 280 449 4.2 341 420 541
0.8 -21 20 29 4.3 1449 1720 2249
0.9 -319 360 481 4.4 48 55 73
1 -3 4 5 4.5 65 72 97

1.1 -279 440 521 4.6 429 460 629
1.2 -8 15 17 4.7 1809 1880 2609
1.3 -231 520 569 4.8 119 120 169
1.4 -51 140 149 4.9 2001 1960 2801
1.5 -7 24 25 5 21 20 29
1.6 -9 40 41 5.1 2201 2040 3001
1.7 -111 680 689 5.2 72 65 97
1.8 -19 180 181 5.3 2409 2120 3209
1.9 -39 760 761 5.4 629 540 829
2 5.5 105 88 137

2.1 41 840 841 5.6 171 140 221
2.2 21 220 221 5.7 2849 2280 3649
2.3 129 920 929 5.8 741 580 941
2.4 11 60 61 5.9 3081 2360 3881
2.5 9 40 41 6 4 3 5
2.6 69 260 269 6.1 3321 2440 4121
2.7 329 1080 1129 6.2 861 620 1061
2.8 12 35 37 6.3 3569 2520 4369
2.9 441 1160 1241 6.4 231 160 281
3 5 12 13 6.5 153 104 185

3.1 561 1240 1361 6.6 989 660 1189
3.2 39 80 89 6.7 4089 2680 4889
3.3 689 1320 1489 6.8 132 85 157
3.4 189 340 389 6.9 4361 2760 5161
3.5 33 56 65 7 45 28 53

For n = {−7,−6.9, . . . ,−0.1} set b ↔ −b.

E.g. for n = −7, {45, 28, 53} ↔ {45,−28, 53}.

Theorem 4. For n̂ := n(n + 2)/(n + 1), n ∈ R the positive metallic ratio M(n̂)+ = n + 1.

Proof. Direct calculation of the defining relation (3) for n̂. Furthermore, n =
(

n̂ − 2 +
√

n̂2 + 4
)

/2.

For example, for n = 1, n̂ = 3/2, and M(n̂)+ = 2. The numerator sequence n(n + 2) is the OEIS

A005563 entry. For such n̂, Theorem 3 provides

k̂ := n + 1,

z := (k̂ + i)4,

a = Re(z) = k̂4 − 6k̂2 + 1 (OEIS A272870),

b = Im(z) = 4(k̂3 − k̂) (OEIS A272871),

c2 := a2 + b2,

c = ±(k̂4 + 2k̂2 + 1) c+ = OEIS A082044,

(19)
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shown in Figure 6. a and c are even and b is odd function of k̂ defined by the relation (19). We note that

n = −1, where a = ±1, b = 0, and c = ±1 is a dimension of the void, the empty set ∅, or (-1)-simplex.
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Figure 6. The triples {a, b, c} corresponding to the angle θ (14), (16) as functions of n =
(

n̂ − 2 ±
√

n̂2 + 4
)

/2. The positive metallic ratio M(n(n + 2)/(n + 1))+ = n + 1 for n ∈ R+.

3. Metallic Angles of a Real Number

We can extend the concept of metallic ratios (1) to angles as

n(2π − ϕ) + ϕ

2π − ϕ
=

2π − ϕ

ϕ
, (20)

where for n = 1 well known golden angle ϕ(1)− ≈ 2.4, shown in Figure 7, is obtained.

Figure 7. Golden angle ϕ(1)− = π(3 −
√

5).
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Solving the relation (20) for ϕ leads to the quadratic equation

nϕ(n)2
± − 2π(n + 2)ϕ(n)± + 4π2 = 0, (21)

having roots

ϕ(n)±
π

=
n + 2 ±

√
n2 + 4

n
, (22)

shown in Figure 8.
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Figure 8. Metallic angles (solid) and ratios (dotted), positive (red), negative (green), as continuous

functions of −10 ≤ n ≤ 10.

In this case, both their products and sums

ϕ(n)−ϕ(n)+
π2

=
4

n
,

ϕ(n)− + ϕ(n)+
π

= 2
n + 2

n
,

(23)

are dependent on n, where limn→±∞ ϕ(n)−ϕ(n)+ = 0 and limn→±∞ ϕ(n)− + ϕ(n)+ = 2π.

The positive metallic ratios (3) are equal to the positive metallic angles (22) for

n̂1 =
4π(π + 1)

2π + 1
≈ 7.1459, (24)

where

M(n̂1)+ = ϕ(n̂1)+ = 2π + 1 ≈ 7.2832, (25)
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the negative metallic ratios (3) are equal to the positive metallic angles (22) for

n̂2 =
−1 +

√
8π + 1

4π
−

√
8π + 1

2
− 1

2
≈ −2.7288, (26)

where

M(n̂2)− = ϕ(n̂2)+ =
−
√

8π + 1 − 1

2
≈ −3.0560, (27)

and the positive metallic ratios (3) are equal to the negative metallic angles (22) for

n̂3 =
−1 −

√
8π + 1

4π
+

√
8π + 1

2
− 1

2
≈ 1.5696, (28)

where

M(n̂3)+ = ϕ(n̂3)− =

√
8π + 1 − 1

2
≈ 2.0560. (29)

4. Conclusions

The positive golden ratio (3) and the negative golden angle (22) are observed in nature. In

flower petals, sunflowers and pinecones, tree branches, shells’ shapes, spiral galaxies, hurricanes,

reproductive dynamics, etc. But why has nature chosen n = 1 corresponding to the complex number

z(1) = (−3+ 4i)/5 (14) remains to be researched. We note that {3, 4, 5} forms the smallest Pythagorean

triple, which hints at the relation of such a nature’s choice to the second law of thermodynamics.

Acknowledgments: I thank my wife Magdalena Bartocha for her unwavering motivation and my friend, Renata
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