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Article 

Nonlinear Dynamics in HfO2/SiO2-Based Interface 
Dipole Modulation Field-Effect Transistors for 
Synaptic Applications  

Noriyuki Miyata 1 

National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan; 

nori.miyata@aist.go.jp 

Abstract: In the pursuit of energy-efficient spiking neural network (SNN) hardware, synaptic devices 

leveraging emerging memory technologies hold significant promise. This study investigates the application of 

the recently proposed HfO2/SiO2-based interface dipole modulation (IDM) memory for synaptic spike timing-

dependent plasticity (STDP) learning. Firstly, through pulse measurements of IDM metal-oxide-semiconductor 

(MOS) capacitors, we demonstrate that IDM exhibits an inherently nonlinear and near-symmetric response. 

Secondly, we discuss the drain current response of a field-effect transistor (FET) incorporating a multi-stack 

IDM structure, revealing its nonlinear and asymmetric pulse response, and suggest that the degree of the 

asymmetry depends on the modulation current ratio. Thirdly, to emulate synaptic STDP behavior, we 

implement double-pulse-controlled drain current modulation of IDMFET using a simple bipolar rectangular 

pulse. Additionally, we propose a double-pulse-controlled synaptic depression that is valuable for optimizing 

STDP-based unsupervised learning. Integrating the pulse response characteristics of     IDMFETs into a two-

layer SNN system for synaptic weight updates, we assess training and classification performance on 

handwritten digits. Our results demonstrate that IDMFET-based synaptic devices can achieve classification 

accuracy comparable to previously reported simulation-based results.  

Keywords: MOSFET; gate dielectrics; interface dipole; neuromorphic; spiking neural network 

 

1. Introduction 

Research on solid/solid interfaces is intricately connected to the evolution of semiconductor 

devices. Throughout the extensive history of semiconductor devices, substantial progress has been 

made in understanding the various interfaces that constitute these devices, such as 

metal/semiconductor, semiconductor/semiconductor, and oxide/semiconductor interfaces. In the 

development of MOSFETs, the fundamental building blocks of Si large integrated circuits, the 

interfacial electronic states, especially at the oxide/Si interface in the gate stack structure, are crucial 

elements influencing device operation and performance. Historically, the discovery of high-quality 

SiO2/Si interfaces formed by the thermal oxidation of silicon substrates around 1960 paved the way 

for the mass production manufacturing of CMOS integrated circuits [1,2]. In the 2000s, research 

institutions worldwide actively pursued the development of high-k gate dielectrics, accumulating 

knowledge about gate stacks containing various metal oxides [3,4]. The adoption of HfO2-based 

dielectrics in current state-of-the-art MOSFETs is a technological fruition of these research and 

development efforts [5]. In the 2010s, research on non-volatile memories based on MOSFETs 

incorporating high-k dielectrics experienced a significant surge [6,7]. Ferroelectric field-effect 

transistor (FeFET) memory, integrating ferroelectric materials into the gate stack, and conventional 

flash memory with high-k dielectrics garnered considerable attention [8,9]. The discovery of 

ferroelectric HfO2 in 2021 captured researchers' interest due to its excellent material compatibility 

with silicon semiconductor technology [10], driving continued active research and development for 

memory applications [11–14]. A notable recent research trend in FeFETs, similar to the purpose of 

this study, is the development of analog memories for neuromorphic applications [15,16]. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
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Research on dipole layers induced at dielectric/dielectric interfaces has primarily advanced for 

the purpose of controlling the threshold voltage of high-k MOSFETs [17,18]. It has been reported that 

a small dipole layer is formed at the HfO2/SiO2 interface used in this study [19,20]. Interfacial dipole 

modulation (IDM) memory was conceived based on the studies of such high-k gate stack structures, 

with the objective of inducing MOS threshold voltage shifts similar to FeFETs. The first reported IDM 

results were observed in a HfO2/SiO2 stack structure incorporating a 1 monolayer (ML) of TiO2, as 

depicted in Figure 1a [21]. A MOS capacitor with such a stack structure exhibits high-frequency C-V 

curve with small hysteresis, illustrated in Figure 1b. This phenomenon was elucidated by the 

alteration in the bonding state around the Ti atoms at the SiO2/HfO2 interface, causing a change in 

the potential difference (interfacial dipole) between SiO2 and HfO2. Subsequently, hard x-ray 

photoelectron spectroscopy studies of IDMMOS and IDM metal-insulator-metal structures have 

revealed changes in Ti oxidation states synchronized with memory operation, supporting the notion 

that the origin of IDM is the structural change around the interfacial Ti atoms [22,23]. As IDM 

operates at amorphous dielectric/dielectric interfaces, it does not necessitate high-temperature 

crystallization annealing, in contrast to ferroelectric HfO2, and has been verified even with low-

temperature annealing at around 300°C [24]. Furthermore, as shown in Figure 1c, the modulation 

operation exhibits a gradual change with respect to the applied voltage. This feature is also thought 

to originate from atomic-scale disorder at the amorphous dielectric/dielectric interface. The gradual 

threshold change is anticipated to be beneficial for analog operation in synaptic devices, as discussed 

later. On the other hand, the modulation range of HfO2/SiO2-based IDM is relatively small, up to 

about 0.33 V [21,24]. To extend the modulation range, a multilayered HfO2/SiO2 structure has been 

proposed. For example, an FET incorporating a multilayered IDM with six TiO2 modulation layers 

achieves a threshold voltage shift of over 1 V and a current change of over six orders of magnitude 

[21]. The pulse response characteristics of IDMFETs have been investigated, demonstrating stable 

and repetitive modulation. The authors believe that these characteristics make it suitable for use as a 

synaptic device in spiking neural networks and have conducted detailed measurements. This report 

presents the pulse response measurement of IDMMOS capacitors, explains the physical origin of their 

characteristics, and describes the current modulation of IDMFETs to verify their potential as synaptic 

devices in spiking neural networks. 

 

Figure 1. Basis of the interface dipole modulation (IDM) mechanism and MOS capacitor 

characteristics. (a) Proposed IDM mechanism for the HfO2/SiO2 interface with an atomically thin TiO2 

modulation layer. (b) High-frequency C-V curve of the HfO2/SiO2/n-Si IDMMOS capacitor displaying 

counterclockwise hysteresis. (c) Relationship between Vfb shift from the initial Vfb and the maximum 

and minimum Vg in C-V measurements. 

Energy-efficient neuromorphic computing hardware is a recent hot topic in the electronic 

memory device research field, and a variety of emerging-memory-based technologies have been 

proposed [25–27]. In particular, research on analog memory aimed at emulating biological synapses 

is active, and the realization of highly integrated synaptic devices is expected. One criterion for 

evaluating synaptic devices is the linearity of synaptic weight update characteristics. For example, in 

current mainstream of deep neural networks, good linearity in weight updates is preferred, and 
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increased nonlinearity leads to poor learning and inference performance [28,29]. Also, regarding the 

next generation AI technology, spiking neural networks (SNN), most studies show that linear weight 

updates are advantageous [30,31]. However, there is also the possibility of intentionally introducing 

nonlinear update dynamics to improve the performance of unsupervised SNN learning [32–34]. In 

SNN systems, illustrated in Figure 2a, spikes transmitted from presynaptic neurons undergo 

weighting through synapses before being input to the postsynaptic neuron [35,36]. In post-synaptic 

neurons, input spikes contribute to the rise in membrane potential, leading to output spikes when 

the membrane potential reaches a specific threshold according to leaky integrate-and-fire (LIF) 

dynamics. Spike timing-dependent plasticity (STDP) serves as a fundamental synaptic learning rule, 

updating synaptic weights based on the temporal difference between pre-synaptic and post-synaptic 

spikes. Numerous studies have explored STDP learning employing emerging memory devices, with 

a predominant focus on two-terminal resistive-switching memory due to its benefits in high-density 

integration [37,38]. Meanwhile, three-terminal memory devices like FET-type memory have garnered 

attention as synaptic devices capable of achieving concurrent STDP learning within a single device 

[39–41]. This study aims to achieve concurrent STDP in IDMFETs utilizing a straightforward spike 

waveform and operation approach. We apply the experimentally observed STDP-like responses of 

IDMFET to a simple SNN network and assess its suitability for unsupervised SNN learning. 

 

Figure 2. Illustration of spiking neuron model and network architecture for pattern recognition 

examined in this study. (a) Spike-based neuron model with leaky integrate-and-fire (LIF) dynamics 

and spike-timing-dependent plasticity (STDP) synaptic learning. (b) Network architecture where 

feature synapses are trained through an unsupervised learning based on the experimentally observed 

pulse responses of IDMFET. 

2. Materials and Methods 

2.1. Oxide Deposition and Device Fabrication 

The HfO2, TiO2, and SiO2 constituting the IDM stack structure were deposited in the same 

chamber by high-vacuum electron-beam (EB) evaporation method [42]. The thicknesses of HfO2 and 

SiO2 were estimated from calibrated deposition rates using transmission electron microscopy (TEM) 

and in-situ X-ray photoelectron spectroscopy (XPS). The modulation layer of TiO2, equivalent to 1 

ML, was determined based on in-situ XPS measurements of TiO2 deposition on the Si surface. 

Following the oxide deposition of the IDM stack, a post-deposition annealing (PDA) process was 

performed at 400°C for 30 minutes in an O2/Ar (~20%) atmosphere. Subsequently, a 50-nm-thick Ir 

layer was deposited onto the sample surface to serve as the gate electrode, using an EB deposition 

method. 

A 2-IDMMOS capacitor containing two TiO2 modulation layers was prepared for pulse response 

characterization. Using the high-vacuum EB evaporation method, the IDM oxide stack, comprising a 

3.5-nm-thick top HfO2 layer, a 1.8-nm-thick inner SiO2 layer, a 1.8-nm-thick inner HfO2 layer, and two 

1-ML TiO2 layers, was formed on an n-type Si(100) substrate covered with a thermally grown SiO2 
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layer approximately 5 nm thick. After the above PDA, Ir gate electrodes with a diameter of 200 μm 

were fabricated using a stencil mask method. 

The IDMFET was fabricated through a gate-last process [43]. Initially, n+ source/drain (S/D) 

regions were formed on a p-type Si(100) substrate using the ion implantation method, followed by 

the formation of an approximately 10-nm-thick thermally grown SiO2 layer. After etching the SiO2 

layer to 5 nm using diluted hydrofluoric acid, a multilayered HfO2/SiO2 IDM stack, comprising 6 TiO2 

modulation layers, was deposited using the high-vacuum EB evaporation method. This 6-IDM stack 

is composed of a 3.5-nm-thick top HfO2 layer, 1.8-nm-thick inner SiO2 layers, 1.8-nm-thick inner HfO2 

layers, and six 1-ML TiO2 layers. After the above PDA, a 50-nm-thick Ir layer was deposited, and 

subsequently, gate electrode patterns with a gate length of 1 μm and a gate width of 100 μm were 

formed using lithography and reactive-ion etching. 

2.2. Pulse Response Measurements of IDM Devices 

The pulse response characteristics of the IDMMOS capacitor were observed through a repeated 

sequence of a voltage pulse stimulus and a C-V measurement at 1 MHz. Negative voltage pulses to 

the gate electrode in this experiment failed to generate adequate minority carriers (holes) to create an 

inversion layer on the Si surface. Consequently, we could not obtain a sufficient oxide electric field 

compared to positive voltage pulses. To address this limitation, we intentionally generated holes near 

the Si surface by exposing the sample surface to light [21,24]. In such cases, it becomes imperative to 

maintain a relatively wide pulse width, considering the hole diffusion process from the electrode-

uncovered Si region to the Si region beneath the gate electrodes. In this experiment, a pulse width of 

20 msec was employed. 

The pulse response measurement of the IDMFET was conducted using a repeated sequence of a 

voltage pulse stimulus and drain current (Id) measurements with Vds=50 mV [21,44]. For comparison, 

the DC drain current–gate voltage (Id-Vg) curves were also measured with Vds=50 mV. Furthermore, 

to emulate the synaptic STDP behavior, two voltage waveforms with a time difference were applied 

to the gate and drain electrodes of IDMFET. A repeated sequence of this double-pulse-controlled 

stimulus and Id measurement was performed. The detail of voltage waveforms are described below. 

2.3. SNN Architecture for Pattern Recognition 

A simple two-layer feedforward network with 784 neurons in the input layer, N neurons in the 

hidden layer (where N is a variable), and 10 neurons in the output layer was utilized to perform 

training and classification tasks on the MNIST handwritten digits dataset [45], as shown in Figure 2b. 

Spike-based temporal processing optimized for experimentally observed responses of the IDMFETs 

was implemented, referencing a computationally efficient simplified model proposed by Iakymchuk 

et al. [46]. In the input neurons, 28×28 pixels with 256 gray levels were transformed into 784 spike 

trains with a frequency range from 200 Hz to 1.25 kHz. These spikes were then transmitted to the 

hidden neurons through feature synapses, thereby raising the membrane potentials of the neurons. 

The hidden neurons operate on a LIF model with dynamic threshold adjustments and a 10 msec 

refractory period, generating output spikes when their membrane potential exceeds a certain 

threshold. Additionally, a winner-take-all (WTA) competitive algorithm was implemented through 

lateral inhibition in the hidden layer neurons. 

The STDP weight update of the feature synapse was performed based on the time difference 

between the pre-synaptic spike and the post-synaptic spike, with the time delay from post-synaptic 

spike firing to reaching the synapse set to 80 μsec. Furthermore, to stabilize unsupervised learning, 

an additional weight depression function, independent of the input neuron's frequency and referred 

to as frequency-independent depression (FID), was introduced for all synapses undergoing STDP. 

Through the above procedure, the feature synapses acquire characteristics of the input images 

through unsupervised learning. Additionally, the classification synapses update weights through 

supervised learning based on STDP to associate the hidden neurons with the output neurons. These 

synaptic learning processes enable the entire network to function as a pattern classifier. 60,000 MNIST 
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images were used for synaptic learning, and 10,000 images were used to evaluate classification 

accuracy. 

3. Results and Discussion 

3.1. Pulse Response of IDM MOS Capacitors 

The pulse response characteristic of the IDMMOS capacitor, illustrated in Figure 3a, indicates 

that the flat-band voltage (Vfb) undergoes stable positive and negative shifts in response to the voltage 

polarity switch every 50 pulses. Here, the Vfb shift from the initial Vfb (ΔVfb) were plotted. Both 

positive and negative Vfb shifts display obvious nonlinear responses, exhibiting substantial changes 

immediately after the polarity switch and gradual suppression in the amount of change as the pulse 

count increases. Utilizing the approximation formula for nonlinear characteristics [47,48], the 

estimated nonlinear parameter γ for both positive and negative Vfb shifts is approximately 6, 

indicating a nearly symmetrical response. The pulse voltage (Vp) dependence illustrated in Figure 3b 

indicates an increase in modulation amplitude and γ with the rise in Vp, as depicted in Figure 3c. As 

a result, IDMs exhibit inherently nonlinear and near-symmetric responses, and the degree of 

nonlinearity varies depending on the operating conditions, making it necessary to consider these 

specific characteristics in synaptic applications. 

 

Figure 3. Pulse response of IDMMOS capacitor with two TiO2 modulation layers. (a) Cyclic 

characteristics of flat-band voltage (Vfb) shifts, showing stable modulation amplitude and nonlinear 

characteristics. (b) Dependence of Vfb modulation characteristics on pulse voltage (Vp). (c) Impact of 

Vp on modulated Vfb shifts and nonlinear parameters (ν+ and ν−). 

Next, we delve into the reasons behind the nonlinear response. The Vp-dependent Vfb shift in 

Figure 3b incorporates information about both the IDM interface state and response characteristics, 

which is useful for analyzing their relationship. ΔVfb on the y-axis corresponds to the strength of the 

interface dipoles, as shown in Figure 1a. Here, we assumed that the unit dipole switches between two 

states: large and small. In this scenario, the maximum Vfb shift occurs when all the unit dipoles at the 

HfO2/SiO2 interface switch due to the electric field, and under the opposite electric field, the opposite 

maximum Vfb shift occurs when all the unit dipoles switch to the opposite state. Additionally, the 

maximum modulation width of the 2-IDM structure is 0.66 V, as previously reported. In this context, 

the ratio of un-switched unit dipoles, that is, switchable unit dipoles, is defined as θD. In the following 

discussion, θD was estimated from the experimentally obtained ΔVfb based on the above assumptions. 

On the other hand, the modulation rate, dVfb/dt (V/sec), can be estimated from the ΔVfb shift per 

pulse, and the oxide electric field Eox (V/cm) can be estimated from the relationship between the ideal 

C-V curve of the MOS structure and Vp. Consequently, we can establish the relationship between 

dVfb/dt and Eox as shown in Figure 4a. It is essential to note that even if the switching rate of the unit 

dipole is constant, the modulation rate varies depending on θD. For instance, a change in θD from 

θD=0.5 to θD=0.65 or θD=0.35 predicts the characteristics (I) and (II) in Figure 4a. However, 

experimental results indicate more significant changes that cannot be explained by a simple θD 

difference. 
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Figure 4. Pulse response characteristics and IDMMOS capacitor and origin of nonlinear response. (a) 

Dependence of the rate of Vfb shifts (dVfb/dt) on the ratio of switchable unit dipoles (θD) observed for 

positive Vfb shifts. (I) and (II) depict the estimated ideal dVfb/dt for θD=0.65 and 0.35, respectively. (b) 

and (c) θD dependence of zero-field effective activation energy (∆𝐻𝐻0∗) and effective dipole moment 

(peff) for positive and negative Vfb shifts, respectively. 

The experimentally obtained dVfb/dt is considered to be proportional to the number of 

switchable unit dipoles. Therefore, the following relationship can be predicted: dV/dt=ΔVmax·k·θD, 

where ΔVmax is the maximum Vfb modulation of 0.66 V, and k is the reaction rate of dipole modulation  

(s-1), expressed by the following equation [21]: 𝑘𝑘 = 𝑣𝑣0𝑒𝑒𝑒𝑒𝑒𝑒 �− ∆𝐻𝐻0∗−𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝐸𝐸𝑘𝑘𝐵𝐵𝑇𝑇 �      (1), 

where, 𝜐𝜐0 is the molecular vibrational frequency, typically on the order of ~1013 (s-1). T and kB 

are the temperature (K) and Boltzmann’s constant, respectively. From these relationships and the 

experimentally obtained Eox-dependence, we can estimate the zero-field activation energy ∆𝐻𝐻0∗ (eV) 

and the effective dipole moment peff (eÅ) for each θD. The θD dependence of ∆𝐻𝐻0∗ and peff for positive 

ΔVfb shifts is summarized in Figure 4b, and the results estimated by the same analysis for negative 

ΔVfb shifts were shown in Figure 4c. We can find that, for both cases, both ∆𝐻𝐻0∗ and peff increase when 

θD falls below 0.5. Here, peff reflects structural features such as chemical bonding configuration, and ∆𝐻𝐻0∗ is the energy barrier for structural changes [50,51]. In other words, the bonding configuration 

contributing to IDM varies depending on θD. It has been proposed that IDM is caused by changes in 

the chemical bonding around the interface Ti atom, and a similar primitive pulse measurement to 

this study suggested that ∆𝐻𝐻0∗ is close to that corresponding to the breakage of the Ti-O bond [21]. 

On the other hand, studies on the dielectric breakdown of gate dielectrics have reported that electric 

field-induced chemical bond breakage is sensitive to local bonding configuration [50,51]. Since IDM 

occurs at an amorphous oxide interface, it is natural that there are variations in bond length and bond 

angle in the chemical bonds of interfacial Ti atoms. Therefore, it is reasonable to assume that the 

initial structural change starts from the bonding with low ∆𝐻𝐻0∗. In addition, there is a possibility that 

the structural change itself affects approximate bonding; that is, IDM itself leads to structural 

variations with higher ∆𝐻𝐻0∗. From the above experimental results and considerations, we conclude 

that the nonlinearity in IDM response is an unavoidable feature caused by the amorphous oxide 

interface. 

3.2. Pulse Response of IDMFETs 

We can easily predict that converting the threshold voltage (Vth) shift induced by the IDM into 

a change in the channel current of the FET will result in a response characteristic that is different from 

the IDM response, since the channel current-gate voltage relationship of the FET is not ideally linear. 

That is, general Id-Vg characteristics include at least a linear region and a sub-threshold region [52], 

representing the coexistence of linear and exponential responses. Before describing the synaptic 

characteristics of the IDMFET, we will briefly discuss the fundamental DC Id-Vg curve and pulse-

induced Id change. The DC Id-Vg curves shown in Figure 5a indicate that approximately 1 V hysteresis 

takes place with a sweeping voltage range of ±4.5 V. To convert the IDM-induced Vth shift into Id 
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change, it is suitable to use the read Vg within this hysteresis range. Here, the sub-threshold swing 

was estimated to be approximately 100 mV/decade, suggesting that the Id change caused by a 0.1-V 

Vth shift is expected to be an order of magnitude current change. 

 

Figure 5. Pulse-induced drain current (Id) change of IDMFET. (a) DC Id–Vg hysteresis curve and Id 

modulation amplitude measured under various read gate voltage conditions (I)-(III). (b) Pulse-

induced Id changes with a pulse voltage (Vp) of ±5.4 V. Estimated nonlinear parameters for Id increase 

(ν+) and Id decrease (ν−) are shown. (c) Impact of Vp on nonlinear asymmetric Id responses observed 

under read conditions (II) in (a). (d) Vp dependence of ν+, ν−, and the ratio of ν+/ν− under various read 

conditions. (e) Correlation between asymmetric characteristics, ν+/ν−, and the ratio of maximum to 

minimum drain current (Imax/Imin). 

The amplitudes of the Id modulations marked as (I), (II), and (III) in Figure 5a represent the pulse-

induced Id changes observed under different readout Vg voltages and the same pulse conditions. 

Here, the pulse voltage (Vp) and pulse width (tp) were set to ±5.4 V and 800 μs, respectively, and the 

Vp polarity was switched every 300 pulses. The changes in the pulse response characteristics (I), (II), 

and (III) shown in Figure 5b exhibit that the Id increase and decrease exhibit opposite behavior 

regarding nonlinearity. As for the Id increase, (I) exhibits a nonlinear response, (II) approaches linear 

response, and (III) shows an inverted nonlinear response, exhibiting that the nonlinear coefficient (ν+) 

changes from positive to negative. Regarding the Id decrease, the nonlinear coefficient (ν−) is always 

positive, and the nonlinearity becomes stronger in the order of (I), (II), and (III). On the other hand, 

even with the same read Vg, the nonlinearity changes significantly depending on the pulse voltage 

Vp [Figure 5c,d]. In the lower graph of Figure 5d, we present the ratio of the nonlinear parameters for 

Id increase and decrease (ν+/ν−) as an indicator of asymmetry. Here, approaching ν+/ν− to 1 indicates 

proximity to symmetric response, and smaller Vp values have better symmetry. In summary, the 

nonlinearity and asymmetry of IDMFET exhibit complex behavior dependent on read and pulse 

conditions. A summary of the ν+/ν− ratios measured under various conditions [Figure 5e] shows that 

the general tendency is that asymmetry becomes stronger when aiming for a large current ratio 

(Imax/Imin). This implies that simultaneously, the nonlinearity of the Id decrease becomes stronger. 

The above behavior regarding the nonlinearity and asymmetric response can be roughly 

understood in terms of basic FET operation as follows. We can easily understand that when the Id 

modulation is in the linear region or sub-threshold region with a sufficiently small Imax/Imin ratio, the 
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nonlinear and near-symmetric IDM characteristics are directly reflected in the Id response. On the 

other hand, when Imax/Imin is large and the device is operating in the sub-threshold region, even if the 

Vth shift is constant, the smaller the current, the smaller the absolute Id change will be exponentially. 

That is, in the characteristic of the Id increase, IDMFET is insensitive to Vth shift in the initial stage and 

gradually becomes sensitive, so the nonlinear characteristics are weakened. Conversely, in the 

characteristic of the Id decrease, IDMFET is sensitive to Vth shift in the initial stage and gradually 

becomes insensitive, so the nonlinearity of FET operation is further superimposed on the nonlinear 

IDM response. It is easy to predict that a similar effect will occur even when Imax/Imin is large and the 

Id modulation straddles the linear and sub-threshold regions. The ultimate goal of this study is to 

verify whether such nonlinear and asymmetric IDMFET response can be applied to STDP learning. 

3.3. Double-Pulse-Controlled Synaptic Operation of IDMFETs 

To update Id of IDMFETs based on the time difference between pre- and post-synaptic spikes, 

akin to synaptic weight (w) updates in biological STDPs, it is crucial to carefully choose the pre-spike 

and post-spike waveforms. However, for compatibility with the digital circuits responsible for 

neuron information processing, it is preferable to avoid complex waveforms as much as possible. We 

adopted a simple bipolar rectangular waveform, as shown in Figure 6a. Pre- and post-synaptic spikes 

have waveforms of the same voltage (VSTDP) and pulse width (tSTDP) with a time difference Δt. 
Assuming that a superimposed waveform of pre-synaptic and post-synaptic spikes is applied to the 

gate stack structure, Id modulation is expected to depend on Δt, because the period during which a 
voltage twice VSTDP is applied coincides with Δt. Here, the application period of VSTDP also changes, 

but since IDM has an exponential response to Eox, it is expected that it can be ignored by setting an 

appropriate VSTDP. Figure 6b shows the measurement results in which the sign of Δt alternates every 
500 spikes. An increase in Id is observed at +Δt, and a decrease in Id at −Δt, indicating the expected 
STDP-like response. This means that synaptic potentiation occurs when a post spike is input after a 

pre spike is input, and synaptic depression occurs at the opposite timing. Furthermore, as Δt 
approaches 200 μsec of tSTDP, the amplitude of the Id modulation increases, which is a characteristic 

predicted from the above waveform superposition. On the other hand, we also find that STDP 

operation exhibits obvious nonlinear and asymmetric potentiation/depression properties. For 

example, at Δt=±200 μsec, the ν+/ν− ratio was estimated to be 0.2, showing similar asymmetry to the 

previously discussed single-pulse IDMFET response. 

 

Figure 6. Double-pulse-controlled STDP operation with a bipolar rectangular waveform. (a) 

Concurrent STDP drain current (Id) modulation scheme of IDMFET based on the interaction of pre- 

and post-synaptic waveforms. (b) Demonstration of STDP-like Id modulation. Id changes depend on 

the spike timing difference (Δt), and nonlinear characteristics persist even during STDP operation. 
ΔVSTDP waveforms, estimated from the difference between the pre- and post-synaptic waveforms for 

set Δt conditions, are shown as insets. 

In order to determine whether the pulse-timing-dependent Id modulation obtained from the 

IDMFET can be applied to STDP learning, we need to discuss based on the different Δt responses 
acquired within the same Id range. Therefore, we performed a similar double-pulse measurement 
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that restricted the Id range, where the sign of Δt is reversed, when Id exceeds the range of 0.8 to 3.0 

μA. Figure 7a presents the comparison of response characteristics for Δt=±200 μs and ±100 μs. We can 
see that for the latter, more pulses are required for Δt sign reversal compared to the former. Both 
results exhibit asymmetric response characteristics, and Δt does not approximately affect the ν+/ν− 

ratio. The ΔId-Id characteristics in Figure 7b can be obtained by converting the measured pulse-

induced Id change into an Id change for each pulse (ΔId). Here, we can find the impact of the 

asymmetry response. Regarding Id increase, a slight ΔId value persists even as Id approaches 3 μA. 

However, in the case of Id decrease, ΔId approaches zero more closely as Id approaches 0.8 μA. The 

experimentally obtained ΔId-Id data were fitted with an approximate equation: ΔId= α(Id−I0)+β(Id−I0)γ, 
where α, β, γ, and I0 are constants. In the simulation study described later, the approximate equation 

of ΔId-Id data was converted to the synaptic weight, w, in the w range of 0-0.8. The Δw-Δt 
characteristics of STDP shown in Figure 7c are the result converted from the experimentally obtained 

ΔId-Id data, revealing a significant impact of the nonlinear and asymmetric IDMFET response. Under 

conditions where w is close to zero, potentiation is larger than depression, reaching an equilibrium 

of potentiation/depression around w=0.4. As w increases further, depression becomes more 

prominent. In the following simulations, these nonlinear and asymmetric STDP characteristics are 

applied to unsupervised pattern learning. 

 

Figure 7. Double-pulse-induced Id modulation observed within a current range limited to 3.0-0.8 μA. 

(a) Characteristics of STDP Id modulation observed for Δt=±200 μsec and Δt=±100 μsec. (b) ΔId-Id 

characteristics derived from STDP Id modulation data, with solid lines representing fitting curves. (c) 

Δw-Δt characteristics converted from measured ΔId-Id showing nonlinear and asymmetric STDP 

responses of IDMFET. (d) Variation of Δw for STDP response of IDMFET with Δt=±200 μsec from 
fitting curves (Δw0). (e) Δw-w characteristics derived from double-pulse-induced Id response with 

unipolar rectangular waveforms, which were utilized as a frequency independent depression (FID) 

synaptic update. 

On the other hand, an obvious variation is observed in the experimental ΔId-Id data in Figure 7b. 

Figure 7d illustrates the difference between the approximation curve and measured data across the 

entire Id range for the Δt=±200 μsec measurement. The origin of this variation contains fluctuations 
of the IDM device itself and measurement system noise. Regarding the former, the fluctuation of the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 January 2024                   doi:10.20944/preprints202401.0475.v1

https://doi.org/10.20944/preprints202401.0475.v1


 10 

 

IDM response itself and other Vth fluctuations such as the oxide carrier trap may contribute. In the 

subsequent simulations, STDP incorporating the distribution of observed variations is applied. 

In general, SNN learning requires an additional w update function that differs from STDP, for 

example, to set initial w values and to optimize and adjust the synaptic learning conditions. In this 

study, an additional w update of FID is applied to adjust the STDP-based unsupervised learning, as 

described above. We propose a two-pulse controlled modulation, as shown in the inset of Figure 7e, 

which is highly compatible with our STDP operation. Positive and negative voltage pulses, serving 

as pre- and post-synaptic spikes, are inputted to the IDMFET, inducing the w depression as shown in 

Figure 7e. The depression effect becomes stronger with the increase in pulse voltage (VFID) across all 

w ranges. This depression characteristic is incorporated into SNN simulations using the same 

approximate equation as the STDP characteristics. 

3.4. Unsupervised Synaptic Learning Based on IDMFET Characteristics 

First, let's examine how unsupervised learning, combining STDP and FID, operates using a 

network with N=100 as an example. In this simulation, when a hidden layer neuron fires, the synapses 

connected to it are updated by STDP, and subsequently, FID is applied to all synapses that underwent 

STDP (100% FID). For STDP, we utilized the approximate curve obtained from measurements at 

VSTDP=3.5 V, and for FID, the approximate curve with VFID varied in the range of 3.15 to 3.5 V was 

employed. Random variations from the distributions estimated by the measurements were 

incorporated into both STDP and FID. The training dynamics in Figure 8a show the average 

classification accuracy over 10 training/classification cycles, with the shaded area indicating the 

spread between the maximum and minimum values. In comparison to the result at VFID=3.2 V, a 

higher VFID of 3.5 V reaches maximum accuracy faster, but subsequently experiences more significant 

accuracy degradation and fluctuates. Here, the number of training images required to reach 90% of 

the maximum average accuracy is defined as learning efficiency (η). While VFID does not significantly 

affect the maximum accuracy (Figure 8b), a noticeably larger VFID is advantageous for learning 

efficiency (Figure 8c). This is presumed to be due to a larger VFID enhancing the WTA effect, 

suppressing the probability of overlapping different digit patterns. However, as VFID increases, the 

robustness deteriorates after reaching the maximum accuracy, as shown in Figure 8a, suggesting that 

a large VFID degrades the information of the pattern once learned. Based on the characteristics of the 

IDMFET obtained in this experiment, VFID around 3.2 V is considered a balanced and favorable 

condition. 

From the perspective of reducing calculation costs, it is advantageous to minimize the number 

of FIDs. Figure 8a illustrates the training dynamics of randomly inducing FID pulses with a 50% 

probability, demonstrating that both the maximum accuracy and learning efficiency are degraded 

compared to those of the 100% FID. As depicted in Figure 8b,c, no clear benefit was found from the 

results of VFID dependence either. We also investigated various FID probabilities and concluded that 

FID is always required after STDP. This result suggests that FID is effective for properly operating 

WTA and accumulating training patterns' information in appropriate synapses. It is worth 

mentioning that previously reported studies on STDP-based unsupervised learning did not 

incorporate additional pulses such as FID [32–34,37–41]. This difference is presumed to be due to the 

difference in spike waveforms. Generally, more complex spike waveforms are employed to balance 

potentiation and depression during STDP, for example, spike waveforms include triangle waves and 

different positive/negative shapes, voltages, and widths. In this study, emphasis was placed on the 

simplicity of spike waveforms and concurrent STDP learning. An important result of this study is 

that we were able to achieve efficient unsupervised learning by combining additional FIDs within 

these constraints. 
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Figure 8. Demonstration of SNN pattern recognition using IDMFET-based STDP and FID synaptic 

updates. (a) Simulated training dynamics for N=100 hidden neurons. Comparison of 100% FID spike 

probability conditions with VFID=3.5 V and 3.2 V. Additionally, the 50% FID spike probability 

condition with VFID=3.5 V is presented. (b) Impact of VFID on maximum accuracy. (I) and (II) show the 

results for the 100% FID spike probability condition with and without variations in the IDMFET 

response, respectively, and (III) show the results for the 50% FID spike probability condition. (c) VFID 

dependence of learning efficiency (η), where η is defined as the number of training images reaching 
90% of the maximum accuracy. (d) Training dynamics performed for different N networks. (e) 

Dependence of accuracy on N, including relevant references (refs. [32–34]) for comparison. 

Next, we briefly mention the impact of the variation of IDMFETs. The training and classification 

calculation without the variation was also performed, but there are no significant differences in 

classification accuracy and learning efficiency (Figure 8b,c). We performed similar calculations with 

a wider distribution than the experimentally observed variation of IDMFETs and found a decline in 

learning performance. For example, if the variation is 10 times wider than those of IDMFETs, the 

maximum accuracy drops to 70 %. This means that while the current level of variation is acceptable, 

devices with excessive variation should be treated with caution.  

Finally, let's discuss the impact of the feature neuron size. Figure 8e illustrates training dynamics 

for different values of N, calculated at VFID=3.25 V. Increasing N results in a decrease in learning 

efficiency due to the increased number of synapses to be learned, where we found a proportional 

relationship of η=68×N. On the other hand, increasing N can improve classification accuracy, as 

shown in Figure 8e, in which the previously reported accuracy data deduced by similar networks 

with STDP-based unsupervised learning were compared [32–34]. It is important to note that previous 

studies were not related to the device characteristics or are not based on the actual device dynamics. 

It is evident that even with the STDP characteristics of IDMFET, introducing suitable FID operations 

can achieve accuracy equivalent to conventional SNN. Based on these results, IDMFET is considered 

a promising candidate as a synaptic device for unsupervised SNN learning. Particularly noteworthy 

is the fact that, in typical SNN systems, the number of synapses is orders of magnitude larger than 

that of neurons; therefore, the implementation of high-density synaptic devices using IDMFETs is 

expected to be highly effective. 
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4. Conclusions 

The HfO2/SiO2-based IDMFETs exhibit nonlinear and asymmetric dynamics of pulse-induced Id 

modulation, associated with the superimposition of inherent nonlinear and near-symmetric IDM 

response and FET operation characteristics. STDP-like spike-timing-dependent double-pulse-

controlled Id modulation of IDMFETs can be demonstrated, showing nonlinear and asymmetric 

weight update dynamics. We propose a timing-independent double-pulse-controlled Id depression 

of IDMFETs as an additional FID weight update for SNN to optimize unsupervised STDP learning. 

The training and classification of handwritten digits with a two-layer SNN, leveraging the 

experimentally observed STDP and FID characteristics, reveals the effectiveness of IDMFET synaptic 

devices for unsupervised learning in SNN.  
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