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Abstract: In the pursuit of energy-efficient spiking neural network (SNN) hardware, synaptic devices
leveraging emerging memory technologies hold significant promise. This study investigates the application of
the recently proposed HfO/SiOz-based interface dipole modulation (IDM) memory for synaptic spike timing-
dependent plasticity (STDP) learning. Firstly, through pulse measurements of IDM metal-oxide-semiconductor
(MOS) capacitors, we demonstrate that IDM exhibits an inherently nonlinear and near-symmetric response.
Secondly, we discuss the drain current response of a field-effect transistor (FET) incorporating a multi-stack
IDM structure, revealing its nonlinear and asymmetric pulse response, and suggest that the degree of the
asymmetry depends on the modulation current ratio. Thirdly, to emulate synaptic STDP behavior, we
implement double-pulse-controlled drain current modulation of IDMFET using a simple bipolar rectangular
pulse. Additionally, we propose a double-pulse-controlled synaptic depression that is valuable for optimizing
STDP-based unsupervised learning. Integrating the pulse response characteristics of IDMFETs into a two-
layer SNN system for synaptic weight updates, we assess training and classification performance on
handwritten digits. Our results demonstrate that IDMFET-based synaptic devices can achieve classification
accuracy comparable to previously reported simulation-based results.

Keywords: MOSFET; gate dielectrics; interface dipole; neuromorphic; spiking neural network

1. Introduction

Research on solid/solid interfaces is intricately connected to the evolution of semiconductor
devices. Throughout the extensive history of semiconductor devices, substantial progress has been
made in understanding the various interfaces that constitute these devices, such as
metal/semiconductor, semiconductor/semiconductor, and oxide/semiconductor interfaces. In the
development of MOSFETSs, the fundamental building blocks of Si large integrated circuits, the
interfacial electronic states, especially at the oxide/Si interface in the gate stack structure, are crucial
elements influencing device operation and performance. Historically, the discovery of high-quality
Si0:/Si interfaces formed by the thermal oxidation of silicon substrates around 1960 paved the way
for the mass production manufacturing of CMOS integrated circuits [1,2]. In the 2000s, research
institutions worldwide actively pursued the development of high-k gate dielectrics, accumulating
knowledge about gate stacks containing various metal oxides [3,4]. The adoption of HfO:-based
dielectrics in current state-of-the-art MOSFETs is a technological fruition of these research and
development efforts [5]. In the 2010s, research on non-volatile memories based on MOSFETs
incorporating high-k dielectrics experienced a significant surge [6,7]. Ferroelectric field-effect
transistor (FeFET) memory, integrating ferroelectric materials into the gate stack, and conventional
flash memory with high-k dielectrics garnered considerable attention [8,9]. The discovery of
ferroelectric HfO2 in 2021 captured researchers' interest due to its excellent material compatibility
with silicon semiconductor technology [10], driving continued active research and development for
memory applications [11-14]. A notable recent research trend in FeFETSs, similar to the purpose of
this study, is the development of analog memories for neuromorphic applications [15,16].
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Research on dipole layers induced at dielectric/dielectric interfaces has primarily advanced for
the purpose of controlling the threshold voltage of high-k MOSFETs [17,18]. It has been reported that
a small dipole layer is formed at the HfO»/SiO: interface used in this study [19,20]. Interfacial dipole
modulation (IDM) memory was conceived based on the studies of such high-k gate stack structures,
with the objective of inducing MOS threshold voltage shifts similar to FeFETs. The first reported IDM
results were observed in a HfO2/SiO2 stack structure incorporating a 1 monolayer (ML) of TiOz, as
depicted in Figure 1a [21]. A MOS capacitor with such a stack structure exhibits high-frequency C-V
curve with small hysteresis, illustrated in Figure 1b. This phenomenon was elucidated by the
alteration in the bonding state around the Ti atoms at the SiO2/HfO: interface, causing a change in
the potential difference (interfacial dipole) between SiO: and HfO:. Subsequently, hard x-ray
photoelectron spectroscopy studies of IDMMOS and IDM metal-insulator-metal structures have
revealed changes in Ti oxidation states synchronized with memory operation, supporting the notion
that the origin of IDM is the structural change around the interfacial Ti atoms [22,23]. As IDM
operates at amorphous dielectric/dielectric interfaces, it does not necessitate high-temperature
crystallization annealing, in contrast to ferroelectric HfOz, and has been verified even with low-
temperature annealing at around 300°C [24]. Furthermore, as shown in Figure 1c, the modulation
operation exhibits a gradual change with respect to the applied voltage. This feature is also thought
to originate from atomic-scale disorder at the amorphous dielectric/dielectric interface. The gradual
threshold change is anticipated to be beneficial for analog operation in synaptic devices, as discussed
later. On the other hand, the modulation range of HfO:/5iOz-based IDM is relatively small, up to
about 0.33 V [21,24]. To extend the modulation range, a multilayered HfO2/SiO: structure has been
proposed. For example, an FET incorporating a multilayered IDM with six TiO2 modulation layers
achieves a threshold voltage shift of over 1 V and a current change of over six orders of magnitude
[21]. The pulse response characteristics of IDMFETs have been investigated, demonstrating stable
and repetitive modulation. The authors believe that these characteristics make it suitable for use as a
synaptic device in spiking neural networks and have conducted detailed measurements. This report
presents the pulse response measurement of IDMMOS capacitors, explains the physical origin of their
characteristics, and describes the current modulation of IDMFETs to verify their potential as synaptic
devices in spiking neural networks.
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Figure 1. Basis of the interface dipole modulation (IDM) mechanism and MOS capacitor
characteristics. (a) Proposed IDM mechanism for the HfO2/SiO: interface with an atomically thin TiO2
modulation layer. (b) High-frequency C-V curve of the HfO2/SiO2/n-Si IDMMOS capacitor displaying
counterclockwise hysteresis. (c) Relationship between Va shift from the initial Vs and the maximum
and minimum Vg in C-V measurements.

Energy-efficient neuromorphic computing hardware is a recent hot topic in the electronic
memory device research field, and a variety of emerging-memory-based technologies have been
proposed [25-27]. In particular, research on analog memory aimed at emulating biological synapses
is active, and the realization of highly integrated synaptic devices is expected. One criterion for
evaluating synaptic devices is the linearity of synaptic weight update characteristics. For example, in
current mainstream of deep neural networks, good linearity in weight updates is preferred, and
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increased nonlinearity leads to poor learning and inference performance [28,29]. Also, regarding the
next generation Al technology, spiking neural networks (SNN), most studies show that linear weight
updates are advantageous [30,31]. However, there is also the possibility of intentionally introducing
nonlinear update dynamics to improve the performance of unsupervised SNN learning [32-34]. In
SNN systems, illustrated in Figure 2a, spikes transmitted from presynaptic neurons undergo
weighting through synapses before being input to the postsynaptic neuron [35,36]. In post-synaptic
neurons, input spikes contribute to the rise in membrane potential, leading to output spikes when
the membrane potential reaches a specific threshold according to leaky integrate-and-fire (LIF)
dynamics. Spike timing-dependent plasticity (STDP) serves as a fundamental synaptic learning rule,
updating synaptic weights based on the temporal difference between pre-synaptic and post-synaptic
spikes. Numerous studies have explored STDP learning employing emerging memory devices, with
a predominant focus on two-terminal resistive-switching memory due to its benefits in high-density
integration [37,38]. Meanwhile, three-terminal memory devices like FET-type memory have garnered
attention as synaptic devices capable of achieving concurrent STDP learning within a single device
[39—41]. This study aims to achieve concurrent STDP in IDMFETs utilizing a straightforward spike
waveform and operation approach. We apply the experimentally observed STDP-like responses of
IDMFET to a simple SNN network and assess its suitability for unsupervised SNN learning.
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Figure 2. Illustration of spiking neuron model and network architecture for pattern recognition
examined in this study. (a) Spike-based neuron model with leaky integrate-and-fire (LIF) dynamics
and spike-timing-dependent plasticity (STDP) synaptic learning. (b) Network architecture where
feature synapses are trained through an unsupervised learning based on the experimentally observed
pulse responses of IDMFET.

2. Materials and Methods

2.1. Oxide Deposition and Device Fabrication

The HfO2, TiOz, and SiO: constituting the IDM stack structure were deposited in the same
chamber by high-vacuum electron-beam (EB) evaporation method [42]. The thicknesses of HfO: and
SiO:2 were estimated from calibrated deposition rates using transmission electron microscopy (TEM)
and in-situ X-ray photoelectron spectroscopy (XPS). The modulation layer of TiO:, equivalent to 1
ML, was determined based on in-situ XPS measurements of TiO: deposition on the Si surface.
Following the oxide deposition of the IDM stack, a post-deposition annealing (PDA) process was
performed at 400°C for 30 minutes in an Oz/Ar (~20%) atmosphere. Subsequently, a 50-nm-thick Ir
layer was deposited onto the sample surface to serve as the gate electrode, using an EB deposition
method.

A 2-IDMMOS capacitor containing two TiO2 modulation layers was prepared for pulse response
characterization. Using the high-vacuum EB evaporation method, the IDM oxide stack, comprising a
3.5-nm-thick top HfO:z layer, a 1.8-nm-thick inner SiO2 layer, a 1.8-nm-thick inner HfO2 layer, and two
1-ML TiO: layers, was formed on an n-type Si(100) substrate covered with a thermally grown SiO2


https://doi.org/10.20944/preprints202401.0475.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 January 2024 do0i:10.20944/preprints202401.0475.v1

layer approximately 5 nm thick. After the above PDA, Ir gate electrodes with a diameter of 200 um
were fabricated using a stencil mask method.

The IDMFET was fabricated through a gate-last process [43]. Initially, n* source/drain (S/D)
regions were formed on a p-type Si(100) substrate using the ion implantation method, followed by
the formation of an approximately 10-nm-thick thermally grown SiO2 layer. After etching the SiO2
layer to 5 nm using diluted hydrofluoric acid, a multilayered HfO2/SiO2 IDM stack, comprising 6 TiO2
modulation layers, was deposited using the high-vacuum EB evaporation method. This 6-IDM stack
is composed of a 3.5-nm-thick top HfO: layer, 1.8-nm-thick inner SiO:z layers, 1.8-nm-thick inner HfO:
layers, and six 1-ML TiO: layers. After the above PDA, a 50-nm-thick Ir layer was deposited, and
subsequently, gate electrode patterns with a gate length of 1 pm and a gate width of 100 pm were
formed using lithography and reactive-ion etching.

2.2. Pulse Response Measurements of IDM Devices

The pulse response characteristics of the IDMMOS capacitor were observed through a repeated
sequence of a voltage pulse stimulus and a C-V measurement at 1 MHz. Negative voltage pulses to
the gate electrode in this experiment failed to generate adequate minority carriers (holes) to create an
inversion layer on the Si surface. Consequently, we could not obtain a sufficient oxide electric field
compared to positive voltage pulses. To address this limitation, we intentionally generated holes near
the Si surface by exposing the sample surface to light [21,24]. In such cases, it becomes imperative to
maintain a relatively wide pulse width, considering the hole diffusion process from the electrode-
uncovered Si region to the Si region beneath the gate electrodes. In this experiment, a pulse width of
20 msec was employed.

The pulse response measurement of the IDMFET was conducted using a repeated sequence of a
voltage pulse stimulus and drain current (la) measurements with Vas=50 mV [21,44]. For comparison,
the DC drain current-gate voltage (la-Vg) curves were also measured with Vas=50 mV. Furthermore,
to emulate the synaptic STDP behavior, two voltage waveforms with a time difference were applied
to the gate and drain electrodes of IDMFET. A repeated sequence of this double-pulse-controlled
stimulus and I« measurement was performed. The detail of voltage waveforms are described below.

2.3. SNN Architecture for Pattern Recognition

A simple two-layer feedforward network with 784 neurons in the input layer, N neurons in the
hidden layer (where N is a variable), and 10 neurons in the output layer was utilized to perform
training and classification tasks on the MNIST handwritten digits dataset [45], as shown in Figure 2b.
Spike-based temporal processing optimized for experimentally observed responses of the IDMFETSs
was implemented, referencing a computationally efficient simplified model proposed by lakymchuk
et al. [46]. In the input neurons, 28x28 pixels with 256 gray levels were transformed into 784 spike
trains with a frequency range from 200 Hz to 1.25 kHz. These spikes were then transmitted to the
hidden neurons through feature synapses, thereby raising the membrane potentials of the neurons.
The hidden neurons operate on a LIF model with dynamic threshold adjustments and a 10 msec
refractory period, generating output spikes when their membrane potential exceeds a certain
threshold. Additionally, a winner-take-all (WTA) competitive algorithm was implemented through
lateral inhibition in the hidden layer neurons.

The STDP weight update of the feature synapse was performed based on the time difference
between the pre-synaptic spike and the post-synaptic spike, with the time delay from post-synaptic
spike firing to reaching the synapse set to 80 psec. Furthermore, to stabilize unsupervised learning,
an additional weight depression function, independent of the input neuron's frequency and referred
to as frequency-independent depression (FID), was introduced for all synapses undergoing STDP.
Through the above procedure, the feature synapses acquire characteristics of the input images
through unsupervised learning. Additionally, the classification synapses update weights through
supervised learning based on STDP to associate the hidden neurons with the output neurons. These
synaptic learning processes enable the entire network to function as a pattern classifier. 60,000 MNIST
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images were used for synaptic learning, and 10,000 images were used to evaluate classification
accuracy.

3. Results and Discussion

3.1. Pulse Response of IDM MOS Capacitors

The pulse response characteristic of the IDMMOS capacitor, illustrated in Figure 3a, indicates
that the flat-band voltage (V) undergoes stable positive and negative shifts in response to the voltage
polarity switch every 50 pulses. Here, the Vs shift from the initial Vs (AVe) were plotted. Both
positive and negative Vi shifts display obvious nonlinear responses, exhibiting substantial changes
immediately after the polarity switch and gradual suppression in the amount of change as the pulse
count increases. Utilizing the approximation formula for nonlinear characteristics [47,48], the
estimated nonlinear parameter y for both positive and negative Ve shifts is approximately 6,
indicating a nearly symmetrical response. The pulse voltage (V) dependence illustrated in Figure 3b
indicates an increase in modulation amplitude and y with the rise in Vjp, as depicted in Figure 3c. As
a result, IDMs exhibit inherently nonlinear and near-symmetric responses, and the degree of
nonlinearity varies depending on the operating conditions, making it necessary to consider these
specific characteristics in synaptic applications.
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Figure 3. Pulse response of IDMMOS capacitor with two TiO: modulation layers. (a) Cyclic
characteristics of flat-band voltage (Vw) shifts, showing stable modulation amplitude and nonlinear
characteristics. (b) Dependence of Vi modulation characteristics on pulse voltage (Vp). (¢) Impact of
Vp on modulated Vi shifts and nonlinear parameters (v+ and v-).

Next, we delve into the reasons behind the nonlinear response. The Vp-dependent Vi shift in
Figure 3b incorporates information about both the IDM interface state and response characteristics,
which is useful for analyzing their relationship. AVs on the y-axis corresponds to the strength of the
interface dipoles, as shown in Figure 1a. Here, we assumed that the unit dipole switches between two
states: large and small. In this scenario, the maximum V# shift occurs when all the unit dipoles at the
HfO»/SiO: interface switch due to the electric field, and under the opposite electric field, the opposite
maximum Ve shift occurs when all the unit dipoles switch to the opposite state. Additionally, the
maximum modulation width of the 2-IDM structure is 0.66 V, as previously reported. In this context,
the ratio of un-switched unit dipoles, that is, switchable unit dipoles, is defined as Op. In the following
discussion, Op was estimated from the experimentally obtained AV based on the above assumptions.
On the other hand, the modulation rate, dVm/dt (V/sec), can be estimated from the AV shift per
pulse, and the oxide electric field Eox (V/cm) can be estimated from the relationship between the ideal
C-V curve of the MOS structure and Vp. Consequently, we can establish the relationship between
dVw/dt and Eox as shown in Figure 4a. It is essential to note that even if the switching rate of the unit
dipole is constant, the modulation rate varies depending on Op. For instance, a change in Op from
Op=0.5 to Op=0.65 or Op=0.35 predicts the characteristics (I) and (II) in Figure 4a. However,
experimental results indicate more significant changes that cannot be explained by a simple 6p
difference.
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Figure 4. Pulse response characteristics and IDMMOS capacitor and origin of nonlinear response. (a)
Dependence of the rate of Vi shifts (dVw/dt) on the ratio of switchable unit dipoles (Op) observed for
positive Vi shifts. (I) and (II) depict the estimated ideal dVm/dt for O0=0.65 and 0.35, respectively. (b)
and (c) Op dependence of zero-field effective activation energy (AH;) and effective dipole moment
(per) for positive and negative Vi shifts, respectively.

The experimentally obtained dVa/dt is considered to be proportional to the number of
switchable unit dipoles. Therefore, the following relationship can be predicted: dV/dt=AVmaxk-Op,
where AVmax is the maximum Vs modulation of 0.66 V, and k is the reaction rate of dipole modulation
(s1), expressed by the following equation [21]:

AHy—DpeffE
=

where, v, is the molecular vibrational frequency, typically on the order of ~10% (s). T and ks
are the temperature (K) and Boltzmann’s constant, respectively. From these relationships and the
experimentally obtained Eox-dependence, we can estimate the zero-field activation energy AH; (eV)
and the effective dipole moment pes (eA) for each Op. The Op dependence of AH and pef for positive
AV shifts is summarized in Figure 4b, and the results estimated by the same analysis for negative
AV shifts were shown in Figure 4c. We can find that, for both cases, both AHg and pefincrease when
Op falls below 0.5. Here, pe reflects structural features such as chemical bonding configuration, and
AHj is the energy barrier for structural changes [50,51]. In other words, the bonding configuration
contributing to IDM varies depending on Ob. It has been proposed that IDM is caused by changes in
the chemical bonding around the interface Ti atom, and a similar primitive pulse measurement to
this study suggested that AH; is close to that corresponding to the breakage of the Ti-O bond [21].
On the other hand, studies on the dielectric breakdown of gate dielectrics have reported that electric
field-induced chemical bond breakage is sensitive to local bonding configuration [50,51]. Since IDM
occurs at an amorphous oxide interface, it is natural that there are variations in bond length and bond
angle in the chemical bonds of interfacial Ti atoms. Therefore, it is reasonable to assume that the
initial structural change starts from the bonding with low AHg. In addition, there is a possibility that
the structural change itself affects approximate bonding; that is, IDM itself leads to structural
variations with higher AHg. From the above experimental results and considerations, we conclude
that the nonlinearity in IDM response is an unavoidable feature caused by the amorphous oxide

k = vyexp (—

interface.

3.2. Pulse Response of IDMFETs

We can easily predict that converting the threshold voltage (Vi) shift induced by the IDM into
a change in the channel current of the FET will result in a response characteristic that is different from
the IDM response, since the channel current-gate voltage relationship of the FET is not ideally linear.
That is, general Li-Vy characteristics include at least a linear region and a sub-threshold region [52],
representing the coexistence of linear and exponential responses. Before describing the synaptic
characteristics of the IDMFET, we will briefly discuss the fundamental DC Ia-V, curve and pulse-
induced lia change. The DC I4-Vg curves shown in Figure 5a indicate that approximately 1 V hysteresis
takes place with a sweeping voltage range of +4.5 V. To convert the IDM-induced Vu shift into I«
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change, it is suitable to use the read Vg within this hysteresis range. Here, the sub-threshold swing
was estimated to be approximately 100 mV/decade, suggesting that the Ia change caused by a 0.1-V

Vu shift is expected to be an order of magnitude current change.

(a) (b) SR (c)
45N PHAEY 1.0F 1 v,=18, V=36 ] 9 190 200 300
10*fV, =50 mV ] - 1 -
] A 1 o2t P 450V
0 t } } } 4.6 V
N 10® 1 2 o2l (I v,=-04, v=11.9 . i WPy > 4
< E £
— G 6DM | = 1 =L .
10° = i 0 0.1
s 0.1 (111) v,=-23, v.=319 =
) - -
1070 _
1 1 1 1 0 0 L
-1 0 2 3 1000 2000 3000 300 200 100 0
V, (V) Pulse number Pulse number
(e) 12—
1.0 —\x. e () 5
[ ke o (I ]
0'8_ \A. o (1IN
106F a ® 44 others
2 AN
>+ 04 B .\\\A -
SN
0.2r . “ R .
0 ° A‘.‘~A‘~-“'-“
-0.2 el Y
0 10 100
)

Figure 5. Pulse-induced drain current (Ia) change of IDMFET. (a) DC 1¢-Vg hysteresis curve and Ia
modulation amplitude measured under various read gate voltage conditions (I)-(III). (b) Pulse-
induced li changes with a pulse voltage (Vp) of +5.4 V. Estimated nonlinear parameters for I increase
(v+) and la decrease (v-) are shown. (c) Impact of Vp on nonlinear asymmetric I« responses observed
under read conditions (II) in (a). (d) Vp dependence of v+, v-, and the ratio of v+/v- under various read
conditions. (e) Correlation between asymmetric characteristics, v+/v-, and the ratio of maximum to
minimum drain current (Imax/Imin).

The amplitudes of the [« modulations marked as (I), (II), and (III) in Figure 5a represent the pulse-
induced la changes observed under different readout Vg voltages and the same pulse conditions.
Here, the pulse voltage (Vp) and pulse width (tp) were set to 5.4 V and 800 us, respectively, and the
Vp polarity was switched every 300 pulses. The changes in the pulse response characteristics (I), (II),
and (III) shown in Figure 5b exhibit that the la increase and decrease exhibit opposite behavior
regarding nonlinearity. As for the Ia increase, (I) exhibits a nonlinear response, (II) approaches linear
response, and (III) shows an inverted nonlinear response, exhibiting that the nonlinear coefficient (v+)
changes from positive to negative. Regarding the l1 decrease, the nonlinear coefficient (v-) is always
positive, and the nonlinearity becomes stronger in the order of (I), (II), and (III). On the other hand,
even with the same read Vg, the nonlinearity changes significantly depending on the pulse voltage
Vp [Figure 5¢,d]. In the lower graph of Figure 5d, we present the ratio of the nonlinear parameters for
la increase and decrease (v+/v-) as an indicator of asymmetry. Here, approaching v+/v- to 1 indicates
proximity to symmetric response, and smaller V, values have better symmetry. In summary, the
nonlinearity and asymmetry of IDMFET exhibit complex behavior dependent on read and pulse
conditions. A summary of the v+/v- ratios measured under various conditions [Figure 5e] shows that
the general tendency is that asymmetry becomes stronger when aiming for a large current ratio
(Imax/Imin). This implies that simultaneously, the nonlinearity of the I« decrease becomes stronger.

The above behavior regarding the nonlinearity and asymmetric response can be roughly
understood in terms of basic FET operation as follows. We can easily understand that when the Is
modulation is in the linear region or sub-threshold region with a sufficiently small Imax/Imin ratio, the
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nonlinear and near-symmetric IDM characteristics are directly reflected in the l4 response. On the
other hand, when Imax/Imin is large and the device is operating in the sub-threshold region, even if the
Vu shift is constant, the smaller the current, the smaller the absolute Ia change will be exponentially.
That is, in the characteristic of the la increase, IDMFET is insensitive to Ve shift in the initial stage and
gradually becomes sensitive, so the nonlinear characteristics are weakened. Conversely, in the
characteristic of the I« decrease, IDMFET is sensitive to Vu shift in the initial stage and gradually
becomes insensitive, so the nonlinearity of FET operation is further superimposed on the nonlinear
IDM response. It is easy to predict that a similar effect will occur even when Imax/Imin is large and the
Ia modulation straddles the linear and sub-threshold regions. The ultimate goal of this study is to
verify whether such nonlinear and asymmetric IDMFET response can be applied to STDP learning.

3.3. Double-Pulse-Controlled Synaptic Operation of IDMFETs

To update la of IDMFETSs based on the time difference between pre- and post-synaptic spikes,
akin to synaptic weight (w) updates in biological STDPs, it is crucial to carefully choose the pre-spike
and post-spike waveforms. However, for compatibility with the digital circuits responsible for
neuron information processing, it is preferable to avoid complex waveforms as much as possible. We
adopted a simple bipolar rectangular waveform, as shown in Figure 6a. Pre- and post-synaptic spikes
have waveforms of the same voltage (Vsmor) and pulse width (tstor) with a time difference At.
Assuming that a superimposed waveform of pre-synaptic and post-synaptic spikes is applied to the
gate stack structure, la modulation is expected to depend on At, because the period during which a
voltage twice Vsmop is applied coincides with At. Here, the application period of Vsmr also changes,
but since IDM has an exponential response to Eox, it is expected that it can be ignored by setting an
appropriate Vsor. Figure 6b shows the measurement results in which the sign of At alternates every
500 spikes. An increase in ld is observed at +At, and a decrease in ls at —At, indicating the expected
STDP-like response. This means that synaptic potentiation occurs when a post spike is input after a
pre spike is input, and synaptic depression occurs at the opposite timing. Furthermore, as At
approaches 200 usec of tsrop, the amplitude of the I« modulation increases, which is a characteristic
predicted from the above waveform superposition. On the other hand, we also find that STDP
operation exhibits obvious nonlinear and asymmetric potentiation/depression properties. For
example, at At=+200 psec, the v+/v- ratio was estimated to be 0.2, showing similar asymmetry to the
previously discussed single-pulse IDMFET response.
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Figure 6. Double-pulse-controlled STDP operation with a bipolar rectangular waveform. (a)
Concurrent STDP drain current (Ia) modulation scheme of IDMFET based on the interaction of pre-
and post-synaptic waveforms. (b) Demonstration of STDP-like I« modulation. I« changes depend on
the spike timing difference (At), and nonlinear characteristics persist even during STDP operation.
AVsror waveforms, estimated from the difference between the pre- and post-synaptic waveforms for
set At conditions, are shown as insets.

In order to determine whether the pulse-timing-dependent I« modulation obtained from the
IDMFET can be applied to STDP learning, we need to discuss based on the different At responses
acquired within the same la range. Therefore, we performed a similar double-pulse measurement
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that restricted the la range, where the sign of At is reversed, when ls exceeds the range of 0.8 to 3.0
uA. Figure 7a presents the comparison of response characteristics for At=+200 ps and 100 ps. We can
see that for the latter, more pulses are required for At sign reversal compared to the former. Both
results exhibit asymmetric response characteristics, and At does not approximately affect the v+/v-
ratio. The Ala-la characteristics in Figure 7b can be obtained by converting the measured pulse-
induced Is change into an Is change for each pulse (Als). Here, we can find the impact of the
asymmetry response. Regarding la increase, a slight Ala value persists even as la approaches 3 pHA.
However, in the case of I« decrease, Ala approaches zero more closely as I« approaches 0.8 pA. The
experimentally obtained Als-la data were fitted with an approximate equation: Ala= cot(la—Io)+p(Ia—Io)y,
where a, 3, v, and Io are constants. In the simulation study described later, the approximate equation
of Als-la data was converted to the synaptic weight, w, in the w range of 0-0.8. The Aw-At
characteristics of STDP shown in Figure 7c are the result converted from the experimentally obtained
Als-1a data, revealing a significant impact of the nonlinear and asymmetric IDMFET response. Under
conditions where w is close to zero, potentiation is larger than depression, reaching an equilibrium
of potentiation/depression around w=0.4. As w increases further, depression becomes more
prominent. In the following simulations, these nonlinear and asymmetric STDP characteristics are
applied to unsupervised pattern learning.
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Figure 7. Double-pulse-induced Is« modulation observed within a current range limited to 3.0-0.8 pA.
(a) Characteristics of STDP Ia modulation observed for At=+200 usec and At=+100 psec. (b) Ali-Id
characteristics derived from STDP Ia modulation data, with solid lines representing fitting curves. (c)
Aw-At characteristics converted from measured Als-I¢ showing nonlinear and asymmetric STDP
responses of IDMFET. (d) Variation of Aw for STDP response of IDMFET with At=+200 usec from
fitting curves (Awo). (e) Aw-w characteristics derived from double-pulse-induced Ia response with
unipolar rectangular waveforms, which were utilized as a frequency independent depression (FID)
synaptic update.

On the other hand, an obvious variation is observed in the experimental Als-la data in Figure 7b.
Figure 7d illustrates the difference between the approximation curve and measured data across the
entire ls range for the At=+200 psec measurement. The origin of this variation contains fluctuations
of the IDM device itself and measurement system noise. Regarding the former, the fluctuation of the
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IDM response itself and other Vu fluctuations such as the oxide carrier trap may contribute. In the
subsequent simulations, STDP incorporating the distribution of observed variations is applied.

In general, SNN learning requires an additional w update function that differs from STDP, for
example, to set initial w values and to optimize and adjust the synaptic learning conditions. In this
study, an additional w update of FID is applied to adjust the STDP-based unsupervised learning, as
described above. We propose a two-pulse controlled modulation, as shown in the inset of Figure 7e,
which is highly compatible with our STDP operation. Positive and negative voltage pulses, serving
as pre- and post-synaptic spikes, are inputted to the IDMFET, inducing the w depression as shown in
Figure 7e. The depression effect becomes stronger with the increase in pulse voltage (Vrip) across all
w ranges. This depression characteristic is incorporated into SNN simulations using the same
approximate equation as the STDP characteristics.

3.4. Unsupervised Synaptic Learning Based on IDMFET Characteristics

First, let's examine how unsupervised learning, combining STDP and FID, operates using a
network with N=100 as an example. In this simulation, when a hidden layer neuron fires, the synapses
connected to it are updated by STDP, and subsequently, FID is applied to all synapses that underwent
STDP (100% FID). For STDP, we utilized the approximate curve obtained from measurements at
Vsmor=3.5 V, and for FID, the approximate curve with Ve varied in the range of 3.15 to 3.5 V was
employed. Random variations from the distributions estimated by the measurements were
incorporated into both STDP and FID. The training dynamics in Figure 8a show the average
classification accuracy over 10 training/classification cycles, with the shaded area indicating the
spread between the maximum and minimum values. In comparison to the result at Vin=3.2 V, a
higher Ve of 3.5 V reaches maximum accuracy faster, but subsequently experiences more significant
accuracy degradation and fluctuates. Here, the number of training images required to reach 90% of
the maximum average accuracy is defined as learning efficiency (1)). While Vrip does not significantly
affect the maximum accuracy (Figure 8b), a noticeably larger Vrm is advantageous for learning
efficiency (Figure 8c). This is presumed to be due to a larger Vrp enhancing the WTA effect,
suppressing the probability of overlapping different digit patterns. However, as Ve increases, the
robustness deteriorates after reaching the maximum accuracy, as shown in Figure 8a, suggesting that
a large Vro degrades the information of the pattern once learned. Based on the characteristics of the
IDMFET obtained in this experiment, Vrp around 3.2 V is considered a balanced and favorable
condition.

From the perspective of reducing calculation costs, it is advantageous to minimize the number
of FIDs. Figure 8a illustrates the training dynamics of randomly inducing FID pulses with a 50%
probability, demonstrating that both the maximum accuracy and learning efficiency are degraded
compared to those of the 100% FID. As depicted in Figure 8b,c, no clear benefit was found from the
results of Vrio dependence either. We also investigated various FID probabilities and concluded that
FID is always required after STDP. This result suggests that FID is effective for properly operating
WTA and accumulating training patterns' information in appropriate synapses. It is worth
mentioning that previously reported studies on STDP-based unsupervised learning did not
incorporate additional pulses such as FID [32-34,37-41]. This difference is presumed to be due to the
difference in spike waveforms. Generally, more complex spike waveforms are employed to balance
potentiation and depression during STDP, for example, spike waveforms include triangle waves and
different positive/negative shapes, voltages, and widths. In this study, emphasis was placed on the
simplicity of spike waveforms and concurrent STDP learning. An important result of this study is
that we were able to achieve efficient unsupervised learning by combining additional FIDs within
these constraints.


https://doi.org/10.20944/preprints202401.0475.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted

: 5 January 2024

do0i:10.20944/preprints202401.0475.v1

11
(a) T T T T (b) gsF ~ T ~ T T 1] (C) T T T 1
| N=100 | o (D
80 T e, s i i £ i i i i al A (D)
- y o ..-..-_\,_...." Lt % = 8ol | . o (I
§ sok :, ", 0 HY ..-.so......,,.-..... § é’
: : g.. 8 e 3 B 7
Qo ~ o o 3 s) E
£ s ® 751 { 4 = 1
3 40 . s T £ =
< S Vep=3.5V,100% FID g ¥ 2r |
& FD~ ©- ’ ° < 70 ) < [ ] i s
20 _,,f eV.;=3.2V,100% FID - 2 A (D) *ay,
L eVep=3.5V,50%FID | e (Il T =
1 1 1 1 1 1 1 L 1 1 1 1 | 1 L 1
0 20000 40000 65 3.2 3.4 3.2 3.4
Training images Vep (V) Ve (V)
(d) 100 kot 7 (e) 95pm !
80 . = G-
— o e
S T < g0t v .
60 - > A
g N=1600 | g 5
3 40 y 3 o
< i < 851 S/ ¥ [eThis work |]
L O Ref. 32
20 | [ # _Ref. 33
— _ V Ref. 34
0 Lol ool Lo 80_“1 1ol
108 104 105 108 102 N 103

Training images

Figure 8. Demonstration of SNN pattern recognition using IDMFET-based STDP and FID synaptic
updates. (a) Simulated training dynamics for N=100 hidden neurons. Comparison of 100% FID spike
probability conditions with Vep=3.5 V and 3.2 V. Additionally, the 50% FID spike probability
condition with Vep=3.5 V is presented. (b) Impact of Vrio on maximum accuracy. (I) and (II) show the
results for the 100% FID spike probability condition with and without variations in the IDMFET
response, respectively, and (III) show the results for the 50% FID spike probability condition. (¢) Vo
dependence of learning efficiency (1), where 1 is defined as the number of training images reaching
90% of the maximum accuracy. (d) Training dynamics performed for different N networks. (e)
Dependence of accuracy on N, including relevant references (refs. [32-34]) for comparison.

Next, we briefly mention the impact of the variation of IDMFETs. The training and classification
calculation without the variation was also performed, but there are no significant differences in
classification accuracy and learning efficiency (Figure 8b,c). We performed similar calculations with
a wider distribution than the experimentally observed variation of IDMFETSs and found a decline in
learning performance. For example, if the variation is 10 times wider than those of IDMFETs, the
maximum accuracy drops to 70 %. This means that while the current level of variation is acceptable,
devices with excessive variation should be treated with caution.

Finally, let's discuss the impact of the feature neuron size. Figure 8e illustrates training dynamics
for different values of N, calculated at Vrp=3.25 V. Increasing N results in a decrease in learning
efficiency due to the increased number of synapses to be learned, where we found a proportional
relationship of N=68xN. On the other hand, increasing N can improve classification accuracy, as
shown in Figure 8e, in which the previously reported accuracy data deduced by similar networks
with STDP-based unsupervised learning were compared [32-34]. It is important to note that previous
studies were not related to the device characteristics or are not based on the actual device dynamics.
It is evident that even with the STDP characteristics of IDMFET, introducing suitable FID operations
can achieve accuracy equivalent to conventional SNN. Based on these results, IDMFET is considered
a promising candidate as a synaptic device for unsupervised SNN learning. Particularly noteworthy
is the fact that, in typical SNN systems, the number of synapses is orders of magnitude larger than
that of neurons; therefore, the implementation of high-density synaptic devices using IDMFETs is
expected to be highly effective.
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4. Conclusions

The HfO2/SiOz-based IDMFETs exhibit nonlinear and asymmetric dynamics of pulse-induced L4
modulation, associated with the superimposition of inherent nonlinear and near-symmetric IDM
response and FET operation characteristics. STDP-like spike-timing-dependent double-pulse-
controlled I« modulation of IDMFETs can be demonstrated, showing nonlinear and asymmetric
weight update dynamics. We propose a timing-independent double-pulse-controlled Is« depression
of IDMFETs as an additional FID weight update for SNN to optimize unsupervised STDP learning.
The training and classification of handwritten digits with a two-layer SNN, leveraging the
experimentally observed STDP and FID characteristics, reveals the effectiveness of IDMFET synaptic
devices for unsupervised learning in SNN.

Author Contributions: Conceptualization, N.M.; methodology, N.M.; formal analysis, N.M.; investigation,
N.M.; data curation, N.M.; writing—original draft preparation, N.M.; writing—review and editing, N.M.;
supervision, N.M.; project administration, N.M.; funding acquisition, N.M; The author has read and agreed to
the published version of the manuscript.

Funding: This work was supported by JSPS KAKENHI Grant Number 16H02335 and 19H02178.
Data Availability Statement: Not applicable.

Acknowledgments: Part of the device fabrication was conducted at the AIST Nano-Processing Facility (AIST-
NPF). The author would like to thank the members of the ULVAC-AIST joint research project for valuable
discussions and Prof. H. Nohira of Tokyo City University for hard x-ray photoelectron spectroscopy
measurements.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kahng, D.; Atalla, M.M. Silicon-silicon dioxide field induced surface devices. In IRE-AIEE Solid State
Device Research Conference, Carnegie Institute of Technology, Pittsburgh, PA, USA, June 1960.

2. Moore, G.E. Cramming More Components onto Integrated Circuits. Electronics. 1965, 38, 114-117.

3. Robertson, J.; Wallace, R.M. High-k materials and metal gates for CMOS applications. Mater. Sci. Eng. 2015,
88, 1-41.

4. Choi, J.; Mao, Y.; Chang, J. Development of hafnium based high-k materials-A review. Mater. Sci. Eng. R
Rep. 2011, 72, 97-136.

5. Radamson, H.H.; Zhu, H.; Wu, Z; He, X,; Lin, H,; Liu, J.; Xiang, J.; Kong, Z.; Xiong, W.; Li. J.; et al. State of
the Art and Future Perspectives in Advanced CMOS Technology. Nanomaterials. 2020, 10, 1555.

6.  Zhao, C; Zhao, C-Z; Taylor, S.; Chalker, P-R. Review on non-volatile memory with high-k dielectrics: Flash
for generation beyond 32 nm. Materials. 2014, 7, 5117-5145.

7.  Lu, C-Y,; Hsieh, K-Y,; Liu, R. Future challenges of flash memory technologies. Microelectron. Eng. 2009, 86,
283-286.

8. Miller, S.L.; McWhorter, P.J. Physics of the ferroelectric nonvolatile memory field effect transistor. J. Appl.
Phys. 1992, 72, 5999-6010.

9.  Tokumitsu, E.; Nakamura, R.; Ishiwara, H. Nonvolatile memory operations of metal-ferroelectric-insulator-
semiconductor (MFIS) FETs using PLZT/STO/Si(100) structures. IEEE Electron Device Letters. 1997, 18, 160—
162.

10. Boscke, T.S.; Miiller, J.; Brauhaus, D.; Schroder, U.; Bottger, U. Ferroelectricity in hafnium oxide thin films.
Appl. Phys. Lett. 2011, 99, 102903.

11. Park, M.H.; Lee, Y.H.; Mikolajick, T.; Schroeder, U.; Hwang, C.S.; Review and perspective on ferroelectric
HfO2-based thin films for memory applications. MRS Commun. 2018, 8, 795-808.

12.  Schroeder, U.; Park, M.H.; Mikolajick, T.; Hwang, C.S. The fundamentals and applications of ferroelectric
HfO2. Nat. Rev. Mater. 2022, 7, 653—-669.

13. Trentzsch, M.; Flachowsky, S.; Paul, J.; Reimer, B.; Utess, D.; Jansen, S.; Mulaosmanovic, H.; Miiller, S,;
Slesazeck, S.; Ocker, J.; et al. A 28nm HKMG super low power embedded NVM technology based on
ferroelectric FETs. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San
Francisco, CA, USA, 3-7 December 2016; 11.5.1-11.5.4.

14. Mulaosmanovic, H.; Breyer, E.T.; Diinkel, S.; Beyer, S.; Mikolajick, T.; Slesazeck, S. Ferroelectric field-effect
transistors based on HfO2: A review. Nanotechnology. 2021, 32, 502002.

15. Dutta, S.; Schafer, C.; Gomez, J.; Ni, K,; Joshi, S.; Datta, S. Supervised Learning in All FeFET-Based Spiking
Neural Network: Opportunities and Challenges. Front. Neurosci. 2020, 14, 634.


https://doi.org/10.20944/preprints202401.0475.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 January 2024 do0i:10.20944/preprints202401.0475.v1

13

16. Yu, S; Hur, J; Luo, Y.-C.; Shim, W.; Choe, G.; Wang, P. Ferroelectric HfO2-based synaptic devices: Recent
trends and prospects. Semicond. Sci. Technol. 2021, 36, 104001.

17.  Lin, L.; Robertson, J. Atomic mechanism of electric dipole formed at high-K: SiO2 interface. ]. Appl. Phys.
2011, 109, 094502.

18. Iwai, H,; Toriumi, A.; Misra, D. High Dielectric Constant Materials for Nanoscale Devices and Beyond.
Electrochem. Soc. Interface. 2017, 26, 77-81.

19. Kita, K,; Toriumi, A. Origin of electric dipoles formed at high- interface. Appl. Phys. Lett. 2009, 94, 132902.

20. Abe, Y.; Miyata, N; Shiraki, Y.; Yasuda, T. Dipole formation at direct-contact HfO2/Si interface. Appl. Phys.
Lett. 2007, 90, 172906.

21. Miyata, N. Electric-field-controlled interface dipole modulation for Si-based memory devices. Sci. Rep.
2018, 8, 8486.

22. Miyata, N.; Sumita, K.; Yasui, A.; Sano, R.; Wada, R.; Nohira, H. Electrically induced change in HfO2/1-
monolayer TiO2/5i02 metal-oxide-semiconductor stacks: Capacitance-voltage and hard X-ray
photoelectron spectroscopy studies. Appl. Phys. Express. 2021, 14, 071005.

23. Kirihara, Y.; Tsujiguchi, R.; Ito, S.; Yasui, A.; Miyata, N.; Nohira, H. Using hard X-ray photoelectron
spectroscopy to study a SiO2/HfO2-based interface dipole modulation stack embedded in a metal-
insulator-metal structure. Appl. Phys. Express. 2022, 15, 111003.

24. Miyata, N. Low temperature preparation of HfO2/SiO2 stack structure for interface dipole modulation.
Appl. Phys. Lett. 2018, 113, 251601.

25. Roy, K;; Jaiswal, A.; Panda, P. Towards spike-based machine intelligence with neuromorphic computing.
Nature. 2019, 575, 607-617.

26. lelmini, D.; Wang, Z.; Liu, Y. Brain-inspired computing via memory device physics. APL Mater. 2021, 9,
050702.

27. Hasler, J.; Marr, H. Finding a roadmap to achieve large neuromorphic hardware systems. Front. Comput.
Neurosci. 2013, 7, 118.

28. Pan, W.-Q.; Chen, J.; Kuang, R.; Li, Y.; He, Y.-H.; Feng, G.-R.; et al. Strategies to Improve the Accuracy of
Memristor-Based Convolutional Neural Networks. IEEE Trans. Electron. Devices. 2020, 67, 895-901.

29. Aabrar, K.A,; Gomez, J.; Kirtania, S.G.; Jose, M.S.; Luo, Y.; Ravikumar, P.G.; Ravindran, P.V.; Ye, H.;
Banerjee, S.; Dutta, S. BEOL compatible superlattice FerroFET-based high precision analog weight cell with
superior linearity and symmetry. In Proceedings of the 2021 IEEE International Electron Devices Meeting
(IEDM), San Francisco, CA, USA, 3-7 December 2021; 19.6.1-19.6 4.

30. Nandakumar, S.R.; Boybat, I.; Le Gallo, M.; Eleftheriou, E.; Sebastian, A.; Rajendran, B. Experimental
Demonstration of Supervised Learning in Spiking neural networks with phase-change Memory Synapses.
Sci. Rep. 2020, 10, 8080.

31. Yang,S.-T,;Li, X.-Y,; Yu, T.-L.; Wang, ].; Fang, H.; Nie, F.; He, B.; Zhao, L.; Lii, W.-M,; Yan, S.-S.; et al. High-
Performance Neuromorphic Computing Based on Ferroelectric Synapses with Excellent Conductance
Linearity and Symmetry. Adv. Funct. Mater. 2022, 32, 2202366.

32. Diehl, P. U.; Cook, M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity.
Front. Comput. Neurosci. 2015, 9, 99.

33. Shrestha, A.; Ahmed, K.;; Wang, Y.; Qiu, Q. Stable spike-timing dependent plasticity rule for multilayer
unsupervised and supervised learning. In Proceedings of the International Joint Conference on Neural
Networks (IJCNN), Anchorage, AK, USA, 14-19 May 2017; pp. 1999-2006.

34. Brivio, S.; Ly, D.R.B.; Vianello, E.; Spiga, S. Non-linear Memristive Synaptic Dynamics for Efficient
Unsupervised Learning in Spiking Neural Networks. Front. Neurosci. 2021, 15, 580909.

35. Izhikevich, E. Simple model of Spiking Neurons. IEEE Trans. Neural Netw. 2003, 14, 1569-1572.

36. Yamazaki, K.; Vo-Ho, V.K,; Bulsara, D.; Le, N. Spiking neural networks and their applications: A Review.
Brain Sci. 2022, 12, 863.

37. Wang, W.; Pedretti, G.; Milo, V.; Carboni, R.; Calderoni,A.; Ramaswamy, N.; Spinelli, A.S.; Ielmini, D.;
Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses. Sci.
Adv. 2018, 4, eaatd752.

38. Saighi, S.; Mayr, C.G.; Serranogotarredona, T.; Schmidt, H.; Lecerf, G.; Tomas, J.; Grollier, J.; Boyn, S.;
Vincent, A.F.,; Querlioz, D.; et al. Plasticity in memristive devices for spiking neural networks. Front.
Neurosci. 2015, 9, 51.

39. Kim, C.-H,; Lee, S.; Woo, S.Y.; Kang, W.-M.; Lim, S.; Bae, J.-H.; Kim, J.; Lee, J.-H. Demonstration of
unsupervised learning with spike-timing-dependent plasticity using a TFT-type NOR Flash memory array.
IEEE Trans. Electron Devices. 2018, 65, 1774-1780.

40. Kaneko, Y.; Nishitani, Y.; Ueda, M. Ferroelectric artificial synapses for recognition of a multishaded image.
IEEE Trans. Electron Devices. 2014, 61, 2827-2828.

41. Han, H; Yu, H;; Wei, H,; Gong, J.; Xu, W. Recent Progress in Three-Terminal Artificial Synapses: From
Device to System. Small. 2019, 15, 1900695.

42. Miyata, N. Study of Direct-Contact HfO2/Si Interfaces. Materials. 2012, 5, 512-527.


https://doi.org/10.20944/preprints202401.0475.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 January 2024 do0i:10.20944/preprints202401.0475.v1

14

43. Miyata, N.; Ishiil, H.; Itatani, T.; Yasuda, T. Electron Mobility Degradation and Interface Dipole Formation
in Direct-Contact HfO2/Si Metal-Oxide-Semiconductor Field-Effect Transistors. Appl. Phys. Express. 2011,
4,101101.

44. Asanuma, S.; Sumita, K.; Miyaguchi, Y.; Horita, K.; Masuda, T.; Jimbo, T.; Miyata, N. Exploring thermally
stable metal-oxide/SiO2 stack for metal oxide semiconductor memory and demonstration of pulse
controlled linear response. Appl. Phys. Express. 2023, 16, 061005.

45. Lécun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proceedings of the IEEE. 1998, 86, 2278-2324.

46. Iakymchuk, T.; Rosado-Mufoz, A.; Guerrero-Martinez, J.F.; Bataller-Mompean, M.; Francés-Villora, J.V.
Simplified spiking neural network architecture and STDP learning algorithm applied to image
classification. EURASIP |. Image Video Process. 2015, 4, 1-11.

47. Agarwal, S; Plimpton, S.J.; Hughart, D.R; Hsia, A.H.; Richter, L; Cox, J.A.; James, C.D.; Marinella, M.].
Resistive memory device requirements for a neural algorithm accelerator. In Proceedings of the 2016
International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24-29 July 2016; pp.
929-938.

48. Kim, M.K;; Lee, ].S. Ferroelectric Analog Synaptic Transistors. Nano Lett. 2019, 19, 2044-2050.

49. Hauser, J.R; Ahmed, K. Characterization of ultra-thin oxides using electrical C-V and I-V measurements.
AIP Conf. Proc. 1998, 449, 235-239.

50. McPherson, J.; Kim, J.-Y.; Shanware, A; Mogul, H. Thermochemical description of dielectric breakdown in
high dielectric constant materials. Appl. Phys. Lett. 2003, 82, 2121-2123.

51. McPhersona, ].W.; Extended Mie-Griineisen molecular model for time dependent dielectric breakdown in
silica detailing the critical roles of O-Si=O3 tetragonal bonding, stretched bonds, hole capture, and
hydrogen release. J. Appl. Phys. 2006, 99, 083501.

52. Sze, S.M. Physics of Semiconductor Devices, 2nd ed.; Wiley-Interscience Publication, USA, 1981; pp.438-
448.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202401.0475.v1

	1. Introduction
	2. Materials and Methods
	2.1. Oxide Deposition and Device Fabrication
	2.2. Pulse Response Measurements of IDM Devices
	2.3. SNN Architecture for Pattern Recognition

	3. Results and Discussion
	3.1. Pulse Response of IDM MOS Capacitors
	3.2. Pulse Response of IDMFETs
	3.3. Double-Pulse-Controlled Synaptic Operation of IDMFETs
	3.4. Unsupervised Synaptic Learning Based on IDMFET Characteristics

	4. Conclusions
	References

