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Abstract: Convolutional neural networks (CNNs) have proven to be a very efficient class of

machine learning (ML) architectures for handling multidimensional data by maintaining data

locality, especially in the field of computer vision. Data pooling, a major component of CNNs,

plays a crucial role for extracting important features of the input data and downsampling its

dimensionality. Multidimensional pooling, however, is not efficiently implemented in existing ML

algorithms. In particular, quantum machine learning (QML) algorithms have a tendency to ignore

data locality for higher dimensions by representing/flattening multidimensional data as simple

one-dimensional data. In this work, we propose using the quantum Haar transform (QHT) and

quantum partial measurement for performing generalized pooling operations on multidimensional

data. We present the corresponding decoherence-optimized quantum circuits for the proposed

techniques along with their theoretical circuit depth analysis. Our experimental work was conducted

using multidimensional data, ranging from 1-D audio data, to 2-D image data, to 3-D hyperspectral

data, to demonstrate the scalability of the proposed methods. In our experiments, we utilized

both noisy and noise-free quantum simulations on a state-of-the-art quantum simulator from IBM

Quantum. We also show the efficiency of our proposed techniques for multidimensional data by

reporting the fidelity of results.

Keywords: quantum computing; convolutional neural networks; quantum machine learning;

pooling layers

1. Introduction

For performing machine learning (ML) tasks on multidimensional data, convolutional neural

networks (CNNs) often outperforms other techniques, such as multi-layer perceptrons (MLPs), with

smaller model size, shorter training time, and higher accuracy [1,2]. One factor that contributes to the

benefits of CNNs is the conservation of spatio-temporal data locality, allowing them to preserve only

relevant data connections and remove extraneous ones [1,2]. CNNs are constructed using a sequence of

convolution and pooling pairs followed by a fully-connected layer [1]. In the convolution layer, filters

are applied to input data for specific applications and the pooling layers reduce the spatial dimensions

in the generated feature maps [3]. The reduced spatial dimensions generated from the pooling layers

reduce memory requirements, which is a major concern for resource-constrained devices [4,5].

The benefits associated with exploiting data locality using pooling, can be translated to

other domains, in particular quantum machine learning (QML). Notably, most of the existing

QML algorithms do not consider the multidimensionality or data locality of input datasets by

converting them into flattened 1-D arrays [6,7]. Nevertheless, quantum computing has shown

great potential to outperform traditional, classical computing for specific machine learning tasks
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[8]. By exploiting quantum parallelism, superposition and entanglement, quantum computers can

accelerate certain computation tasks with exponential speedups. However, in the current era of noisy

intermediate-scale quantum (NISQ) devices, the implementation of quantum algorithms is constrained

by the number of quantum bits (qubits) and fidelity of quantum gates [9]. For contemporary QML

techniques, this problem is addressed by a hybrid approach where only the highly parallel and

computationally-intensive part of the algorithm is executed in quantum hardware and the remaining

parts are executed using classical computers [10]. Such methods, known as variational quantum

algorithms (VQAs), exploit a fixed quantum circuit structure with parameterized rotation gates,

denoted as ansatz, whose parameters are optimized using classical backpropagation techniques such

as gradient descent [10].

In this work, we propose two generalized techniques for efficient pooling operations in

QML, namely, quantum Haar transform (QHT) for quantum average pooling and partial quantum

measurements for 2-norm/Euclidean pooling.

We characterize their fidelity to the corresponding classical pooling operations using

a state-of-the-art quantum simulator from IBM Quantum for a wide variety of real-world,

high-resolution, multidimensional data.

The rest of the paper is organized as follows. Section 2 covers necessary background information,

including various quantum operations. Section 3 discusses existing related work. Section 4 introduces

our proposed methodology, with great detail given to the constituent parts along with spatial

complexity (depth) analysis of the corresponding circuits. Section 5 presents our experimental results,

with an explanation of our verification metrics. Finally, Section 6 concludes our work and projects

potential future directions.

2. Background

In this section, we provide information about quantum computing (QC) that is essential for

understanding the proposed quantum pooling techniques.

2.1. Quantum Bits and States

A quantum bit (qubit) is the most fundamental unit of quantum information. Qubits can

be physically realized with a number of hardware technologies, such as photonic chips and

superconducting circuits [11]. Mathematically, a qubit can be represented by a normalized statevector

|ψ〉 with N = 21 elements (1).

|ψ〉 = c0 |0〉+ c1 |1〉 =
[

c0

c1

]

, where |c0|2 + |c1|2 = 1 (1)

For an n-qubit state, the statevector |ψ〉 grows to a length of N = 2n. As shown in (2), each

element cj ∈ C of |ψ〉 represents the amplitude/coefficient of jth entry in |ψ〉, or the basis state |j〉 [11].

|ψ〉 =
N−1

∑
j=0

cj · |j〉 =



























c0

c1
...

cj
...

cN−2

cN−1



























, where
N−1

∑
j=0

|cj|2 = 1 (2)

2.2. Quantum Gates

Operations on qubits are called quantum gates and can be represented mathematically by

unitary matrix operations. Serial and parallel composite operations can be constructed using matrix
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multiplications and tensor products, respectively [11,12]. In this section, we will present a number of

relevant single- and multi-qubit gates for the proposed quantum pooling techniques.

2.2.1. Hadamard Gate

The Hadamard gate is a single-qubit gate that puts a qubit into superposition, see (3) [11].

H =
1√
2

[

1 1

1 −1

]

= (3)

Parallel quantum operations acting on a different set of qubits can be combined using the tensor

product [12]. For example, parallel single-qubit Hadamard gates can be represented by a unitary

matrix, where each term in the resultant matrix can be directly calculated using the Walsh function

[13], see (4).

H⊗n ∈ SU(2n) : (H⊗n)m,i =
1√
2n

Wm(i), where

Wm(i) : N → {−1, 1} =
n−1

∏
k=0

(−1)

(⌊

m

2k

⌋

·
⌊

i

2k

⌋)

, and

0 ≤ (m, i) < 2n

(4)

2.2.2. Controlled-NOT (CNOT) Gate

The controlled-NOT, or CNOT, gate is a two-qubit gate, see (5), that facilitates multi-qubit

entanglement [14]. In this work, we will provide complexity (depth) analysis of the proposed circuits

in terms of the critical path of consecutive single-qubit gates and two-qubit CNOT gates [14].

CNOT =











1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0











= (5)

2.2.3. SWAP Gate

The SWAP gate is a two-qubit gate that swaps the positions of the input qubits [11]. Each SWAP

operation can be decomposed into three controlled-NOT (CNOT) gates [11], as shown in (6).

SWAP =











1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1











= = (6)

2.2.4. Quantum Perfect Shuffle Permutation (PSP)

The quantum perfect shuffle permutation (PSP) are operations that leverage SWAP gates to

perform a cyclical rotation of the input qubits. The quantum PSP rotate-left (RoL) and rotate-right

(RoR) operations [15] are shown in Figure 1. Each PSP operation requires (n − 1) SWAP operations or

equivalently 3(n − 1) CNOT operations, see (6) and Figure 1.
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(a) RoL|qn−1qn−2 . . . q0〉 = |qn−2 . . . q0qn−1〉 (b) RoR|qn−1 . . . q1q0〉 = |q0qn−1 . . . q1〉
Figure 1. Rotate-Left and Rotate-Right operations.

2.2.5. Quantum Measurement

Although colloquially denoted as a measurement “gate”, the measurement or observation of a

qubit is an irreversible non-unitary operation that projects a qubit’s quantum state |ψ〉 to one of its |0〉
or |1〉 basis states [11]. The probability of either basis state being measured is directly determined by

the square of the magnitude of each corresponding basis state coefficient, i.e., p0 = |c0|2, and p1 = |c1|2,

see (7) [15].

P(|ψ〉) =
[

p0

p1

]

=

[

|c0|2
|c1|2

]

= (7)

In general, an n-qubit quantum state |ψ〉 has 2n possible basis states/measurement outcomes.

Accordingly, given full-measurement of a quantum statevector, the probability of finding the qubits in

any particular state |j〉, where 0 ≤ j < 2n, is given by
∣

∣cj

∣

∣

2
[15]. The overall probability distribution

P(|ψ〉) can thus be expressed according to (8).

P (|ψ〉) =



























p0

p1
...

pj
...

p
N−2

p
N−1



























=





























|c0|2
|c1|2

...
∣

∣cj

∣

∣

2

...
∣

∣c
N−2

∣

∣

2

∣

∣c
N−1

∣

∣

2





























, where pj =
∣

∣cj

∣

∣

2
, and 0 ≤ j < N (8)

3. Related Work

Convolutional neural networks (CNNs) [16] represent a specialized type of neural network that

consist of convolutional layers, pooling layers, and fully connected layers. The convolutional layer

extracts characteristic features from an image, while the pooling layer down-scales the extracted

features to a smaller data size by considering specific segments of data, often referred to as “windows”

[1,16]. Pooling also enhances the network’s robustness to input translations and helps prevent

overfitting [1]. For classical implementations on GPUs, pooling is usually limited to 3-D data [17,18],

with a time complexity of O(N) [19], where N is the data size.

Quantum convolutional neural networks (QCNNs), as proposed by [7], explored the feasibility of

extending the primary features and structures of conventional CNNs to quantum computers. However,

translating the entire CNN model onto the presently available noisy intermediate-scale quantum

(NISQ) devices is not practical due to limited qubit count [20], low decoherence time [21], and high
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gate errors [22]. To attain quantum advantage amid the constraints of NISQ devices, it is essential to

develop depth-optimized convolution and pooling circuits that generate high fidelity outputs. Most

implementations of quantum pooling [6,9,23–25] leverage parameterized quantum circuits (PQCs) and

mid-circuit measurement as originally proposed in [7]. These techniques, however, do not perform

the classical pooling operation as used in CNNs and thus do not gain the associated benefits from

exploiting data locality. Moreover, PQC-based implementations of pooling increase the number of

training parameters, which makes the classical optimization step more computationally intensive.

The authors in [26] implemented quantum pooling by omitting measurement gates on a subset of

qubits. However, the authors do not generalize their technique for varying window sizes, levels of

decomposition, or data dimensions.

In this work, we propose a quantum average pooling technique based on the quantum Haar

transform (QHT) [22] and a quantum Euclidean pooling technique utilizing partial measurement of

quantum circuits. These techniques are generalizable for arbitrary window size and arbitrary data

dimension. We have also provided the generalizable circuits for both techniques. The proposed

methods have been validated with respect to their classical-implementation counterparts and their

quality of results has been demonstrated by reporting the metric of quantum fidelity.

4. Materials and Methods

In this section, we discuss the proposed quantum pooling methods. Pooling, or downsampling,

is a critical component of CNNs that consolidates similar features into one [2]. The most commonly

used pooling schemes are average and maximum (max) pooling [27], where the two differ in terms of

the sharpness of the defined input features. Max pooling typically offers a sharper definition of input

features while average pooling offers a smoother definition of input features [27]. Depending on the

desired application or dataset, one pooling technique may be preferable over the other [27].

Average and max pooling can be represented as special cases of calculating the p-norm or ℓp norm

[28], where the p-norm of a vector x ∈ CN of size N elements is given by (9a) for p ∈ Z [28]. More

specifically, average and max pooling can be defined as the 1-norm and ∞-norm, respectively, see

(9b) and (9c). Since max pooling (p = ∞) is difficult to implement as a quantum (unitary) operation,

a pooling scheme defined by the p-norm where 1 < p < ∞ could establish a balance between the

average and max pooling schemes. Therefore, we introduce an intermediate pooling technique based

on the 2-norm/Euclidean norm named as the quantum Euclidean pooling technique, see (9d).

‖x‖p =

(

N−1

∑
i=0

x
p
i

)
1
p

(9a)

x̄ =
1

N
‖x‖1 (9b)

max (x) = ‖x‖∞ (9c)

ǫ(x) =
1√
N
‖x‖2 (9d)

In this work, we propose quantum pooling techniques for average pooling (p = 1) and Euclidean

pooling (p = 2). We implement average pooling using the QHT, a highly-parallelizable quantum

algorithm for performing multilevel decomposition/reduction of multidimensional data. For the

implementation of Euclidean pooling, we employ partial measurement to perform dimension reduction

with zero circuit depth. The average and Euclidean pooling techniques are described in greater detail

in Sections 4.1 and 4.2, respectively. As detailed further in Section 5, we validated our proposed

quantum pooling techniques using 1-D audio data [29], 2-D black-and-white (B/W) images [30], 3-D

color (RGB) images [30], and 3-D hyperspectral images [31].
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4.1. Quantum Average Pooling via Quantum Haar Transform

Our first proposed quantum pooling technique implements average pooling on quantum devices

using the quantum wavelet transform (QWT). A wavelet transform decomposes the input data into

low- and high-frequency components, where in the case of pooling, the low-frequency components

represent the desired downsampled data [15]. For our proposed technique, we leverage the quantum

variant of the first and simplest wavelet transform, quantum Haar transform (QHT) [15]. The execution

of the pooling operation using QHT involves two main steps:

• Haar Wavelet Operation: By applying Hadamard (H) gates, see Section 2.2.1, in parallel, the

high- and low-frequency components are decomposed from the input data.
• Data Rearrangement: By applying quantum rotate-right (RoR) operations, see Section 2.2.4, the

high- and low-frequency components are grouped into contiguous regions.

We outline (in order) the following sections as follows, the quantum circuits and corresponding

circuit depths of single-level decomposition, 1-D QHT, ℓ-level 1-D QHT, and ℓ-level d-D QHT,

respectively, where ℓ is the number of decomposition levels and d is the dimensionality of the QHT

operation.

4.1.1. Single-Level, One-Dimensional Quantum Haar Transform

For single-level, one-dimensional (1-D) QHT, we will assume a 1-D input data of size N data points.

The aforementioned data would be encoded into the quantum circuit using amplitude encoding [32]

as an n-qubit quantum state |ψ〉, where n = ⌈log2 N⌉.

The quantum circuit for one level of 1-D QHT decomposition is shown in Figure 2, where |ψH〉
represents the quantum state after the wavelet operation and |ψout〉 represents the quantum state after

data rearrangement.

Figure 2. Single-level, 1-D QHT circuit.

Haar Wavelet Operation on Single-level, One Dimensional Data

The Haar wavelet is performed using the H gate, see Figure 2. For example, a single level of

1-D QHT can be performed on a state |ψ〉 as described by (2) by applying a single H gate to the

least-significant qubit of |ψ〉, designated q0 in Figure 2. This operation replaces the data value of the

pairs (c
2j

, c
2j+1

) : 0 ≤ j < N
2 with their sum and difference, as shown in (10). It is worth mentioning that

sum terms represent the low-frequency terms and the difference terms represent the high-frequency

terms for a single level of decomposition.
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|ψH〉 =
(

I⊗n−1 ⊗ H
)

|ψ〉 = 1√
2

































c0 + c1

c0 − c1
...

c
2j
+ c

2j+1

c
2j
− c

2j+1

...

c
N−2

+ c
N−1

c
N−2

− c
N−1

































, where 0 ≤ j <
N

2
. (10)

Data Rearrangement Operation

The data rearrangement operation congregates the low- or high-frequency fragmented terms

after decomposition. For instance, the low- and high-frequency terms are segregated after wavelet

decomposition as expressed in (10). The low- and high-frequency terms exist at the even indices

(|qn−1 . . . q1〉 |q0 = 0〉) and odd indices (|qn−1 . . . q1〉 |q0 = 1〉) respectively. Ideally, the statevector

is formed in a way such that the low-frequency terms should be merged into a contiguous half

of the overall statevector (|q0 = 0〉 |qn−1 . . . q1〉), while the rest of the statevector consists of the

high-frequency terms (|q0 = 1〉 |qn−1 . . . q1〉). This data rearrangement operation can be performed

using the qubit rotation |qn−1 . . . q1q0〉 ⇒ |q0qn−1 . . . q1〉 using a RoR operation, see Figure 2 and (11).

|ψout〉 = rotate-right (RoR) |ψH〉 =
1√
2













































c0 + c1
...

c
2j
+ c

2j+1

...

c
N−2

+ c
N−1

c0 − c1
...

c
2j
− c

2j+1

...

c
N−2

− c
N−1













































x























y

2n−1

x























y

2n−1

x

















































y

2n, where 0 ≤ j <
N

2
. (11)

Circuit Depth

The depth of the single-level 1-D QHT operation can be considered in terms of 1 H gate and

1 perfect-shuffle (RoR) gate. An RoR gate can be decomposed into (n − 1) SWAP gates or 3(n − 1)

controlled-NOT (CNOT) gates. Accordingly, the total circuit depth can be expressed in terms of the

number of consecutive single-qubit and CNOT gates as shown in (12).

∆1-D QHT(n, ℓ = 1) = ∆H + ∆RoR(n) = 1 + 3(n − 1) = 3n − 2

= O(n)
(12)

In many common quantum computing libraries, including Qiskit [33], it is possible to leverage

arbitrary mapping of quantum registers to classical registers [34] to perform data rearrangement

during quantum-to-classical (Q2C) data decoding without increasing circuit depth. Accordingly, the

circuit depth of the optimized single-level, 1-D QHT circuit can be expressed as shown in (13).
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∆
opt
1-D QHT(n, ℓ = 1) = ∆H = 1

= O(1)
(13)

4.1.2. Multilevel, One-Dimensional Quantum Haar Transform

In this section, we discuss how multiple levels (ℓ) of decomposition can be applied to further

reduce the final data size. Given the initial data is set up in the same manner as in the single-level

variant, the final data size can be expressed as
⌈

N
2ℓ

⌉

. The corresponding quantum circuit for Multilevel,

1-D QHT is shown in Figure 3.

Figure 3. Multilevel, 1-D QHT circuit.

Haar Wavelet Operation on Multilevel, One-Dimensional Data

To perform multiple levels of decomposition, additional Hadamard gates are applied on the ℓ

least-significant qubits of |ψ〉, as shown in Figure 3. The multilevel 1-D wavelet operation divides |ψ〉
into 2n−ℓ groups of 2ℓ terms and replaces them with the appropriately-decomposed values according

to the Walsh function, see (14).

U1-D
Haar |ψ〉 =

(

I⊗n−ℓ ⊗ H⊗ℓ
)

|ψ〉 = 1√
2ℓ



















|φ0〉
...
∣

∣φj

〉

...
∣

∣φ2n−ℓ−1

〉



















, where

∣

∣φj

〉

=
ℓ−1

∑
m=0

ℓ−1

∑
i=0

Wm(i)cℓj+i
|ℓj + i〉 =



















∑
ℓ−1
i=0 W0(i)cℓj+i

...

∑
ℓ−1
i=0 Wm(i)cℓj+i

...

∑
ℓ−1
i=0 Wℓ−1(i)cℓj+i



















,

0 ≤ j <

⌈

Ni

2ℓi

⌉

and Wm(i) =
n−1

∏
k=0

(−1)

(⌊

i

2k

⌋

·
⌊

j

2k

⌋)

(14)
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Data Rearrangement Operation

Multiple levels of 1-D decomposition can be implemented using ℓ serialized RoR operations, see

(15) and Figure 3. However, parallelization of the data rearrangement operation across multiple levels

of decomposition can be achieved by overlapping/interleaving the RoR operations into SWAP gates

and fundamental two-qubit gates.

U1-D
rearrangement =

0

∏
j=ℓ−1

RoR(n) (15)

Circuit Depth

The inherent parallelizability of the wavelet and data rearrangement steps of QHT can be used

to reduce the circuit depth. In the wavelet step, all ℓ levels of decomposition can be performed by ℓ

parallel Hadamard gates (H⊗ℓ). In the data rearrangement step, the decomposition and interleaving of

RoR operations can used to reduce the depth penalty incurred by multilevel decomposition to just 2

SWAP gates, or 6 CNOT gates, per decomposition level, see (16).

∆1-D QHT(n, ℓ) = ∆H + ∆RoR(n) + 3(2(ℓ− 1))

= 1 + 3(n − 1) + 3(2(ℓ− 1)) = 3(n + 2ℓ)− 8

= O(n + ℓ)

(16)

Additionally, if the deferral of data rearrangement is permitted, the circuit depth of multilevel

1-D QHT can be shown to be constant (requiring just 1 Hadamard gate of depth), see (17).

∆
opt
1-D QHT(n, ℓ) = ∆H = 1

= O(1)
(17)

4.1.3. Multilevel, Multidimensional Quantum Haar Transform

For multidimensional QHT, we can assume the input data is d-dimensional, where each dimension

has a data size of Ni : 0 ≤ i < d for a total data size of N = ∏
d−1
i=0 Ni. We can denote the largest

dimension of data as Nmax = maxd−1
i=0 Ni, where it is encoded by nmax qubits. Similarly, the smallest

dimension of data is denoted as Nmin = mind−1
i=0 ni and is encoded by nmin qubits. Similar to the 1-D

case, the data is encoded as an n-qubit quantum state |ψ〉, such that each dimension i of data requires

ni = ⌈log2 Ni⌉ qubits and ℓi decomposition levels. It is worth mentioning that the total number of

required qubits n = ∑
d−1
i=0 ni qubits and the final size of each data dimension i is

⌈

Ni

2ℓi

⌉

.

Based on the nature of the encoding scheme (amplitude encoding) and quantum circuit structures,

the multidimensional QHT can be performed by parallel application of d 1-D QHT circuits. Thus, the

transformation of each data dimension can be performed independently of the other data dimensions.

More specifically, using a column-major vectorization of the multidimensional data, the ith dimension

of data is represented by the contiguous region of qubits q
∑

i−1
j=0 nj

to q
∑

i
j=0 nj−1. In other words,

multidimensional d-D QHT can be performed by stacking d 1-D QHT circuits in parallel, each of

which performing the transformation on the respective contiguous region / data dimension, as shown

in Figure 4.
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Figure 4. Multilevel, d-D QHT circuit.

Haar Wavelet Operation on Multidimensional Data

Exploiting the parallelization offered by stacking, the multilevel d-D QHT wavelet operation can

also be performed with constant circuit depth, see (18) and Figure 4.
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Ud-D
Haar =

0
⊗

i=d−1

(

I⊗ni−ℓi ⊗ H⊗ℓi

)

(18)

Data Rearrangement Operation

The multilevel, d-D QHT data rearrangement operation is given by (19) and shown in Figure 4.

Ud-D
rearrangement =

0
⊗

i=d−1

0

∏
j=ℓi−1

RoR(ni) (19)

Circuit Depth

Since multidimensional QHT can be parallelized across dimensions, the circuit depth is

determined by the dimension with the largest total data size and number of decomposition levels, as

shown in (20).

∆d-D QHT(n, ℓ) =
d−1

max
i=0

(∆H + ∆RoR(ni) + 3(2(ℓi − 1)))

= 1 + 3(nmax − 1) + 3(2(ℓmax − 1)) = 3(nmax + 2ℓmax)− 8

= O(nmax + ℓmax)

(20)

If data rearrangement can be performed in the classical post-processing of Q2C data decoding,

as discussed in Section 4.1.1, the wavelet operation is completely parallelized for multilevel and

multidimensional QHT, resulting in an optimal, constant circuit depth, see (21).

∆
opt
d-D QHT =

d−1
max
i=0

(∆H) = 1

= O(1)
(21)

4.2. Quantum Euclidean Pooling using Partial Measurement

Our second proposed quantum pooling technique applies the 2-norm or Euclidean norm over

a given window of data. We implement the proposed Euclidean pooling technique using partial

quantum measurement, which can be expressed mathematically either using conditional probabilities

or partial traces of the density matrix [12].

As expressed in (8), full measurement of an n-qubit quantum state has 2n possible outcomes, one

for each basis state, where the probability of each outcome can be derived from the corresponding

statevector |ψ〉. A subset of m qubits would only have 2m possible outcomes, where m < n. Thus, the

probability distribution of the partial measurement can be derived from the probability distribution of

the full measurement using conditional probability, where each qubit of the unmeasured qubits could

arbitrarily be in either a 0 or 1 state [15]. For example, if the least-significant qubit q0 is excluded from

the measurements of the quantum state |ψ〉, the partial probability distribution P(|ψ〉 |q0) is derived as

shown in (22).
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P (|ψ〉 | q0) ≡ P (|ψ〉 | q0 = 0 or q0 = 1) ≡ P (|ψ〉 | q0 = 0) + P (|ψ〉 | q0 = 1)

=





















p0|q0

...

pj|q0

...

p
N
2 −1

|q0





















=



















|c0|2 + |c1|2
...

∣

∣c2j

∣

∣

2
+
∣

∣c2j+1

∣

∣

2

...
∣

∣c
N−2

∣

∣

2
+
∣

∣c
N−1

∣

∣

2



















, where

P(|ψ〉 = j | q0) = pj|q0
=
∣

∣c2j

∣

∣

2
+
∣

∣c2j+1

∣

∣

2
, and 0 ≤ j <

N

2

(22)

Alternatively, the probability distribution of a partial measurement can be derived from the

diagonal of the partial trace of the density matrix ρ [12]. For example, P(|ψ〉 |q0) can also be calculated

using the partial trace as shown in (23).

ρ = |ψ〉〈ψ| =
2n−1

∑
i=0

2n−1

∑
j=0

(

ci × c∗j
)

|i〉〈j|

trq0 (ρ) =
2n−1−1

∑
i=0

2n−1−1

∑
j=0

(

ρ2i,2j + ρ2i+1,2j+1

)

|i〉〈j|

P(|ψ〉 |q0) =
2n−1−1

∑
i=0

(

trq0(ρ)
)

i,i
|i〉

=
2n−1−1

∑
i=0

(

|c2i|2 + |c2i+1|2
)

|i〉

(23)

4.2.1. Single-level, One-Dimensional Quantum Euclidean Pooling

For single-level, one-dimensional Euclidean pooling, we will assume the input data x is 1-D with N

data size in terms of the number of data points. The input data is encoded using amplitude encoding

as an n-qubit quantum state |ψ〉, where n = ⌈log2 N⌉.

|ψout〉 =

























√

|c0|2 + |c1|2
...

√

∣

∣

∣
c

2j

∣

∣

∣

2
+
∣

∣

∣
c

2j+1

∣

∣

∣

2

...
√

∣

∣c
N−2

∣

∣

2
+
∣

∣c
N−1

∣

∣

2

























x





























y

2n−1, where 0 ≤ j <
N

2
. (24)
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Figure 5. Single-level, 1-D Euclidean pooling circuit.

After applying one level of 1-D Euclidean pooling to the quantum state |ψ〉, the resultant state

|ψout〉 can be expressed as shown in (24). As discussed previously, it is possible to extract this partial

quantum state using partial measurement, as shown in (22) and (23). The corresponding quantum

circuit for the single-level, 1-D Euclidean pooling operation is presented in Figure 5.

4.2.2. Multilevel, One-Dimensional Quantum Euclidean Pooling

In multilevel, 1-D decomposition, as shown in Figure 6, the Euclidean norm (2-norm) of |ψ〉 is

taken with a window of 2ℓ, where the number of decomposition levels is ℓ, see (25) and Figure 6.

Figure 6. Multilevel, 1-D Euclidean pooling circuit.

|ψout〉 =

























√

∑
2ℓ−1
i=0 |ci|2

...
√

∑
2ℓ−1
i=0

∣

∣

∣
c(2ℓ ·j+i)

∣

∣

∣

2

...
√

∑
2ℓ−1
i=0 |cN−1−i|2

























x





























y

2n−ℓ, where 0 ≤ j <
N

2ℓ
. (25)

The change in normalization for 1-D pooling can be generalized with the corresponding increase

in window size for the Euclidean norm, to 1√
2ℓ

, as shown in (26).
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xout =
1√
2ℓ

|ψout〉 (26)

4.2.3. Multilevel, Multidimensional Quantum Euclidean Pooling

The multilevel, d-dimensional quantum Euclidean pooling circuit is illustrated in Figure 7,

where ℓi is the number of decomposition levels for dimension i and 0 ≤ i < d. Similar to the

multilevel, multidimensional QHT circuit discussed in Section 4.1.3, parallelization can be also applied

to Euclidean pooling across dimensions using a stacked quantum circuit.

Figure 7. Multilevel, d-D Euclidean pooling circuit.
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5. Experimental Work

In this section, we discuss our experimental setup and results. Experiments were conducted using

real-world, high-resolution data, using both the quantum average and Euclidean pooling techniques.

Section 5.1 delves into further detail on the experimental setup while Section 5.2 analyzes the obtained

results.

5.1. Experimental Setup

The efficacy of the two proposed pooling methods was examined through tests using real-world,

high-resolution data of varying dimensions and data sizes. 1-D pooling was performed on selected

publicly-available sound quality assessment material published by the European Broadcasting Union,

which was pre-processed into a single channel with the data size ranging from 28 data points to 220

data points when sampled at 44.1 kHz [29]. 2-D pooling was evaluated on black-and-white (B/W) and

color (RGB) images of Jayhawks [30], as shown in Figure 8, sized from (8 × 8) pixels to (512 × 512 × 3)

pixels. Additionally, 3-D pooling was performed on hyperspectral images from the Kennedy Space

Center (KSC) dataset, see [31], were used, after pre-processing and resizing, with sizes ranging from

(8 × 8 × 8) pixels to (128 × 128 × 128) pixels.

To validate the proposed pooling techniques, fidelity was measured over multiple levels of

decomposition. The metric of data fidelity, see (27), is used to measure the similarity of the

quantum-pooled data X compared to the classically-pooled data Y. As expressed in during testing,

pooling was performed on all tested dimensions until one dimension could not be decomposed

further. For example, for a hyperspectral image of (128 × 128 × 128) pixels, ℓ was varied from 1

to ⌈log2 min(128, 128, 128)⌉ = 7, i.e., ℓ = 1, 2, 3, 4, 5, 6, and 7. Using the Qiskit SDK (v0.45.0) from

IBM Quantum [33], simulations were run with the quantum average and Euclidean pooling circuits

over the given data in both noise-free and noisy (with 32, 000 and 1, 000, 000 circuit samples/shots)

environments to display the effect of quantum statistical noise on the fidelity of the results. The

experiments were performed at the University of Kansas on a computer cluster node populated with

a 48-Core Intel Xeon Gold 6342 CPU, 3×NVIDIA A100 80GB GPUs (CUDA version 11.7), 256GB of

3200MHz DDR4 RAM, and PCIe 4.0 connectivity.

Fidelity (X, Y) =
〈X, Y〉

‖X‖F‖Y‖F

(27)

(a) (b) (c)

Figure 8. Real-world, high-resolution, multidimensional data used in experimental trials. (a) B/W

Image [30]. (b) RGB Image [30]. (c) Hyperspectral Image [31].

5.2. Results and Analysis

Across all our experiments, the noise-free quantum results showed 100% fidelity compared to the

corresponding classical results, validating the correctness and theoretical soundness of our proposed

quantum average and Euclidean pooling methods. However, for practical quantum environments,
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we observe measurement and statistical errors that are intrinsic to noisy quantum hardware, which

results in a decrease in fidelity. Sample average and Euclidean pooling results are presented in Tables

1, 2, 3, and 4 for 1-D Audio data, 2-D B/W images, 3-D RGB images, and 3-D Hyperspectral images,

respectively, for noisy trials of 32, 000 and 1, 000, 000 circuit samples (shots).

Table 1. Noisy outputs for 1-D Average and Euclidean Pooling on Audio (1-D) data [29] with 1, 048, 576

audio samples.

Levels of Decomposition
Average
Pooling

(32, 000 shots)

Average
Pooling

(1, 000, 000 shots)

Euclidean
Pooling

(32, 000 shots)

Euclidean
Pooling

(1, 000, 000 shots)

1 Level

2 Levels

4 Levels

8 Levels
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Table 2. Noisy outputs for 2-D Average and Euclidean Pooling on B/W (2-D) data of size (512 × 512)

pixels.

Levels of Decomposition
Average
Pooling

(32, 000 shots)

Average
Pooling

(1, 000, 000 shots)

Euclidean
Pooling

(32, 000 shots)

Euclidean
Pooling

(1, 000, 000 shots)

1 Level

2 Levels

4 Levels

8 Levels
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Table 3. Noisy outputs for 2-D Average and Euclidean Pooling on RGB (3-D) data of size (512× 512× 3)

pixels.

Levels of Decomposition
Average
Pooling

(32, 000 shots)

Average
Pooling

(1, 000, 000 shots)

Euclidean
Pooling

(32, 000 shots)

Euclidean
Pooling

(1, 000, 000 shots)

1 Level

2 Levels

4 Levels

8 Levels
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Table 4. Noisy outputs for 3-D Average and Euclidean Pooling on Hyperspectral (3-D) data of size

(128 × 128 × 128) pixels.

Levels of Decomposition
Average
Pooling

(32, 000 shots)

Average
Pooling

(1, 000, 000 shots)

Euclidean
Pooling

(32, 000 shots)

Euclidean
Pooling

(1, 000, 000 shots)

1 Level

2 Levels

4 Levels

7 Levels

The presented results in Figures 9–16 report the fidelity of the quantum-pooled data using

our proposed quantum average and quantum Euclidean pooling techniques with respect to the

corresponding classically-pooled data in terms of the data size indicated by the number of required

qubits n for different levels of decomposition ℓ. 1-D audio data results are shown in Figures 9 and 13

for 32, 000 and 1, 000, 000 shots, respectively, while results for 2-D B/W images are shown in Figures 10

and 14. In a similar fashion, results for 3-D RGB images are shown in Figures 11 and 15, and finally

results for 3-D hyperspectral data are shown in Figures 12 and 16, all for 32, 000 and 1, 000, 000 shots,

respectively.

From Figures 9–16, it could be easily observed that fidelity monotonically decreases with respect

to data size (number of qubits) for a given decomposition level. In contrast, a monotonic increase

in fidelity with respect to the number of decomposition levels for a given data size is observed,

see Figures 9–16. As the data size increases, the size of the corresponding quantum state also

increases, which leads to statistical undersampling [15], a phenomenon that occurs when the number

of measurement shots is insufficient to accurately characterize the measured quantum state. In

quantum Euclidean pooling, partial measurement helps mitigate undersampling because the increase

in decomposition levels reduces the number of qubits being measured, resulting in reduced effects of

statistical undersampling/noise. A similar behavior occurs with quantum average pooling, since the

high-frequency terms are sparse and/or close to 0. Nevertheless, quantum Euclidean pooling tends to

achieve a slightly higher fidelity compared to quantum average pooling, see Figures 9–16.
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(a) Average Pooling (b) Euclidean Pooling

Figure 9. Fidelity of 1-D Pooling on 1-D Audio data (32, 000 shots)

(a) Average Pooling (b) Euclidean Pooling

Figure 10. Fidelity of 2-D Pooling on 2-D B/W Images (32, 000 shots)

(a) Average Pooling (b) Euclidean Pooling

Figure 11. Fidelity of 2-D Pooling on 3-D RGB Images (32, 000 shots)
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(a) Average Pooling (b) Euclidean Pooling

Figure 12. Fidelity of 3-D Pooling on Hyperspectral Images (32, 000 shots)

(a) Average Pooling (b) Euclidean Pooling

Figure 13. Fidelity of 1-D Pooling on 1-D Audio data (1, 000, 000 shots)

(a) Average Pooling (b) Euclidean Pooling

Figure 14. Fidelity of 2-D Pooling on 2-D B/W Images (1, 000, 000 shots)
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(a) Average Pooling (b) Euclidean Pooling

Figure 15. Fidelity of 2-D Pooling on 3-D RGB Images (1, 000, 000 shots)

(a) Average Pooling (b) Euclidean Pooling

Figure 16. Fidelity of 3-D Pooling on 3-D Hyperspectral Images (1, 000, 000 shots)

Table 5 compares the time complexity and generalizability of our proposed quantum pooling

techniques to the existing classical and quantum pooling techniques. Compared to classical pooling

techniques, our methods of average and Euclidean pooling can be performed in constant time for

arbitrary data dimension and arbitrary pooling window size. The PQC-based techniques used in

QCNNs [7], and its derivatives [6,9,23–25], are difficult to compare to other techniques since they don’t

perform the same pooling operation. We can determine, however, that the additional ansatz for the

PQC-based techniques would cause deeper quantum circuits compared to our proposed techniques.

Finally, the measurement-based technique proposed in [26] is similar to our technique of single-level

decomposition of 2-D Euclidean pooling (although their work inaccurately claims performing average

pooling). However, our work is more generalizable for arbitrary windows sizes and data dimensions

without compromising performance.
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Table 5. Comparison of Related Work to Proposed Methods.

Classical
[17–19]

PQC-based
[7]

Measurement-based
[26]

Proposed

Pooling Method Arbitrary N/A Euclidean Average,
Euclidean

Time
Complexity

O(2n) O(1) O(1) O(1)

Data Dimension 2-D, 3-D N/A 2-D Arbitrary

Window
Size

Arbitrary N/A (2 × 2) Arbitrary

6. Conclusions

In this work, we proposed efficient quantum average and Euclidean pooling methods for

multidimensional data that can be used in quantum machine learning (QML). Compared to existing

classical and quantum techniques of pooling, our proposed techniques are highly generalizable for

any dimensionality of data or levels of decomposition. Moreover, compared to the existing classical

pooling techniques on GPUs, our proposed techniques can achieve significant speedup — from O(N)

to O(1) for a data size of N values. We experimentally validated the correctness of our proposed

quantum pooling techniques against the corresponding classical pooling techniques on 1-D audio data,

2-D image data, and 3-D hyperspectral data in a noise-free quantum simulator. We also presented

results illustrating the effect on fidelity due to statistical and measurement errors using noisy quantum

simulation. In future work, we will explore applications of the proposed pooling layers in QML

algorithms.
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Abbreviations

The following abbreviations are used in this manuscript:

1-D one-dimensional

2-D two-dimensional

3-D three-dimensional

B/W black-and-white

CNN convolutional neural network

CNOT controlled-NOT

GPU graphical processing unit

ML machine learning

MLP multi-layer perceptron

NISQ noisy intermediate-scale quantum

PQC parameterized quantum circuit

PSP perfect shuffle permutation

Q2C quantum-to-classical

QC quantum computing

QCNN quantum convolutional neural network

QHT quantum Haar transform

QML quantum machine learning

QWT quantum wavelet transform

RGB color

RoL rotate-left

RoR rotate-right

VQA variational quantum algorithm
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