Submitted:
28 December 2023
Posted:
04 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study region
2.2. Bird survey
2.3. Land-cover types and diversity
2.4. Functional traits
2.5. Taxonomic and functional diversity
2.6. Statistical analyses
3. Results
3.1. Principal component analysis results
3.2. Bird survey results
3.3. Influence of land-cover types on avian community diversity
3.4. Influence of season on avian community diversity
3.5. Influence of land-cover types on avian community composition
3.6. Associations between land-cover types and bird functional characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Z.; Li, X.; Song, W.; Li, Q.; Onditi, K.; Khanal, L.; Jiang, X. Small mammal species richness and turnover along elevational gradient in Yulong Mountain, Yunnan, Southwest China. Ecol. Evol. 2020, 10, 2545–2558. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hu, A.; Meng, F.; Zhao, W.; Yang, Y.; Soininen, J.; Shen, J.; Zhou, J. Embracing mountain microbiome and ecosystem functions under global change. New Phytol. 2022, 234, 1987–2002. [Google Scholar] [CrossRef]
- Rahbek, C.; Borregaard, M.K.; Colwell, R.K.; Dalsgaard, B.; Holt, B.G.; Morueta-Holme, N.; Nogues-Bravo, D.; Whittaker, R.J.; Fjeldså, J. Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science 2019, 365, 1108–1113. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Ziegler, A.D.; Elsen, P.R.; Feng, Y.; Baker, J.C.A.; Liang, S.; Holden, J.; Spracklen, D.V.; Zeng, Z. Accelerating global mountain forest loss threatens biodiversity hotspots. One Earth 2023, 6, 303–315. [Google Scholar] [CrossRef]
- Matuoka, M.A.; Benchimol, M.; de Almeida-Rocha, J.M.; Morante-Filho, J.C. Effects of anthropogenic disturbances on bird functional diversity: A global meta-analysis. Ecol. Indic. 2020, 116, 106471. [Google Scholar] [CrossRef]
- Coetzee, B.W.T.; Chown, S.L. Land-use change promotes avian diversity at the expense of species with unique traits. Ecol. Evol. 2016, 6, 7610–7622. [Google Scholar] [CrossRef] [PubMed]
- Desrochers, R.E.; Kerr, J.T.; Currie, D.J. How, and how much, natural cover loss increases species richness. Global Ecol. Biogeogr. 2011, 20, 857–867. [Google Scholar] [CrossRef]
- Hayes, W.M.; Fisher, J.C.; Pierre, M.A.; Bicknell, J.E.; Davies, Z.G. Bird communities across varying landcover types in a Neotropical city. Biotropica. 2020, 52, 151–164. [Google Scholar] [CrossRef]
- Shoffner, A.; Wilson, A.M.; Tang, W.; Gagné, S.A. The relative effects of forest amount, forest configuration, and urban matrix quality on forest breeding birds. Sci. Rep. 2018, 8, 17140. [Google Scholar] [CrossRef]
- Maseko, M.S.T.; Zungu, M.M.; Ehlers Smith, D.A.; Ehlers Smith, Y.C.; Downs, C.T. Effects of habitat-patch size and patch isolation on the diversity of forest birds in the urban-forest mosaic of Durban, South Africa. Urban Ecosyst. 2020, 23, 533–542. [Google Scholar] [CrossRef]
- Soares, F.C.; Panisi, M.; Sampaio, H.; Soares, E.; Santana, A.; Buchanan, G.M.; Leal, A.I.; Palmeirim, J.M.; Lima, R.F. Land-use intensification promotes non-native species in a tropical island bird assemblage. Anim. Conserv. 2020, 23, 573–584. [Google Scholar] [CrossRef]
- Tews, J.; Brose, U.; Grimm, V.; Tielbörger, K.; Wichmann, M.C.; Schwager, M.; Jeltsch, F. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr. 2004, 31, 79–92. [Google Scholar] [CrossRef]
- Basnet, T.B.; Rokaya, M.B.; Bhattarai, B.P.; Münzbergová, Z. Heterogeneous Landscapes on Steep Slopes at Low Altitudes as Hotspots of Bird Diversity in a Hilly Region of Nepal in the Central Himalayas. PLoS One 2016, 11, e0150498. [Google Scholar] [CrossRef]
- Yabuhara, Y.; Yamaura, Y.; Akasaka, T.; Yamanaka, S.; Nakamura, F. Seasonal variation in patch and landscape effects on forest bird communities in a lowland fragmented landscape. Forest Ecol. Manag. 2019, 454, 117140. [Google Scholar] [CrossRef]
- Stein, A.; Gerstner, K.; Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 2014, 17, 866–880. [Google Scholar] [CrossRef] [PubMed]
- Miller-Rushing, A.J.; Primack, R.B.; Devictor, V.; Corlett, R.T.; Cumming, G.S.; Loyola, R.; Maas, B.; Pejchar, L. How does habitat fragmentation affect biodiversity? A controversial question at the core of conservation biology. Biol. Conserv. 2019, 232, 271–273. [Google Scholar] [CrossRef]
- Newbold, T.; Scharlemann, J.P.W.; Butchart, S.H.M.; Sekercioğlu, C.H.; Alkemade, R.; Booth, H.; Purves, D.W. Ecological traits affect the response of tropical forest bird species to land-use intensity. P. Roy. Soc. B-Biol. Sci. 2013, 280, 20122131. [Google Scholar] [CrossRef]
- Parra-Torres, Y.; Ramírez, F.; Afán, I.; Aguzzi, J.; Bouten, W.; Forero, M.G.; Navarro, J. Behavioral rhythms of an opportunistic predator living in anthropogenic landscapes. Mov. Ecol. 2020, 8, 17. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, G.; Ma, H.; Wu, Y.; Zhang, W.; Zhang, Y.; Li, C.; de Boer, W.F. Bird communities’ responses to human-modified landscapes in the southern Anhui Mountainous Area. Avian Res. 2022, 13, 100006. [Google Scholar] [CrossRef]
- McGill, B.J.; Enquist, B.J.; Weiher, E.; Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 2006, 21, 178–185. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Zha, D.; Yang, S.; Huang, Z.Y.X.; Boer, W.F. Assembly processes of waterbird communities across subsidence wetlands in China: A functional and phylogenetic approach. Divers. Distrib. 2019, 25, 1118–1129. [Google Scholar] [CrossRef]
- Schaaf, A.A.; Gomez, D.; Tallei, E.; Vivanco, C.G.; Ruggera, R.A. Responses of functional traits in cavity-nesting birds to logging in subtropical and temperate forests of the Americas. Sci. Rep. 2021, 11, 24309. [Google Scholar] [CrossRef] [PubMed]
- Weideman, E.A.; Slingsby, J.A.; Thomson, R.L.; Coetzee, B.T.W. Land cover change homogenizes functional and phylogenetic diversity within and among African savanna bird assemblages. Landscape Ecol. 2020, 35, 145–157. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Tan, M.; Wang, Y. Influences of population pressure change on vegetation greenness in China’s mountainous areas. Ecol. Evol. 2017, 7, 9041–9053. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhou, Y.; Fang, X.; Zhao, S.; Wu, Y.; Zhang, H.; Cui, L.; Cui, P. Effects of Environmental Factors on Bird Communities in Different Urbanization Grades: An Empirical Study in Lishui, a Mountainous Area of Eastern China. Animals (Basel) 2023, 13. [Google Scholar] [CrossRef]
- Zheng, G. A Checklist on the Classification and Distribution of the Birds of China, 3rd ed.; Science Press: Beijing, 2017. [Google Scholar]
- Wilman, H.; Belmaker, J.; Simpson, J.; de La Rosa, C.; Rivadeneira, M.M.; Jetz, W. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 2014, 95, 2027. [Google Scholar] [CrossRef]
- Laliberté, E.; Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 2010, 91, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Dray, S.; Choler, P.; Dolédec, S.; Peres-Neto, P.R.; Thuiller, W.; Pavoine, S.; ter Braak, C.J.F. Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology 2014, 95, 14–21. [Google Scholar] [CrossRef]
- R Core Team. R: a Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, 2020. [Google Scholar]
- Sasaki, K.; Hotes, S.; Kadoya, T.; Yoshioka, A.; Wolters, V. Landscape associations of farmland bird diversity in Germany and Japan. Glob. Ecol. Conserv. 2020, 21, e00891. [Google Scholar] [CrossRef]
- Yang, X.; Tan, X.; Chen, C.; Wang, Y. The influence of urban park characteristics on bird diversity in Nanjing, China. Avian Res. 2020, 11. [Google Scholar] [CrossRef]
- Katuwal, H.B.; Pradhan, N.M.B.; Thakuri, J.J.; Bhusal, K.P.; Aryal, P.C.; Thapa, I. Effect of Urbanization and Seasonality in Bird Communities of Kathmandu Valley. Nepal. Proc. Zool. Soc. 2018, 71, 103–113. [Google Scholar] [CrossRef]
- Neves, K.; Moura, M.R.; Maravalhas, J.; Pacheco, R.; Pie, M.R.; Schultz, T.R.; Vasconcelos, H.L. Functional richness shows spatial scale dependency in Pheidole ant assemblages from Neotropical savannas. Ecol. Evol. 2019, 9, 11734–11741. [Google Scholar] [CrossRef] [PubMed]
- Ibarra, J.T.; Martin, K. Biotic homogenization: Loss of avian functional richness and habitat specialists in disturbed Andean temperate forests. Biol. Conserv. 2015, 192, 418–427. [Google Scholar] [CrossRef]
- Altamirano, T.A.; de Zwaan, D.R.; Ibarra, J.T.; Wilson, S.; Martin, K. Treeline ecotones shape the distribution of avian species richness and functional diversity in south temperate mountains. Sci. Rep. 2020, 10, 18428. [Google Scholar] [CrossRef] [PubMed]
- Mason, N.W.H.; Mouillot, D.; Lee, W.G.; Wilson, J.B. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 2005, 111, 112–118. [Google Scholar] [CrossRef]
- Jacoboski, L.I.; Hartz, S.M. Using functional diversity and taxonomic diversity to assess effects of afforestation of grassland on bird communities. Perspect. Ecol. Conser. 2020, 18, 103–108. [Google Scholar] [CrossRef]
- Ding, Z.; Liang, J.; Hu, Y.; Zhou, Z.; Sun, H.; Liu, L.; Liu, H.; Hu, H.; Si, X. Different responses of avian feeding guilds to spatial and environmental factors across an elevation gradient in the central Himalaya. Ecol. Evol. 2019, 9, 4116–4128. [Google Scholar] [CrossRef]
- Aschoff, J. Thermal conductance in mammals and birds: Its dependence on body size and crcadian phase. Comparative Biochemistry and Physiology Part A: Physiology 1981, 69, 611–619. [Google Scholar] [CrossRef]




| Trait type | Traits | Categories |
|---|---|---|
| Resource quantity | Body mass | Continuous |
| Diet guild | PlantSeed (feeding on plant and seeds); FruiNect (feeding on fruits and nectar); Invertebrate (feeding on invertebrates); VertFishScav (feeding on vertebrates, fish and carrion); Omnivore |
categorical |
| Foraging stratum | Ground; Understory; Midstorey; Canopy; Air; Water |
Continuous |
| Land-cover types | PC1 | PC2 | PC3 |
|---|---|---|---|
| Woodland | 0.638 | 0.059 | 0.007 |
| Shrubland | 0.028 | 0.298 | -0.300 |
| Built-up area | -0.486 | 0.051 | -0.259 |
| Grassland | -0.127 | -0.099 | 0.848 |
| Water bodies | -0.281 | 0.573 | -0.069 |
| Cultivated land | -0.491 | -0.437 | -0.032 |
| Bare land | -0.143 | 0.614 | 0.345 |
| Proportion of Variance (%) | 0.343 | 0.192 | 0.153 |
| Cumulative Proportion (%) | 0.343 | 0.534 | 0.687 |
| Explanatory variables | Models for | |||||
|---|---|---|---|---|---|---|
| Richness | Abundance | Shannon | FRic | FEve | FDiv | |
| PC1 | -0.08 (0.08) *** |
-0.16 (0.02) *** |
-0.05 (0.01) *** |
-0.05 (0.10) *** |
0.01 (0.00) * |
0.00 (0.00) |
| PC2 | 0.03 (0.02) |
0.05 (0.04) |
0.01 (0.01) |
0.02 (0.01) |
0.00 (0.01) |
0.00 (0.01) |
| PC3 | 0.04 (0.02) |
0.03 (0.03) |
0.01 (0.02) |
0.01 (0.01) |
-0.02 (0.01) * |
0.00 (0.02) |
| LD | 0.01 (0.01) |
0.05 (0.05) |
-0.00 (0.01) |
0.01 (0.01) |
-0.00 (0.00) |
-0.00 (0.01) |
| Spring | -0.01 (0.06) |
-0.34 (0.11) ** |
0.05 (0.02) * |
0.07 (0.04) |
0.02 (0.02) |
-0.05 (0.01) *** |
| Summer | -0.12 (0.06) * |
-0.48 (0.11) *** |
0.02 (0.02) |
0.14 (0.04) ** |
0.06 (0.02) *** |
-0.09 (0.01) *** |
| Winter | -0.38 (0.07) *** |
-0.45 (0.11) *** |
-0.14 (0.02) *** |
-0.22 (0.05) *** |
-0.03 (0.02) |
-0.02 (0.01) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
