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Abstract: Structural health monitoring (SHM) has become paramount for developing cheaper
and more reliable maintenance policies. The advantages coming from adopting such process
have turned out to be particularly evident when dealing with plated structures. In this context,
state-of-the-art methods are based on exciting and acquiring ultrasonic guided waves through
a permanently installed sensor network. A baseline is registered when the structure is healthy,
and newly acquired signals are compared to it to detect, localize and quantify damage. To this
purpose, the performance of traditional methods based on tomographic algorithms has been overcome
by machine learning approaches, which allow processing a larger amount of data without losing
diagnostic information. However, to date, no diagnostic method can deal with varying environmental
and operational conditions. This works aims to develop a framework for mitigating the impact
of temperature variations on ultrasonic guided wave-based SHM through generative artificial
intelligence. A variational autoencoder and singular value decomposition were combined to learn
the influence of temperature on guided waves. After training, the generative part of the algorithm
was used to reconstruct signals at new unseen temperatures. Moreover, a refined version of the
algorithm called forced variational autoencoder was introduced to further improve the reconstruction
capabilities. The accuracy of the proposed framework was demonstrated against real measurements
on a composite plate.

Keywords: generative artificial intelligence; variational autoencoder; temperature; ultrasonic guided
wave

1. introduction

In recent years, there has been a notable surge in the exploration of structural health monitoring
(SHM) based on ultrasonic guided wave propagation for damage detection, localization, and
quantification [1-7]. This method employs a single piezoelectric transducer as an actuator, transmitting
ultrasonic waves into the material, while multiple strategically positioned transducers serve as
receivers to capture the transmitted waves. The discernible contrast between a baseline signal
recorded when the structure is intact and a signal from an unknown state of the structure may indicate
the presence of damage [8-10]. It is crucial to acknowledge that these changes are not exclusively
indicative of structural alterations within the monitored system, but may also be influenced by
various environmental and operational conditions (EOCs), such as moisture, vibration, and especially
temperature [11-13].

In Abbassi et. al [14], autoencoders demonstrated the capability to detect damage at different
positions independently of temperature. The training dataset encompassed data from all tested
temperatures. However, it is notable that some temperatures are difficult to be maintained in the
laboratory environment, while being very common during the operational life of the structure. For
example, aircraft at cruise altitude encounters temperatures as low as -50°C, a challenging condition to
be replicated and maintained in the laboratory. Variational autoencoders (VAEs) [15] are a possible
solution to this issue.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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The VAE introduces a probabilistic interpretation of its results by modeling the latent space as a
probability distribution. After training, the model can be used for generating new realistic data by
sampling from the learned latent space distribution, thereby generating data samples which differ from
the input, but remain faithful to the underlying behavior of the data. Notably, a VAE was previously
employed in Shu et. al [16] to predict the displacement at various points on a dam, demonstrating lower
prediction errors compared to traditional models such as the long-short term memory model. The VAE
was capable of extracting features from all environmental data, e.g., water level, dam temperature,
water temperature, and rainfall, while traditional models only extracted primary features, leaving
information out of the analysis.

The novelty in this study lies in applying the VAE to predict ultrasonic guided wave signals
traveling through a composite panel at temperatures not present in its training dataset. Furthermore,
linearity of the latent space points was enforced by introducing a new loss function based on singular
value decomposition (SVD), as it was expected that the impact of rising the temperature would be anti
symmetric to the impact of lowering the temperature. A comparison between the VAE’s prediction
error with and without this restriction was conducted.

The structure of this article is as follows: Section 2, Materials and Methods, provides a
comprehensive description of the dataset used in this study and outlines the implementation of
the VAEs. Section 3, Results, showcases the signal prediction outcomes for the diverse scenarios
examined in this study. Section 4, Discussion, presents insightful comments regarding the obtained
results. Finally, Section 5, Conclusions, offers a summarized overview of the conclusions drawn out
from this study.

2. Materials and Methods

A generative artificial intelligence algorithm was trained over a dataset of ultrasonic guided
waves acquired over different temperatures with the aim of learning temperature-related features.
After training, the model was used for generating signals at new temperatures.

2.1. Dataset

The dataset utilized in this study was sourced from the OpenGuidedWaves [17] platform, a
repository offering comprehensive datasets of wave signals acquired on a carbon fiber-reinforced
polymer (CFRP) plate. The experimental setup involved 12 piezoelectric sensors. Signals were sampled
over a frequency band from 40 kHz to 260 kHz, with intervals of 20 kHz. The sampling process was
carried out under varying temperature conditions, encompassing a temperature range from 20°C to
60°C. Notably, temperature was varied in a cyclical manner, involving two complete cycles. As a result,
a comprehensive dataset of 322 distinct temperatures was acquired.

In this work, the original dataset was split into three distinct sub-datasets, designed to simulate
diverse scenarios:

¢  Standard Dataset: this dataset encompasses all the 322 samples.

*  Band Dataset: this dataset includes all the signals acquired between 30°C and 50°C.

*  Sparse Dataset: this dataset comprises clusters of samples at nearby temperatures, strategically
spaced with a fixed interval. That is, clusters with a radius of 2°C and separated by 5°C are
considered.

This approach allowed for the creation of multiple datasets, providing varied case studies to
enhance the model’s adaptability and performance across different temperature scenarios.

2.2. Generative artificial intelligence models

2.2.1. Variational Autoencoder

The model employed in this work was a VAE, an improved version of the traditional autoencoder.
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An autoencoder is a neural network architecture designed for unsupervised learning. Comprising
an encoder and a decoder, it aims to learn efficient representations of input data. The encoder
transforms the input data into a compressed, lower-dimensional representation known as the latent
space representation of the data. This encoded information is then decoded by the decoder to
reconstruct the original input.

Mathematically, an autoencoder minimizes the reconstruction error, promoting the automatic
learning of meaningful features in the data. The reconstruction loss shown in Equation 1, often
represented as Lrecon, is typically defined as the mean squared error (MSE) between the input X and
the reconstructed output X:

o 1Y .
EI’ECOI‘I(X/ X) = N Z ”XZ - Xi||2 (1)
i=1

where N is the number of data points in the signals X and X.

The ability of autoencoders to learn compact representations of data makes them valuable for
tasks where extracting meaningful features is crucial. For example, autoencoders find applications in
various domains, such as dimensionality reduction, feature learning, and anomaly detection. Moreover,
the versatility of their architecture allows autoencoders to be tailored to specific learning objectives.
Leveraging this characteristic, several variations of the standard fully-connected architecture have
been proposed in the literature, including denoising autoencoders and VAEs. Particularly promising
capabilities characterize VAEs, which are described by a latent space characterized by probability
distributions rather than single deterministic points, as illustrated in Figure 1. This enables the
generation of new data points by sampling from the learned latent space distributions. Let z be a
latent variable representing a sample from the latent space distributions, and 4 and ¢ be the mean
and standard deviation of the latent space distributions. The encoder network parametrizes the
distributions. During training the model is encouraged to learn distributions that follow standard
normal distributions, according to the Equation 2:

z=p+oc0e 2)

where:

N

: sampled latent vector
: mean vector obtained from the encoder
: standard deviation vector obtained from the encoder

: random vector sampled from a standard normal distribution

®© o 9 =

: element-wise multiplication operator

The reconstruction loss (Lrecon) is added with the Kullback-Leibler (KL) divergence term (Lkp)
shown in Equation 3, which measures the difference between the learned distributions and the standard
normal distributions:

S

_ 1 2 2 2
Lx1 = 23 <1+10g(‘7i) Wi Ui) 3)

Il
—

where M is the number of variables, i.e., distributions, considered in the latent space.
Hence, the overall VAE loss presented in Equation 4 is a combination of the reconstruction loss
and the KL divergence term:

EVAE = Erecon + ,B ' EKL (4)

where S is a hyperparameter that controls the importance of the KL divergence term in the overall loss.
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Figure 1. VAE Architecture

In summary, VAEs leverage probabilistic encoding to enable the generation of continuous and
structured latent space representations, from which new data points can be created. The inclusion of
the KL divergence term promotes the learning of well-behaved latent space distributions in such a
manner that all latent space points are demoted if they are far from the center of the latent space.

The VAE architecture considered in this work is shown in Table 1.

Table 1. Summary of the Neural Network Architecture

Layer Number of Neurons  Activation Function
Input 1 x 13108 -
Dense 128 SiLu
Dense 64 SiLu
Dense 16 SiLu
Latent Space 2 -
Sampling 1 -
Dense 16 SiLu
Dense 64 SiLu
Dense 128 SiLu
Output 1x13108 Sigmoid

Optimizer: "Adam"

2.2.2. Forced Variational Autoencoder

In this work, an enhanced version of the standard VAE, i.e., the forced VAE (f-VAE), is proposed.
The f-VAE is an autoencoder with enforced linearity within the latent space. This is achieved through
the introduction of an SVD component. The model architecture includes an encoder, a decoder, and a
latent space sampling layer, each contributing to the overall VAE structure. A novel addition to the
loss function is the SVD loss term. After the entire dataset is encoded into the latent space, the mean is
subtracted and SVD is perfomed. The SVD loss term is presented in Equation 5:

min (Y % )
— 0
where 0; is the i-th singular value, and # is the number of singular values computed.

Hence, the total loss in Equation 6 is a combination of the reconstruction loss, KL divergence, and
the introduced SVD loss:

EVAE - Erecon + ,B . EKL + - ['SVD (6)
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where 8 and 7y are hyperparameters controlling the weight of KL divergence and SVD loss, respectively.

2.3. Training and signals generation

The f-VAE and VAE models were trained on all three proposed datasets. The workflow describing
how training and signal reconstruction were addressed in this work is shown in Figure 2.

Dataset Selection
ﬁlandard/ /Band/ /Sparse/
dataset dataset dataset

INPUT

ﬁ f-VAE I—w
Model Selection

TRAINING TRAINING

Choose
Model Dataset
pair

Temperature Model Signal
Selection Initialization Reconstruction

Y
I ‘ Latent Space DECODING

Interpolation

Figure 2. Workflow describing training and signal generation
The following hyperparameters were tuned to optimize the training performance:

¢  Learning Rate

*  Batch Size

e Number of Epochs

¢ Kullback-Leiber loss weight
*  SVD loss weight

Among the best performing values, the set of hyperparameters that allowed for a latent space
characterized by a linear correspondence to the variation of the network inputs was selected.

After training, signals at target temperatures were generated for testing the generation
performance of the models. The following steps were followed for generating signals:

1. Temperature Selection: the target temperature for signal generation was chosen. This temperature
served as the basis for the desired signal.

2. Model Initialization: the pre-trained model was initialized, including loading the trained weights
and preparing the model for signal generation.

3. Latent Space Interpolation: SVD was used to elucidate the connection between the latent space
coordinates, i.e., z; and z; in this work, and temperature, discerning the direction of maximum
variance. The primary direction was considered to fully characterize the learned trend in the latent
space, enabling a unified entry point into the latent space representing the signal temperature.
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4. Signal Reconstruction: the decoder was used to reconstruct the signal corresponding to the
selected temperature.

By employing SVD to map the chosen temperature to latent space coordinates and subsequently
utilizing the VAE’s decoder, this approach enabled the generation of signals that reflect the desired
temperature. Moreover, employing SVD exclusively on the training data ensured that the interpolation
line captured only the known data, simulating a real-world scenario where models are trained with
limited data.

The performance of the model during the generation phase was evaluated using the following
error metrics:

1. Root Mean Square Error (RMSE): measure of the average magnitude of the differences between
the reconstructed signals and the original signals. It is calculated according to Equation 7.

where N is the number of data points, x; is the i-th data point of the original signal, and £; is its
reconstruction.

2. Signals Comparison: different signals at different temperatures were qualitatively compared to
visualize if the generated signal matched the expected result.

This metrics provided insights into how well the f-VAEs and VAEs were able to reconstruct signals
starting from latent space representations. The generated signals spanned the entire temperature range
in the original dataset described in Ref. [17], even though the training dataset for certain models did
not encompass signals from the entire range. This intentional extension beyond the training dataset
mirrored a testing scenario, allowing for a comprehensive evaluation of the models’ performance and
their ability to interpolate and extrapolate out of the training set.

3. Results

The performance of the two models (VAE and f-VAE) was evaluated against the three different
datasets described in Section 2.1. Each pairing of model and dataset was scrutinized considering
latent space linearity, RMSE, and the qualitative evaluation of the signals generated at four distinct
temperatures: 25°C, 35°C, 45°C, and 55°C. Moreover, the generated signals were also compared to the
signal at 40°C, i.e., to the signal acquired at the median temperature value in the training datasets, in
order to verify the interpolation and extrapolation capabilities of the proposed methods.

Without losing generality, all the considerations reported in this Section refer to latent space
representations characterized by zero variance. That is, in the interest of clarity, only the mean values
of the latent space distributions were considered.

3.1. VAE

3.1.1. Standard Dataset

The distribution of the learned latent space representations and the reconstruction error related
to the VAE model trained over the standard dataset are shown in Figure 3. Figure 3a reveals distinct
points aligned with a clear direction of primary variance. Indeed, the SVD method underscored a
discernible gap between the first and other components, endorsing the reliability of the interpolation
line. Notably, the RMSE shown in Figure 3b consistently depicted an error below 4.5% universally,
with the lowest reconstruction error at around 40°C, and higher errors at the tails of the distribution.
This behavior may indicate that the model failed to accurately learn temperature-related features, and
always reconstructed the signal at the median temperature in the training dataset.
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The qualitative comparison of the generated signals is shown in Figure 4. The results underscored
the tendency of the generated signals to closely follow the signal at the median temperature in the
training dataset, i.e., 40°C, rather than adhering to the dataset signal at the corresponding temperature.
This behavior confirms the intuition that the VAE trained on the standard dataset failed to learn how
guided waves are influenced by temperature.

40 % .::"._'
N y x
30 n."":." g;:"
o,
d 25 \,‘-.";'. . ;,l!?}
0.006 | 1og ~0.010 o008 sfeien’
(a) Latent Space (LS) (b) RMSE

Figure 3. VAE - standard dataset. Latent space distribution and RMSE
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Figure 4. Test signals generated by the VAE trained over the standard dataset
3.1.2. Band Dataset

The distribution of the learned latent space representations and the reconstruction error related
to the VAE model trained over the band dataset are shown in Figure 5. Similar observations to those
already reported in Section 3.1.1 emerged. The latent space plot shown in Figure 5a demonstrated
a pronounced alignment of points along the primary variance direction, reaffirming the efficacy of
the interpolation line through SVD. Due to the dataset’s limited range in temperature, the tails of the
dataset extended beyond the SVD interpolation line, as the VAE was not explicitly trained on those
regions. The RMSE shown in Figure 5b mirrored the trend observed for the standard dataset. That is,
errors were consistently below 4.5%, the lowest error was observed at around 40°C, and highest RMSEs
characterized the distribution tails. Similarly, Figure 6 shows that the generated signals qualitatively
resembled the signal at 40°C, rather than those at the target temperature.

The results described above allow concluding that the VAE trained over the band dataset was not
able to learn temperature-related features.
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Figure 5. VAE - band dataset. Latent space distribution and RMSE
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Figure 6. Test signals generated by the VAE trained over the band dataset
3.1.3. Sparse Dataset

The distribution of the learned latent space representations and the reconstruction error related to
the VAE model trained over the sparse dataset are shown in Figure 7. The Latent Space plot shown in
Figure 7a reveals a distribution markedly different from the preceding datasets in Figure 3a and Figure
5a, where a more pronounced direction of variance was observed through SVD. In this case, instead,
both the first and second components carried significance, showcasing a distinctive characteristic of
the dataset. As a consequence, the encoded signals revealed a sinusoidal pattern, instead of the linear
trend.

Despite this potentially disadvantageous behavior, the RMSE plot shown in Figure 7b follows
a similar trend to the previous datasets, consistently emphasizing errors at the distribution tails.
Interestingly, the RMSE pattern aligns with that characterizing the previously discussed datasets.

The signal reconstruction capabilities shown in Figure 8 are consistent with those of the VAEs
trained on the other two datasets. The generated signals tend to closely resemble the signal at 40°C,
rather than adhering to the signal at the target temperature.
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Figure 7. VAE - sparse dataset. Latent space distribution and RMSE
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Figure 8. Test signals generated by the VAE trained over the sparse dataset

3.2. FVAE

3.2.1. Standard Dataset

The distribution of the learned latent space representations and the reconstruction error related to
the f-VAE model trained over the standard dataset are shown in Figure 9. Conspicuous differences
compared to the VAE model presented in Section 3.1.1 can be appreciated. The latent space distribution
shown in Figure 9a exhibited a more linear trend, closely resembling a straight line. Notably, SVD
underscores a significantly larger first component compared to secondary ones, implying the negligible
contribution of these latter components. Also, the RMSE shown in Figure 9b presented a different
behavior than that observed for the VAE model. That is, no pronounced increase in error characterized
the tails of the distribution. Except for a few points at higher temperatures approaching a 4% error, the
majority of points did not exceed a 2% overall error. Remarkably, 90% of the points remained below
the 1% error threshold.

The qualitative comparison of the generated signals is shown in Figure 10. The f-VAE model
clearly outperformed the VAE model in terms of accuracy of the generated signals. In fact, the
generated signals exhibited a closer resemblance to the expected signals, rather than strictly adhering
to the signal at 40°C.

The results showed that forcing VAEs to learn linear representations in the latent space allowed
for correctly capturing the influence of temperature on ultrasonic guided waves.
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Figure 9. f-VAE - standard dataset. Latent space distribution and RMSE
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Figure 10. Test signals generated by the f-VAE trained over the standard dataset

3.2.2. Band Dataset

The distribution of the learned latent space representations and the reconstruction error related to
the f-VAE model trained over the band dataset are shown in Figure 11. Distinguishable variations in
comparison to the VAE model outlined in Section 3.1.2 can be observed. The latent space distribution
depicted in Figure 11a displayed a more linear tendency similar to the one commented in Section 3.2.1.
The RMSE illustrated in Figure 11b exhibited a pattern similar to that noted in the VAE model, but with
some discrepancies: the tails exhibited higher errors up to 3.5%, but the RMSE within the temperature
range of 30°C and 50°C showed greater consistency, staying below 1%.

The generated signals presented in Figure 12, in line with the model’s behavior observed in the
standard dataset, continued to closely follow the dataset signals. The f-VAE model outperformed
the VAE model in terms of accuracy of the generated signals, as already highlighted in Section 3.2.1.
Despite the inherent challenges posed by extreme temperature points, the f-VAE was able to generate
signals at temperatures out of the training dataset. That is, the f-VAE was also able to extrapolate.
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Figure 12. Test signals generated by the f-VAE trained over the band dataset

3.2.3. Sparse Dataset

The {-VAE trained over the sparse dataset was characterized by satisfactory performance, as
shown in Figure 13. The model was able to capture the primary sources of variance within the sparse
dataset, even though the linearity was not as pronounced as observed for the f-VAE trained over
the standard dataset (Figure 9a). Major differences are observable by comparing the the f-VAE and
the VAE trained over the same sparse dataset. In fact, while the latent space shown in Figure 13a
plot resembled a linear behavior, the VAE learned a sinusoidal pattern (Figure 7a) characterized by a
non-negligible second singular value.

Also, the RMSE plot shown in Figure 13b displayed a satisfactory performance, consistently
maintaining errors below 2.5%. Notably, 90% of the points fell below the 1% error threshold, indicating
the model’s adaptation to the complexities of the sparse dataset.

In line with the observed trends in Figures 10 and 12, the generated signals shown in Figure 14
faithfully followed the expected signals. Also here, the f-VAE model outperformed the VAE model in
terms of accuracy of the generated signals.
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Figure 14. Test signals generated by the f-VAE trained over the sparse dataset
4. Discussion

The analysis of the performance of the two models across different datasets revealed the
potentialities and limitations of the employed generative artificial intelligence algorithms.

The VAE trained over the standard dataset seemed to effectively capture the relation between
signal temperature and the latent space coordinates, supported by the SVD analysis. Although the
reconstruction error over the test dataset was satisfactorily low, a trend indicating that the model was
only able to reproduce signals at 40°C, rather than strictly adhering to the expected signal at the target
temperature, was identified.

Similar considerations were drawn out from the analysis of the performance of the VAE trained
over the band dataset. In fact, the latent space distribution was aligned along a clear primary variance
direction. Despite SVD capturing the maximum variance in the dataset, the bandwidth considered in
the band dataset introduced challenges, resulting in high reconstruction errors at the tails of the RMSE
distribution. Additionally, the generated signals still matched the 40°C signal, regardless of the target
temperature.

The same unsatisfactory generation capabilities characterized the VAE trained over the sparse
dataset. Here, the performance was even worse, given that the latent space distribution was
characterized by two non-negligible singular values.
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The introduction of the f-VAE brought about notable improvements. When trained over the
standard dataset, the f-VAE introduced a more linear latent space, with a significantly larger first
component according to SVD. The RMSEs over the test dataset were considerably lower than those
characterizing the VAEs. No clear trend of higher reconstruction errors at the tails of the temperature
distribution was identified, indicating enhanced precision in signal generation. Furthermore, the
generated signals closely resembled the expected signals at the target temperatures.

Similarly, the f-VAE trained over the band dataset was characterized by a linear latent space
representation in the temperature range considered during training. The regression line slightly
departed from the linear trend at unseen temperatures. The same trend was shown by the
reconstruction error, which was characterized by higher values when extrapolation was performed.
This behavior is commonly shown by all machine learning algorithms, which cannot be fully
trusted when extrapolating. Still, the generated signals closely followed the expected signals at
all temperatures, bringing evidence of the capability of the model to generate realistic signals.

The {-VAE trained over the sparse dataset offered satisfactory performance. The latent space
exhibited a prominent linearity and the RMSE was kept low at all temperatures. Accordingly, the
generated signals closely matched the expected signals. The reconstruction quality achieved using
the sparse dataset was higher than that characterizing the f-VAE trained over the band dataset.
This indicates than f-VAEs work better when interpolating, while caution should be taken when
extrapolating.

Higher reconstruction errors characterized the signals close to 60°C generated by the f-VAEs. This
behavior came from the dataset composition. In fact, signals were acquired by varying temperature
in a cyclic manner. By so doing, the dataset included two acquisitions at 60°C, and four acquisitions
at 20°C and throughout the rest of the dataset. This discrepancy implied a less densely populated
training distribution in regions close to 60°C.

5. Conclusions

In this work, variational autoencoders and singular value decomposition have been used to learn
the influence of temperature on ultrasonic guided waves. Moroever, a newly developed machine
learning algorithm, i.e., the forced variational autoencoder, has been introduced to further improve the
reconstruction capabilities of the generative artificial intelligence-based framework. The accuracy of
the proposed method has been demonstrated against real measurements on a composite plate. The
following conclusions can be drawn out:

e  Regardless of the composition of the training dataset, traditional variational autoencoders cannot
learn how to generate signals at different temperatures.

e  Satisfactory reconstruction accuracy has been shown by forced variational autoencoders coupled
with singular value decomposition.

e  Forced variational autoencoders can work in realistic scenarios, even when the training dataset is
sparse.

Future work will focus on implementing forced variational autoencoders and singular value
decomposition into unsupervised frameworks for damage detection, localization and quantification.
This will allow making a step towards robust structural health monitoring tools that are not influenced
by varying environmental and operational conditions.
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