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Abstract: Long read sequencers, known for their effectiveness in detecting genomic structural
variations (SV), are becoming a standard in comprehensive genetic analysis. In preimplantation
genetic testing (PGT) for SV carriers, information on breakpoint junctions is required for the
determination of carrier status in embryo selection. These sequencers are employed for challenging
cases involving SVs that are difficult to analyze with conventional cytogenetical methods or detailed
junctions of chromosomal translocations, providing valuable insights. They also play a crucial role
in acquiring simultaneous information on surrounding single-nucleotide polymorphisms (SNPs)
around causative variants in PGT. Despite their advantages, challenges related to sequencing
accuracy and testing costs exist. Thus, understanding long read sequencers’ characteristics is
essential for their effective utilization. This review summarizes the advanced applications of long
read sequencers in preclinical workups and their integration into PGT. It also highlights in-house
clinical cases, showing the implementation of long-read sequencing and discussing prospects in the
field.
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1. Introduction

Long-read sequencing is a cutting-edge comprehensive genetic analysis method. Unlike short-
read next-generation sequencing (NGS), which typically reads DNA sequences of approximately 50-
600 base pairs (bp), long-read sequencing allows for the reading of long DNA sequences ranging
from tens of kilobases (kb) to megabases (Mb) [1]. In short-read sequencing, it is difficult to analyze
repeat sequences and complex structural variations because of this technique’s characteristics with
regard to piecing together short fragments. However, long-read sequencing overcomes this limitation
by obtaining DNA reads long enough to assemble these repeat sequences and structural variations.
This not only makes the analysis easier from a technical standpoint but also leads to the discovery of
novel causative pathological variants [2]. Long-read sequencing is essential for analyzing so-called
"genome gaps," which are unreadable genomic regions that were previously challenging to sequence.
Assembly using long-read sequencing, along with BioNano's Optical Genome Mapping method [3],
played a crucial role in the Telomere-to-Telomere (T2T) project for complete human genome
sequencing [4]. Although it may seem that long-read sequencing is displacing conventional
comprehensive analysis methods, it has its weaknesses, such as lower sequencing accuracy compared
to short-read sequencing and a higher cost per sequencing run. Therefore, like other cytological
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genetic testing methods such as microarray technology and short-read sequencers, it is necessary to
choose the appropriate application based on an understanding of the test characteristics.

When implementing preimplantation genetic testing (PGT), how can long read sequencers be
beneficial? PGT is currently primarily used in three types of tests: preimplantation genetic testing for
aneuploidy (PGT-A), preimplantation genetic testing for structural rearrangement (PGT-SR), and
preimplantation genetic testing for monogenic disorders (PGT-M).[5] Among these PGT types, the
critical factor is the need to conduct tests on a minimal number of cells, requiring whole-genome
amplification as a prerequisite [6-8]. It is essential to note the need for addressing allele dropouts and
misdiagnosis due to contamination associated with genome amplification and the limitations of
quantitative genetic testing methods such as quantitative PCR (qPCR) and multiple ligation-
dependent probe amplification (MLPA) [9]. Therefore, preclinical workups for PGT often demand
more detailed analysis than routine clinical genetic diagnostics. PGT-SR is the most straightforward
application for understanding the comprehensive and precise analyses that long read sequencers
excel at. PGT-SR is a method for avoiding embryo transfer with chromosomal imbalances resulting
from chromosomal structural abnormalities, such as parental balanced translocations [10,11].
Conventional techniques like low-coverage whole-genome sequencing via next-generation
sequencing (NGS) and aCGH used in PGT-SR can only confirm large genomic imbalances associated
with chromosomal rearrangements [5,8]. The accuracy of these techniques is limited, especially for
detecting small segments, and sometimes additional methods like FISH probes are necessary [12].
Therefore, the expertise of long read sequencers in genomic structural analysis can be envisioned to
enhance precision and expand the scope of testing. Indeed, researchers have already used long-read
sequencing for breakpoint-junction analysis in PGT-SR [13-18]. In the case of PGT-M, which involves
embryo diagnosis for monogenic disorders, the association between pathological variants and
genomic rearrangements makes long read sequencers valuable [19-24]. Reports on preclinical
workups for PGT-M involve associations with SNVs and complex chromosomal structural
abnormalities and the detection of deletions. PGT-A is the most widely used form of PGT. It is
designed to avoid miscarriage and implantation failure associated with chromosomal aneuploidy
[11,25-27]. Initially conducted using the FISH method and deemed ineffective, PGT-A gained
recognition with the advent of the comprehensive aCGH analysis method, and current next-
generation sequencers further improve testing sensitivity and expand capabilities [5]. However,
caution is advised in selecting candidates for PGT-A, as indicated by some randomized controlled
trials, and screening-based implementation for younger individuals may not be desirable [28,29]. In
a Japanese prospective cohort study, PGT-A was particularly effective for application to those of
advanced maternal age [11,30]. While it may seem there is no apparent benefit in using a costly long
read sequencer for determining chromosomal aneuploidy, the emergence of the STORK method
utilizing the rapid sequencing capability of Nanopore sequencers suggests potential development
towards clinical use [31]. In this article, we will provide detailed information on long-read sequencing
based on the content of previous reports and future prospects as well as discuss self-experiments
regarding PGT-M.

2. Types and features of long read sequencers

Long read sequencers are primarily provided by two companies: Pacific Biosciences (PacBio),
with their Sequel system, and Oxford Nanopore Technologies (ONT), with their Nanopore system.
The Sequel system is based on Single-Molecule Real-Time (SMRT)-sequencing technology [32]. This
system enables the real-time observation of DNA polymerase binding to DNA strands, allowing for
continuous base sequence reading of long DNA chains, typically several kilobases in length. The
latest Sequel II system achieves high accuracy long-read sequencing (HiFi reads) by repeatedly
reading circularized DNA (a process known as Circular Consensus Sequencing), resulting in a
sequence accuracy of Q30+ (>99.9%). While this sequencing accuracy is sufficient for confirming
single-nucleotide variants (SNVs), the Sequel system has limitations in terms of the achievable read
length compared to the Nanopore system. Additionally, the cost per sequence is relatively higher
than nanopore sequencing. On the other hand, ONT utilizes nanopore-sequencing technology.
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Nanopores consist of tiny pores formed by membrane proteins, and they detect ion current changes
corresponding to a base sequence as DNA molecules pass through them, enabling base calling.
Theoretically, there is no limit to the length of DNA that can be measured using Nanopore sequencing
[1,33]. One of the significant advantages of Nanopore sequencers is their portability. The initially
released product, MinlON (https://nanoporetech.com/products/sequence/minion), is a device
smaller than a human palm and even a smartphone. It is a groundbreaking device that can perform
long-read sequencing by simply connecting it to a PC through a USB port with an HDD cable. Due
to its portability, genome sequencing using the same device has been conducted not only for outdoor
use [34] but also for use in space stations [35]. When introducing NGS facilities into medical
institutions, the high cost and space requirements of conventional sequencers pose significant
challenges for small to medium-sized facilities. However, Nanopore sequencers are expected to
significantly lower this hurdle, especially in point-of-care testing.[36-39]

Another major feature of Nanopore sequencers is the frequent updates to their software libraries
and kits [33]. The base caller software (Guppy) is updated every few months, and consumables like
flow cells and ligation kits are also released frequently [40]. Thus, remaining updated regarding both
wet lab experimentation and bioinformatics dry analysis, including with respect to knowledge and
techniques related to peripheral analysis software, becomes necessary [33]. On the other hand, many
of the provided technologies have high compatibility between various kits, making the latest
technology accessible to researchers with minimal potential for equipment investment. Additionally,
while consumables for Nanopore sequencing may be expensive, the initial investment cost is very
low. The MinION starter pack, which includes one flow cell and a ligation kit, is available for as little
as USD 1,000, including the sequencer itself (https://store.nanoporetech.com/minion-basic.html). This
low entry barrier may be one of the reasons why the majority of reported long-read-sequencing
studies related to PGT have utilized Nanopore sequencers.

3. Application of long-read sequencing to PGT

3.1. Long-read sequencing for PGT-SR

PGT-SR using whole-genome short-read sequencing with low depth (approximately x0.1) has
shown higher scalability and signal-to-noise ratios with respect to detecting copy number variations
(CNVs) compared to conventional array comparative genomic hybridization (aCGH) methods
[41,42]. This technique enables the efficient detection of embryos with unbalanced translocations.
PGT-SR is commonly not intended to exclude embryos with balanced translocations, which may not
affect implantation, and is considered necessary and sufficient for the current forms of testing [12].
However, the handling of embryos with balanced translocations is not widely discussed due to
technical difficulties in setting up efficient protocols for individual cases. In addition to short-read
NGS mentioned earlier, PGT-SR analysis methods also include the use of aCGH and fluorescence in
situ hybridization (FISH) for detecting translocations involving small regions [12,43]. However, both
NGS and aCGH have difficulty detecting embryos with balanced translocations. Even with FISH,
individual setups are required, and incidental chromosomal aneuploidy cannot be accommodated.
The 2020 Good Practice Recommendation released by the ESHRE recommends the use of SNP arrays
as a method for detecting embryos with balanced translocations [12]. In this regard, a question arises:
what developments can be expected when applying long-read sequencing to PGT-SR? In 2019, Zhang
et al. used a nanopore sequencer for PGT-SR for a couple with a balanced translocation [13]. They
were able to detect not only embryos with unbalanced translocations but also distinguish between
balanced inversions and normal embryos via the accurate detection of junctions of translocations and
haplotyping using SNP detection in the areas surrounding these junctions. Chow et al. [14] and Liu
et al. [15] in 2020 and 2021, respectively, also used a nanopore sequencer to detect breakpoints of
balanced translocations, allowing PGT-SR testing based on junction-specific PCR. In 2021, analysis of
breakpoints or pathological variants and surrounding SNPs was performed on 15 cases of PGT-SR
and 2 cases of PGT-M related to maple syrup urine disease and amyotrophic lateral sclerosis 4 using
Sequel SMRT sequencing [16]. Haplotyping for PGT-M around pathogenic variants was also
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conducted in this report. In 2023, Xia et al. confirmed complete concordance between nanopore
sequencing and the Mapping Allele with Resolved Carrier Status (MaReCs) system [17],
demonstrating the ability to estimate translocation breakpoints at an error level of approximately 200
kb using the MaReCs system, while nanopore sequencing enabled breakpoint mapping at the single-
base level [18]. However, the authors highlighted the limitations of nanopore sequencing for PGT-
SR, citing challenges such as the inability to detect junctions of Robertsonian translocations located
in genomic gap regions around alpha-satellite DNA and the fact that the correct mapping of sequence
reads is still difficult. Despite the aforementioned limitations, there is significant anticipation for the
improvement in accuracy and scalability brought about by applying long-read sequencing to PGT-
SR. However, due to cost considerations associated with long-read sequencing, this test is likely to
remain primarily within the realm of research as it stands now.

3.2. Long-read sequencing for PGT-M

There are several related reports on PGT-M, which, like the reports on PGT-SR, mainly highlight
its high analytical capacity for analyzing chromosomal structural variations and ability to
simultaneously detect variants and their surrounding SNPs for haplotyping. In 2018, Miao et al.
detected a 7.1 kb microdeletion using a Nanopore sequencer in the G6PC gene [19]. This
microdeletion was not detected through whole-exome sequencing in short-read sequencing, and
long-read sequencing enabled the preclinical workup of PGT-M for glycogen storage disease type Ia.
In 2022, Watson et al. reported that they identified breakpoints in a fine-deletion region of exon 23 in
the RBI gene using amplicon sequencing with a small Flongle nanopore flow cell
(https://nanoporetech.com/products/sequence/flongle), allowing the design of junction-specific PCR
[20]. There are also reports on the use of the PacBio Sequel system for preclinical workup for PGT-M.
In 2021, Wu et al. performed an analysis using SMRT sequencing for three couples carrying [3-
thalassemia variants in 17 reported pathological variants of the HBB gene in China [21]. They
conducted haplotyping based on the analysis of the pathological variants and surrounding SNP
information, and 68.75% of the embryos were estimated without information from the affected
individuals. Tsuiko et al. performed long-read sequencing using Sequel I or Nanopore sequencers to
sequence amplicons of 5-10 kb spanning the targeted region in couples where one partner had a de
novo pathogenic variant [22]. They efficiently detected informative SNPs around the variants using
sequencing and demonstrated the feasibility of haplotyping based on SNPs even in de novo variants.
There is a similar report from 2023 wherein the authors also utilized PromethION
(https://nanoporetech.com/products/sequence/promethion), a maximum throughput model of a
Nanopore sequencer, to conduct de novo PKD1 variant analysis and surrounding SNP haplotyping
in the proband [23].

4.3. Preclinical workup using long-read sequencing for PGT-M conducted at our institution

4.3.1. Materials and Methods

The long-read sequencing method used for our preclinical workups in the cases shown in the
present article was performed as previously reported. The libraries were prepared using a ligation-
sequencing kit (SQK-LSK110) in accordance with the manufacturer's protocol (ONT). A GridION
sequencer using an R9.4.1 flow cell was used. To obtain sufficient data, we washed flowcells (EXP-
WSHO004) and applied libraries more than twice in each flow cell in accordance with the
manufacturer's protocol (ONT). The sequencing library was prepared using 1ug of gDNA from
peripheral blood each extracted just before a starting sequencing. One wash and two libraries (2ug,
gDNA) for the PMD case (Figure 1) and two washes and three libraries (3pug, gDNA) for the OTC
deficiency case and (Figure 2) DMD case (Figure 3) were used. To perform adaptive sampling [44,45],
we prepared the following FASTA files of the targeted region for enrichment from the T2T CHM13
reference to improve the outcomes of the analysis [46]. Base calling and fastq conversion were
conducted using MinKNOW ver. 4.2.8. Subsequently, fastq files were used for mapping against the
GRCh38/hg38 or T2T CHMI13 human reference genomes using minimap2 with soft clipping for
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supplementary alignments [47]. The breakpoints and junction of the structural rearrangements and
the informative SNPs were identified manually using IGV (Integrative Genomic Viewer) software
[48].

4.3.2. Targeted long-read sequencing using a Nanopore sequencer with adaptive sampling
conducted at our institution

We also have data on self-experiments conducted using a nanopore sequencer in the preclinical
workup of PGT-M. These cases involved chromosomal structural abnormalities for which breakpoint
detection was challenging using conventional cytogenetic testing, and we attempted structural
analysis using long-read sequencing. In particular, we reported a case involving complex
chromosome X structural abnormalities (Figure 1) [24]. We performed targeted sequencing on
chromosome X using the adaptive sampling method [49,50] implemented in the desktop model
GridION of the nanopore series (https://nanoporetech.com/gridion). Adaptive sampling is a
nanopore-specific technology based on Readfish software [50] that allows the real-time selection of
target sequences while sequencing a DNA library. By specifying the targets in a FASTA file, it is
possible to easily perform targeted sequencing without requiring specialized library adjustments and
to obtain sufficient sequencing depths for genomic structural analysis. Adaptive sampling has
already demonstrated utility in the analysis of the human genome, being applied to the diagnosis of
Mendelian diseases with missing pathogenic variants [44,51,52] and targeting sequences for
hereditary tumors [53,54]. Furthermore, its applicability extends to non-human genomes including
metagenome analysis [55], showcasing a broad range of applications.

The case shown in Figure 1 is a case of Pelizaesus—Merzbach disease (PMD) caused by a
duplication of the PLP1 gene via complex genomic rearrangement, and it is the first case wherein a
long read sequencer was used in the setup of PGT-M at our institute. PMD is known to frequently
exhibit complex genomic rearrangements, such as a DUP-TRP/INV-DUP structure, formed through
flanking segmental duplications [56,57]. As the positions of junctions vary widely, the direct
confirmation of the correct junction location requires the combination of cytogenetical analysis
methods and is time consuming. Despite the complex chromosomal rearrangement, we were amazed
that we directly detected the breakpoints and junctions in a single sequencing run using Nanopore
sequencing (Figure 1A) [24]. The sequenced reads of the folded rearrangement of Junctionl were
challenging to map due to the presence of segmental duplications with over 99.9% similarity.
However, the genomic structure could be readily surmised from the sequence data (Figure 1B). By
designing a specific PCR method based on the sequenced data from the reads spanning Junction2,
we were able to design a direct method for detecting the pathogenic variants only in the carrier
mother and previous child (Figure 1C). Additionally, similar to the previous report, we attempted to
employ a method that involves the simultaneous detection of structural variations or pathogenic
SNVs along with the detection of surrounding SNPs for haplotyping. The previously reported
methods allowed for the detection of pathogenic variants, as well as the simultaneous detection of
surrounding SNPs and haplotyping, using a high-read-depth sequence with PromethION, SMRT
sequencing or target amplicon sequences [19-23]. However, due to the exorbitant cost per sequence
of high-throughput long read sequencers, routine clinical use of this approach for PGT-M is
challenging. It remains unclear whether adaptive sampling using the relatively cost-effective
GridION sequencer can be utilized for the preclinical workup of PGT-M.

We carried out long-read sequencing using GridION with adaptive sampling to detect
pathogenic variants and surrounding SNPs for haplotyping at the same time in several cases. The
first case involved Ornithine Transcarbamylase Deficiency (OTC; Figure 2). The proband's wife
carried a de novo pathogenic missense variant (OTC:c.643C>T) in the OTC gene. In this case, we set
the target FASTA for adaptive sampling to include the OTC gene and its surrounding region within
100kbp upstream and downstream. Ornithine transcarbamylase (OTC) deficiency is an X-linked
genetic disorder affecting the urea cycle, leading to the accumulation of ammonia and causing
neurological deficit [58,59], and the couple wished for PGT-M. Since the proband had no affected
offspring in this case, implementing preclinical workup for haplotyping was challenging. We
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previously performed haplotyping of pathogenic variants using STR markers for PGT-M via trio
genetic analysis of couples and their embryos in de novo cases. However, when using this method,
it is difficult to haplotype the post-zygotic de novo germline mosaicism of parents precisely [12]. We
believed that long-read sequencing could address challenges associated with de novo cases, as
mentioned earlier, even for the adaptive sampling method. Informative reads around the pathogenic
variant are shown in the figure (Figure 2A). SNP candidates distinguishing pathogenic and benign
alleles for use in PGT-M were identified upstream and downstream. Validation using Sanger
sequencing confirmed the existence of each SNP, and primer design was carried out in preparation
for embryo testing (Figure 2B). The result of the proband's SNP haplotyping is presented in Figure
2C. This adaptive-sampling-based long-read sequencing method was expected to improve the
specificity and reliability of the test compared to the STR haplotyping we traditionally employed
since it allows for a more precise search for SNP haplotyping markers in the vicinity. Moreover, a
preclinical workup using adaptive sampling was conducted for Duchenne muscular dystrophy
(DMD), with one case shown in Figure 3. In this case, we set the target FASTA for adaptive sampling
to include the DMD gene and its surrounding region within 5kbp upstream and downstream.
Although an exon2-44 deletion was confirmed via MLPA in this case, the detailed genomic position
of the deletion region was unclear, making the direct detection of the pathogenic variant via PGT-M
challenging. Multiple attempts were made using long-range PCR, but the wide intron region made it
difficult to identify the junction. The identified deletion and surrounding genomic regions are shown
in Figure 3A, where a decrease in read depth in the deletion region is evident in IGV view. The
observation of discordant reads (Figure 3B,C) facilitated the easy identification of junctions spanning
the deletion and surrounding SNPs, allowing for simultaneous haplotyping (Figure 3D) and
structural analysis. We believe that a preclinical workup for PGT-M using adaptive sampling with
GridION, as well as high-throughput sequencing with PromethION or a Sequel system, is also
feasible.

In the implementation of PGT-M in Japan, both the direct detection of pathogenic variants and
the haplotyping of pathogenic variants using informative STRs or SNPs are required for each case.
This is because the number of cells obtained via biopsy is very low, typically 5-10 cells, and the
process of whole-genome amplification is necessary [5,7,12]. In whole-genome amplification, it is
necessary to consider allele dropout and amplification bias, and relying on a single marker can lead
to misdiagnosis. Therefore, a combination of variant detection methods is employed to ensure the
accuracy of PGT-M testing. However, as indicated in the guidelines issued by the ESHRE [12], many
countries and facilities also permit embryo determination based solely on haplotyping with some
additional conditions. In our self-experiments, we encountered a case with complex chromosomal
rearrangements for which junction detection was difficult, and even haplotyping using STR markers
was challenging. In this case, an intrachromosomal insertion had occurred, and the duplicated region
involving MECP2 was inserted 45 Mb proximal to the original position [24]. If PGT-M was performed
only via STR haplotyping at the original MECP2 site in this case, it may have led to misdiagnosis due
to meiotic recombination. A preclinical workup of PGT-M using long-read sequencing may help
minimize the risk of such a misdiagnosis.

4.3.3. Figures of cytogenetical analysis with long-read sequencing and SNP haplotyping

do0i:10.20944/preprints202401.0355.v1
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Figure 1. Structural analysis of chromosome X complex rearrangement (Pelizaeus—-Merzbacher
disease) using long-read sequencing (Case 1) [24]. A. Result of mapping the sequence reads in IGV
software view. Collating discordant reads revealed multiple sequence reads spanning across
Junction2. (Genomic alteration is based on GRCh38.). B. Schematic representation of the inferred
genomic structure around the PLP1 gene. The DUP-TRP/INV-DUP structure involving flanking
segmental duplications is complex, but it is a typical genomic rearrangement observed in Pelizaeus—
Merzbacher disease or MECP2 duplication syndrome. C. Results of junction-specific PCR designed
based on read information spanning Junction2. PCR products were only detected in the mother and
proband; these products can be used to detect a pathogenic variant directly.
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Figure 2. SNP haplotyping of de novo pathogenic variant of OTC gene using long-read sequencing
(Case 2). A. Informative SNPs around the causative pathological variant (OTC:c.643>T(p.Leu215Phe)).
Haplotyping was possible without trio sequencing via confirming SNPs on the same sequence reads
with a pathogenic variant. (Genomic alteration is based on CHM13.). B. Confirmation of each
informative SNP through Sanger sequencing. It was determined that the read depth of adaptive
sampling was insufficient for the determination of SNPs, and confirmation via Sanger sequencing is
essential for preclinical workup. C. SNP haplotyping around the pathogenic variant. Three
informative SNPs were identified upstream and downstream of the causative pathogenic variant in
the OTC gene, respectively.
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Figure 3. Analysis of the deletion region within the DMD gene and surrounding SNPs (Case 3). A.
While it was confirmed through MLPA that the region up to exon 2-44 was heterozygous deleted,
long-read sequencing allowed for the precise delineation of the deleted region. Additionally, areas
not targeted by intergenic adaptive sampling showed a significant decrease in read depth (the
targeted region expanded by 5kbp around the regions up- and downstream of the DMD gene),
indicating the effectiveness of target enrichment. (Genomic alteration is based on CHM13.). B-C. The
detection status of SNPs on the telomeric side (B) and centromeric side (C) of the deletion region is
presented. Informative SNPs were detected within 15 kbp in both cases, and the breakpoint is clearly
indicated by discordant reads (black triangles). Structural abnormalities and haplotyping are feasible
through single sequencing analysis in adaptive sampling. D. Haplotyping based on the detected
informative five SNPs around the deletion region.

4.4. New nanopore sequencers and PGT-A with the STORK method

Nanopore sequencers theoretically have the ability to sequence long DNA libraries without
length limitations, and reports have shown ultra-long sequences of up to 4.15 Mb per read [60].
However, there has been recent interest in utilizing Nanopore sequencers as high-throughput short-
read sequencers. Long read sequencers are generally considered to have lower sequencing accuracy
compared to short-read sequencers. Although the latest flow cell, R10.4, used in nanopore sequencers
can achieve Q20+ (299%) accuracy, it is not sufficient for the accurate confirmation of single-
nucleotide variations (SNVs). To confirm the existence of SNVs without relying on combination with
methods such as Sanger sequencing, it is essential to use a high-throughput model of a Nanopore
sequencer, namely, PromethION [61].

So, what does it mean to use nanopore sequencers as short-read sequencers? Wei et al. proposed
rapid preimplantation genetic testing for aneuploidy (PGT-A) using nanopore sequencers in 2018
[62] and released the completed version, the short-read transpore rapid-karyotyping (STORK)
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method, in 2022 [31]. The setup using Nanopore sequencers, particularly MinION or Flongle, offers
the advantage of low device cost, but it has limited readable sequence read numbers compared to
short-read sequencers, resulting in limited accuracy for detecting copy number variations (CNVs).
To address this issue, the cited authors performed library adjustments on short DNA molecules of
up to 500 bp via sonication of DNA samples and size selection. In other words, they intentionally
utilized the Nanopore system as a short-read sequencer to improve the utilization efficiency of each
pore per read, creating a high-throughput and easily set up system. They demonstrated that
chromosome aneuploidy determination in embryos could be achieved in approximately 4-5 hours,
even with the addition of the whole-genome amplification process. They also demonstrated high-
precision and rapid determination of chromosome aneuploidy in chorionic villus and amniotic fluid
samples. Similar methods also have been employed in the field of cancer research, wherein Baslan et
al. demonstrated an efficient method for calling Copy Number Alterations (CNAs) using nanopore
sequencers in 2021 [63]. Using Nanopore sequencers as a powerful genomic analysis tool for point-
of-care Testing applications is considered a potential breakthrough in rapid determination for
preimplantation and prenatal diagnosis.

5. Conclusion

In conclusion, long read sequencers are useful tools for analyzing genomic structural variations.
Furthermore, they can be used for the preclinical workup of PGT-M/SR as well as for detecting
pathogenic SNVs or SVs in embryos, including haplotyping around causative variants. Moreover,
the novel approach of using Nanopore sequencers as high-throughput short-read sequencers for
CNV detection has a wide range of applications, and the ease with which it can be setup holds great
promise for future developments in clinical settings. With further technological advancements, it is
anticipated that long read sequencers will become a standard genomic analysis platform that offers
higher accuracy and cost-effectiveness, bringing us closer to their routine use in clinical diagnostics.
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