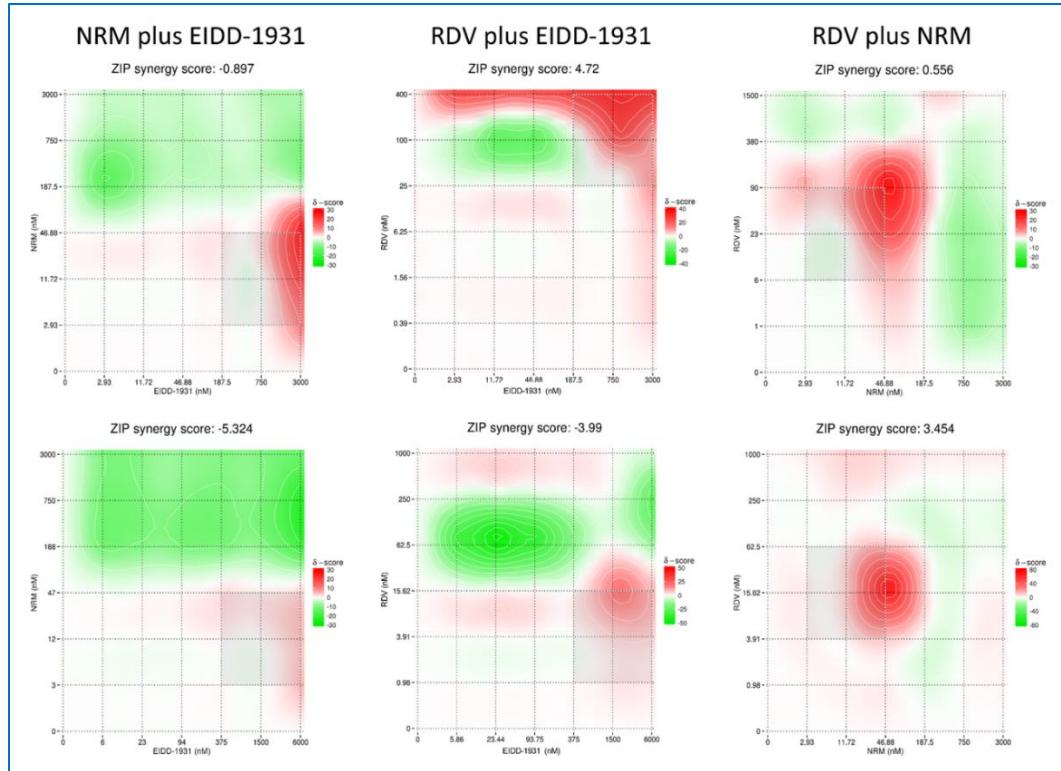
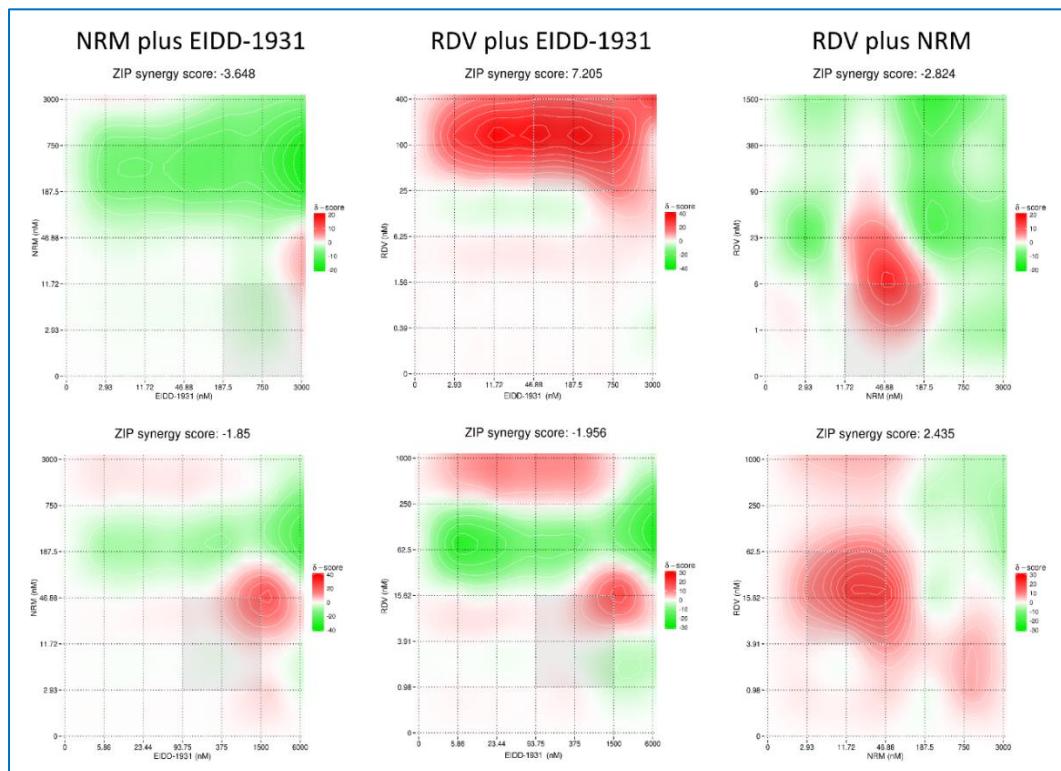


Supplementary Table 1: Cytotoxicity and anti-SARS-CoV-2 activity of nirmatrelvir (NRM), EIDD-1931 (the active form of molnupiravir), remdesivir (RDV), sotrovimab (SOT), bebtelovimab (BEB), cilgavimab (CIL) and tixagevimab (TIX) in VERO-E6 cells. The antivirals were tested against the Wild Type B.1 strain and the BQ.1.1 Omicron variant. CC50: half-maximal toxic drug concentration; CC90: drug concentration that causes the death of 90% of cells; IC50: half-maximal inhibitor drug concentration; IC90: drug concentration inhibiting 90% of viral replication; SD: Standard Deviation; NA: Not Active.

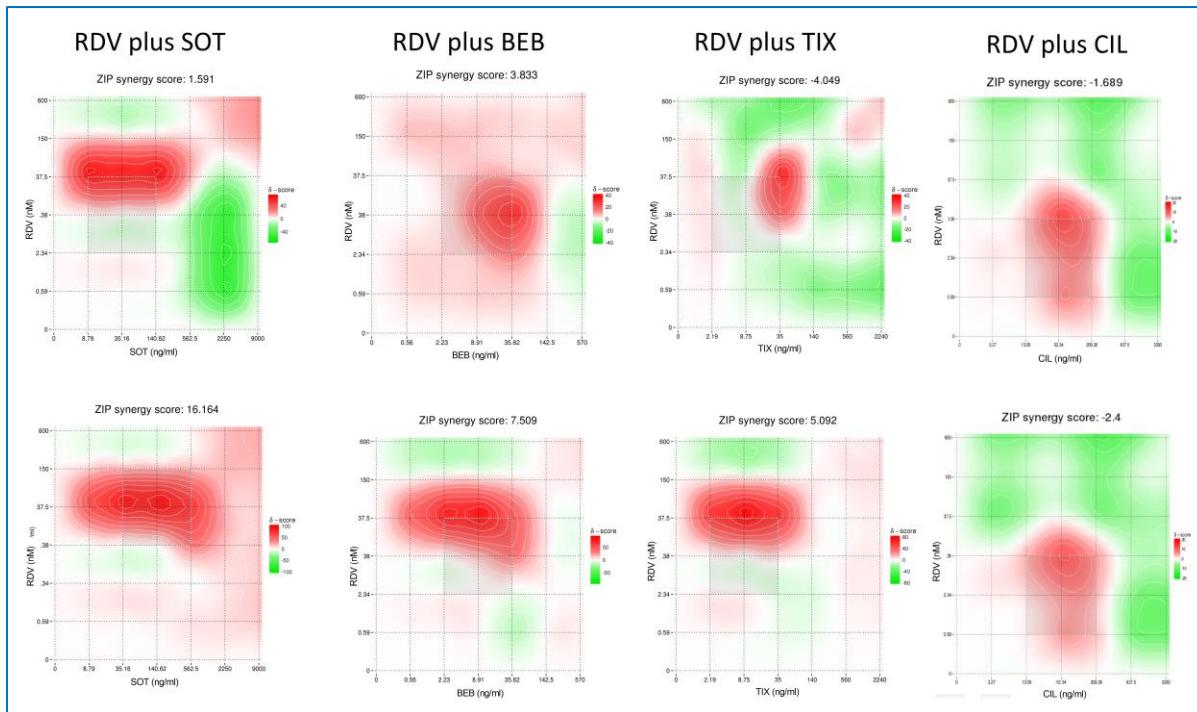
	CC ₅₀ μ M Mean \pm SD	CC ₉₀ μ M Mean \pm SD	IC ₅₀ μ M against B.1 Mean \pm SD	IC ₉₀ μ M against B.1 Mean \pm SD	IC ₅₀ μ M against BQ.1.1 Mean \pm SD	IC ₉₀ μ M against BQ.1.1 Mean \pm SD
NRM	40.7 \pm 4.0	2.9 \pm 0.2	0.1 \pm 0.03	0.2 \pm 0.1	0.1 \pm 0.01	0.2 \pm 0.01
EIDD-1931	43.3 \pm 6.0	3.1 \pm 0.4	2.4 \pm 0.4	2.5 \pm 0.1	1.6 \pm 0.4	1.8 \pm 0.7
RDV	17.2 \pm 0.2	4.2 \pm 0.6	0.06 \pm 0.03	0.2 \pm 0.05	0.03 \pm 0.01	0.1 \pm 0.01

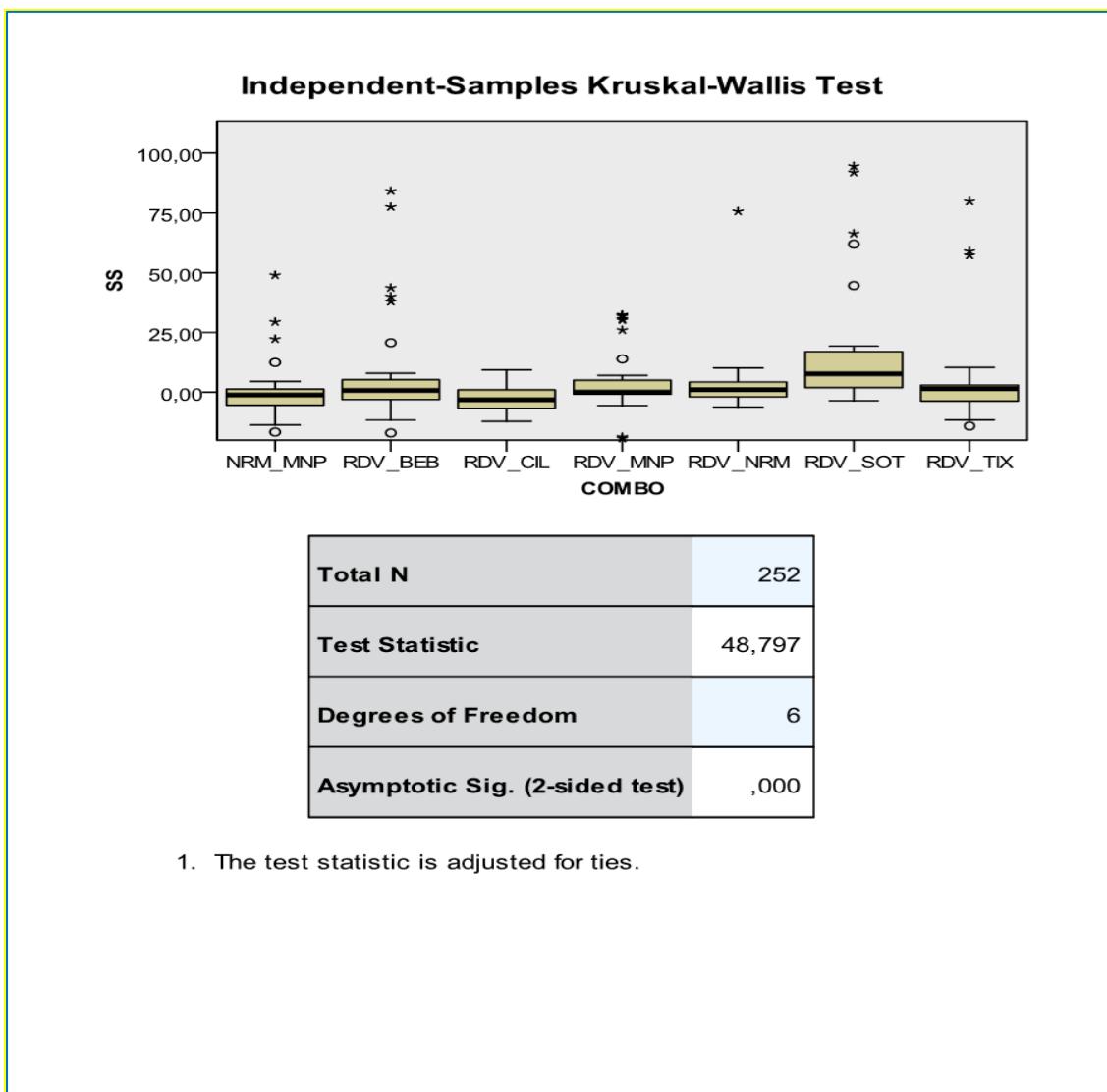

	CC ₅₀ ng/ml Mean \pm SD	CC ₉₀ ng/ml Mean \pm SD	IC ₅₀ ng/ml against B.1 Mean \pm SD	IC ₉₀ ng/ml against B.1 Mean \pm SD	IC ₅₀ μ M against BQ.1.1 Mean \pm SD	IC ₉₀ μ M against BQ.1.1 Mean \pm SD
SOT	>2400	>2400	813 \pm 324	1718 \pm 594	NA	NA
BEB	>60	>60	33 \pm 7	89 \pm 9	NA	NA
CIL	>360	>360	204 \pm 1354	1385 \pm 862	NA	NA
TIX	>360	>360	68 \pm 41	305 \pm 71	NA	NA

Supplementary Table 2. IC_{50} synergistic potency shift was measured in infected VERO E6 cells treated with 3 fixed drug concentrations of Compound 1 plus scalar dilution of Compound 2, for each combination. Fold shift values in Compound 2 IC_{50} were calculated as: $IC_{50} [\text{Compound 2 alone}] / IC_{50} [\text{Compound 1 + Compound 2}]$. DAA were tested against wild type B.1 SARS-CoV-2 strain and BQ.1.1 variant while mAb/RDV combinations only against wild type B.1 SARS-CoV-2 strain.


Against B.1			
	NRM 0.1 μM	NRM 0.05 μM	NRM 0.025 μM
EIDD-1931 IC_{50} Fold Reduction	88	11	1
	RDV 0.06 μM	RDV 0.03 μM	RDV 0.015 μM
	>26	26	2
NRM IC_{50} Fold Reduction	RDV 0.06 μM	RDV 0.03 μM	RDV 0.015 μM
	33	8	1
SOT IC_{50} Fold Reduction	RDV 0.06 μM	RDV 0.03 μM	RDV 0.015 μM
	4	2	2
BEB IC_{50} Fold Reduction	RDV 0.06 μM	RDV 0.03 μM	RDV 0.015 μM
	2	1	1
TIX IC_{50} Fold Reduction	RDV 0.06 μM	RDV 0.03 μM	RDV 0.015 μM
	3	2	1
Against BQ.1.1			
	NRM 0.1 μM	NRM 0.05 μM	NRM 0.025 μM
EIDD-1931 IC_{50} Fold Reduction	28	7	2
	RDV 0.06 μM	RDV 0.03 μM	RDV 0.015 μM
	>30	30	3
NRM IC_{50} Fold Reduction	RDV 0.06 μM	RDV 0.03 μM	RDV 0.015 μM
	140	14	2

Supplementary Figure 1: Bi-dimensional (2D) synergy plots of antivirals against the two SARS-CoV-2 strains tested, generated by Synergy Finder 3.0 (<https://synergyfinder.fimm.fi/>) applying the ZIP model for each experiment performed. In A were reported the 2D plots of DAA_s against the wild type B.1 virus, in supplementary B the 2D plots against the BQ.1.1 variant, and in C the 2D plots of RDV/mAb combinations against the wild type B.1 virus.


A


B

C

Supplementary Figure 2: Overall combinatorial effects of the three DAA pairs as well as those of the three RDV/mAb groups were compared by the Kruskal-Wallis test followed by Mann-Whitney pairwise comparisons between groups. Statistical analysis were performed by SPSS version 20 (SPSS Inc, Chicago, IL USA).

