Pre prints.org

Article Not peer-reviewed version

Lung-DT: An Al-Powered Digital Twin
Framework for Thoracic Health
Monitoring and Diagnosis

Roberta Avanzato , Francesco Beritelli : , Alfio Lombardo , Carmelo Ricci

Posted Date: 3 January 2024
doi: 10.20944/preprints202401.0125v1

Keywords: Digital twin; loT sensors; image processing; lung healthcare; smart healthcare; convolutional
neural network; deep learning

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/836543
https://sciprofiles.com/profile/939441
https://sciprofiles.com/profile/2970100

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 January 2024 do0i:10.20944/preprints202401.0125.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Lung-DT: An Al-Powered Digital Twin Framework for
Thoracic Health Monitoring and Diagnosis

Roberta Avanzato 1, Francesco Beritelli * 1, Alfio Lombardo ! and Carmelo Ricci 12

1 Affiliation 1: Department of Electrical, Electronic and Computer Engineering, University of Catania, 95125,

Viale Andrea Doria, Catania. Italy; roberta.avanzato@unict.it (R.A.); alfio.lombardo@unict.it (A.L.);
carmelo.ricci@phd.unict.it (C.R.)

Affiliation 2: National Inter-University Consortium for Telecommunications (CNIT) - RU of Catania, Italy
carmelo.ricci@cnit.it (C.R.)

*  Correspondence: francesco.beritelli@unict.it

Abstract: The integration of Artificial Intelligence (AI) with Digital Twins (DTs) has emerged as
a promising approach to revolutionize healthcare, particularly in the diagnosis and management
of thoracic disorders. This study proposes a comprehensive framework, named Lung-DT, which
leverages IoT sensors and Al algorithms to establish a digital representation of a patient’s respiratory
health. Using the YOLOvVS8 neural network, the Lung-DT system accurately classifies chest X-Rays into
five distinct categories of lung diseases, including "Normal," "Covid," "Lung Opacity," "Pneumonia,"
and "Tuberculosis". The system’s performance was evaluated on a chest X-Ray dataset, demonstrating
an impressive average accuracy of 96.6% across all classes. Further tests (prediction) were conducted
on the trained network using a third dataset available in the literature and completely unknown
to the network, yielding an average accuracy of 98% across three classes. The proposed Lung-DT
framework offers several advantages over conventional diagnostic methods. Firstly, it enables
real-time monitoring of lung health through continuous data acquisition from IoT sensors, facilitating
early diagnosis and intervention. Secondly, the Al-powered classification module provides automated
and objective assessments of chest X-Rays, reducing dependence on subjective human interpretation.
Thirdly, the twin digital representation of the patient’s respiratory health allows for comprehensive
analysis and correlation of multiple data streams, providing valuable insights for personalized
treatment plans. The integration of IoT sensors, Al algorithms, and DT technology within the
Lung-DT system demonstrates a significant step towards improving thoracic healthcare. By enabling
continuous monitoring, automated diagnosis, and comprehensive data analysis, the Lung-DT
framework has enormous potential to enhance patient outcomes, reduce healthcare costs, and
optimize resource allocation.

Keywords: digital twin; IoT sensors; image processing; lung healthcare; smart healthcare;
convolutional neural network; deep learning

1. Introduction

Early diagnosis of lung pathologies is crucial for improving patient prognosis. Chest X-Rays
are one of the most common imaging modalities used for diagnosing lung pathologies. However,
diagnosing lung pathologies based on chest X-Rays can be challenging and subjective, especially for
diseases with similar symptoms.

In recent years, Deep Learning (DL) has shown significant potential in enhancing the diagnosis of
lung pathologies based on chest X-Rays. DL, a branch of artificial intelligence, utilizes artificial neural
networks to learn complex patterns from data. DL systems for lung pathology recognition based on
chest X-Rays can be classified into two main categories:

o Detection Systems: these systems are designed to identify the presence of anomalies in chest
X-Rays.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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e Classification Systems: these systems are designed to classify anomalies in chest X-Rays based on
the type of lung pathology.

Common DL techniques used for lung pathology recognition based on chest X-Rays include:

¢ Convolutional Neural Networks (CNNs): CNNs are a class of artificial neural networks designed
for image processing. They have been successfully used for recognizing various anomalies in

chest X-Rays, including lung nodules, lung infiltrates, and pneumonia.
* Recurrent Neural Networks (RNNs): RNNs are a class of artificial neural networks designed for

processing sequence data. RNNs have been successfully used for recognizing anomalies in chest
X-Rays that develop over time, such as the progression of lung cancer.

e Generative Adversarial Networks (GANs): GANs are a class of artificial neural networks
designed to generate realistic data. GANs have been successfully used for synthesizing chest
X-Ray images containing anomalies, improving the training of DL systems.

Numerous studies have demonstrated the effectiveness of DL in analyzing chest X-Rays, achieving
remarkable results in the detection and classification of lung nodules, pneumonia, and other thoracic
pathologies. For example, Wang et al. developed a DL-based system for lung nodule detection with
promising results [1]. Similarly, Kermany et al. demonstrated the effectiveness of DL in classifying
pneumonia from chest X-Rays [2].

These advancements highlight the transformative potential of DL in chest X-Ray analysis. As
research efforts continue to refine DL algorithms and expand their applications, this powerful
technology is poised to revolutionize the detection, diagnosis, and treatment of lung diseases,
ultimately improving patient outcomes.

Despite the remarkable progress, several challenges remain to fully realize the potential of DL in
chest X-Ray analysis. These challenges include the need for large sets of high-quality annotated image
data, ensuring the generalizability of DL models to diverse patient populations, and addressing ethical
and regulatory considerations associated with deploying Al in healthcare.

To address these challenges, research efforts should focus on creating comprehensive image
datasets, developing robust DL models capable of effectively handling real clinical scenarios, and
establishing clear guidelines for the ethical and responsible use of Al in healthcare.

The healthcare landscape is undergoing a profound transformation driven by the convergence of
advanced technologies, including, as discussed, DL, but also the Internet of Things (IoT) and digital
twins (DTs). These innovations offer enormous potential to revolutionize healthcare delivery in general
and, particularly, in the field of monitoring lung pathologies.

IoT sensors integrated into wearable devices connected to the internet enable real-time monitoring
of physiological parameters such as heart rate, blood pressure, respiratory rate, and X-Ray images of
various organs. These continuous data streams enable proactive healthcare interventions, allowing for
early detection of potential complications and facilitating remote patient monitoring.

DTs, virtual representations of physical objects or systems, offer a holistic approach to monitoring
lung pathologies. By integrating data from IoT sensors, clinical records, and other relevant sources,
DTs can provide a comprehensive view of an individual’s lung health, allowing for early detection of
subtle changes and personalized treatment recommendations.

To fully harness the potential of these technologies, a unified platform is essential to seamlessly
integrate Al-enhanced image analysis, IoT sensor data, and DT simulations. This platform would
provide clinicians with a centralized hub for real-time information, enabling them to make informed
decisions and optimize patient care.

In particular, lung pathology monitoring based on DL, 10T, and DTs offers numerous benefits,
including:

o Early and Accurate Detection of Lung Pathologies: Al-enhanced image analysis systems can support
radiologists in identifying anomalies in chest X-rays, providing technological assistance for a
quick and precise diagnosis;
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* Personalization of Diagnosis and Treatment: data collected from IoT sensors and DTs can be used to
develop personalized diagnoses and treatment plans that are more effective and cost-efficient;

* Improvement of Patients” Quality of Life: remote monitoring systems enable patients to receive care
from home, improving their quality of life and reducing healthcare costs.

In this study, we present a proposal for the application of DT technology in the classification of
lung pathologies, using chest X-Ray images as input. The main objectives of our work, which also
constitute the innovative aspect compared to the state of the art described in Section 2, are as follows:

¢ Implementation of a case study that includes a proof-of-concept of a Lung-DT based on a
microservices architecture characterized by an artificial intelligence component.

® The proposed Lung-DT architecture is designed to acquire various input signals, including chest
X-Ray images (the subject of our study) and blood oxygen saturation (to be integrated later),
allowing for a more comprehensive evaluation of lung conditions.

¢ Extension of the second-level architecture previously proposed in [3]. This extension involves the
integration of DTs related to other organs to define the presence of various pathologies. The use
of information from different organs enables a more comprehensive detection and classification

of pathological conditions.

* Accurate classification of lung pathologies into 5 categories to contribute to a more detailed and
specific diagnosis.

¢ Expansion of the neural network’s training and validation dataset by integrating two public
datasets. This integration aims to enhance the predictive capacity of the model, improving its
adaptability to a wider range of pathologies. Use of a third dataset completely unknown to the
neural network to perform additional testing. This step is aimed at confirming the robustness of
the model by evaluating its performance on novel data.

The rest of the paper is structured as follows: Section 2 provides an overview of the state of the
art regarding DT-based systems applied to lung pathologies recognition using Chest X-Ray images
and DT architecture applied to the lung. The architecture and implementation of the Lung-DT, and
more generally, the healthcare DT platform are described in Section 3. The setup description of the
Lung-DT is conducted in Section 4. This section outlines the dataset made up of four lung pathologies,
including the "normal" classification, the neural network model, and the obtained results. Section 5,
the comparison of the research present in the state of the art and the Lung-DT proposed in this paper
has been provided. Finally, Section 6 shows the conclusion of this study.

2. Related Work

The field of medical diagnostics is undergoing a revolution thanks to the advanced use of artificial
intelligence techniques applied to the analysis of chest X-Ray images. This chapter aims to examine
the latest methodologies proposed in the scientific literature for the diagnosis of lung diseases through
the use of artificial neural networks and machine learning algorithms.

In recent years, especially during and after the COVID-19 pandemic, numerous DL methods
have been proposed based on the detection of lung diseases with X-Ray images. Some of these
studies [4—6] adopt a simpler approach, directly classifying chest X-Ray images into a set of categories
corresponding to each lung disease, without preprocessing and feature extraction. These approaches
are generally simpler and computationally efficient. Other studies [7-15], on the other hand, use more
complex approaches typically consisting of two phases: feature extraction and classification. In the
feature extraction phase, DL algorithms extract relevant features from chest X-Ray images, and in the
classification phase, these features are used to classify images into different categories of lung diseases.
Compared to the first approach, these methods are computationally more complex and slower. Finally,
there are works [16,17] that combine both approaches to conduct more comprehensive studies and
compare the performance of various systems in terms of accuracy.
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In [4], a self-supervised deep neural network is proposed, using chest X-Rays as an efficient
and widely available method for classifying respiratory diseases. The self-supervised deep neural
network, pretrained on an unlabeled dataset, utilizes contrastive learning to transfer learned
representations to subsequent classification tasks. The results demonstrate that this approach achieves
competitive performance without requiring large amounts of labeled training data. This study adopts
a straightforward approach without a separate feature extraction phase. Similarly, in [5], the authors
present a hybrid architecture that combines contrast-limited adaptive histogram equalization (CLAHE)
with a deep convolutional network for the classification of lung images into different pathology
classes. Through the use of chest X-Ray images, the authors claim that this method outperforms
traditional approaches by 20% in terms of accuracy, demonstrating its effectiveness in early diagnosis
and categorization of lung diseases. In [6], the authors propose a classification algorithm based on
the SqueezeNet neural network to distinguish between chest X-Rays of individuals with or without
lung diseases. Using a dataset of chest X-Ray images, the model is tested with an accuracy of 94%,
demonstrating its ability to discriminate between "Normal" and "Pneumonia"” images.

In [7], a hybrid approach with modular neural networks is represented, where the authors
propose an approach that uses modular artificial neural networks integrated with fuzzy logic for
the diagnosis of lung diseases. This method focuses on the analysis of digitized chest X-Ray images,
using descriptors such as the gray-scale histogram and gray-level co-occurrence matrix. The use of a
multi-objective genetic algorithm to reduce features enables the creation of an optimized neuro-fuzzy
classifier, demonstrating high accuracy in classifying pathologies in the analyzed X-Rays. In [8], the
authors define a classification of pneumonia using pretrained convolutional neural network models.
This Ensemble Learning method combines features extracted from three well-known CNN models
(DenseNet169, MobileNetV2, and Vision Transformer) to achieve exceptional results with an accuracy
of 93.91% and an F1-score of 93.88% on the test phase.

In [9], the authors address the increase in lung diseases by proposing a multiclass classification
of 10 different lung pathologies using a refined CNN model. With the use of various pretrained
networks, the proposed model, named LungNet22, achieves an accuracy of 98.89% through parameter
optimization and the construction of a model derived from VGG16. Similarly, the study in [10]
proposes a DL model to classify chest X-Ray images into 14 different lung pathology conditions. Using
transfer learning on pretrained neural networks such as DenseNet and ResNet, the model shows better
accuracy than a competing network, highlighting the importance of data preprocessing to improve
model performance.

In [11], the authors address the theme of the COVID-19 pandemic and its early identification
using chest X-Ray images. Through a model that combines a pretrained VGG19 network with three
blocks of a convolutional neural network, the proposed approach achieves an accuracy of 96.48%,
providing a reliable means to accelerate diagnosis and improve treatment efficiency. Similarly, in [12],
an Ensemble model called PulDi-COVID is proposed for the diagnosis of nine lung diseases, including
COVID-19. Using various pretrained neural networks and combining them through an Ensemble
strategy, the approach offers remarkable results, with an accuracy of 99.70%, precision of 98.68%, and
recall of 98.67%, highlighting its effectiveness in multipathological diagnosis. In [13], an analysis of
post-COVID lung diseases is carried out using a combination of an architecture to capture global
features with Inception modules and a Transformer network to analyze local features. The use of an
asymmetric loss function for multiclass classification demonstrates the superiority of the proposed
model over other well-known architectures. The work in [14] focuses on globally relevant lung diseases
such as pneumonia, COVID-19, tuberculosis, and pneumothorax. The proposed approach uses eight
pretrained convolutional neural networks to automatically classify chest X-Ray images. The best
model, Densenet-201, achieves an accuracy of 97.2%, surpassing other state-of-the-art methods and
demonstrating the potential for automation in the rapid diagnosis of lung diseases.

An approach for the detection of lung diseases through chest X-Ray images, using an optimized
Deep Convolutional Spiking Neural Network (DCSNN) with the Arithmetic Optimization Algorithm
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(AOA) and the Kaggle NIH dataset, is proposed in [15]. The method includes a preprocessing phase of
images, including an anisotropic diffusion filter and an enhancement scheme. The DCSNN, enhanced
by AOA, achieves a sensitivity of 31.87%, specificity of 26.88%, and recall of 28.14%, surpassing other
methods in the literature, such as LDC-SVM-SMO and LDC-XGBoost-PSO.

In [16], the authors propose a neural network model called Lung-GANSs for the classification
of lung diseases from chest X-Ray images. This approach uses a multi-level structure of Generative
Adversarial Networks (GANSs) to learn interpretable representations of lung disease images from
unlabeled data. The model eliminates the need for large labeled datasets, making it advantageous for
new and complex lung diseases. During experiments, Lung-GANs outperforms existing unsupervised
models, achieving exceptional accuracy in the range of 94%-99.5% on six extensive datasets of lung
diseases. The strength of Lung-GAN:Ss lies in its ability to generalize without requiring a high amount
of labeled data. The model is applicable to various classifications of lung diseases, such as TB vs.
healthy, pneumonia vs. normal, COVID-19 vs. pneumonia, COVID-19 vs. non-COVID, demonstrating
superiority in terms of accuracy (up to 99.5%) and sensitivity compared to existing methods.

In [17], the challenge of automatic segmentation of the lungs in chest X-Ray images is addressed.
Through the use of a convolutional neural network with concatenation blocks and transpose layers,
the proposed model achieves promising results with an accuracy of 97%, an IoU of 93%, and a Dice
coefficient of 96%.

In summary, current scientific studies in the literature show significant progress in the field of
lung disease diagnosis through the use of sophisticated artificial intelligence and machine learning
techniques. The implementation of these proposals offers new perspectives to improve the accuracy
and efficiency of medical diagnosis, promoting rapid identification and timely treatment of lung
diseases. In general, the discussed progress has been driven by the development of:

* More powerful DL architectures: new DL architectures, such as DenseNet, ResNet, Transformers,
and Inception, have been developed to effectively capture complex features from X-Ray images.

¢ Large X-Ray datasets: the availability of large X-Ray datasets, such as the NIH ChestX-ray14
dataset, has allowed the training of more accurate DL models.

e Collective learning: collective learning techniques, combining multiple DL models to improve
performance, have been used to achieve the best results in lung disease detection.

The detection of lung diseases through DL techniques based on X-Ray images has numerous
potential applications, including;:

¢ Fast and accurate diagnosis: DL models can be implemented on mobile devices or in hospitals to
provide a rapid and accurate diagnosis of lung diseases.

¢ Early detection of lung cancer: DL models can be used to identify early signs of lung cancer,
leading to early treatment and better outcomes for patients.

* Risk classification: DL models can be used to classify patients based on their risk of developing

lung diseases, providing useful information for therapeutic decision-making.

In the current research landscape, studies focus exclusively on the application of DL techniques
to chest images to optimize the classification of lung pathologies.

Regarding DT-based applications in the pulmonary field, scientific literature has seen a little
development in recent years. Some studies [18-21] propose DT-based systems to create virtual
representations of the lungs, which have been used to improve the diagnosis of diseases such as
pneumonia and COVID-19.

For example, in [18], a digital-twin-based smart healthcare system integrated with medical
devices is proposed to collect information regarding the current health condition, configuration, and
maintenance history of the device/machine/system. The system also analyzes medical images using a
DL model to detect COVID-19 infection. The system is based on the cascade recurrent convolution
neural network (RCNN) architecture, achieving a mean average precision rate of 94%. In [19], a new
system for telemedical simulation in remote lung cancer implementation is presented, combining DL,
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DTs, mixed reality, and medical IoT. The system aims to improve accuracy and immersion during
remote surgical implementation. The system is based on a robust auxiliary classifier generative
adversarial network (rAC-GAN) for patient-specific data analysis and prediction. The rAC-GAN
model is trained on data from 90 lung cancer patients with pulmonary embolism (PE) and 1372 lung
cancer control groups. The system achieved area under the curve (AUC) values of 92% and 93%,
showing significant performance improvement in processing clinical data. The work conducted by
the authors in [20] proposes a new Electrical Impedance Tomography (EIT) framework using DT
models and DL to improve image quality and anti-noise performance. The proposed EIT framework
incorporates DT models to generate a virtual dataset of EIT measurements and lung information. The
framework also includes a DL-based image reconstruction network (IR-Net) to leverage labeled data
and reconstruct conductivity distributions within the lungs during respiration. The IR-Net achieves
superior image quality and anti-noise performance compared to traditional EIT algorithms. Finally, in
[21], an intelligent Internet of Medical Things (IoMT) platform for automatic pneumonia diagnosis in
chest X-Ray images is proposed. The platform utilizes DT technology to create a virtual representation
of the lung based on real-time X-Ray data. The article introduces an Enhanced Vision Transformer
Model (EVTM) for analyzing chest X-Ray images, which uses vision transformer technology to convert
images into sequences for improved feature extraction. The model is trained on a dataset of chest
X-Ray images and outperforms baseline models with higher precision, recall, accuracy, and F-score
values.

However, none of these studies focuses on developing a multilevel platform capable of acquiring,
processing, storing, and sharing information useful for the prevention or diagnosis of pathologies
related to abnormal values from multiple organs.

This work, introduces an architecture based on DTs, incorporating multiple levels of abstraction.
These levels encompass organ-based DTs and pathology-based DTs, with the integration of artificial
intelligence models. In fact, the goal is not only to integrate the classification results obtained from
neural network models related to lung images but to create a broader structure composed of DTs
related to various organs, as in the case of the study on the heart in [3]. This architecture aims to
accumulate multi-organ information to support doctors in the diagnosis and prevention of diseases
(such as acute coronary syndrome), considering the interactions between different sub-pathologies
related to each organ. The main challenges that the proposed architecture in our study aims to address
are the following:

¢ Continuous and personalized patient monitoring: utilize DTs to optimize the real-time collection
and processing of data from various medical devices, including wearable sensors, clinical records,
and other applications. This data can be used to create a digital model of the patient, predict the
risk of diseases, identify anomalies, and optimize therapies.

* Unified patient management platform: use a platform that allows monitoring different organs
and pathologies, through the creation of Organ DTs that, working collaboratively, provide
the medical world with a tool for a comprehensive view of the patient’s health and optimize
treatment planning.

* Optimization in the fusion and sharing of clinical information: consult, through a single frontend,
the entirety of patient medical information and create a shared virtual environment where doctors
can collaborate on patient care, share data, discuss clinical cases, and plan surgeries.

¢ Tool to improve procedures and reduce healthcare costs: use DTs in medical scenarios to simulate
medical procedures in a safe virtual environment before performing them on a real patient,
receive feedback to improve organizational efficiency. These simulations can be a valuable tool
to assess the critical points of the entire medical supply chain and optimize the use of medical
resources, such as medical devices and staff, to reduce healthcare costs.
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3. Lung-DT

Building on the architecture of the Heart Digital Twin (HDT) [3], the authors aim to extend the
concept to create a Digital Twin of the lung. Similar to the approach adopted for the HDT, the creation
of a Lung-DT involves various functional components in both the digital and real-world domains.
This extension enriches the platform, requiring the implementation of scalable, dynamic, and resilient
systems, along with a modular approach.

3.1. Lung-DT Architecture

The lung architecture characterizes the DT based on the specific context. In scenarios of lung
pathologies, input data can be diverse, including numerical data and images such as X-Ray images.
Unlike the Heart DT, the Lung-DT must be able to acquire images. Therefore, in addition to the two
connectors, there are two distinct acquisition blocks to process raw data from the real world.

The two present connectors are dedicated to acquiring the SpO2 value from a smartwatch and
data from lung X-Rays. In addition to the connectors, the data acquisition block related to the X-Ray
connector performs resize and categorization operations on the images before storing them in the
storage block. Subsequently, the storage block is responsible for storing pre-processed data for future
use.

The agent block initiates different decision-making processes based on the data input into the
storage and programmatically triggers data analysis. Depending on the nature of the analysis, the
agent will activate the Al process block, responsible for processing images or saturation data.

The Al process block can download various models from the Al services block, the reference model
for making inferences based on the required analysis. In the following chapters, the methodology and
results of the inference process when the Lung-DT needs to process lung images will be detailed.

Finally, once the agent block obtains the processing result, it will assess the necessary actions,
such as sharing information with other DTs or implementing actions in the real world through the
implementation block. Similar to the heart case, the policy block holds all policies and thresholds to
prevent actions harmful to the organ itself.

As shown in Figure 1, the implementation provided in this study on the Lung-DT involves two
distinct connectors, both designed to interface directly with the physical world for data acquisition. The
first connector is used to acquire SpO2 values from wearable medical devices, such as a smartwatch,
while the second is dedicated to acquiring X-Ray images from the real world.

Lung DT
e N
T
S
H
A
;
|
N
G
| DATA ACQUISITION | | DATA ACQUISITION |
CONNECTOR SPO2 | | CONNECTOR X-RAY |
N\ e N N J

Figure 1. Lung-DT Architecture.
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3.2. Lung-DT Workflow

Below is the workflow related to the Lung-DT. Data from the real world is acquired through a
single endpoint to which IoT devices and various systems can connect. The platform exposes various
services, as shown in Figure 2, with two connectors (1) dedicated to data acquisition. For saturation
data, they are sent via REST API or MQTT, while for X-Ray images, there is an FIP repository where
files can be uploaded. It is essential to emphasize that medical personnel uploading the clinical report
will only have access to the Lung-DT repository specific to the individual patient.

The next phase (2) involves reading the data and performing cleaning and normalization
operations. In this process, operations such as the removal of non-useful metadata, uniformity
of format, and file type are carried out. The Storage block (3) is responsible for storing the raw and
cleaned data for future use.

The Agent block (4), through cyclical checks or external interactions, initiates the validation and
inference process for previously acquired data. In particular, if a new image has been received, it will
contact the Al Process block (5) to start the validation process. In the case of an X-Ray image, the Al
Process block will contact the Al Long Instance X-Ray block to check for the presence of a new updated
model, which will be used for inference.

Once completed, the result is returned to the Agent block (6) to assess future actions. Specifically,
based on the thresholds set in the Policy block (7), certain actions will or will not be taken. These
actions may include physical world actions through the Implementation block or sharing with other
DTs through the Sharing block (8).

Although the Implementation block (8) is not currently utilized in the context of this study, it is
nevertheless crucial to include it for two main reasons. Firstly, this structure adheres to the model
proposed in [3] for HDT. Secondly, considering a broader context, such as the architecture we propose,
it could be leveraged in the future to control actuators or notification subsystems. The idea is to
establish a modular and dynamic architecture capable of adapting to various application scenarios
and, above all, facilitating the seamless integration of new functionalities without compromising the
integrity of the entire system.
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Figure 2. Workflow Lung-DT.

3.3. Healthcare DT platform

The platform introduced by the authors [3] has been characterized for a specific application
related to the lung, as illustrated in Figure 3. In the patient-dedicated section, there are DTs related to
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both the heart and the lung, while two generic DTs for pathologies are exemplified. The Al Services
section includes three instances, one focused on the cardiac context (Al Heart Instance), while the
other two are dedicated to the pulmonary domain. Specifically, there is the AI Lung SpO2 Instance,
related to blood saturation data, and the Al Lung X-Ray Instance, which handles the processing of
lung images. All instances are independent of each other, allowing updates and changes without
affecting the behavior of the entire platform. This flexibility enables adapting the platform to specific
needs, facilitating the seamless integration of new elements to enhance the overall capabilities of the
system. The modular structure of the platform provides the opportunity to customize and expand
functionalities based on the evolving requirements of the application.
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Figure 3. Platform Architecture.

4. Testbed setup of Lung-DT

In this section, we will outline the steps that led to the creation of the neural network model
integrated into Lung-DT, capable of classifying Chest X-Ray images into 5 classes of lung diseases.
Specifically, we will describe the two public datasets used in this study, the pre-processing phase of the
images before being input into the network, the convolutional neural network model used with its
respective stages (training, validation, and testing), and finally, the results obtained during the training
and testing phases of the neural network.

4.1. Datasets

In this section, we will illustrate the dataset used to train and test the neural network, described
in subsection 4.2, for classifying 5 different classes of lung pathologies, including the "Normal"
class. Specifically, to have 5 different pathology classes and a significant number of lung images
(from different individuals with different genders and ages) for training and validating the network,
two open datasets on Kaggle were used: the "Multiclass Chest X — Ray Disease Dataset" [22]
and the "Lungs Disease Dataset (4 types)" [23]. A third public dataset "Multi_Classe_ChestX —
Ray_DATASET(VERSION2)" [24], also available on Kaggle, was used for testing (prediction) of
the trained network.

The first dataset [22] contains chest X-Ray images in various formats (PNG and JPEG) and includes
4 classes of lung diseases (Pneumonia, Covid, Tuberculosis, and Lung Opacity) and one "Normal" class.
The number of images in each class is as follows: 1,583 for the "Normal" class, 4,273 for "Pneumonia,"
6,011 for "Lung Opacity," 4,192 for "Covid," and 703 for "Tuberculosis."


https://doi.org/10.20944/preprints202401.0125.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 January 2024 do0i:10.20944/preprints202401.0125.v1

10 of 17

The second dataset [23] is similar to the first, containing chest X-Ray images in JPEG format.
This dataset was created by integrating other publicly available datasets, excluding the first one
mentioned. It presents 4 classes of lung diseases (Bacterial and Viral Pneumonia, Corona Virus Disease,
Tuberculosis) and a "Normal" class. To ensure a significant amount of data, a data augmentation factor
of 6 was applied, resulting in just over 10,000 images distributed as follows: 2,013 for the "Normal"
class, 2,009 for "Bacterial Pneumonia,” 2,008 for "Viral Pneumonia," 2,031 for "Corona Virus Disease,"
and 2,075 for "Tuberculosis."

The third dataset [24] includes four main classes: "Covid," "Normal," "Pneumonia," and
"Lung_Cancer." The images in the dataset have various formats, including PNG and JPEG. Specifically,
the dataset consists of 106 images for the "Covid" class, 132 images for the "Normal" class, 103 images
for "Pneumonia," and 49 images for "Lung_Cancer."

After analyzing all the found public datasets, the first two were chosen to create a unified dataset
for training and validating the YOLOvVS8 neural network. In particular, for each class, the images were
combined, ensuring there were no duplicates, and the format of all images was standardized to PNG.

Figure 4a—e below illustrate corresponding to the “Normal,” "Covid," "Lung Opacity,"
"Pneumonia,”" and "Tuberculosis" class.

(d)

(e)

Figure 4. Chest image for (a) “Normal”, (b) "Covid", (c) "Pneumonia”, (d) "Lung Opacity", (e)
"Tuberculosis" class.
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The unified dataset contains a total of 23,442 images and was subsequently randomly divided
into Training Set and Validation Set according to the following proportions: 70% and 30%. Therefore,
the number of elements within each class for the Training Set is as follows:

* "Normal": 1,481 images;

¢ "Covid": 3,997 images;

® "Pneumonia": 5,348 images;

¢ "Lung Opacity": 4,207 images;
* "Tuberculosis": 1,330 images.

While the number of elements within each class for the Validation Set is as follows:

e "Normal": 635 images;

e "Covid": 1,697 images;

¢ "Pneumonia": 2,291 images;

¢ "Lung Opacity": 1,803 images;
* "Tuberculosis": 653 images.

The dataset [24], as mentioned earlier, was utilized during the testing (prediction) phase of the
network. Specifically, only three pathology classes were considered, aligning with the classes used in
the training and validation phases: "Normal," "Covid," and "Pneumonia."

4.2. Convolutional Neural Network: YOLOv8

YOLOVS [25] is the latest model in the YOLO (You Only Look Once) series, designed for object
detection, image classification, and instance segmentation. Developed by Ultralytics, also known for
the YOLOv5 model, YOLOvVS introduces numerous architectural changes and improvements in the
developer experience compared to YOLOVS.

The YOLO series of models gained prominence in the computer vision community due to its
remarkable accuracy and compact model size. YOLO was initially implemented in C in versions 1-4,
using a custom DL framework called Darknet. YOLOv8 emerged as part of the YOLOv5 development
process when Glenn Jocher of Ultralytics began contributing to the YOLOvV3 repository in PyTorch.

YOLOVS is characterized by several features that make it appealing for computer vision projects:

¢ High Accuracy: YOLOvVS has demonstrated high accuracy measured through COCO and
Roboflow 100 metrics.

¢ Developer Convenience: the model offers many features for developer convenience, including
an easy-to-use command-line interface (CLI) and a well-structured Python package.

¢ Large Community: YOLO has a large community, and the YOLOv8 community is growing. This

means there are many online resources and experts in computer vision who can provide support
and guidance.

YOLOVS8 achieves strong accuracy on COCO. For instance, the YOLOv8m model, the
medium-sized model, achieves a mAP of 50.2% when measured on COCO. When evaluated against
Roboflow 100, a dataset specifically designed to assess model performance across various specific task
domains, YOLOVS has substantially outperformed YOLOVS. Further details on this are provided in
our performance analysis later in the article.

Moreover, the developer-friendly features in YOLOVS are significant. Unlike other models where
tasks are distributed across many different Python files that need to be run, YOLOvV8 comes with a
CLI that makes model training more intuitive. This is in addition to a Python package that provides a
smoother coding experience compared to previous models.

Despite the absence of an official paper, some features of the YOLOvVS architecture have been
analyzed by Ultralytics. Some key updates include:

¢ Anchor-Free Detection: YOLOvVS8 adopts an anchor-free model, predicting the object’s center
directly rather than the offset from a known anchored box.
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¢ New Convolutions: changes have been made to the model’s structure, including replacing 6x6
convolutions with 3x3 convolutions and modifications to the main building blocks.

* Mosaic Augmentation Closure: YOLOVS8 uses mosaic augmentation during online training but
disables this technique in the last ten epochs to improve performance.

The architecture of the YOLOvV8 network is defined in Figure 5.
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Figure 5. YOLOVS8 Architecture.

4.3. Results

In order to obtain a neural network model capable of classifying pulmonary pathologies into 5
classes, the YOLOVS8 neural network, as described above, was trained with fine-tuning, setting the
initial weights corresponding to those used by the author on the model trained on COCO. Subsequently,
100 training epochs were conducted, resulting in an average accuracy of 96.6%.

As depicted in Figure 6, the x-axis represents the number of epochs, while the y-axis indicates
the loss and accuracy values on the training and validation datasets during the training phase of the
network model.
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Figure 6. Results of YOLOvS using validation set.

At the end of the network training, the testing phase is carried out using the testing set to evaluate
the network’s performance. In the Figure 7 shows the confusion matrix to assess the accuracy of the
classification of the network model during the testing phase.

covid

0.8

lung_opacity

0.6

normal

Predicted

-0.4

pneumonia

-0.2

tubercolosis

covid lung_opacity normal pneuMonia tubercolosis background
True

background

Figure 7. Confusion Matrix for Classification of Lung Diseases.

To obtain a more accurate assessment of the performance of the trained and tested model using
the dataset described in Section 4.1, a third dataset [24] (completely unknown to the network, not
belonging to either the training set or the validation set) was used for the testing (prediction) phase to
carefully examine the classification of each image. The detailed results are documented in Table 1.
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For the other two classes, "Lung Opacity" and "Tuberculosis," it was not possible to
perform an inference phase as these classes were not present in the "Multi_Class_ChestX —
Ray_DATASET(VERSION2)" dataset.

Figure 8 shows some examples of lung images, each corresponding to its respective pathology,
with the classification percentage result for all classes. As can be observed, the model performs very
well even on images it has never seen before, achieving accuracies ranging from 97-99%.

covid 0.98, R "

tubercolosis 0.02, Brgsmonig 0.98,

lung_opacity 0.00, covid 0

pneumonia 0.00, normal 0.00,

normal 0.00 lung_opacity 0.00,
tubercolosis 0.00

(a) (b) (c)

Figure 8. Lung disease classification for (a) “Normal”, (b) "Covid", (c) "Pneumonia" class using dataset
in [24].

The Table 1 shows the average accuracy values and the standard deviation obtained during the
inference phase for each individual image, considering all images for each pathology class.

Table 1. Average classification accuracy and standard deviation obtained on the dataset [24].

Class Test  Average Standard Deviation

Normal 0.99 + 0.01
Covid 0.99 + 0.05
Pneumonia 0.96 + 0.08

5. Discussion

In this section we will discuss and compare the state of the art of research on the topic and the
Lung-DT proposed in this paper.

The Table 2 shows a comparison between our study and the state of the art in the literature
regarding the use of DL techniques for the classification of X-Ray images for the detection of specific
pulmonary pathologies.

In particular, the table compares the technology used, classes and performance in terms of
accuracy.

Considering the references reported in Table 2, two fundamental innovations characterize our
work. The first relates to the improvement of the classification process, while the second focuses on the
application of the DT paradigm.

Regarding classification, the dataset for model training was created by merging two distinct public
datasets. This strategic choice aims to ensure a level of completeness and robustness in managing
data diversity. To confirm this, high performances were obtained using a large testing dataset totally
unrelated to the training dataset, a very important aspect introduced in this work. Furthermore, our
study stands out for considering five classes in the classification process. The results obtained indicate
that the accuracy is above the average found in the literature, suggesting the effectiveness of the model
in the classification task compared to traditional approaches.

Regarding the use of the DT paradigm, an Lung-DT characterized by pulmonary X-Ray images
was implemented. The incorporation of an Lung-DT within the platform allows for extending the
monitoring of patients” health through collaboration between DTs of different organs.
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Table 2. Comparison with the state of the art.
Ref. Technology Used Classes Systems’
Accuracy
[%]
[5] Adaptive histogram COVID - LUNG OPACITY - 91
equalization (CLAHE), (SVM), NORMAL - VIRAL
VGG19, and CNN networks PNEUMONIA
[6] CNN - SqueezeNet NORMAL - PNEUMONIA 94
[8] CNN, DenseNet169, NORMAL - PNEUMONIA 93
MobileNetV2, Vision
Transformer
[7] Multi-objective genetic NORMAL - PNEUMONIA 95-99
algorithm, neural networks
with fuzzy logic

[18] RCNN, DT COVID 94

[21] Enhanced Vision Transformer NORMAL - COVID - 88
Model, DT PNEUMONIA
Our CNN - YOLOVS, IoT, DT NORMAL - COVID - 96.6 - 98
method PNEUMONIA - LUNG OPACITY
- TUBERCULOSIS

6. Conclusion

The present study represents a significant contribution in the field of lung disease classification
through the innovative use of DT technology. The results obtained highlight the effectiveness of our
proposal, which distinguishes itself in several key aspects compared to the state of the art.

Our work focuses on the implementation of a practical case study, providing a proof-of-concept
for a Pulmonary DT. This implementation is characterized by a microservices architecture, integrating
an artificial intelligence component that operates on heterogeneous input signals. Specifically, our
Pulmonary DT architecture receives data from chest X-Ray images and blood oxygen saturation,
allowing for a more comprehensive and detailed evaluation.

The novelty of our proposal also arises from the extension of the second-level architecture
previously presented [3], incorporating DTs related to other organs, such as the lung in addition to
the heart. This multi-level approach enables the identification and classification of a wide range of
pathologies, leveraging information from various body systems.

In the context of training the neural network model based on YOLOVS, the integration of two
open datasets has proven its effectiveness, achieving an average accuracy of 96% in the classification of
lung pathologies into 5 classes. Furthermore, testing on a third completely unknown dataset confirmed
the high robustness of our model, with an average precision of 98%.

It is relevant to note that the performance achieved in our study often surpasses those found in
existing literature, suggesting a significant advancement in the application of DTs to the classification
of lung pathologies. The proposed multi-level architecture, which incorporates models related to
other organs such as the heart, offers an innovative approach to the diagnosis and classification of
pathologies related to multi-organ issues. This work substantially contributes to the progress of
computational medicine and technology-assisted diagnostics using DT technology.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

CNN Convolutional Neural Network
DL Deep Learning

DT Digital Twin

FTP File Tranfer Protocol

GAN Generative Adversarial Network

HDT Heart Digital Twin

IoT Internet of Things

MQTT Message-Queuing Telemetry Transport
RNN Recurrent Neural Network

YOLO  You Only Look Once
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