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Abstract: There is a growing concern about climate change being a serious threat to insurance

business sustainability. Knowing if climate warming is a cause for claims and losses increase, and

how this cause-effect relationship will develop in the future are two open major questions. In this

article, we answer both questions by particularizing the geographical area of Spain, and a precise

risk, hailstorm in crop insurance in the line of business of wine grapes. We measure climate change

thanks to the Spanish Actuarial Climate Index (SACI). We use a database containing all the claims

caused by hail risk in Spain from 1990 to 2022. With homogenized data, we consider as dependent

variables the monthly number of claims, monthly number of loss costs equal to one, and monthly

total losses. The independent variable is the monthly Spanish Actuarial Climate Index (SACI). We

try to explain the former through the latter using regression and quantile regression models. Our

main finding is that climate change as measured by SACI explains these three dependent variables.

We also give an estimation of the increase of the monthly total losses Value at Risk, corresponding

to a future increase in climate change measured in units of SACI. Spanish crop insurance managers

should carefully incorporate these conclusions into their decision-making process to keep this line of

business sustainable in the future.

Keywords: climate change; crop insurance; hail risk; quantile regression; regression

1. Introduction

According to the United Nations Climate Action Forum, Climate change refers to long-term shifts

in temperatures and weather patterns. Such shifts can be natural, due to changes in the sun’s activity or large

volcanic eruptions. But since the 1800s, human activities have been the main driver of climate change, primarily

due to the burning of fossil fuels like coal, oil and gas. Burning fossil fuels generates greenhouse gas emissions that

act like a blanket wrapped around the Earth, trapping the sun’s heat and raising temperatures [1]. This process

is a long-term one, affecting human beings in many instances as their lives, properties, transportation

infrastructures, etc (see for instance [2],[3],[4]). As the insurance business spreads through all aspects of

economic and individual human life giving protection against all sorts of claims, substituting random

losses by sure indemnities, the question of how climate change is affecting the insurance business has arisen

as a critical one for its present management and future sustainability.

During the last years, many extremal events like fires, floods, droughts, storms, and pandemics

have negatively affected the balance sheet of insurance companies to the point of motivating their

retreat from some lines of business in some geographical areas where the losses have increased to

unaffordable bounds (see for instance [5]). In the scientific world, the concern about insurance business

sustainability has mobilized lots of efforts to try to understand how insurance companies should

include climate change effects in their medium and long terms management (see [6], [7], [8], [9],

[10]). The efforts to technically cope with the new situation, imply advanced Statistical and Data

Science methodologies (see for instance [11], [12], [13], and [14]). General insurance principles like risk
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insurability, pooling, and diversification in a new context of climate shift are also under discussion

([15]). Insurance areas analyzed from the point of view of climate change are those related to mortality

and property losses (see for instance [11], and [14], and [13]). Also, an important field of research

is that of agricultural insurance ([16], [17]) where our paper is located. In crop insurance, all the

weather-related extreme events are relevant and may be influenced by climate change.

This paper focuses on hailstorm risk in the line of business of Spanish wine grapes. This is a

daunting risk for insurance managers because of its variability in time and space and also because

its events are rather local and ubiquitous. Hail risk in agricultural insurance is analyzed for instance

in [18], [19], [20]. Hailstorms are very harmful for crops yet their evolution under global warming

has rarely been a subject of study. The paper [21] studies its influence in the conditions (moisture,

convective instability) under which the hailstones get generated, giving a geographical sketch of

hailstorm future frequency evolution. One particular conclusion is that it may rise in Europe as

anthropomorphic warming grows. The work [22] applies Tobit regressions to conclude that a strong

positive relation exists between hailstorm activity and hailstorm damage, as predicted by minimum

temperatures using simple correlations. This relation suggests that hailstorm damage may increase

in the future if global warming leads to a further temperature increase. Finally, [23] finds a strong

influence of climate change, as measured by Convective Available Potential Energy (CAPE) and also

by totals–totals index (TT index), on the frequency and intensity of hail events in several locations

around southeastern Australia. They use reanalysis data (a data set comprising a blend of observations

and model simulations) and direct data obtained from the Australian National Climate Centre.

We aim to investigate if climate change has any influence on hailstorm risk in Spanish wine

grapes, a rather important line of business in agricultural insurance given that Spain has the largest

wine grapes cultivated area among European countries ([24]). According to our model results, we

conclude that climate change explains the increase in the monthly number of claims, monthly number

of loss costs equal to one, and monthly total losses observed from 1990 to 2022.

2. Materials and Methods

2.1. The database on hail risk in Spanish wine grapes.

The database on wine grape hailstorm claims is sourced from Agroseguro, the Spanish coinsurance

pool of agricultural insurance grouping seventeen insurance companies. Agroseguro manages the

risks and policies on behalf of those companies and participates in the Spanish system of agricultural

insurance together with the Spanish State, and professional agricultural associations and cooperatives.

During the year 2022, its wine grapes line of business has insured 46.44% of the total 860, 791ha of

cultivated surface, and the total value of the production (total insured sum) has been 1, 091.28M €(see

[25]).

The database has 7, 547, 286 records from 1990 to 2022. It contains information on 49 provinces

and 240 regions with 893,144 yearly policies. There have been 692,733 claims during the 33 years and

some relevant yearly figures are given in Table 1. Figure 1 visually depicts the evolution of both the

number of plots and hailstorm claims over the specified period. Therefore, this database provides a

thorough view of hailstorm risk in the Spanish wine grapes line of business from 1990 to 2022. The

column Crop Yield in Table 1 is calculated from the individual plots information contained in the

database, and it refers to the expected potential production that could be obtained in each insured plot

based on its normal edaphic, climatic, planting, sowing, and cultivation conditions.

Claim data have also been monthly aggregated and months free of claims have been filled with

zeros, see the blank spaces in Table 2. This allows for a nuanced understanding of seasonal patterns

and trends over the years. This is important for studying the impact of climate change because one

key element is to know the relevant season for hailstorms, which will be later defined as a sequence of

months.
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Table 1. Spanish Wine Grape Insurance Data, yearly figures.

Year Total
Insured
sum (€)

Total Loss
(€)

Crop Yield
(kg)

Number
Of Policies

Number
Of Plots

Number
Of Claims

1990 217,652,835 6,200,518 1,388,430,463 28,100 134,050 15,291
1991 248,557,853 3,560,276 1,550,473,335 31,621 152,005 12,000
1992 307,714,572 7,904,540 1,912,566,029 39,929 198,611 19,235
1993 284,919,972 6,826,730 1,829,365,370 37,832 195,007 17,456
1994 297,271,994 2,738,423 1,901,295,250 38,984 204,313 8,619

1995 242,077,610 5,569,047 1,400,284,025 29,129 167,305 18,063
1996 327,901,655 4,593,910 1,605,894,257 32,859 193,004 9,282
1997 395,633,563 14,096,834 1,957,379,446 37,049 225,642 25,611
1998 441,049,489 13,007,045 1,971,311,184 34,288 213,158 17,656
1999 437,265,055 14,794,992 1,917,674,498 32,706 206,014 24,029

2000 568,328,639 9,741,835 2,090,534,475 34,000 219,489 10,682
2001 560,603,175 6,759,693 2,011,166,692 30,996 201,894 7,641
2002 522,149,823 7,945,331 1,943,561,894 28,876 190,731 13,152
2003 562,951,706 18,847,196 2,076,438,149 29,037 195,308 16,855
2004 598,344,779 18,271,523 2,163,019,536 28,823 199,977 17,954

2005 595,592,273 10,960,930 2,098,146,664 26,412 198,760 14,503
2006 551,669,449 23,246,532 1,899,984,824 23,194 183,900 22,537
2007 577,020,427 42,553,289 1,964,259,110 22,665 189,357 22,043
2008 653,256,796 15,265,573 2,230,822,485 24,461 210,449 14,725
2009 628,159,377 19,773,933 2,097,168,866 21,950 204,072 14,280

2010 597,317,970 10,530,360 1,951,036,257 19,993 193,284 13,732
2011 516,300,441 23,659,028 1,746,476,820 17,927 174,013 21,883
2012 644,892,414 15,259,638 2,292,548,909 21,480 209,162 11,043
2013 630,157,964 30,235,918 2,268,987,633 21,075 231,153 32,294
2014 687,759,537 18,986,141 2,389,698,870 20,650 238,865 26,823

2015 704,818,295 33,449,574 2,426,866,357 20,139 243,458 37,138
2016 772,792,789 11,049,778 2,633,586,202 20,947 268,232 11,205
2017 821,585,396 20,152,939 2,768,418,806 21,023 284,922 25,283
2018 939,523,058 37,068,415 3,010,843,844 22,839 333,156 39,809
2019 1,028,808,795 29,643,282 3,154,082,113 23,467 359,053 34,916

2020 1,038,651,982 41,498,451 3,159,232,107 23,636 368,346 40,465
2021 1,056,633,225 53,137,810 3,192,077,192 23,537 372,611 48,217
2022 1,091,289,076 30,551,509 3,279,107,478 23,520 387,991 28,479
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Figure 1. Yearly numbers of plots (blue) and claims (pink) over the time period

2.1.1. The normalized number of claims, N.

We normalize the number (yearly or monthly) of claims by dividing it by the number of plots of

that year. In other words, we calculate the proportion of policies on which claims occurred compared

to the total number of plots of that year (see Table 2 for monthly figures).

The plot of normalized yearly claims is depicted in Figure 2. It illustrates the true yearly trend in

the number of hailstorm claims in the Spanish wine grape line of business from 1990 to 2022, taking

into account the growth in the number of plots. We observe quite a jagged shape showing significant

variation in the yearly number of claims, reflecting the high uncertainty and variability of hailstorm

risk. Anyway, its upward trend indicates an increase in the frequency of the normalized number of

hailstorm events that we wish to explain through climate warming.

Figure 2. Yearly normalized number of hailstorm claims and its linear trend.
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Figure 3 shows the trend in the number of monthly hailstorm claims from January 1990 to

December 2022. The data are normalized to more accurately show the relative changes in the number

of claims from month to month.

In addition, in Table 2 and Figure 3 we observe an important and clear seasonal pattern, that is,

the vast majority of hail claims happen from April to September, which is related either to the weather

conditions that produce hailstorms and the growth cycle of wine grapes. This is indeed an important

conclusion that allows us to choose the period going from April to September as the hailstorm season

that will be later used in our models aiming to explain the insurance claims and losses by climate

change.

Table 2. The normalized monthly number of claims.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1990 0.0015 0.3081 2.3514 0.4118 1.5308 3.1197 3.6792
1991 0.0408 0.4092 0.1895 2.2058 0.3756 4.6512 0.0164 0.0007
1992 0.0030 1.6162 1.2416 2.4082 3.4349 0.9415 0.0227
1993 0.0021 0.3123 1.3200 2.8835 1.5353 1.9061 0.9230 0.0692
1994 0.0015 0.4033 1.0053 1.2045 0.3132 0.9862 0.2966 0.0078
1995 0.0048 0.7208 1.0663 1.0185 0.9091 5.9801 1.0831 0.0030
1996 0.0047 0.3280 0.4000 0.9746 1.4430 1.0098 0.6124 0.0326
1997 0.0004 0.0049 0.0315 1.3145 0.6107 3.8978 4.5687 0.9161 0.0031
1998 0.0033 0.0009 0.0033 1.6504 1.3586 2.4189 0.4372 1.9502 0.4199 0.0403
1999 0.0005 0.0010 0.2451 0.9053 2.4848 3.5968 0.4713 3.9575
2000 0.0023 0.0838 1.5768 0.8388 0.5627 1.0215 0.7795
2001 0.0490 1.2437 0.0064 0.9000 0.6142 0.8524 0.1184
2002 0.0005 0.0661 0.2144 0.6218 1.0785 3.7844 1.0963 0.0131
2003 0.0005 0.0046 0.5765 2.2529 0.9503 3.6619 1.1833
2004 0.0020 0.1340 0.5636 1.4272 1.8632 1.7572 3.1424 0.0835
2005 0.0010 0.0795 0.4593 2.3747 2.2228 1.3232 0.8226 0.0136
2006 1.0962 0.5753 4.6688 4.4209 1.0120 0.4818
2007 0.0037 1.1259 8.2833 0.9670 0.0438 0.7763 0.4309 0.0048
2008 0.0048 0.0889 2.6448 0.7579 1.5101 0.6781 1.2972 0.0048 0.0010
2009 0.0304 2.0101 1.7969 0.6243 2.0924 0.4425 0.0010
2010 0.0005 0.0021 0.5143 1.8755 1.2003 1.8227 1.3855 0.3032
2011 0.0086 1.0183 6.0122 1.5964 1.8861 1.9119 0.1419
2012 0.0010 0.4174 2.0032 0.6574 1.7685 0.3151 0.1143 0.0029
2013 0.0017 0.0346 4.3339 0.7419 4.9547 1.7841 1.3454 0.7735
2014 0.0599 0.6962 3.8486 4.4770 0.8302 1.3162 0.0013
2015 0.0008 0.2234 2.6530 2.7483 4.9491 3.2531 1.4265
2016 0.0112 0.1831 1.0293 0.4351 1.0908 0.2427 1.1151 0.0701
2017 0.8560 1.1796 3.4915 2.5200 0.5728 0.2538
2018 0.0018 0.3554 1.8739 1.9648 4.4922 2.0924 1.1679 0.0006
2019 0.0042 0.3228 0.9428 0.0089 4.6236 2.9622 0.8600
2020 0.0176 0.6532 0.9893 2.9904 3.8605 2.2446 0.2259 0.0041
2021 0.3387 0.7536 5.1348 0.6975 2.4414 3.5740 0.0003
2022 0.0034 0.1925 0.5289 0.1497 2.3617 3.7429 0.3593 0.0018
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Figure 3. Monthly number of claims (normalized) from January 1990 to December. 2022.

2.1.2. The normalized number of Loss Costs equal to one, LC1.

The loss cost is the ratio of severity over insured capital and is a simple and direct way of assessing

the degree of damage caused by a claim. From now on, let us note LC1 for the monthly number of

loss costs equal to one (if monthly or yearly will be clear from the context). LC1 > 0 means that this

number of losses equals the insured capitals, thus indicating the maximum degree of burden for the

insurance company in those claims. In Figure 4 we plot the yearly normalized LC1 as a percentage

of the yearly number of claims. Although the rate is low in most years, there are still several spikes,

indicating that hailstorms caused serious economic losses in specific years. Overall, the least squares

line is increasing, indicating an increasing tendency of the maximum damages over time. We aim to

explain this long-term increase through climate change.

Figure 4. Yearly Normalized LC1.
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2.1.3. The homogenized losses, L.

Over time, factors such as inflation increases in the number of policies and/or cultivated surfaces,

and rising productivity levels may influence insurance losses. As a result, claims of similar intensity

at different dates may result in larger losses than in previous years. Therefore, implementing

a homogenization process becomes crucial when analyzing insurance losses over time. This

homogenization allows more accurate and fair comparisons across time, thereby facilitating a thorough

understanding of the changing impacts of insurance claims and their economic consequences(see [22],

[26], and [27]).

In our research, we use a specific normalization formula to analyze hailstorm losses. This formula

allows us to effectively compare loss data across different years, even in changing market conditions

and agricultural productivity. The formula for normalized insurance loss is:

Homogeneous Monthly Lossj,k =
Monthly Lossj,k

Insurance Value Indexk
, (1)

where Monthly Lossj,k represents the total insurance losses ,where j = Jan, Feb, . . . , Dec, and k =

1990, . . . , 2022. The Insurance Value Indexk is a specially designed index that accounts for annual

changes in insurance capital and crop yields since 1990. The calculation method for the insurance

value index is as follows:

Insured Value Indexk =
Insured Capitalk

Insured Capital1990

·
Yield1990

Yieldk
, k = 1990, . . . , 2022. (2)

This index is an annual time series that comprehensively accounts for changes in total insurance capital

and crop yields since 1990. Specifically, the index reflects the relative changes in annual insurance

capital compared to the baseline level in 1990. It also incorporates the yearly variations in crop yield

to reflect fluctuations in agricultural production and market conditions. Through this approach, our

insurance value index effectively homogenizes hailstorm loss data across different years, allowing fair

and consistent comparisons among different dates. Thus, even amidst changes in market conditions

and agricultural productivity, we can accurately measure and analyze the trends and impacts of

hailstorm losses. From here after we will always work with homogenized losses, even when we shortly

name them losses.

Considering the logarithm of the insurance losses is motivated by two key factors. Firstly, this

transformation helps in moderating the impact of outliers on the model by reducing the data dispersion,

contributing to a more robust model. Secondly, the logarithmic transformation stabilizes the variance

structure of the data, thereby enhancing the accuracy of the regression (see [30]). From Figure 5, we

can see that the logarithmic losses are more stable than the original ones. Note that we only take the

logarithm of the data for months with claims, while we still record with zeroes the months with no

claims.

We can further analyze the total loss variable by considering its yearly figures in Figure 6, where

three of its yearly quantiles (90th, 95th, and 99th) are plotted, showing increasing trends over time

in all three cases. This growth seems to support the idea that climate change influence might still be

significant for higher probability levels, not only for means. We aim to test this hypothesis later. Let us

finally comment that, if the frequency and severity of hailstorm extreme events continued to increase

over time, this could finally affect the business sustainability, to what extent though? Would it be

possible to quantify this effect? We try to answer this question later.
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Figure 5. Monthly total losses for the period January 1990-December 2022. The light blue points are the

homogeneous losses, and the dark blue points are their logarithms.

Figure 6. Yearly total loss quantiles p = 0.9, 0.95, 0.99

2.2. The Spanish Actuarial Climate Index (SACI)

Until now we have presented and explained the data referred to the dependent variables: the

normalized monthly number of claims N, the normalized number of loss costs equal to one LC1, and

the homogenized monthly total losses L. We now turn to the other side where we aim to use as the

independent variable an index of climate change.

To help insurance companies measure and manage climate risk, actuaries in North America have

defined the Actuaries Climate Index™ (ACI), which combines information from several important

weather variables from the historical records of the United States and Canada. The ACI divides the

main geographical area (USA and Canada) into a grid of cells corresponding to a resolution and then

collects in each cell data from the relevant historical meteorological variables to calculate the six ACI

components: days of warm temperature (T90), days of cool temperature (T10), precipitation (P ),

drought (D ), wind speed (W ) and sea level (S). For each cell, ACI uses the reference period from
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1961 to 1990 where mean and standard deviations are calculated for all the components, and these are

posteriorly normalized by these figures, so their variations are measured in units of the corresponding

reference period standard deviation. Then it calculates the mean of the six normalized components to

obtain a cell-wise index, although the T10 component is subtracted to obtain a meaningful magnitude:

ACI =
1

6
(T90std − T10std + Dstd + Pstd + Wstd + Sstd) (3)

Finally, the ACI relative to any geographical area contained in the main one is the average of the

cell-wise indexes, through the cells covering the area of interest. The ACI can also be particularized

to any given season by collecting the data relative to that season and following the same process. In

summary, any ACI increase posterior to 1990 will denounce a warming in that area as approximately

measured in standard deviation units (see [28]).

The Iberian Actuarial Climate Index (IACI) is the actuarial climate index specific to the Iberian

Peninsula, built using the ACI method (see [29]) though with data relative to the Iberian Peninsula

taken from the ERA5 Re-Analysis. The ERA5-Land reanalysis data is a high-resolution dataset with a

horizontal resolution of 0.1° x 0.1° for each grid cell. It was generated by replaying the land component

of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from

various sources, including satellites, weather stations, and ocean buoys (see [29]). For our analysis,

we will utilize the Spanish regional monthly index derived from the Iberian Actuarial Climatic Index,

SACI, providing a comprehensive understanding of climatic changes in Spain.

Figure 7 depicts the variation in the SACI from April to September for each year between 1961

and 2022. From these subplots, it can be observed that certain months, such as July and August, exhibit

a significant upward trend, particularly in recent years. In contrast, other months, like April and May,

show relatively stable fluctuations. The graph reveals changes in climatic conditions during the peak

season of hail disasters yearly. Notably, the rising trend from April to September may reflect changes

in meteorological conditions within these months, possibly in connection with some broader trend of

global climate change.

Figure 7. Annual SACI Variation from April to September (1961-2022) as an indicator of climate change

during the hailstorm season.

2.3. Methods: linear and quantile regressions

This paper aims to explore the relationship between the Spanish Actuarial Climate Index (SACI)

and its components and hailstorm damages to the Spanish wine grapes insurance line of business.
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We employ both linear regression models ([31]) and quantile regression ([32]) methods to analyze the

data. Linear regression is a commonly used technique for estimating the linear association between

a dependent variable and one or more independent variables. Its general formula is expressed as

follows:

E(Y) = β0 + β1X1 + β2X2 + . . . + βnXn + ε, (4)

In this formula, Y represents the dependent variable, X1, X2, . . . , Xn are the independent variables, β0

is the intercept, β1, β2, . . . , βn are the coefficients, and ε is the error term.

For quantile regression, the general form is:

Qτ(Y|X) = Xβτ , (5)

Here, Qτ(Y|X) denotes the τ − th quantile of the conditional distribution of the response variable Y

given the design matrix X, and the vector βτ represents the quantile regression coefficients. Linear

regression provides insights into the relationship between the SACI and the means of hailstorm claims

variables, while quantile regression provides the same for their quantiles.

As told earlier, hailstorm claims for Spanish wine grapes are predominantly reported from April

to September, as this period corresponds to the primary occurrence of hail claims. In the subsequent

analysis, three independent variables regarding hail claims will be used:

• Monthly normalized number of claims, N.
• Monthly number of loss costs equal to one, LC1.
• Monthly homogenized total losses, L.

In linear regression, R2 can be calculated as:

R2 = 1 −
SSR

SST
(6)

where SSR = ∑
n
i=1(Yi − Ŷi)

2 is the sum of squares of residuals, and SST = ∑
n
i=1(Yi − Ȳi)

2 is the total

sum of squares. In quantile regression, we will calculate a pseudo R2 for the goodness of fit that is no

longer based on Ordinary Least Squares (OLS) calculations but on absolute errors (see [33]), using the

R function goodfit().

3. Results

3.1. Monthly Normalized number of claims,N

In Table 3 we present the results for three linear regression models designed to investigate if there

is any relationship between climate variables like SACI and its components, and the mean of N.

In model 1

N ∼ SACI, (7)

we investigate the influence of monthly SACI on the mean of N, finding that this is significant at a

1% level. This indicates that it has a somewhat influence on the number of hail claims. However, its

R2 = 0.08 is deficient, indicating that the SACI by itself does not explain well the variations in the

mean of N.
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Table 3. Linear Regression Results for N, Models 1, 2, and 3, (see equations (7), (8), and (9)). For

each independent variable, we show the β value, the p-value( *, **, ***), and the standard deviation in

parenthesis.

Dependent variable:

Number of Claim

Model 1 Model 2 Model 3

SACI 0.008***
(0.001)

T90std 0.002*** 0.001
(0.001) (0.001)

T10std 0.002 0.0005
(0.001) (0.001)

Pstd -0.002 0.003***
(0.001) (0.001)

Dstd -0.001 -0.0001
(0.001) (0.001)

Wstd -0.001 -0.003***
(0.001) (0.001)

Sstd 0.002*** 0.0004
(0.0004) (0.0004)

April 0.003*
(0.002)

May 0.017***
(0.002)

June 0.017***
(0.002)

July 0.023***
(0.002)

August 0.020***
(0.002)

September 0.013***
(0.002)

Constant 0.004*** 0.003*** -0.0002
(0.001) (0.001) (0.001)

Observations 396 396 396
R2 0.081 0.138 0.502
Adjusted R2 0.079 0.125 0.487
Residual Std. Error 0.012 (df = 394) 0.012 (df = 389) 0.009 (df = 383)
F Statistic 34.868∗∗∗ (df = 1; 394) 10.398∗∗∗ (df = 6; 389) 32.197∗∗∗ (df = 12; 383)

Note: ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01
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In model 2

N ∼ T90std + T10std + Dstd + Pstd + Wstd + Sstd, (8)

we introduce the components of the SACI to discern their impact on the mean of N. Notably, the

high-temperature days T90std, and sea level Sstd are significant, suggesting a potential link between

these two SACI components and the mean. However, despite their significance, the overall explanatory

power of the model, as indicated by the R2 = 0.14, remains low. While extreme heat and sea level

contribute to the predictive model, there is a need for further variables to enhance the accuracy of the

analysis.

In model 3 we give a try to the formula

N ∼ T90std + T10std + Dstd + Pstd + Wstd + Sstd + APR + · · ·+ SEP, (9)

that incorporates the months from April to September, encompassing the high-incidence season

of hailstorms. Despite the statistical significance observed for precipitation (Pstd) and wind Wstd,

with coefficients of opposite signs, the overall explanatory power of the model, as indicated by the

R-squared value R2 = 0.5, remains relatively moderate, much better than in the precedent case though.

It is noteworthy that the month variables attain statistical significance at the 1 percent level, apart from

April whose one is at the 10 percent level. This confirms the seasonal pattern in the occurrence of hail

events.

In summary, while the relationship between the mean of N and the SACI seems to be quite fragile

(model 1, eq.(7)), we have found some evidence through models 2 (eq. (8)) and 3 (eq. (9)) that some of

its components like high-temperature days (T90std), Precipitation (Pstd), Wind (Wstd), sea level (Sstd)

explain the variation of the mean of N until a certain point. We take note that the wind component is

significant in model 3 (eq. (9)) with a negative β though, which seems to indicate an opposite effect

into N from the other significant components. The season variables Apr. to Sep. are also significant, as

expected.

Next, we move to the study of the influence of SACI and its components on the quantiles of N.

For this sake, we begin with model 4:

Qτ(N) ∼ SACI, τ = 0.9, 0.95, 0.99. (10)

Results are reported in Table 4.

At the 90th percentile, SACI exhibits a statistically significant positive association with the number

of claims ( coefficient = 0.018, p< 0.01). For the 95th percentile, although positive, the association

is not significant (coefficient = 0.014, p>0.1); notice also that the confidence interval at 95% lies in

both negative and positive halves of the real line. At the 99th percentile, the positive relationship is

marginally significant (coefficient = 0.005, p<0.1), but the confidence interval is equally deficient. The

99th and 95th percentiles confidence intervals include both positive and negative values, suggesting a

certain degree of uncertainty regarding the precise impact of SACI. The two marginally significant

positive coefficients and confidence intervals spanning from slightly negative to positive values indicate

that the relationships between SACI and N at those percentiles are not as conclusively positive as

observed at the lower 90th percentile, as the inclusion of zero in the intervals suggests the possibility

of a null effect or a very modest effect that is not statistically distinguishable from zero.

Also, in Table 4, we observed the pseudo R-squared decreases as the quantile increases in quantile

regression. The decrease in pseudo R-squared at higher quantiles indicates that the model explanatory

power diminishes for extreme observations, suggesting the presence of additional factors or

complexities that contribute to the variability in the upper tail of the distribution.
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Table 4. Quantile Regression Results for model 4 (eq. 10)

Dependent variable:

Number of Claim ( Normalized)

τ = 0.9 τ = 0.95 τ = 0.99

SACI 0.018*** 0.014 0.005*
(0.013,0.023) (-0.004,0.031) (-0.001,0.011)

Constant 0.012*** 0.026*** 0.045***
(0.008,0.015) (0.014,0.038) (0.041,0.049)

Observations 396 396 396
Pseudo R2 0.0928 0.0420 0.0173

Note: ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01

The scatter plot in Figure 8 illustrates the SACI influence on the quantiles of N, with all the

reserves motivated by the information contained in Table 4. The quantile lines correspond to model 4

(eq.10). With due caution, we can see that an increase in SACI causes an increase in all three levels of

Qτ . It seems also that the higher the probability level the less steep the quantile line.

Figure 8. Scatter plot of the monthly normalized number of claims N versus the SACI. Regression and

quantile regression (probabilities τ = 0.9, 0.95, 0.99) lines corresponding to models 1 (eq.(7), Table 3)

and model 4 (eq.(10), Table 4).

In model 5 we introduce the months relevant to hail risk

Q(N) ∼ SACI + APR + · · ·+ SEP, (11)

while in model 6 we introduce the SACI components together with the months as independent

variables:

Qτ(N) ∼ T90std + T10std + Dstd + Pstd + Wstd + Sstd + APR + · · ·+ SEP, (12)

Table 5 gives the results for these two quantile regression models. We can check that both SACI and its
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components except the drought -Dstd- significantly impact the normalized number of claims across

different quantiles. For the significant variables, confidence intervals lie at one or the other side of the

origin. In the cases of T90std, T10std, Pstd, andSstd they are on the positive side showing their increasing

influence on Qτ(N). For Wstd this happens on the negative half though, denouncing that an increase of

the wind component results in a decrease of the corresponding quantile of N (the same happened in the

mean of N, see model 3, eq.(9)). These results indicate that SACI, as a comprehensive climate index, has

a substantial impact on the extremes of the number of claims N. The months constituting the hailstorm

season are all significant, as was expected. As explained in the previous section, pseudo-R-squared

values are calculated following [33]. The values obtained for these six models all exceed 0.5, indicating

a not negligible fitting score for all these models.

Table 5. Results for quantile regression for the normalized number of claims, N.

Dependent variable:

Number of Claim ( Normalized)

Model 50.9 Model 50.95 Model 50.99 Model 60.9 Model 60.95 Model 60.99

SACI 0.0001*** 0.0001*** 0.0008***
(0.00003,0.0001) (0.0001,0.0002) (0.0007,0.0010)

T90std 0.00003*** 0.0002*** 0.0017***
(0.00002,0.00005) (0.0001,0.0002) (0.0015,0.0019)

T10std 0.0001*** 0.0001** 0.0009***
(0.00003,0.0001) (0.000003,0.0002) (0.0006,0.0013)

Pstd 0.0001*** 0.0003*** 0.0019***
(0.00005,0.0001) (0.0002,0.0004) (0.0015,0.0022)

Dstd -0.00002 0.0001 0.0003
(-0.0001,0.00001) (-0.00002,0.0002) (-0.0001,0.0007)

Wstd -0.00005*** -0.0001*** -0.0017***
(-0.0001,-0.00003) (-0.0002,-0.0001) (-0.0020,-0.0015)

Sstd 0.00002*** 0.0001*** 0.0008***
(0.00002,0.00003) (0.00002,0.0001) (0.0007,0.0010)

April 0.0101*** 0.0111*** 0.0153*** 0.0099*** 0.0105*** 0.0163***
(0.0100,0.0101) (0.0110,0.0112) (0.0150,0.0156) (0.0099,0.0100) (0.0104,0.0107) (0.0157,0.0169)

May 0.0264*** 0.0600*** 0.0817*** 0.0265*** 0.0596*** 0.0798***
(0.0264,0.0265) (0.0599,0.0601) (0.0814,0.0819) (0.0264,0.0265) (0.0594,0.0598) (0.0792,0.0804)

June 0.0348*** 0.0465*** 0.0495*** 0.0347*** 0.0461*** 0.0422***
(0.0347,0.0348) (0.0464,0.0466) (0.0493,0.0498) (0.0346,0.0347) (0.0459,0.0463) (0.0415,0.0428)

July 0.0448*** 0.0492*** 0.0482*** 0.0448*** 0.0483*** 0.0432***
(0.0448,0.0449) (0.0491,0.0493) (0.0480,0.0485) (0.0447,0.0448) (0.0481,0.0484) (0.0426,0.0439)

August 0.0373*** 0.0455*** 0.0589*** 0.0372*** 0.0449*** 0.0572***
(0.0373,0.0374) (0.0454,0.0456) (0.0586,0.0591) (0.0371,0.0372) (0.0448,0.0451) (0.0566,0.0579)

September 0.0356*** 0.0394*** 0.0457*** 0.0355*** 0.0392*** 0.0423***
(0.0356,0.0357) (0.0393,0.0395) (0.0454,0.0460) (0.0355,0.0356) (0.0390,0.0394) (0.0416,0.0429)

Constant 0.00003*** 0.0001*** 0.0006*** 0.0001*** 0.0003*** 0.0020***
(0.00001,0.0001) (0.00004,0.0001) (0.0005,0.0007) (0.0001,0.0001) (0.0002,0.0004) (0.0017,0.0023)

Observations 396 396 396 396 396 396
Pseudo R2 0.5607 0.5771 0.5780 0.5609 0.5780 0.6475

Note: ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01

3.2. Monthly normalized number of Loss Costs equal to one, LC1.

Next, we investigate the relationship between LC1 as the dependent variable and SACI and its

components as independent ones. Remember that a claim with a loss cost equal to 1 implies that the

loss equals the value of the insured capital, indicating the full scale of damage for that claim.
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Table 6. Linear Regression for Number of Loss Cost = 1

Dependent variable:

Number of Cliam (Loss Cost = 1)

Model 7 Model 8

SACI 0.0003*** 0.0002*
(0.0001) (0.0001)

April -0.00001
(0.0002)

May 0.001***
(0.0002)

June 0.0003
(0.0002)

July 0.001***
(0.0002)

August 0.0004**
(0.0002)

September 0.0002
(0.0002)

Constant 0.0001 -0.0001
(0.0001) (0.0001)

Observations 396 396
R2 0.024 0.146
Adjusted R2 0.021 0.131
Residual Std. Error 0.001 (df = 394) 0.001 (df = 388)
F Statistic 9.608∗∗∗ (df = 1; 394) 9.475∗∗∗ (df = 7; 388)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In model 7, we investigate the linear regression with the SACI alone as an independent variable:

LC1 ∼ SACI, (13)

while model 8 includes also the months composing hailstorms season:

LC1 ∼ SACI + APR + · · ·+ SEP, (14)

Results for both models are available in Table 5. Results for model 7 (eq. (13)) indicate that SACI is

statistically significant at the 1% level, with a β coefficient of 0.0003. However, the R-squared value is

extremely low, R2 = 0.024, denoting that the model explanatory power is very weak.

In model 8 (eq. (14)), we introduce the months as independent variables (April to September). We

observe that among the month variables, only May, July, and August are statistically significant. This

is a notable difference compared to the case of the number of claims N, which might indicate that not

any month in the hailstorm season is relevant to the loss costs being equal to one, only May, July, and

August. Overall, the R-squared value of the model increases to 0.146, indicating that the introduction

of the month variable has improved its ability to explain the mean of LC1.

In summary, we have found through model 8 (eq. (14)) that the SACI influences to a certain extent the
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mean of LC1, and that the effect of an increase in one unit of SACI would result in an extremely slight

increase in this mean by a factor of 0.0003. We also found that through hailstorm season, only May,

July, and August are significant for the mean LC1.

In Figure 9 we find the increasing line given by model 7 (eq. 13) predicting the mean LC1 by the

values of SACI. And we find also the quantile regression lines corresponding to probability levels

τ = 0.9, 0.95, 0.99. In the three cases, we have got an increasing line. The three lines correspond to the

quantile regression defined by model 9:

Qτ(LC1) ∼ SACI, τ = 0.9, 0.95, 0.99. (15)

In Table 7, the coefficient for the variable SACI attains statistical significance at 1% level for both

the 90th and 95th percentiles. This signifies a discernible positive relationship between the SACI and

LC1 at these percentiles. The significant positive association with SACI at the specified percentiles

underscores its role in influencing LC1. However, at the 99th percentile, there is no significance

anymore and the confidence interval contains zero. This model is quite weak, as denounced by the

very low values of the pseudo-R2.

Table 7. Quantile Regression Results for model 9 (eq. 15).

Dependent variable:

LC1

90th 95th 99th

SACI 0.001*** 0.001*** 0.001
(0.0004,0.001) (0.001,0.001) (-0.008,0.010)

Constant 0.0003*** 0.001*** 0.003
(0.0001,0.001) (0.0003,0.001) (-0.003,0.009)

Observations 396 396 396
Pseudo R2 0.0967 0.0742 0.0411

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Next, in model 10 we introduce the months in the quantile regression using

Qτ(LC1) ∼ SACI + APR + · · ·+ SEP, τ = 0.9, 0.95, 0.99. (16)

We have finally decomposed the index in its components adding also the months in the quantile

regression model 11, for the same three τ-values:

Qτ(LC1) ∼ T90std + T10std + Dstd + Pstd + Wstd + Sstd + APR + · · ·+ SEP, (17)
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Figure 9. Scatter plot of LC1 versus SACI. The lines represent linear regression and quantile regressions

for three different quantiles (0.9, 0.95, and 0.99) corresponding to models 6 and 8.

In Table 8 we summarize the results corresponding to models 10 (eq. (16)) and 11 (eq. (17)). There

we can see that the SACI variable in model 10 (eq. 16) has a significant impact on the 95th and 99th

quantile levels. All months are significant except April in the 90th and 99th quantile.

Looking at model 11 (17), precipitation Pstd and drought Dstd are not significant at any of the three

quantile levels, suggesting a weak association between extreme precipitation and drought with LC1

extremes. On the other hand, we find that high and low temperatures (T90std, T10std) are significant

variables in the three quantiles, while wind (Wstd), and sea level (Sstd) are only significant for quantiles

τ = 0.9, 0.95. We notice again that wind coefficients are negative as was the case for the quantile

regression model 6 (eq. (12)) in the quantiles τ = .95, .99, and also for the mean of N in the linear

regression model 3 (eq.(15)) (see Tables 4 and 5). All the months from April to September are significant

across the three probability levels and their inclusion has enhanced the models, as shown by the

increase in pseudo-R2 from model 10 to 11 in Tables 7 and 8. In this last case, the pseudo-R2 coefficients

are in all cases above 0.35, and also they increase across higher quantiles, suggesting a heightened

ability of predictors to capture variability in the number of LC1 at extreme percentiles.
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Table 8. Quantile Regression Results for LC1

Dependent variable:

Number of LC1 ( Normalized)

Mod 10 τ = 0.9 Mod 10 τ = 0.95 Mod 10 τ = 0.99 Mod 11 τ = 0.9 Mod 11 τ = 0.95 Mod 11 τ = 0.99

SACI 0.000 0.00000*** 0.0003***
(-0.0003,0.0003) (0.00000,0.00001) (0.0002,0.0003)

T90std 0.004*** 0.010*** 0.016***
(0.003,0.004) (0.009,0.011) (0.016,0.017)

T10std 0.001** 0.004*** 0.003***
(0.0001,0.002) (0.002,0.006) (0.001,0.004)

Pstd 0.0001 0.0001 0.0001
(-0.001,0.001) (-0.002,0.002) (-0.001,0.001)

Dstd -0.0004 0.0002 -0.001
(-0.002,0.001) (-0.002,0.002) (-0.002,0.001)

Wstd -0.002*** -0.003*** -0.001
(-0.003,-0.001) (-0.004,-0.001) (-0.002,0.0002)

Sstd 0.001*** 0.002*** -0.0001
(0.001,0.001) (0.001,0.003) (-0.001,0.0003)

April 0.0002 0.0002*** 0.0001 0.013*** 0.008*** 0.005***
(-0.0002,0.001) (0.0002,0.0002) (-0.0001,0.0002) (0.011,0.015) (0.005,0.011) (0.003,0.007)

May 0.003*** 0.005*** 0.017*** 0.314*** 0.493*** 1.760***
(0.003,0.004) (0.005,0.005) (0.017,0.018) (0.313,0.316) (0.490,0.497) (1.758,1.762)

June 0.001*** 0.001*** 0.001*** 0.096*** 0.102*** 0.106***
(0.001,0.002) (0.001,0.001) (0.001,0.001) (0.094,0.098) (0.098,0.105) (0.104,0.109)

July 0.002*** 0.003*** 0.004*** 0.134*** 0.248*** 0.403***
(0.001,0.002) (0.003,0.003) (0.004,0.004) (0.131,0.136) (0.245,0.251) (0.401,0.405)

August 0.001*** 0.002*** 0.002*** 0.095*** 0.123*** 0.168***
(0.001,0.002) (0.002,0.002) (0.002,0.002) (0.092,0.097) (0.119,0.126) (0.166,0.170)

September 0.001*** 0.001*** 0.002*** 0.061*** 0.122*** 0.183***
(0.0002,0.001) (0.001,0.001) (0.002,0.002) (0.059,0.063) (0.119,0.126) (0.181,0.186)

Constant 0.000 0.00000** 0.0002*** 0.002*** 0.005*** 0.012***
(-0.0002,0.0002) (0.00000,0.00000) (0.0001,0.0002) (0.001,0.003) (0.004,0.007) (0.011,0.013)

Observations 396 396 396 396 396 396
Pseudo R2 0.3559 0.4101 0.7156 0.3585 0.4150 0.7275

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

3.3. Monthly homogenized losses, L.

In the first stage, we will investigate the climate change effect on L by four linear regression

models exploring the impact of the SACI and its components on hailstorm monthly total loss.

Model 12:

log(L) ∼ SACI, (18)

Model 13:

log(L) ∼ SACI + APR + · · ·+ SEP, (19)

Model 14:

log(L) ∼ T90std + T10std + Dstd + Pstd + Wstd + Sstd, (20)

model 15:

log(L) ∼ T90std + T10std + Dstd + Pstd + Wstd + Sstd + APR + · · ·+ SEP, (21)

Results are shown in Table 9. In models 12 (eq. (18)) and 13 (eq. (19), SACI is significant at

the 1% confidence level with a positive coefficient, indicating that the mean of L increases if SACI

increases. The R2 for model 12 is not negligible (0.159), and we have to stress that in the case of model
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13, we get R2 = 0.809 which is a good enough value. This is probably due to the inclusion of the

months in this model. In models 14 (eq. (20)) and 15(eq. (21)) we study the significance of SACI

components, and see how they show different levels of significance. So in model 14 (without months)

hot and cool temperatures, precipitation, and sea level (T90std, T10std, Pstd, Sstd) are significant, while

drought and wind (Dstd and Wstd) are not. Let us observe that the significance of Pstd indicates a

negative correlation with L. In model 15 (including the months), cool temperatures, wind, and sea

level (T10std, Wstd, Sstd) are significant, while the rest is not. Let us outline the fact that again, when

wind is significant it is negatively correlated, in this case relative to L. Regarding the R2 scores, it is not

negligible for model 14, and even in model 15, it gets a remarkably high value of 0.814.

Considering the complexity of the models, model 13 offers a more succinct way of explaining hailstorm

mean monthly total loss than model 15. This is because model 13 unifies all the climate change effects

in one magnitude, the SACI, making the interpretation and understanding more direct and simple.

Regarding the interpretation of the SACI coefficient in model 13 (β̂ = 0.878), we now know that

an increase in c units of SACI results in an increase in the mean of L by ec×β̂. For instance, taking

c = 0.1 of monthly SACI, we get approximately L × 1.091, that is, an increase in the mean total loss of

approximately 9.1%. Let us apply this to calculate the cost of a future Climate change as measured by

SACI.

We have calculated by model 13 (eq.(19)) the predicted E(L) for different SACI values. Among all

the months April to September 2022, let us choose the two ones with maximum and minimum SACI

values, specifically July 2022 (SACI = 1.764) and May 2022 (SACI = 1.050). The model 13 (eq.(19))

predictions were approximately 3,327,700€ for July and 2,433,643€ for May. These two cases are

going to be used to give upper and lower bounds for the increase of E(L) corresponding to a future

hypothetical increase of SACI in 0.1 units. We only have to multiply them by 0.091:

3, 327, 700 × 0.091 = 302, 820.7€,

2, 433, 643 × 0.091 = 221, 461.513€.
(22)

The change in losses from May to July is not simply attributable to the change in SACI values, as

exp(0.878 × (maxSACI − minSACI)) might suggest. Instead, it resulted from a combination of SACI’s

effect and specific monthly effect encoded by each one of the month’s coefficients, underscoring the

model’s complexity. The percentage change in losses due to the month shift, calculated as

[e(1.764−1.05)×0.878+(11.547−11.861) − 1]× 100%,

which is approximately 36.74%, demonstrating the significant influence of monthly coefficients on

E(L) predictions.
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Table 9. Results of linear regression models for log(L).

Dependent variable:

log(L)

model 12 model 13 model 14 model 15

SACI 5.350∗ ∗ ∗ 0.878∗ ∗ ∗
(0.620) (0.327)

T90std 0.737∗∗ 0.226
(0.331) (0.180)

T10std 1.204∗ 0.621∗
(0.640) (0.328)

Pstd −2.350∗ ∗ ∗ 0.023
(0.532) (0.289)

Dstd −0.312 0.414
(0.692) (0.352)

Wstd 0.723 −0.388∗
(0.442) (0.229)

Sstd 1.759∗ ∗ ∗ 0.344∗ ∗ ∗
(0.195) (0.112)

April 9.371∗ ∗ ∗ 9.214∗ ∗ ∗
(0.541) (0.542)

May 11.861∗ ∗ ∗ 11.863∗ ∗ ∗
(0.533) (0.533)

June 11.066∗ ∗ ∗ 10.852∗ ∗ ∗
(0.553) (0.595)

July 11.547∗ ∗ ∗ 11.360∗ ∗ ∗
(0.547) (0.580)

August 11.482∗ ∗ ∗ 11.385∗ ∗ ∗
(0.549) (0.562)

September 11.028∗ ∗ ∗ 10.853∗ ∗ ∗
(0.538) (0.575)

Constant 5.083∗ ∗ ∗ 1.922∗ ∗ ∗ 4.444∗ ∗ ∗ 1.925∗ ∗ ∗
(0.441) (0.230) (0.454) (0.243)

Observations 396 396 396 396
R2 0.159 0.809 0.266 0.814
Adjusted R2 0.157 0.805 0.255 0.808
Residual Std.
Error

5.859 (df = 394) 2.815 (df = 388) 5.509 (df = 389) 2.794 (df = 383)

F Statistic 74.511∗∗∗ (df = 1;
394)

234.536∗∗∗ (df = 7;
388)

23.497∗∗∗ (df = 6;
389)

139.809∗∗∗ (df =
12; 383)
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Therefore, this interpretation is a key factor for sustainability management because it provides

a concrete way to quantify the impact of an increment in SACI into E(L). In summary, this direct

percentage relationship makes SACI an effective tool for assessing future increases in the mean monthly

total loss due to a growing climate change scenario.

Finally, we remember that models 13 and 15 (eq. (19) and (21)) that include the months,

demonstrate stronger explanatory power compared to the other two models, as seen from their

R-squared values of about 0.81.

Next, we begin with the quantile regression models with log(L) as the independent variable. It is

relevant to outline here the well-known quantile property consisting of (see[32] p.48):

Qh(Y)(τ|X = x) = h(QY(τ|X = x) (23)

for any monotone transformation h()̇. In our case, h = log.

Model 16 only includes the SACI as independent variable:

Qτ(log(L)) ∼ SACI, τ = 0.9, 0.95, 0.99. (24)

Figure 10 illustrates the relationship between monthly log(L) and SACI. It contains four fitted

lines. The upward red line representing the linear regression indicates that as SACI increases, log(L)

tends to rise also, supporting the conclusion that there is a positive correlation between SACI and

hailstorm losses. In addition, three colored lines correspond to quantile regressions for the 90th, 95th,

and 99th percentiles. These lines demonstrate the variation in higher losses associated with SACI

values, illustrating the behavior of the tail of the monthly total loss distribution concerning SACI

variations.

Figure 10. Scatter plot of monthly log(L) versus SACI. Note: The straight lines are linear regression

(see Table 9) and quantile regression (τ = 0.9, 0.9, 0.99)(see Table 10).

Table 10 presents the results of quantile regression for model 16 (eq. 24), with the dependent

variable being log(L) and the independent one being the monthly SACI.
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Table 10. Results of quantile regression for model 16 (eq. 24)

Dependent variable:

log(L)

90th 95th 99th

SACI 1.141*** 0.963*** 0.591
(0.480,1.802) (0.467,1.458) (-0.274,1.455)

Constant 14.031*** 14.536*** 15.256***
(13.561,14.501) (14.183,14.888) (14.641,15.871)

Observations 396 396 396
Pseudo R2 0.0319 0.0304 0.0292

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

For the 90th and 95th quantiles, the SACI coefficients are significant at the 1% level. On practical

grounds, this implies that a one percentage point of 0.01 increase in SACI is associated with a 1.141%

increase in hail L at the 90th quantile. A similar calculation could be done in the 95th quantile.

Unfortunately, this is not extensible to the 99th quantile because the coefficient is no longer credible

(see its confidence interval and p-value).

Regarding pseudo R-squared, the values are very low, indicating that the model explains a small

proportion of the variability in hail loss. These values suggest that the SACI independent variable

contributes modestly to explaining the variability in hail loss at these quantiles.

In model 17 we include the months April to September as independent binary variables:

Qτ(log(L)) ∼ SACI + APR + · · ·+ SEP, τ = 0.9, 0.95, 0.99. (25)

Finally in model 18 we decompose the monthly SACI in its components still including the months:

Qτ(log(L)) ∼ T90std + T10std + Dstd + Pstd + Wstd + Sstd + APR + · · ·+ SEP,

τ = 0.9, 0.95, 0.99.
(26)

Table 11 presents the results of an analysis using quantile regression to investigate the relationship

between hailstorm total losses even SACI or its components. The analysis is conducted separately for

the 90th, 95th, and 99th percentiles, taking into account monthly variables from April to September.

Concerning model 17 (eq. (25)), SACI exhibits statistical significance at the three percentiles, even

though the confidence interval in the first case contains negative and positive values a fact that

devaluates the quality of this estimate. This indicates (with due caution for the 90th case) a significant

positive correlation between SACI and hailstorm losses across these percentiles. SACI’s influence

becomes more pronounced with increasing percentiles, highlighting its heightened importance in

extreme loss events. The observed trend in SACI coefficient values, rising from 0.541 to 0.619,

emphasizes its non-uniform impact across quantiles of the monthly total loss distribution. This

underscores SACI’s important role in assessing the severity and potential risk of the most damaging

hailstorm events represented in the upper quantiles of the distribution. Note that all the months are

significant.

In model 18 (eq.(26)), T90std (days of extremely hot temperature) is statistically significant at

the 95th and 99th percentiles, indicating a positive correlation with losses at higher levels. T10std

(days of extremely cold temperature) is only significant at the 95th percentile. Pstd (days of heavy

rainfall) is significant at the 95th and 99th percentiles. Conversely, Wstd (wind speed) has a negative

and statistically significant coefficient across all three percentiles, suggesting that higher wind speeds
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are associated with loss decrease. Remember that a similar behavior was observed for models related

to the variables N and LC1.

Table 11. Results of quantile regression for log(L)

Dependent variable:

log(L)

Model 17τ=0.9 Model 17τ=0.95 Model 17τ=0.99 Model 18τ=0.9 Model 18τ=0.95 Model 18τ=0.99

SACI 0.541* 0.578** 0.619***
(-0.059,1.141) (0.002,1.153) (0.257,0.981)

T90std 0.085 0.218** 0.332***
(-0.128,0.299) (0.032,0.404) (0.183,0.481)

T10std 0.121 0.422** 0.143
(-0.268,0.510) (0.083,0.760) (-0.128,0.415)

Pstd 0.277 0.528*** 1.101***
(-0.065,0.619) (0.231,0.826) (0.863,1.340)

Dstd 0.169 0.066 0.876***
(-0.248,0.587) (-0.297,0.429) (0.585,1.167)

Wstd -0.338** -0.268** -0.484***
(-0.609,-0.067) (-0.504,-0.032) (-0.673,-0.295)

Sstd 0.168** 0.148** 0.020
(0.036,0.300) (0.033,0.264) (-0.073,0.112)

April 5.331*** 4.495*** 3.203*** 5.165*** 4.703*** 3.826***
(4.338,6.324) (3.543,5.447) (2.604,3.802) (4.522,5.808) (4.144,5.263) (3.378,4.275)

May 6.994*** 5.857*** 4.934*** 7.084*** 6.077*** 5.233***
(6.015,7.974) (4.917,6.796) (4.343,5.525) (6.453,7.716) (5.528,6.627) (4.792,5.673)

June 6.717*** 5.249*** 3.911*** 6.594*** 5.672*** 4.694***
(5.702,7.732) (4.275,6.222) (3.299,4.523) (5.889,7.299) (5.059,6.285) (4.202,5.185)

July 7.003*** 5.715*** 3.955*** 6.657*** 5.707*** 4.560***
(5.998,8.008) (4.750,6.679) (3.348,4.561) (5.970,7.344) (5.109,6.305) (4.081,5.039)

August 6.767*** 5.388*** 3.625*** 6.387*** 5.317*** 3.719***
(5.759,7.776) (4.420,6.355) (3.017,4.234) (5.720,7.054) (4.737,5.897) (3.253,4.184)

September 6.687*** 5.420*** 3.639*** 6.622*** 5.624*** 4.528***
(5.700,7.675) (4.473,6.367) (3.043,4.235) (5.940,7.303) (5.032,6.217) (4.052,5.003)

Constant 7.992*** 9.540*** 11.305*** 8.142*** 9.439*** 11.018***
(7.570,8.414) (9.135,9.945) (11.050,11.560) (7.854,8.430) (9.189,9.690) (10.817,11.219)

Observations 396 396 396 396 396 396
Pseudo R2 0.3711 0.3192 0.2531 0.38 0.3354 0.2857

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The variable representing sea level (Sstd) is significant at the 90th and 95th quantiles but not at

the 99th one. On the other hand, drought days (Dstd) are only significant at the 99th quantile. Note

that all the months are significant at all the percentiles.

Let us consider model 17 in the case τ = 0.99 (eq. 25). Let us also consider again the maximum

and minimum SACI monthly values for 2022, which are 1.764 (July) and 1.050 (May). We aim to

build two bounds (relatives to the year 2022) for the L- 99th quantile variation corresponding to a

SACI variation of 0.1, as was done for its mean in (22). Model 17 predictions for the L-99th quantiles

corresponding to those SACI values are respectively:

e11.305+0.619×1.764+3.955 = 12, 634, 175€,

e11.305+0.619×1.050+4.934 = 21, 616, 122€.
(27)
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Then the two 2022-bounds for L-99th quantile variation corresponding to a 0.1 increase in SACI are:

12, 634, 175 × 0.0639 = 807, 323.8€,

21, 616, 122 × 0.0639 = 1, 381, 270€.
(28)

Observe that, when increasing a SACI by 0.1, the adjustment in the 99th quantile of L can be computed

by simply multiplying the loss by exp(0.1 × 0.619), which is approximately 1.0639.

Again like in (22), this interpretation is a key factor for sustainability management because it potentially

provides a concrete way to quantify the impact of an increment in SACI into any τ-quantile of the

monthly total loss L. This direct percentage relationship makes SACI an effective tool for assessing

future increases in any quantile of L caused by an increasing climate change scenario.

4. Discussion

In this paper, we explore the relationship between the Spanish Actuarial Climate Index (SACI)

and its components and hailstorm insurance claims in Spanish agricultural insurance, in the line of

business of wine grapes. Insurance claims are represented by the monthly number of claims, monthly

number of loss costs equal to one, and monthly total losses observed from 1990 to 2022, and the

methodologies we use are linear and quantile regression models.

Our results indicate a significant positive correlation between the SACI and the three dependent

variables. Its explanatory power is relatively high for some models relative to the monthly total losses

L (models 13 to 18, Tables 9–11), the monthly number of loss costs equal to one LC1 (models 10 and 11,

Table 8), and the monthly normalized number of claims (models 11 and 12, Table 5).

Importantly, we show that these two methodologies can be key factors in the assessment and

management of hailstorm risk because they provide estimations of the growth of expectations and

quantiles of the claims and loss variables corresponding to future shifts in climate change as measured

by the Spanish Actuarial Climate Index (SACI) (see equations (22), (27), and (28)).

Many of the results of our calculations may be directly translated to premium and solvency capital

calculations, providing an efficient tool for guaranteeing the sustainability of the insurance business

against climate change. Future lines of research will try to extend this strategy to other insurance

markets and also to risk measures different than the expectation and the quantiles (VaR).
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