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Article 
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Abstract: Given the context of global climate change, a worldwide increase in land surface 

temperature (LST) is anticipated, leading to the exacerbation and broadening of its impacts. This 

could jeopardize the environmental conditions in countries with a predominantly hot and harsh 

climate, such as Bahrain, one of the Cooperation Countries (GCC) nations. Conversely, Bahrain is 

currently experiencing significant population growth, leading to a surge in demand for land to 

accommodate the construction of additional residential developments. This circumstance allows 

investigation of the potential impact of land use and land cover alterations on the variation in Land 

Surface Temperature (LST). In order to accomplish this objective, a residential development project 

was executed within the timeframe spanning from 2013 to 2023. Four sets of Landsat 8 OLI/TIRS 

remote sensing datasets were selected, with each set corresponding to one of the four climate 

seasons. Each set consisted of two images: one capturing the study area before the commencement 

of the development process and the other depicting the study area after the completion of the 

development. The study area was analyzed by extracting the land surface temperature (LST), 

normalized difference vegetation index (NDVI), and normalized difference built-up index (NDBI) 

on various dates. Subsequently, correlation and regression analysis were employed to examine the 

interrelationships among these three variables. The findings demonstrated a notable rise in the 

mean land surface temperature throughout the spring and autumn seasons following the conclusion 

of land development activities. The findings indicate a positive and robust association between LST 

and NDBI across all seasons. Moreover, this relationship strengthened following the completion of 

development activities in the area. Conversely, there was a negative correlation between LST and 

NDVI prior to the region's development, which transformed into a positive relationship post-

development. These results provide empirical support for the notion that small-scale residential 

developments contribute to a notable increase in LST, primarily driven by the expansion of 

impervious surfaces in built-up areas. The findings can potentially contribute to the formulation of 

localized adaptation strategies for small-scale residential development projects. 

Keywords: Bahrain; environmental quality; climate change adaptation; housing projects; developing 
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1. Introduction 

The urbanization process has resulted in noticeable alterations to the landscape, causing a 

decline in environmental conditions that negatively impact the overall quality of life. This includes 

the pollution of the surrounding air [1] and water quality degradation [2]. The alterations in 

landscape and human utilization profoundly impact the energy transfer between the Earth's surface 

and the atmosphere, resulting in an elevation in urban ambient temperature that diverges from the 

temperatures seen in surrounding non-urbanized regions [3]. In urban areas, heat waves 

predominantly manifest in island zones as a result of the elevated surface temperature concentration 

[4,5]. The uncomfortable conditions experienced by ecosystems can be attributable to times of 

extremely high temperatures [6]. The harsh impact of these heat waves has the potential to exacerbate 

health issues and potentially result in mortality [7]. In regions characterized by hot and arid climatic 

conditions, the confluence of weather patterns and heatwaves exerts a significant influence on the 

well-being of the local populace [8,9]. The urban thermal environment is a significant concern inside 

metropolitan areas, necessitating urban planning efforts that prioritize the development of policies 

aimed at establishing optimal living circumstances for residents [10].  

in several nations, due to rapid urbanization in recent years, some development projects, and 

the unplanned and inefficient energy studies use strategies have led to increasingly severe alterations 

in Land Surface Temperature (LST). Several studies indicate that the Gulf Cooperation Council (GCC) 

countries, namely the United Arab Emirates, Bahrain, Kuwait, Oman, Qatar, and Saudi Arabia, are 

expected to undergo significant urban expansion in the near future [11]. The urbanization rate in each 

of these countries has exceeded 80% over the past decade[12]. The expansion of metropolitan areas 

typically leads to a rapid growth of impervious surfaces, which in turn amplifies the rise in LST. 

Although much focus has been given to the urban dynamics of major metropolitan areas in the area, 

middle size urban agglomeration and cities have not been thoroughly examined. Bahrain is a very 

typical example for such these urban agglomerations which located on an island in the central region 

of the Gulf area. As the main entry point to the region and an agglomeration with a population of 

one million, it has experienced rapid urbanization. Although there have been few studies on 

urbanization in Bahrain, the correlation between LST and urbanization has not been investigated. 

Several research have investigated the association between LST and land use and land cover in 

relation to climate change, urban planning, soil ecology, and vegetation health. Therefore, this study 

aimed to investigate the correlation between LST and the process of urbanization in the typical Gulf 

urban area of Bahrain. Due to the rising population in Bahrain, there is a growing need for developed 

land in the country. To mitigate the adverse environmental impacts of urban expansion, the Bahraini 

government has implemented a strategy of developing residential projects of various sizes to 

guarantee the availability of eco-friendly and high-quality housing. This phenomenon is a prevailing 

tendency throughout all GCC nations. The topic at hand is whether the ongoing residential projects 

are ecologically sustainable and ensure a quality of life. When evaluating sustainability and quality 

of life in a location with intense heat and humidity, as the countries in the GCC, it is crucial to consider 

human thermal comfort. This comfort is influenced by the land surface temperature. 

The measurement of land surface temperature (LST) serves as a reliable indication for assessing 

the energy equilibrium at the Earth's surface. It is considered a fundamental parameter in the study 

of land-surface dynamics, both at a regional and global level. Several researchers demonstrate the 

integration of surface-atmosphere interactions and energy fluxes between the atmosphere and the 

ground [13–15]. The term “Land Surface Temperature (LST)” is commonly used to describe the 

temperature of the Earth's surface’s skin layer. It encompasses the soil surface temperature for areas 

without vegetation cover, and the canopy surface temperature for regions with extensive vegetation. 

The determination of LST for urban areas is influenced by the temperatures of the vegetation canopy, 

vegetation body, and soil surface [16,17]. The LST is influenced by the Earth's surface effective 

radiating temperature, which governs the exchange of heat and water between the surface and the 

atmosphere  [14,15]. It is a crucial parameter that governs several physical, chemical, and biological 

processes occurring on Earth. It holds significant importance in the investigation of urban climate, as 

highlighted by several researchers [18,19]. The LST exhibits variability in accordance with the surface 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 January 2024                   doi:10.20944/preprints202401.0067.v1

https://doi.org/10.20944/preprints202401.0067.v1


 3 

 

energy balance and plays a role in regulating the air temperature of the lower levels of the urban 

atmosphere. It holds a significant position in the energy balance of the surface and influences the 

energy exchanges that impact the comfort levels of urban residents [13]. 

Remote sensing techniques have proven to be effective in estimating LST in urban ecosystems, 

as demonstrated in several researches [20–22]. The use of moderate resolution multispectral satellite 

products, such as the Landsat 4-5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper 

(ETM+), the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and 

Landsat 8-9 Thermal Infrared Sensor (TIRS) has been employed in various studies to estimate 

spatiotemporal land surface temperature (LST) [23–25]. Prior studies have indicated that the thermal 

attributes and spatial arrangement linked to LST are influenced by the composition and configuration 

of land use and land cover [26,27]. Several researchers reported that the variation in LST across urban 

areas is primarily influenced by vegetation conditions, impervious surface, and soil functions [28,29]. 

Hence, it can be inferred that the biophysical components mentioned in different studies are 

influenced by seasonal fluctuations and are hypothesized to exhibit nonlinearity in relation to LST 

[17,30]. In contrast, additional research has provided further support for the proposition that 

socioeconomic factors, such as income, population characteristics, and educational level exert an 

influence on LST [31,32]. 

Materials and Methods 

Study Area 

The Kingdom of Bahrain is located on the Arabian Gulf. Due to its population density of around 

2000 individuals per square kilometer and its restricted land area as an island state, Bahrain 

experiences a significant demand for housing. Al Ramila suburb is one of several projects being 

created in Bahrain to meet the demand for housing. Al Ramli suburb area was discovered to be 

107.216 Hectares. Figure 1.a illustrates the exact bounds of Al Ramila suburb, while Figure 1.b and 

Figure 1.c depict the precise micro and macro location respectively. The suburb is extended from 50° 

30` 26.47`` E to 50° 31` 15.00`` E and from 26° 10` 03.26`` N to 26° 10` 46.29`` N. The Al Ramli suburb 

offers its people a sustainable and self-sufficient lifestyle, with a total of 4,501 dwelling and apartment 

units available. The project will distribute almost 65 percent of its resources to residential areas, 14.3 

percent to key roadways, 5.67 percent to educational buildings, 1.74 percent to a public garden, 8.3 

percent to social services, 1.85 percent to public amenities, and 2.20 percent to other objectives. 
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Figure 1. Location of the study area. 

Data 

The Landsat program is managed by the United States Geological Survey (USGS). Landsat 8 

OLI/TIRS images consist of 11 bands, with band 10 and 11 being designated as thermal bands. The 
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Landsat 8 images possess a spatial resolution of 30 meters, a radiometric resolution of 12 bits, and a 

temporal resolution of 16 days. The thermal bands have a spatial resolution of 100 meters, which is 

then resampled to 30 meters for distribution [33]. Four sets of Landsat 8 images were obtained from 

the USGS EarthExplorer portal (https://earthexplorer.usgs.gov/). Each set consists of two images: one 

taken in 2013/2014 (before the development of Al Ramli district) and another taken in 2022/2023 (after 

the development). See Table 1. These images were captured for Path 163 and Row 42 during daytime. 

In this study, we utilized three spectral bands from Landsat-8 satellite data (namely Band 4 for Red, 

Band 5 for Near Infrared, and Band 6 for Shortwave Infrared) to calculate spectral indices. Band 10 

(TIR10) and Band 11 (TIR11) are both intended for measuring land surface temperature. However, 

Band 10 is preferable for quantitative analysis due to its lower contamination from stray light 

compared to Band 11. The study area was clipped from all images for the purpose of the study.  

Table 1. Dates of obtained Landsat 8 OLI/TIRS images. 

Season before development after development

Spring 27/03/2013 19/04/2022

Summer 07/07/2013 16/07/2022

Autumn 27/10/2013 15/10/2022

Winter 15/01/2014 08/01/2023

The researchers conducted four visits to the study area on January 10, 2022, April 1, 2022, July 3, 

2022, and September 28, 2022, with the objective of studying land use and land cover in the study 

area. They recorded their visits using photos as seen in Figure 2. 

Figure 2. A photo of the study area. 

Methodology  

The research approach employed in this study for remote sensing digital image processing is 

illustrated in Figure 3. This approach was applied for every Landsat 8 image used in this study. The 

borders of the study region were used to clip all Landsat images. The images were presented in the 
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form of integer numbers known as digital numbers (DNs). The conversion process specified in the 

Landsat 8 Data User Handbook[34] was used to convert the images to top-of-atmosphere (TOA) 

reflectance. As per this method, Landsat images were transformed from DN to at-sensor radiance 

using the following equation: 𝐿ఒ = 𝑀௅. 𝑄௖௔௟ + A௅ (1)

Where Lλ is the spectral at-sensor radiance, ML is the radiance multiplicative scaling factor for 

the band L, Qcal is the quantized calibrated pixel value, and AL is the radiance additive scaling factor 

for the band L.  

The conversion from at-sensor radiance to top-of-atmosphere reflectance was achieved using the 

following equation: 𝜌ఒ = గ.௅ഊ.ௗమாௌ௎ேഊ.ୡ୭ୱ ఏೞ (2)

Where ρλ is the unitless top-of-atmosphere (TOA) reflectance, d is the Earth-Sun distance 

measured in astronomical units ESUNλ is the mean solar exoatmospheric irradiances, and θs is the 

solar zenith angle.  

Figure 3. Flowchart for the methodology of the study. 

The at-surface reflectance was derived using the dark object subtraction (DOS) method applied 

to the top-of-atmosphere (TOA) reflectance to eliminate atmospheric interference. The Dark Object 

Subtraction (DOS) is a straightforward and empirical technique used to remove atmospheric effects 

in remote sensing data. It operates under the assumption that the reflectance of dark objects contains 
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a significant portion of atmospheric scattering. The DOS algorithm scans each band to identify the 

pixel with the lowest intensity and subsequently eliminates unwanted atmospheric distortions by 

removing this value from every pixel in the band [35]. 

The NDVI, which stands for Normalized Difference Vegetation Index, is the predominant and 

extensively employed metric for vegetation extraction. This study utilized the NDVI as its primary 

index. The utilization of NDVI was initially employed for evaluating the existence of vegetation, a 

purpose that has been substantiated in several research [36,37]. NDVI is traditionally calculated by 

taking the ratio of at the surface red reflectance to near infrared reflectance as following equation: 𝑁𝐷𝑉𝐼 =  ேூோିோேூோାோ  (3)

The at-surface reflectance in the near infrared (NIR) and visible red (R) can be measured using 

band 5 and band 4 of Landsat 8 OLI.  

The Normalized Difference Built-up Index (NDBI) is a spectral indicator designed for studying 

built-up areas. The calculation involves determining the ratio between the shortwave infrared (SWIR) 

and near-infrared (NIR) wavelengths. Areas with a dense built-up exhibit a greater reflection of 

shortwave-infrared (SWIR) radiation, whereas areas with less dense built-up display a lower level of 

reflectance in the near-infrared (NIR) spectrum [38]. The calculation of NDBI was performed using 

the following equation [39]: 𝑁𝐷𝐵𝐼 =  ௌௐூோିேூோௌௐூோାேூோ  (4)

In Landsat 8, band 5 and band 6 represent near infrared and shortwave infrared, and NDBI was 

obtained using at-surface reflectance. 

To obtain the land surface temperature (LST) from Landsat 8 Band 10, the band was transformed 

into spectral at-sensor radiance using equation (1). This radiance was then utilized to derive the 

brightness temperature TB in Kelvin using the following equation: 𝑇஻ = ௞మ୪୬(ೖభಽഊାଵ)  (5)

Where k1 and k2 are calibration constants that are equal 774.89 and 1321.08 respectively for 

Landsat 8 Band 10.  

The surface emissivity (ε) was determined using the use of the NDVI thresholds approach [40]. 

The fractional vegetation (Fv), which is defined as the proportion of the vertical projected area 

occupied by green vegetation to the total ground area, expressed as a percentage[41], was calculated 

based on the Normalized Difference Vegetation Index (NDVI) using the following equation[42]: 𝐹௩ = ቂ ே஽௏ூି ே஽௏ூ೘೔೙ே஽௏ூ೘ೌೣିே஽௏ூ೘೔೙ቃଶ
  (6)

Where NDVImin refers to the minimum value of NDVI at which pixels are classified as bare soil, 

and NDVImax represents the maximum value of NDVI at which pixels are classified as healthy 

vegetation. 

Land surface emissivity (ελ) is the measure of how effectively a surface releases heat radiation. 

ελ is a quantitative assessment of a surface's ability to emit heat by infrared radiation, relative to a 

perfect emitter called a blackbody. In theory, the ελ of a surface is commonly quantified as a numerical 

number ranging from 0 to 1. A value of 0 signifies a surface that perfectly reflects radiation without 

emitting any, while a value of 1 indicates a surface that fully emits radiation. ελ is necessary for the 

estimation of land surface temperature. The equation provided was used to calculate the emissivity 

of the land surface[43]: 𝜀ఒ = 𝜀௩ఒ𝐹௩ + 𝜀௦ఒ(1 − 𝐹௩) + ఒ  (7)

Where εvλ and εsλ are the emissivity of a full vegetative surface and full soil surface respectively. 

δλ is the surface roughness that is considered as a constant value of 0.005[44]. Practically, equation (7) 

adopted to the following form[45]: 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 January 2024                   doi:10.20944/preprints202401.0067.v1

https://doi.org/10.20944/preprints202401.0067.v1


8 

𝜀ఒ = ൝ 𝜀௦ఒ, 𝑁𝐷𝑉𝐼 < 𝑁𝐷𝑉𝐼௦𝜀௩ఒ𝐹௩ + 𝜀௦ఒ(1 − 𝐹௩) + ఒ, 𝑁𝐷𝑉𝐼௦ ≤ 𝑁𝐷𝑉𝐼 ≤  𝑁𝐷𝑉𝐼௩𝜀௩ఒ𝐹௩ + ఒ, 𝑁𝐷𝑉𝐼 >  𝑁𝐷𝑉𝐼௩   (8)

When the NDVI falls below 0, pixel is considered water with an emissivity value of 0.991. NDVI 

values ranging from 0 to 0.2 indicate soil coverage and are assigned an emissivity value of 0.996. The 

range of NDVI values between 0.2 and 0.5 is classified as a combination of soil and vegetation cover, 

and the equation (8) is utilized to extract the emissivity. When the NDVI value exceeds 0.5 in the last 

scenario, it is classified as vegetation-covered and assigned a value of 0.973. 

Finally, land surface temperature (LST) is derived using the following equation: 𝐿𝑆𝑇௞ = ்ಳଵାഊഐ೅ಳ೓೎ ୪୬ ఌഊ (9)

Where λ is the effective wavelength which is 10.9 mm for Landsat 8's band 10, ρ is Boltzmann 

constant (1.38 × 10−23 J/K), h is Plank’s constant (6.626 × 10−34 Js), c is the light's velocity (2.998 × 10−8 

m/sec) and ελ is emissivity. 

LSTk is obtained in Kelvin, then converted to Celsius using the following equation: 𝐿𝑆𝑇௖ = 𝐿𝑆𝑇௞ − 273.15 (10)

Where LSTc is the land surface temperature in Celsius. 

QGIS Desktop (https://www.osgeo.org/projects/qgis/) software was utilized to accomplish 

remote sensing digital picture analysis, spatial analysis, and mapping. 

A total of one thousand random locations were produced to encompass the whole study area. 

The points were utilized to gather the measurements of NDVI, NDBI, and LSTc at their respective 

positions. The sampling results were exported to Minitab (https://www.minitab.com/) to examine the 

correlation between NDVI and LSTc, as well as between NDBI and LSTc, both before and after the 

development of the study area. Three hypotheses were examined: 

 Hypothesis 1 (H1): Normalized Difference Vegetation Index (NDVI) has a substantial impact on

Land Surface Temperature (LST) in the study area before and after the development.

 Hypothesis 2 (H2): The Normalized Difference Built-up Index (NDBI) exerts a substantial impact 

on Land Surface Temperature (LSTc) across the study area before and after the development.

 Hypothesis 3 (H3): The variables NDVI and NDBI have a considerable impact on Land Surface

Temperature Change (LSTc).

Results 

Spatiotemporal Pattern of NDVI and NDBI 

NDVI is a quantitative measure employed to evaluate and track the quantity of thriving 

vegetation inside a certain region. The spatial distribution of NDVI over the study period is depicted 

in Figure 4, while Figure 5 illustrates the seasonal fluctuations of NDVI. The NDVI values in the years 

2022–2023 exhibit a decrease as compared to the years 2013–2014. The average difference in NDVI 

values during the years dropped by 0.028, 0.0177, 0.0235, and 0.0534, respectively. The lowest NDVI 

value was seen during the winter of 2014 and 2023. Conversely, the highest NDVI value was recorded 

during the winter of 2014, reaching 0.2667.  
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Figure 4. Spatial pattern of NDVI over the study area at (a) Spring 2013, (b) Spring 2022, (c) Summer 

2013, (d) Summer 2022, (e) Autmn 2013, (f) Autmn 2022, (g) Winter 2014, and (h) Winter 2023. 
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Figure 5. Seasonal variation of land surface temperature NDVI before and after development of the 

study area. 

Researchers observed that the primary land use in the study area is characterized by medium-

density residential development. Figure 6 displays the alterations in spatial patterns of NDBI, 

whereas Figure 7 illustrates the seasonal fluctuations of NDBI before and after the development of 

the study area. The Normalized Difference Built-up Index (NDBI) is a spectral index employed in 

remote sensing to detect and measure the extent of developed or urban regions in a given area.  The 

highest recorded value of the NDBI occurred during the spring of 2022, at 0.0916. The mean values 

in the four seasons differed by 0.0002, 0.0046, 0.0042, and 0.0052, respectively, suggesting that there 

is no substantial variation in NDBI among years. 
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Figure 6. Spatial pattern of NDBI over the study area at (a) Spring 2013, (b) Spring 2022, (c) Summer 

2013, (d) Summer 2022, (e) Autmn 2013, (f) Autmn 2022, (g) Winter 2014, and (h) Winter 2023. 
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Figure 7. Seasonal variation of land surface temperature NDBI before and after development of the 

study area. 

Spatiotemporal Pattern of Land Surface Temperature 

Land surface temperature (LST) was derived using data from Band 10 of the Landsat 8 OLI/TIRS 

satellite for both the pre- and post-development periods of the study area. Figure 8 displays the 

categorized land surface temperature maps of the study area for the four seasons in the years 2013-

2014 and 2022-2023. The LST maps identified a rise in springtime LST, with the temperature in 2013 

being categorized as high. The maximum and minimum temperatures recorded were 42.8°C and 

38.2°C, respectively. In 2022, most of the study area was categorized as having a very high LST, with 

some areas experiencing high LST. The highest recorded LST was 47.1°C, while the lowest was 

43.8°C. In fall 2013, the temperature ranged from a maximum of 42.2°C to a minimum of 38.1°C, with 

a high LST classification. However, in 2022, the LST is significantly higher, with a maximum of 50.7°C 

and a minimum of 46°C. The LST classification remained unchanged during both the summer and 

winter seasons. The summer season was categorized as having extremely high LST, whereas the 

winter season was categorized as having moderate LST. The seasonal variation of land 

surface temperature LST pre- and post- development of the study area is shown in Figure 9. 
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Figure 8. Spatial pattern of LST over the study area at (a) Spring 2013, (b) Spring 2022, (c) Summer 

2013, (d) Summer 2022, (e) Autmn 2013, (f) Autmn 2022, (g) Winter 2014, and (h) Winter 2023. 
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Figure 9. Seasonal variation of land surface temperature LST before and after development of the 

study area. 

Modeling relationships between NDVI, NDBI, and LST 

To assess, one can establish the correlation between the Normalized Difference Vegetation Index 

(NDVI) and Land Surface Temperature (LST), as well as the correlation between the Normalized 

Difference Built-up Index (NDBI) and LST, by doing a linear regression analysis. During the 

regression test, the LST will serve as the response variable (dependent variable), while the NDVI and 

NDBI will be used as predictor variables (independent variables). Both NDVI and NDBI values were 

derived from the analysis of Landsat 8-9 OLI / TIRS C2 L2 data.  

The subsequent results will delve into the variations in LST, NDVI, and NDBI. Furthermore, it 

will explore the impact of NDVI and NDBI on LST across all four seasons within the study area. 

The subsequent outcomes considered the following hypotheses: 

 Hypothesis 1: NDVI has a substantial impact on LST in the study area.

 Hypothesis 2: NDBI has a significant impact on LST.

 Hypothesis 3: Both the NDVI and NDBI variables have a significant impact on LST.

In order to examine the association between NDBI, NDVI, and LST in the study area, a total of

1000 randomly selected sample points were taken from NDBI, NDVI, and LST datasets. These sample 

points were then utilized to conduct regression analysis. The coefficient of determination (R²) and 

Pearson correlation coefficients were obtained to assess the strength of the relationships. The linear 

regression models for NDVI and LST, as well as for NDBI and LST, are shown in Figure 10 and Figure 

11 respectively.  

There is a significant and consistent positive relationship between NDBI and land surface 

temperature at a 95% confidence level over four seasons in the years 2013–2014 and 2022–2023. The 

Pearson index values for the years 2013-2014 were 0.158, 0.339, 0.360, and 0.135, respectively. For the 

years 2022-2023, the Pearson index values were 0.334, 0.571, 0.562, and 0.445, respectively. For each 

incremental rise of 0.01 in the NDBI value, the land surface temperature experienced corresponding 

increases of 0.05 °C, 0.08 °C, 0.08 °C, and 0.02 °C in the years 2013-2014. In the years 2022-2023, the 

land surface temperature would climb by 0.11 °C, 0.42 °C, 0.44 °C, and 0.11 °C, correspondingly, for 

the same incremental increase in NDBI value. The correlation between NDBI and LST indicates a 

consistent rise in the NDBI index throughout time. NDBI successfully identified and described the 

variations in LST. 
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Figure 10. Regression models for NDVI and LST at (a) a) Spring 2013, (b) Spring 2022, (c) Summer 

2013, (d) Summer 2022, (e) Autmn 2013, (f) Autmn 2022, (g) Winter 2014, and (h) Winter 2023. 
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Figure 11. Regression models for NDBI and LST at (a) a) Spring 2013, (b) Spring 2022, (c) Summer 

2013, (d) Summer 2022, (e) Autmn 2013, (f) Autmn 2022, (g) Winter 2014, and (h) Winter 2023. 

Figure 10 shows a negative association between NDVI and LST in various seasons. For each 0.01 

rise in NDVI value, the equivalent LST in four seasons during 2013-2014 (except summer) reduced 

by 0.06 °C, 0.0003 °C, and 0.03 °C, respectively. In the summer season, the LST increased by 0.0025 
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°C. During the period of 2022-2023, the LST is projected to rise by 0.18 °C, 0.61 °C, and 0.64 °C, 

respectively, and experience a decrease of 0.01 °C during the winter season. Hence, the NDVI index 

exhibited sensitivity towards variations in LST, and any disagreement in the NDVI could potentially 

lead to a modification in LST. NDVI and LST exhibited a negative correlation during the spring, fall, 

and winter seasons of 2013-2014. The Pearson coefficient, calculated at a 95% level of confidence, was 

determined to be -0.18, -0.016, and -0.192, respectively. In the summer, there was a positive correlation 

between the variables, as indicated by a Pearson value of 0.01. In contrast, over the period of 2022-

2023, there was a positive correlation between NDVI and LST in spring, summer, and fall. This 

correlation was statistically significant at a 95% confidence level, with Pearson coefficients of 0.310, 

0.496, and 0.512, respectively. The association exhibited a negative correlation throughout the winter 

season, with a Pearson coefficient of -0.025. However, despite the shifting seasons, the correlation 

between NDVI and LST was not consistent.  

During the year of 2013-2014, there was a negative connection between NDBI and NDVI in the 

seasons of spring, summer, and winter. The Pearson index values for these seasons were -0.16, -0.076, 

and -0.147 respectively. However, in the autumn season, there was a positive correlation with a 

Pearson index value of 0.021. In addition, throughout the period of 2022-2023, there was a strong 

positive association seen between NDBI and NDVI in all four seasons. The Pearson index values were 

0.286, 0.663, 0.62, and 0.24. The correlation between NDVI and land utilization for urban construction 

was evident, as it accurately depicted the changes that occurred over time. 

Conclusion  

This study employed Landsat 8 OLI/TIRS images to examine the correlation between urban 

development and temperature fluctuations, using Normalized Difference Vegetation Index (NDVI), 

Normalized Difference Built-up Index (NDBI), and Land Surface Temperature (LST) as primary 

indicators. The study area was situated in the Kingdom of Bahrain, and the analysis was conducted 

during the period of 2013-2023. The urban growth in the study area was assessed based on the results 

of the NDBI. Urban expansion has created additional residential space, albeit it has come at the 

expense of the natural environment. The LST exhibited significant rises throughout the summer 

months following urban growth, in contrast to the period before development. The mean LST 

increased from 41.1°C to 45.6°C during Spring and from 40.5°C to 44.2°C during Autumn following 

the implementation of urban growth in the studied area. In this overall pattern, the land surface 

temperature (LST) of the study area experienced a more noticeable increase.  

Using Bahrain as an example of a city in the Gulf Cooperation Council (GCC) that has seen 

population increase and urban expansion, it is probable that the tendency of the study area's 

population increasing in conjunction with the LST will persist. It is highly likely that this could have 

multiple harmful impacts on the urban runoff pattern, climate conditions, and the livable 

environment. Prior to any additional alterations to its unorganized constructed surroundings, the 

city necessitates the focus of urban planners and policymakers to prevent any distortion in LST 

patterns. 
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