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Abstract: Given the context of global climate change, a worldwide increase in land surface
temperature (LST) is anticipated, leading to the exacerbation and broadening of its impacts. This
could jeopardize the environmental conditions in countries with a predominantly hot and harsh
climate, such as Bahrain, one of the Cooperation Countries (GCC) nations. Conversely, Bahrain is
currently experiencing significant population growth, leading to a surge in demand for land to
accommodate the construction of additional residential developments. This circumstance allows
investigation of the potential impact of land use and land cover alterations on the variation in Land
Surface Temperature (LST). In order to accomplish this objective, a residential development project
was executed within the timeframe spanning from 2013 to 2023. Four sets of Landsat 8 OLI/TIRS
remote sensing datasets were selected, with each set corresponding to one of the four climate
seasons. Each set consisted of two images: one capturing the study area before the commencement
of the development process and the other depicting the study area after the completion of the
development. The study area was analyzed by extracting the land surface temperature (LST),
normalized difference vegetation index (NDVI), and normalized difference built-up index (NDBI)
on various dates. Subsequently, correlation and regression analysis were employed to examine the
interrelationships among these three variables. The findings demonstrated a notable rise in the
mean land surface temperature throughout the spring and autumn seasons following the conclusion
of land development activities. The findings indicate a positive and robust association between LST
and NDBI across all seasons. Moreover, this relationship strengthened following the completion of
development activities in the area. Conversely, there was a negative correlation between LST and
NDVI prior to the region's development, which transformed into a positive relationship post-
development. These results provide empirical support for the notion that small-scale residential
developments contribute to a notable increase in LST, primarily driven by the expansion of
impervious surfaces in built-up areas. The findings can potentially contribute to the formulation of
localized adaptation strategies for small-scale residential development projects.
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1. Introduction

The urbanization process has resulted in noticeable alterations to the landscape, causing a
decline in environmental conditions that negatively impact the overall quality of life. This includes
the pollution of the surrounding air [1] and water quality degradation [2]. The alterations in
landscape and human utilization profoundly impact the energy transfer between the Earth's surface
and the atmosphere, resulting in an elevation in urban ambient temperature that diverges from the
temperatures seen in surrounding non-urbanized regions [3]. In urban areas, heat waves
predominantly manifest in island zones as a result of the elevated surface temperature concentration
[4,5]. The uncomfortable conditions experienced by ecosystems can be attributable to times of
extremely high temperatures [6]. The harsh impact of these heat waves has the potential to exacerbate
health issues and potentially result in mortality [7]. In regions characterized by hot and arid climatic
conditions, the confluence of weather patterns and heatwaves exerts a significant influence on the
well-being of the local populace [8,9]. The urban thermal environment is a significant concern inside
metropolitan areas, necessitating urban planning efforts that prioritize the development of policies
aimed at establishing optimal living circumstances for residents [10].

in several nations, due to rapid urbanization in recent years, some development projects, and
the unplanned and inefficient energy studies use strategies have led to increasingly severe alterations
in Land Surface Temperature (LST). Several studies indicate that the Gulf Cooperation Council (GCC)
countries, namely the United Arab Emirates, Bahrain, Kuwait, Oman, Qatar, and Saudi Arabia, are
expected to undergo significant urban expansion in the near future [11]. The urbanization rate in each
of these countries has exceeded 80% over the past decade[12]. The expansion of metropolitan areas
typically leads to a rapid growth of impervious surfaces, which in turn amplifies the rise in LST.
Although much focus has been given to the urban dynamics of major metropolitan areas in the area,
middle size urban agglomeration and cities have not been thoroughly examined. Bahrain is a very
typical example for such these urban agglomerations which located on an island in the central region
of the Gulf area. As the main entry point to the region and an agglomeration with a population of
one million, it has experienced rapid urbanization. Although there have been few studies on
urbanization in Bahrain, the correlation between LST and urbanization has not been investigated.
Several research have investigated the association between LST and land use and land cover in
relation to climate change, urban planning, soil ecology, and vegetation health. Therefore, this study
aimed to investigate the correlation between LST and the process of urbanization in the typical Gulf
urban area of Bahrain. Due to the rising population in Bahrain, there is a growing need for developed
land in the country. To mitigate the adverse environmental impacts of urban expansion, the Bahraini
government has implemented a strategy of developing residential projects of various sizes to
guarantee the availability of eco-friendly and high-quality housing. This phenomenon is a prevailing
tendency throughout all GCC nations. The topic at hand is whether the ongoing residential projects
are ecologically sustainable and ensure a quality of life. When evaluating sustainability and quality
of life in a location with intense heat and humidity, as the countries in the GCC, it is crucial to consider
human thermal comfort. This comfort is influenced by the land surface temperature.

The measurement of land surface temperature (LST) serves as a reliable indication for assessing
the energy equilibrium at the Earth's surface. It is considered a fundamental parameter in the study
of land-surface dynamics, both at a regional and global level. Several researchers demonstrate the
integration of surface-atmosphere interactions and energy fluxes between the atmosphere and the
ground [13-15]. The term “Land Surface Temperature (LST)” is commonly used to describe the
temperature of the Earth's surface’s skin layer. It encompasses the soil surface temperature for areas
without vegetation cover, and the canopy surface temperature for regions with extensive vegetation.
The determination of LST for urban areas is influenced by the temperatures of the vegetation canopy,
vegetation body, and soil surface [16,17]. The LST is influenced by the Earth's surface effective
radiating temperature, which governs the exchange of heat and water between the surface and the
atmosphere [14,15]. It is a crucial parameter that governs several physical, chemical, and biological
processes occurring on Earth. It holds significant importance in the investigation of urban climate, as
highlighted by several researchers [18,19]. The LST exhibits variability in accordance with the surface
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energy balance and plays a role in regulating the air temperature of the lower levels of the urban
atmosphere. It holds a significant position in the energy balance of the surface and influences the
energy exchanges that impact the comfort levels of urban residents [13].

Remote sensing techniques have proven to be effective in estimating LST in urban ecosystems,
as demonstrated in several researches [20-22]. The use of moderate resolution multispectral satellite
products, such as the Landsat 4-5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper
(ETM+), the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and
Landsat 8-9 Thermal Infrared Sensor (TIRS) has been employed in various studies to estimate
spatiotemporal land surface temperature (LST) [23-25]. Prior studies have indicated that the thermal
attributes and spatial arrangement linked to LST are influenced by the composition and configuration
of land use and land cover [26,27]. Several researchers reported that the variation in LST across urban
areas is primarily influenced by vegetation conditions, impervious surface, and soil functions [28,29].
Hence, it can be inferred that the biophysical components mentioned in different studies are
influenced by seasonal fluctuations and are hypothesized to exhibit nonlinearity in relation to LST
[17,30]. In contrast, additional research has provided further support for the proposition that
socioeconomic factors, such as income, population characteristics, and educational level exert an
influence on LST [31,32].

Materials and Methods

Study Area

The Kingdom of Bahrain is located on the Arabian Gulf. Due to its population density of around
2000 individuals per square kilometer and its restricted land area as an island state, Bahrain
experiences a significant demand for housing. Al Ramila suburb is one of several projects being
created in Bahrain to meet the demand for housing. Al Ramli suburb area was discovered to be
107.216 Hectares. Figure 1.a illustrates the exact bounds of Al Ramila suburb, while Figure 1.b and
Figure 1.c depict the precise micro and macro location respectively. The suburb is extended from 50°
30" 26.47"" E to 50° 31" 15.00™" E and from 26° 10" 03.26"" N to 26° 10" 46.29"" N. The Al Ramli suburb
offers its people a sustainable and self-sufficient lifestyle, with a total of 4,501 dwelling and apartment
units available. The project will distribute almost 65 percent of its resources to residential areas, 14.3
percent to key roadways, 5.67 percent to educational buildings, 1.74 percent to a public garden, 8.3
percent to social services, 1.85 percent to public amenities, and 2.20 percent to other objectives.
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Figure 1. Location of the study area.

Data

The Landsat program is managed by the United States Geological Survey (USGS). Landsat 8
OLI/TIRS images consist of 11 bands, with band 10 and 11 being designated as thermal bands. The
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Landsat 8 images possess a spatial resolution of 30 meters, a radiometric resolution of 12 bits, and a
temporal resolution of 16 days. The thermal bands have a spatial resolution of 100 meters, which is
then resampled to 30 meters for distribution [33]. Four sets of Landsat 8 images were obtained from
the USGS EarthExplorer portal (https://earthexplorer.usgs.gov/). Each set consists of two images: one
taken in 2013/2014 (before the development of Al Ramli district) and another taken in 2022/2023 (after
the development). See Table 1. These images were captured for Path 163 and Row 42 during daytime.
In this study, we utilized three spectral bands from Landsat-8 satellite data (namely Band 4 for Red,
Band 5 for Near Infrared, and Band 6 for Shortwave Infrared) to calculate spectral indices. Band 10
(TIR10) and Band 11 (TIR11) are both intended for measuring land surface temperature. However,
Band 10 is preferable for quantitative analysis due to its lower contamination from stray light
compared to Band 11. The study area was clipped from all images for the purpose of the study.

Table 1. Dates of obtained Landsat 8 OLI/TIRS images.

Season before development after development
Spring 27/03/2013 19/04/2022
Summer 07/07/2013 16/07/2022
Autumn 27/10/2013 15/10/2022
Winter 15/01/2014 08/01/2023

The researchers conducted four visits to the study area on January 10, 2022, April 1, 2022, July 3,
2022, and September 28, 2022, with the objective of studying land use and land cover in the study
area. They recorded their visits using photos as seen in Figure 2.

Figure 2. A photo of the study area.

Methodology

The research approach employed in this study for remote sensing digital image processing is
illustrated in Figure 3. This approach was applied for every Landsat 8 image used in this study. The
borders of the study region were used to clip all Landsat images. The images were presented in the
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form of integer numbers known as digital numbers (DNs). The conversion process specified in the
Landsat 8 Data User Handbook[34] was used to convert the images to top-of-atmosphere (TOA)
reflectance. As per this method, Landsat images were transformed from DN to at-sensor radiance
using the following equation:

Ly =M;.Qca + AL 1)

Where Ly is the spectral at-sensor radiance, Mt is the radiance multiplicative scaling factor for
the band L, Q. is the quantized calibrated pixel value, and At is the radiance additive scaling factor
for the band L.

The conversion from at-sensor radiance to top-of-atmosphere reflectance was achieved using the
following equation:

_ H.Ll.dz
P2 = ESUN,,.cos 05 @)

Where p is the unitless top-of-atmosphere (TOA) reflectance, d is the Earth-Sun distance
measured in astronomical units ESUNy is the mean solar exoatmospheric irradiances, and 6 is the
solar zenith angle.
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Figure 3. Flowchart for the methodology of the study.

The at-surface reflectance was derived using the dark object subtraction (DOS) method applied
to the top-of-atmosphere (TOA) reflectance to eliminate atmospheric interference. The Dark Object
Subtraction (DOS) is a straightforward and empirical technique used to remove atmospheric effects
in remote sensing data. It operates under the assumption that the reflectance of dark objects contains
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a significant portion of atmospheric scattering. The DOS algorithm scans each band to identify the
pixel with the lowest intensity and subsequently eliminates unwanted atmospheric distortions by
removing this value from every pixel in the band [35].

The NDVI, which stands for Normalized Difference Vegetation Index, is the predominant and
extensively employed metric for vegetation extraction. This study utilized the NDVI as its primary
index. The utilization of NDVI was initially employed for evaluating the existence of vegetation, a
purpose that has been substantiated in several research [36,37]. NDVI is traditionally calculated by
taking the ratio of at the surface red reflectance to near infrared reflectance as following equation:

NIR-R
NIR+R (3)

NDVI =

The at-surface reflectance in the near infrared (NIR) and visible red (R) can be measured using
band 5 and band 4 of Landsat 8 OLIL.

The Normalized Difference Built-up Index (NDBI) is a spectral indicator designed for studying
built-up areas. The calculation involves determining the ratio between the shortwave infrared (SWIR)
and near-infrared (NIR) wavelengths. Areas with a dense built-up exhibit a greater reflection of
shortwave-infrared (SWIR) radiation, whereas areas with less dense built-up display a lower level of
reflectance in the near-infrared (NIR) spectrum [38]. The calculation of NDBI was performed using
the following equation [39]:

SWIR-NIR

NDBI = TR (4)

SWIR+NIR

In Landsat 8, band 5 and band 6 represent near infrared and shortwave infrared, and NDBI was
obtained using at-surface reflectance.

To obtain the land surface temperature (LST) from Landsat 8 Band 10, the band was transformed
into spectral at-sensor radiance using equation (1). This radiance was then utilized to derive the
brightness temperature Ts in Kelvin using the following equation:
k2

Ty =—2
B ln(%+1) ®)

Where k1 and k2 are calibration constants that are equal 774.89 and 1321.08 respectively for
Landsat 8 Band 10.

The surface emissivity (€) was determined using the use of the NDVI thresholds approach [40].
The fractional vegetation (Fv), which is defined as the proportion of the vertical projected area
occupied by green vegetation to the total ground area, expressed as a percentage[41], was calculated
based on the Normalized Difference Vegetation Index (NDVI) using the following equation[42]:

2
Ol e e ®

Where NDVImin refers to the minimum value of NDVI at which pixels are classified as bare soil,
and NDVImax represents the maximum value of NDVI at which pixels are classified as healthy
vegetation.

Land surface emissivity (€x) is the measure of how effectively a surface releases heat radiation.
eris a quantitative assessment of a surface's ability to emit heat by infrared radiation, relative to a
perfect emitter called a blackbody. In theory, the €, of a surface is commonly quantified as a numerical
number ranging from 0 to 1. A value of 0 signifies a surface that perfectly reflects radiation without
emitting any, while a value of 1 indicates a surface that fully emits radiation. €xis necessary for the
estimation of land surface temperature. The equation provided was used to calculate the emissivity
of the land surface[43]:

& =éenk, + gsl(l - Fv) + 4 ()

Where eviand e, are the emissivity of a full vegetative surface and full soil surface respectively.
O is the surface roughness that is considered as a constant value of 0.005[44]. Practically, equation (7)
adopted to the following form[45]:
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€52, NDVI < NDVI,
&1 = €,1F, + £5,(1 — F,) + 8, NDVI, < NDVI < NDVI, (8)
epaF, + &, NDVI > NDVI,

When the NDVI falls below 0, pixel is considered water with an emissivity value of 0.991. NDVI
values ranging from 0 to 0.2 indicate soil coverage and are assigned an emissivity value of 0.996. The
range of NDVI values between 0.2 and 0.5 is classified asa combination of soil and vegetation cover,
and the equation (8) is utilized to extract the emissivity. When the NDVI value exceeds 0.5 in the last
scenario, it is classified as vegetation-covered and assigned a value of 0.973.

Finally, land surface temperature (LST) is derived using the following equation:

ST = Torg ©)

1+ he

Where A is the effective wavelength which is 10.9 mm for Landsat 8's band 10, p is Boltzmann
constant (1.38 x 102 J/K), h is Plank’s constant (6.626 x 103 Js), c is the light's velocity (2.998 x 108
m/sec) and € is emissivity.

LSTx is obtained in Kelvin, then converted to Celsius using the following equation:

LST, = LST, — 273.15 (10)

Where LSTc is the land surface temperature in Celsius.

QGIS Desktop (https://www.osgeo.org/projects/qgis/) software was utilized to accomplish
remote sensing digital picture analysis, spatial analysis, and mapping.

A total of one thousand random locations were produced to encompass the whole study area.
The points were utilized to gather the measurements of NDVI, NDBI, and LSTc at their respective
positions. The sampling results were exported to Minitab (https://www.minitab.com/) to examine the
correlation between NDVI and LSTc, as well as between NDBI and LSTc, both before and after the
development of the study area. Three hypotheses were examined:

*  Hypothesis 1 (H1): Normalized Difference Vegetation Index (NDVI) has a substantial impact on
Land Surface Temperature (LST) in the study area before and after the development.

=  Hypothesis 2 (H2): The Normalized Difference Built-up Index (NDBI) exerts a substantial impact
on Land Surface Temperature (LSTc) across the study area before and after the development.

=  Hypothesis 3 (H3): The variables NDVI and NDBI have a considerable impact on Land Surface
Temperature Change (LSTc).

Results

Spatiotemporal Pattern of NDVI and NDBI

NDVI is a quantitative measure employed to evaluate and track the quantity of thriving
vegetation inside a certain region. The spatial distribution of NDVI over the study period is depicted
in Figure 4, while Figure 5 illustrates the seasonal fluctuations of NDVI. The NDVI values in the years
2022-2023 exhibit a decrease as compared to the years 2013-2014. The average difference in NDVI
values during the years dropped by 0.028, 0.0177, 0.0235, and 0.0534, respectively. The lowest NDVI
value was seen during the winter of 2014 and 2023. Conversely, the highest NDVI value was recorded
during the winter of 2014, reaching 0.2667.


https://doi.org/10.20944/preprints202401.0067.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 January 2024 d0i:10.20944/preprints202401.0067.v1

s mm STYTSY g n
Al Ramii District NOVI map (Spring - 2013)

(Sl

‘
"1 .
<h> e

Figure 4. Spatial pattern of NDVI over the study area at (a) Spring 2013, (b) Spring 2022, (c) Summer
2013, (d) Summer 2022, (e) Autmn 2013, (f) Autmn 2022, (g) Winter 2014, and (h) Winter 2023.
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Figure 5. Seasonal variation of land surface temperature NDVI before and after development of the
study area.

Researchers observed that the primary land use in the study area is characterized by medium-
density residential development. Figure 6 displays the alterations in spatial patterns of NDBI,
whereas Figure 7 illustrates the seasonal fluctuations of NDBI before and after the development of
the study area. The Normalized Difference Built-up Index (NDBI) is a spectral index employed in
remote sensing to detect and measure the extent of developed or urban regions in a given area. The
highest recorded value of the NDBI occurred during the spring of 2022, at 0.0916. The mean values
in the four seasons differed by 0.0002, 0.0046, 0.0042, and 0.0052, respectively, suggesting that there
is no substantial variation in NDBI among years.
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Figure 6. Spatial pattern of NDBI over the study area at (a) Spring 2013, (b) Spring 2022, (c) Summer
2013, (d) Summer 2022, (e) Autmn 2013, (f) Autmn 2022, (g) Winter 2014, and (h) Winter 2023.
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Figure 7. Seasonal variation of land surface temperature NDBI before and after development of the
study area.

Spatiotemporal Pattern of Land Surface Temperature

Land surface temperature (LST) was derived using data from Band 10 of the Landsat 8 OLI/TIRS
satellite for both the pre- and post-development periods of the study area. Figure 8 displays the
categorized land surface temperature maps of the study area for the four seasons in the years 2013-
2014 and 2022-2023. The LST maps identified a rise in springtime LST, with the temperature in 2013
being categorized as high. The maximum and minimum temperatures recorded were 42.8°C and
38.2°C, respectively. In 2022, most of the study area was categorized as having a very high LST, with
some areas experiencing high LST. The highest recorded LST was 47.1°C, while the lowest was
43.8°C. In fall 2013, the temperature ranged from a maximum of 42.2°C to a minimum of 38.1°C, with
a high LST classification. However, in 2022, the LST is significantly higher, with a maximum of 50.7°C
and a minimum of 46°C. The LST classification remained unchanged during both the summer and
winter seasons. The summer season was categorized as having extremely high LST, whereas the
winter season was categorized as having moderate LST. The seasonal variation of land
surface temperature LST pre- and post- development of the study area is shown in Figure 9.
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Figure 8. Spatial pattern of LST over the study area at (a) Spring 2013, (b) Spring 2022, (c) Summer
2013, (d) Summer 2022, (e) Autmn 2013, (f) Autmn 2022, (g) Winter 2014, and (h) Winter 2023.


https://doi.org/10.20944/preprints202401.0067.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 January 2024 do0i:10.20944/preprints202401.0067.v1

14

Winter

Autmn

Summer

2022/2023

Spring
Winter
Autmn

Summer

2013/2014

Spring

[N
(€]
N
o

25 30 35 40 45 50 55

B Maximum ® Minimum

Figure 9. Seasonal variation of land surface temperature LST before and after development of the
study area.

Modeling relationships between NDVI, NDBI, and LST

To assess, one can establish the correlation between the Normalized Difference Vegetation Index
(NDVI) and Land Surface Temperature (LST), as well as the correlation between the Normalized
Difference Built-up Index (NDBI) and LST, by doing a linear regression analysis. During the
regression test, the LST will serve as the response variable (dependent variable), while the NDVI and
NDBI will be used as predictor variables (independent variables). Both NDVI and NDBI values were
derived from the analysis of Landsat 8-9 OLI / TIRS C2 L2 data.

The subsequent results will delve into the variations in LST, NDVIL, and NDBI. Furthermore, it
will explore the impact of NDVI and NDBI on LST across all four seasons within the study area.

The subsequent outcomes considered the following hypotheses:

*  Hypothesis 1: NDVI has a substantial impact on LST in the study area.
=  Hypothesis 2: NDBI has a significant impact on LST.
=  Hypothesis 3: Both the NDVI and NDBI variables have a significant impact on LST.

In order to examine the association between NDBI, NDVI, and LST in the study area, a total of
1000 randomly selected sample points were taken from NDBI, NDVI, and LST datasets. These sample
points were then utilized to conduct regression analysis. The coefficient of determination (R?) and
Pearson correlation coefficients were obtained to assess the strength of the relationships. The linear
regression models for NDVI and LST, as well as for NDBI and LST, are shown in Figure 10 and Figure
11 respectively.

There is a significant and consistent positive relationship between NDBI and land surface
temperature at a 95% confidence level over four seasons in the years 2013-2014 and 2022-2023. The
Pearson index values for the years 2013-2014 were 0.158, 0.339, 0.360, and 0.135, respectively. For the
years 2022-2023, the Pearson index values were 0.334, 0.571, 0.562, and 0.445, respectively. For each
incremental rise of 0.01 in the NDBI value, the land surface temperature experienced corresponding
increases of 0.05 °C, 0.08 °C, 0.08 °C, and 0.02 °C in the years 2013-2014. In the years 2022-2023, the
land surface temperature would climb by 0.11 °C, 0.42 °C, 0.44 °C, and 0.11 °C, correspondingly, for
the same incremental increase in NDBI value. The correlation between NDBI and LST indicates a
consistent rise in the NDBI index throughout time. NDBI successfully identified and described the
variations in LST.


https://doi.org/10.20944/preprints202401.0067.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted

Fitted Line Plot
LSTC = 41.46 - 5463 NDVI

s 0724459
RSq 125
R-Sqlady) 2%
38
000 00s o» ors 020 02s
NOVI
Fitted Line Plot
LSTC = 5136 + 0.2550 NOVI
s 0456862
RSq 00%
R-Sqlad)) 0on
0.00 008 0w oS 020
NOVI
Fitted Line Plot
LSTC = 40.56 - 0.3469 NOVI
s 0543968
2 R-Sq oon
R Sqlady) 00N
@
v
9w
3
. .
-
38
000 0os ow o 020 02s 030
NOVI
Fitted Line Plot
LSTC = 21.57 - 2.711 NOVI
s 0387262
RSq F% .
R-Sqlad)) 36
000 005 ow oS 020 02s 030

: 2 January 2024

15
Fitted Line Plot
LSTC = 44.99 + 17.78 NDVI
s 0660386
RSq 96N
470 R 5qad) 95N
465
450
v
I
Y s
450
445
440
000 o 002 003 004 00s 006 007
NOVI
Fitted Line Plot
LSTC = 45.34 + 6137 NDVI
s 0988525
RSq 2468
R-Sqlad)) 245%
4%
002 003 004 008 006 007 o008
NOVI
Fitted Line Plot
LSTC = 45.24 + 63.67 NDVI
s 0973082
R-Sq 262%
R-Sqladj) 26
0
o
2
|
45
&
46
002 003 004 00s 006 007 oo0s
NOVI
Fitted Line Plot
LSTC = 22.12 - 0.7756 NDVI
s 0643088
R-Sq om
R-Sqlad)) 00%
23
v
’§ 2
P
20
0% 005 000 00s ow
NOVI

Figure 10. Regression models for NDVI and LST at (a) a) Spring 2013, (b) Spring 2022, (c¢) Summer
2013, (d) Summer 2022, (e) Autmn 2013, (f) Autmn 2022, (g) Winter 2014, and (h) Winter 2023.
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Figure 11. Regression models for NDBI and LST at (a) a) Spring 2013, (b) Spring 2022, (c) Summer
2013, (d) Summer 2022, (e) Autmn 2013, (f) Autmn 2022, (g) Winter 2014, and (h) Winter 2023.

Figure 10 shows a negative association between NDVI and LST in various seasons. For each 0.01
rise in NDVI value, the equivalent LST in four seasons during 2013-2014 (except summer) reduced
by 0.06 °C, 0.0003 °C, and 0.03 °C, respectively. In the summer season, the LST increased by 0.0025
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°C. During the period of 2022-2023, the LST is projected to rise by 0.18 °C, 0.61 °C, and 0.64 °C,
respectively, and experience a decrease of 0.01 °C during the winter season. Hence, the NDVI index
exhibited sensitivity towards variations in LST, and any disagreement in the NDVI could potentially
lead to a modification in LST. NDVI and LST exhibited a negative correlation during the spring, fall,
and winter seasons of 2013-2014. The Pearson coefficient, calculated at a 95% level of confidence, was
determined to be -0.18, -0.016, and -0.192, respectively. In the summer, there was a positive correlation
between the variables, as indicated by a Pearson value of 0.01. In contrast, over the period of 2022-
2023, there was a positive correlation between NDVI and LST in spring, summer, and fall. This
correlation was statistically significant at a 95% confidence level, with Pearson coefficients of 0.310,
0.496, and 0.512, respectively. The association exhibited a negative correlation throughout the winter
season, with a Pearson coefficient of -0.025. However, despite the shifting seasons, the correlation
between NDVI and LST was not consistent.

During the year of 2013-2014, there was a negative connection between NDBI and NDVI in the
seasons of spring, summer, and winter. The Pearson index values for these seasons were -0.16, -0.076,
and -0.147 respectively. However, in the autumn season, there was a positive correlation with a
Pearson index value of 0.021. In addition, throughout the period of 2022-2023, there was a strong
positive association seen between NDBI and NDVI in all four seasons. The Pearson index values were
0.286, 0.663, 0.62, and 0.24. The correlation between NDVI and land utilization for urban construction
was evident, as it accurately depicted the changes that occurred over time.

Conclusion

This study employed Landsat 8 OLI/TIRS images to examine the correlation between urban
development and temperature fluctuations, using Normalized Difference Vegetation Index (NDVI),
Normalized Difference Built-up Index (NDBI), and Land Surface Temperature (LST) as primary
indicators. The study area was situated in the Kingdom of Bahrain, and the analysis was conducted
during the period of 2013-2023. The urban growth in the study area was assessed based on the results
of the NDBI. Urban expansion has created additional residential space, albeit it has come at the
expense of the natural environment. The LST exhibited significant rises throughout the summer
months following urban growth, in contrast to the period before development. The mean LST
increased from 41.1°C to 45.6°C during Spring and from 40.5°C to 44.2°C during Autumn following
the implementation of urban growth in the studied area. In this overall pattern, the land surface
temperature (LST) of the study area experienced a more noticeable increase.

Using Bahrain as an example of a city in the Gulf Cooperation Council (GCC) that has seen
population increase and urban expansion, it is probable that the tendency of the study area's
population increasing in conjunction with the LST will persist. It is highly likely that this could have
multiple harmful impacts on the urban runoff pattern, climate conditions, and the livable
environment. Prior to any additional alterations to its unorganized constructed surroundings, the
city necessitates the focus of urban planners and policymakers to prevent any distortion in LST
patterns.
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