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Abstract: The Trail Making Test (TMT) is one of the most commonly administered tests in clinical 
and research neuropsychological settings. The two parts of the test [part A (TMT-A) and part B 
(TMT-B)] enable the evaluation of visuoperceptual tracking and processing speed (TMT-A), as well 
as divided attention, set-shifting and cognitive flexibility (TMT-B). The main cognitive processes 
that are assessed using TMT, i.e. processing speed, divided attention and cognitive flexibility, are 
often affected in patients with stroke. Considering the wide use of TMT in research and clinical 
settings since its introduction in neuropsychological practice, the purpose of our review was to 
provide a comprehensive overview on the use of TMT in stroke patients in an attempt to mainly 
identify its role for the evaluation of post-stroke cognitive dysfunction and progression over time, 
the identification of the underlying neuroanatomical pathology related to impaired TMT 
performance, and the association with other stroke outcomes, such motor function, driving ability 
and quality of life. Our comprehensive review underscores that the TMT stands as an invaluable 
asset in the stroke assessment toolkit, contributing nuanced insights into diverse cognitive, 
functional, and emotional dimensions. As research progresses, continued exploration of the TMT 
potential across these domains is encouraged, fostering a deeper comprehension of post-stroke 
dynamics, and enhancing patient-centered care across hospitals, rehabilitation centers, research 
institutions, and community health settings. Its integration into both research and clinical practice 
reaffirms TMT status as an indispensable instrument in stroke-related evaluations, enabling holistic 
insights that extend beyond traditional neurological assessments. 

Keywords: stroke; Trail Making Test; processing speed; divided attention; cognitive flexibility 
 

1. Introduction 

The Trail Making Test (TMT) is one of the most commonly administered tests in clinical and 
research neuropsychological settings. The two parts of the test [part A (TMT-A) and part B (TMT-B)] 
enable the evaluation of visuoperceptual tracking and processing speed (TMT-A), as well as divided 
attention, set-shifting and cognitive flexibility (TMT-B) [1,2]. Time to complete TMT-A and TMT-B is 
the most commonly used measure of TMT [1,2]; slowed TMT-B performance compared to TMT-A 
performance can be a sign of impaired capacity to modify a plan of action and to simultaneously keep 
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two streams of thought [3]. In addition to these direct TMT measures, derived scores have become 
popular in the last decades as sensitive measures of cognitive flexibility and executive dysfunction 
[4–6]. The most popular derived TMT measures are the difference score [TMT-B – TMT-B; TMT-(B-
A)], the ratio score [TMT-B / TMT-A; TMT-(B/A)], and the proportional score [(TMT-B – TMT-A) / 
TMT-A; TMT-(B-A/A). Specifically, it has been suggested that the TMT-(B-A) difference score 
removes the speed component, minimizes the visuoperceptual and motor demands and better 
assesses the executive control processes [7] while  the TMT-(B/A) ratio score diminishes the influence 
of psychomotor demands and controls for factors related to intrasubject variability [5]. Apart from 
these derived measures, the examination of different error rates in TMT-A and mostly in TMT-B, i.e. 
sequential and perseverative errors, yield valuable information regarding the cognitive mechanisms 
of processing speed, attention and cognitive flexibility [2]. Even though a variety of brain pathologies 
may influence TMT performance [1,2], TMT is widely used to evaluate executive dysfunction and 
prefrontal pathology [8] while recent neuroimaging studies highlight the importance of other brain 
areas as well, such as the parietal cortex [9]. Of note, the executive network includes the frontal lobe, 
the lateral parietal lobe, subcortical structures (e.g. anterior thalamus, caudate nucleus) and the 
cerebellum  [10–13]. All these areas are connected through white matter tracts and thus, damage to 
these structures or their white matter connections could result in slow processing speed and executive 
dysfunction [14–16].  

Cognitive impairment is a common finding among patients with stroke. The prevalence of 
cognitive impairment is estimated to be between two-thirds and three-quarters of stroke survivors, 
depending on the methods applied to assess cognition as well as the timing of cognitive assessment, 
i.e. acute, sub-acute or chronic phase [17–19]. Post-stroke cognitive impairment is associated with 
early and enduring changes in patients’ daily living activities and quality of life and this association 
is still present despite methodological differences in the study design factors (e.g. sample size, 
patients’ age, follow-up period) [20]. The main cognitive processes that are assessed using TMT, i.e. 
processing speed, divided attention and cognitive flexibility (i.e. one of the executive processes), are 
often affected in patients with stroke. Of note, patients with stroke due to frontal lesions show greater 
executive dysfunction than patients with lesions in other regions [21].  Decreased processing speed 
is an underlying cause of post-stroke cognitive dysfunction [22] while executive dysfunction occurs 
in the majority of stroke patients [23], posing critical obstacles for the quality of life of these patients 
[20]. Processing speed and attention deficits remain in the chronic phase [24] whereas the presence 
of executive dysfunction early after the stroke significantly predicts a poor functional outcome one 
year post-stroke [25]. Previous studies have also demonstrated an association between executive 
dysfunction and motor function in stroke [26], including walking and balance ability, postural control 
and gait [27–30].  On the other hand, processing speed and attention are associated with on-road 
driving performance [31] and driving simulator data [32] while executive dysfunction has a 
significant impact on driving performance since it diminishes individual resources and risk 
awareness [33]. Such an impact has also been reported in stroke survivors [34]. 

Considering the wide use of TMT in research and clinical settings since its introduction in 
neuropsychological practice, the purpose of our review was to provide a comprehensive review on 
the use of TMT in stroke patients in an attempt to mainly identify its role for the evaluation of post-
stroke cognitive dysfunction and progression over time, the identification of the underlying 
neuroanatomical pathology related to impaired TMT performance, and the association with other 
stroke outcomes, such motor function, driving ability and quality of life.  

2. TMT in Stroke  

2.1. TMT as Part of Executive Function Testing 

The ΤΜΤ has been used in a variety of research protocols as part of a broader study design of 
executive testing, due to the fact that post-stroke executive dysfunction is a significant and 
independent predictor of functional outcome [35–37]. Demographic factors, such as gender and 
educational level, have been correlated with the increased risk of executive dysfunction after stroke 
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[38,39], while greater cognitive reserve through leisure activity engagement across life can mitigate 
the negative effects of stroke [40]. Planning [41] and goal setting [42] after stroke are complex 
processes and require a thorough examination with a series of assessments to give a more complete 
picture, taking into account the structural damage caused by the disease. Along the same lines 
Cardoso and colleagues (2015) emphasize on the multidimensionality of executive functions and 
proposed a degree of independence between logic-based and emotion-based executive processes, 
which should be more thoroughly investigated [43]. Another finding that has not been thoroughly 
studied is the significant negative effect of binge drinking on the performance of TMT [44]. 

2.2. TMT and Instrumental Activities of Daily Living 

The utilization of the TMT-B has proven valuable in evaluating functional autonomy, extending 
its applicability beyond the post-acute phase. Notably, it has demonstrated a modest yet significant 
ability to anticipate potential constraints in cognitively rooted Instrumental Activities of Daily Living 
(IADLs), thus playing a pivotal role in shaping post-discharge treatment strategies, as demonstrated 
by Minor and colleagues [45]. Similarly, Lipskaya-Velikovsky and colleagues embarked on a parallel 
investigation to assess intricate routine activities that encompassed tasks demanding advanced 
planning and vigilant monitoring [36]. The direct TMT measures (time-to-complete TMT-A and TMT-
B) didn't consistently yield dependable prognosticators of functional proficiency. Ghaffari and 
colleagues, however, brought to light a noteworthy alternative by highlighting the TMT (B-A) 
difference score as the singularly reliable predictor for achieving autonomy in IADL performance 
[46]. The collective insights from these studies illuminate the multifaceted utility of TMT-B, not only 
in delineating functional autonomy and limitations but also in guiding therapeutic pathways and 
interventions tailored to enhance cognitive and practical independence. 

2.3. TMT and Driving Ability 

Neuropsychological test performance on tests that measure cognitive/psychomotor speed (TMT 
A) [47] and executive functioning (TMT B) [34] are the most suitable metrics for predicting driving 
test outcomes. Some researchers provide optimal cut-off points for TMT-A and TMT-B that can 
predict post-stroke unsafe driving, i.e. 32 seconds for TMT-A and 79 seconds for TMT-B [48]. The 
combination of TMT with other neuropsychological tests, such as the Snellgrove Maze Task [49], the 
Useful Field of View test for lane maintenance [50], the Symbol Digit Modalities Test [51], the Rapid 
Pace Walk test [52] and the Key Search Test of the BADS [34], provides additional data for the 
prediction of driving ability. Another variant of the TMT is the version in the Delis-Kaplan Executive 
Function System (D-KEFS; [53]). It has additional tasks on visual search, processing speed and motor 
speed, requiring higher levels of visual exploration and is considered to be a significant predictor of 
off-line motor learning [54]. Another reliable variant of TMT-B presented by Lee and colleagues, i.e. 
driving TMT-B (DTMT-B), used a driving simulator in three-dimensional spaces to test the executive 
functions of drivers [55]. 

2.4. TMT and Gait Assessment  

Numerous studies highlight the interplay between attention, processing speed and cognitive 
flexibility, as assessed by the TMT, and gait assessment in stroke patients. Executive dysfunction, a 
common post-stroke sequel, is often linked to compromised gait performance [27,56]. Poorer 
performance on complex gait tests is frequently associated with worse scores on the TMT, reflecting 
a shared vulnerability in cognitive and motor domains [57,58]. Dual-task training interventions 
targeting both cognitive tasks and gait tasks have consistently demonstrated positive effects on 
executive function and balance, reinforcing the connection between cognitive demands and gait 
control in stroke survivors [59,60]. Despite the reported significant associations between TMT scores 
and gait performance which highlight the importance of processing speed and executive functions in 
walking abilities [61,62], there are negative findings as well supporting that gait performance is not 
universally linked to cognitive function, as evidenced by studies reporting no significant correlation 
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between community ambulation and executive function [63]. This divergence underscores the 
complexity of their interaction, hinting at potential modulating factors that determine the extent of 
post-stroke cognitive-motor interdependence [64–66]. 

2.5. TMT and Speech Abilities 

A recent study highlighted the usefulness of the TMT processing speed component in assessing 
the underlying processes related to verbal fluency [67]. Of interest, the association between TMT 
processing speed component and verbal fluency remained significant even after controlling for motor 
deficits and dysarthria in stroke patients [67].. The study identified shared cognitive processes 
contributing to fluency tasks. Lesion analysis highlighted the role of left lesions involving deep 
hemispheric structures and specific brain areas in verbal fluency tasks [67]. In the study of Rajtar-
Zembaty and colleagues, patients with aphasia demonstrated a notably higher number of errors in 
TMT-B compared to non-aphasia and dysarthria groups. This deficit in cognitive flexibility within 
the aphasia group was associated with dysfunction in the prefrontal cortex, which plays a role in both 
language skills and components of executive functions [68]. Another study indicated that TMT 
performance, particularly in TMT-B, was below normal for all groups, with only a subset of aphasics 
successfully completing the test. The study suggested that TMT might not be the most suitable tool 
for evaluating left hemisphere (LH) damage and aphasic patients due to their specific impairments 
[69]. Moreover, Niessen and colleagues  (Niessen et al., 2020) suggested that despite clinically 
relevant cognitive deficits, including aphasia and apraxia, behavioral impairments related to 
performance monitoring and error processing in LH stroke patients, as measured by the TMT, were 
not evident; executive dysfunction was present based on TMT scores, but this did not directly 
translate into observed behavioral impairments in performance monitoring and error processing [70].  

The aforementioned studies collectively suggest that the relationship between the TMT and 
speech abilities, particularly in aphasic patients, involves cognitive flexibility, prefrontal cortex 
dysfunction, and common neuroanatomical circuits associated with language skills and executive 
functions. The suitability of the TMT as an evaluation tool for aphasic patients varies, and despite 
observed executive dysfunction, it may not always translate to significant behavioral impairments in 
certain tasks. 

2.6. TMT and Mood Status 

The relationship between the TMT and mood status has been explored through various studies, 
revealing insights into cognitive function and emotional well-being. Donnellan and colleagues did 
not find any significant correlation between the TMT-(B-A) difference score and the Hospital Anxiety 
and Depression Scale (HADS) [71]. The absence of correlations suggests that the TMT difference score 
might not be directly linked to mood disturbances as assessed by the HADS. Another study examined 
the relationship between diabetes, depressive symptoms, stroke severity, and TMT performance [72]. 
The comorbidity index of diabetes and depressive symptoms was associated with poorer 
performance on the TMT-B (cognitive flexibility and task-switching abilities). However, no 
significant association was observed between the comorbidity index and TMT-A (visual attention 
and processing speed). Stroke severity and time since stroke were additional predictors of both TMT-
A and TMT-B scores, suggesting complex interactions between medical and mood-related factors in 
determining cognitive performance [72]. Patients with post-stroke apathy experienced more 
pronounced cognitive impairments and deficits in attention and executive functions; apathy scale 
scores were correlated with TMT-A scores at admission, and both TMT-A and TMT-B scores, along 
with other cognitive tests, at discharge [73]. Overall, these studies contribute to a deeper 
understanding of how TMT performance is influenced by and may influence mood-related factors in 
various contexts. 

2.7. TMT in Interventional Studies 
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The body of research encompassing interventional studies employing the TMT to assess 
cognitive function in stroke patients presents a compelling narrative of diverse approaches yielding 
positive outcomes. These studies collectively underscore the potential of targeted interventions to 
enhance cognitive abilities, with the TMT serving as a robust indicator of progress [74–86]. Another 
study emphasizes the significance of comprehensive training interventions, revealing significant 
improvements in various measures, including TMT performance, grip strength, and motor function 
[87]. Another investigation into virtual reality interventions highlights the role of sensory-motor 
stimulation in fostering improvements in TMT-A and TMT-B scores [88]. Moreover, Gjellesvik and 
colleagues explored the enduring benefits of interventions by reporting sustained improvements in 
TMT-B completion time, potentially attributed to heightened arousal and cerebral blood volume 
changes [89]. These findings are buttressed by the results from a recent study, underscoring the 
efficacy of cognitive rehabilitation in enhancing cognitive measures, including TMT-A and TMT-B 
[90]. The significance of intervention adherence surfaces in Ihle-Hansen study, offering an essential 
aspect to consider in designing effective cognitive enhancement programs [40]. Interestingly, the 
advent of technology, such as virtual reality and interactive video games, introduces a novel 
dimension to cognitive rehabilitation [91]. Such interventions not only foster improvements in TMT 
performance but also underscore the potential for technology-driven approaches to positively impact 
executive function. While the majority of studies point to positive outcomes, a few studies highlight 
the complexities of intervention effects [92]. The potential ceiling effect observed in control groups 
raises questions about the nuances of experimental design and participant characteristics that 
warrant further investigation. 

The TMT emerges as a pivotal tool within interventional studies targeting cognitive function in 
stroke patients. Its consistent inclusion across diverse interventions underscores its significance as a 
sensitive measure for assessing cognitive improvements. The TMT's ability to capture changes in 
processing speed, attention, and executive function provides researchers with a standardized and 
quantifiable metric to gauge the efficacy of interventions. Its wide applicability, as demonstrated in 
studies ranging from cognitive rehabilitation to technology-driven approaches, highlights the test's 
versatility in evaluating various intervention modalities. Consequently, the TMT not only serves as 
an objective marker of progress but also enables comparisons across studies, facilitating a 
comprehensive understanding of the nuanced impacts of interventions on cognitive recovery post-
stroke. 

2.8. TMT and Clinical Features 

The TMT stands as a cornerstone in neuropsychological assessment, providing valuable insights 
into cognitive function, particularly executive functions and attention. Recent studies have delved 
into the intricate interplay between TMT performance and an array of clinical features, unveiling a 
diverse landscape of connections in various patient populations. 

In a study by Einstad and colleagues, completion time exceeding 167 seconds on TMT-B 
emerged as a key indicator of impaired executive function, shedding light on a threshold for 
executive dysfunction in a significant proportion of patients [26]. Mobility and grip strength were 
intriguingly linked to global cognitive impairments, executive dysfunction, and memory impairment 
whereas a higher dual-task cost specifically correlated with executive dysfunction assessed by TMT-
B [26]. Bian and colleagues brought cerebrovascular health into focus, showcasing how the breath-
holding index could serve as an insightful parameter for evaluating cerebrovascular reserve 
impairment, particularly in individuals with leukoaraiosis [93]. This finding adds depth to our 
understanding of the cognitive consequences of cerebrovascular health. Jo and colleagues added a 
new layer of complexity by demonstrating the interdependence of cognitive function and post-stroke 
dysphagia severity [94]. Visual attention and executive functions were pinpointed as influential 
factors in the oral phase of swallowing, emphasizing the intricate connection between cognitive and 
motor processes. 

The predictive power of cognitive assessment tools took center stage in another study where 
brief screening instruments exhibited consistent utility, unlike more domain-specific cognitive tests 
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[95]. This highlights the importance of selecting appropriate tools for accurate cognitive assessment 
in different clinical contexts. Sörös and colleagues underscored the limitations of the Mini-Mental 
State Examination (MMSE) as an independent cognitive screening tool for transient ischemic attack 
(TIA) and minor stroke patients [96]. The prevalence of executive dysfunction, particularly in TMT 
Part A and Part B, further emphasized the need for comprehensive cognitive assessment tools. 
Pedersen and colleagues connected fibrinogen concentrations to cognitive outcomes, emphasizing 
the role of this factor in younger stroke patients' cognitive performance [97]. Interestingly, the 
association was specific to TMT-A, indicating distinct patterns of cognitive impairment related to 
different cognitive tasks [97]. 

In the realm of treatment outcomes, Lattanzi and colleagues demonstrated the potential benefits 
of endovascular treatment combined with intravenous thrombolysis on cognitive performance, 
hinting at promising avenues for enhancing cognitive outcomes in ischemic stroke patients [98]. 
Different perspectives opened doors to understanding several factors driving TMT performance 
post-stroke. Two recent studies underscored genetic and clinical factors' impact on cognitive 
outcomes [99,100]. Genetic polymorphisms and clinical conditions like atrial fibrillation were tied to 
executive dysfunction and cognitive performance, providing a holistic view of the factors shaping 
cognitive outcomes. The links between blood pressure and cognitive performance were also 
examined, revealing a more refined relationship independent of sociodemographic and clinical 
factors, further contributing to our understanding of the complex relationship between blood 
pressure and cognitive health [101]. 

According to potential biomarkers, Shaheen and colleagues explored the correlation between 
serum levels of IL-8 and executive functions in early acute ischemic stroke patients, opening new 
avenues for understanding the biological underpinnings of cognitive impairment [102]. Rosenbaum 
Halevi and colleagues hinted at the potential impact of treatment strategies, suggesting a potential 
cognitive improvement in some cognitive tests at 90 days post-stroke, highlighting the dynamic 
nature of cognitive recovery [103]. The intricate relationship between cerebral blood flow and 
cognitive function was demonstrated by Altmann and colleagues, indicating that transcranial 
Doppler ultrasonography could serve as an early diagnostic tool for cognitive impairment post-
stroke [104]. Another study ventured into pharmacological interventions, showcasing how fluoxetine 
administration might influence cognitive function and serum levels of neurotrophic factors in 
patients with vascular cognitive impairment [105]. The longitudinal perspective was provided by 
Ling and colleagues who highlighted the predictive power of systolic blood pressure and lacunes in 
assessing cognitive outcomes over time in a specific patient population [106]. Finally, Kotlega and 
colleagues delved into fatty acid metabolism's role in cognitive outcomes, underscoring the 
multifaceted interplay between metabolic cascades and stroke-related cognitive impairment [107]. 

The collective findings of these studies underscore the significance of the TMT in unraveling the 
intricate relationships between cognitive function and various clinical factors in stroke population. 
The TMT serves not only as an assessment tool but as a window into the intricate web of cognitive 
health, offering insights that pave the way for tailored interventions and a deeper understanding of 
cognitive outcomes post-stroke. 

2.9. TMT and Neuroanatomical Features 

The interplay between cognitive functions and neuroanatomical features has become a focal 
point for researchers seeking to comprehend the underlying mechanisms of cognitive impairments 
resulting from brain lesions. 

An intriguing trajectory of TMT-A performance improvement from acute to subacute phases 
following stroke is suggested by Dacosta-Aguayo and colleagues [108]. Notably, better TMT-A 
performance aligns with higher fractional anisotropy (FA) in specific white matter tracts, offering 
insights into the relationship between white matter integrity and cognitive recovery. Another 
research unveiled the association between TMT-A completion time and medial temporal lobe 
atrophy, as well as global cortical atrophy and lower education levels [109]. These findings highlight 
the potential of structural brain changes and educational background as rapid indicators of cognitive 
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impairment following transient ischemic attacks and mild ischemic strokes. The study by Cipolotti 
and colleagues challenges conventional categorizations by demonstrating no significant differences 
in frontal executive tasks among different etiology subgroups [110]. Instead, strong effects of 
premorbid IQ and age on cognitive tasks suggest the influence of broader cognitive factors on 
executive function. The intricate relationship between executive function, white matter integrity, 
stroke characteristics, and cerebrovascular risk is investigated by Veldsman and colleagues who 
emphasize the mediating role of white matter integrity, highlighting its significance in explaining 
executive dysfunction and incident stroke, which are both manifestations of cerebrovascular risk 
factors [111]. Hagberg and colleagues focus on the relationship between TMT-A and amyloid 
deposition and identify that cortical amyloid deposition does not significantly correlate with 
neurodegeneration or cognition in stroke survivors with cognitive impairment, emphasizing the 
complexity of post-stroke cognitive decline and the need to explore additional factors beyond 
amyloid pathology [112]. A more recent study highlights the potential for brain compensatory 
mechanisms following stroke [113]. Increased degree centrality values in the right parahippocampal 
gyrus correlate positively with TMT-A and TMT-B scores, suggesting the brain adaptive capacity to 
promote cognitive recovery [113].  

The neural underpinnings of TMT performance are explored by Singh and colleagues, 
highlighting the intricate connection between spatial planning, working memory, and visual search 
processes [114]. A recent longitudinal exploration adds a temporal dimension, demonstrating how 
incident lacunes are independently associated with incident stroke and changes in TMT Part B 
performance [117]. This longitudinal perspective underscores the long-lasting consequences of 
structural changes and their impact on cognitive trajectories. Varjačić and colleagues focus on 
executive set-switching and underscore the critical role of the left insular cortex [115]. By identifying 
the association between lesions in this region and poorer executive set-switching, the study provides 
valuable insights into the neural underpinnings of attentional flexibility. Furthermore, the persistence 
of the lesion effect even after accounting for lower-level cognitive processes suggests the insula 
involvement in higher-order regulatory functions. Another research delves into mental flexibility 
deficits and their relationship with damaged neural connections [116]. The study unveils the intricate 
connectivity patterns linking various cortical and subcortical structures implicated in cognitive 
control and attention networks.  An investigation into bimanual grasp coordination following 
hemispheric strokes underscores the intricate relationship between cognitive and motor functions 
[118]. The study describes how lesion side and cognitive processes interact to influence motor 
coordination, providing insights into the interplay between perception, action planning, and lesion 
site. Jankowska and colleagues study emphasizes the wide-ranging effects of stroke locations on 
executive dysfunction. Contrary to expectations, executive dysfunction is not confined to anterior 
stroke locations; even posterior and subcortical lesions contribute to the impairment [119]. This 
underlines the necessity for tailored treatments based on lesion locations. Shin and colleagues 
examine cerebellar strokes and reinforce the role of cerebellar sites in neuropsychological functioning 
[120]. The presence of lesions in the right posterior intermediate lobe of the cerebellum correlates 
with poorer performance in subtests evaluating executive function, such as TMT, shedding light on 
the specific cognitive consequences of cerebellar lesions. The identification of correlations with the 
TMT performance underscores the importance of considering connectomics in lesion-symptom 
mapping, reinforcing the interdependence of regional structures in shaping cognitive outcomes. 

In a recent study, Ferris and colleagues introduce DTI metrics of the anterior thalamic radiation 
as potential imaging biomarkers of post-stroke cognitive impairment [121]. The association between 
ATR microstructure and processing speed and executive function performance underscores the value 
of lesion location-specific metrics in predicting cognitive outcomes. Muir’s findings reveal 
associations between larger infarcts, CHIPS severity, and various metrics of set shifting and 
processing speed. Moreover, the association between left superior longitudinal fasciculus damage 
and TMT-(B-A) score further elucidates the role of specific white matter tracts in cognitive 
performance [122]. Another study utilizes cluster analysis to classify TMT-B performance groups 
based on derived measures and identifies brain sites associated with different performance levels, 
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emphasizing the role of specific neural structures in shaping cognitive outcomes during TMT-B 
completion [123]. In addition, Kopp and colleagues shed light on the patterns of errors in TMT-A and 
TMT-B tasks [124] in association to lesion patterns. They identify that the number of errors, but not 
completion time on the TMT-B, is associated with right hemispheric frontal lesions while the 
prevalence of type B shifting errors suggests a failure to switch between numbers and letters, 
indicating the complex nature of cognitive processes involved in these tasks [124]. 

In conclusion, the diverse array of studies examining the relationship between the TMT and 
neuroanatomical features has provided a multifaceted perspective on the intricate interplay between 
brain lesions and cognitive functions. These investigations have underscored the localized nature of 
cognitive deficits, revealed the significance of specific brain regions such as the insular cortex and 
parahippocampal gyrus, and illuminated the dynamic role of white matter integrity in shaping post-
stroke cognitive outcomes. Additionally, the varying impact of lesion side, cognitive domains, and 
anatomical sites has challenged conventional categorizations and emphasized the need for tailored 
interventions. As our understanding of the complex relationships between brain structure and 
cognitive function continues to deepen, these findings offer promising avenues for refining 
rehabilitation strategies, personalized treatment plans, and imaging biomarkers to mitigate the 
cognitive consequences of brain lesions. 

3. Discussion 

Τhe present literature review attempts to describe and analyze the use and application of the 
TMT in the clinical field of stroke. To the best of our knowledge, no such an attempt has previously 
occurred despite the widespread use of TMT in stroke studies. Through a comprehensive review of 
the literature in the last decade, we provide a conceptual framework of the available findings, further 
highlighting potential gaps and challenges of the application of TMT in clinical and research settings 
(Figure 1). 

 

Figure 1. A graphical representation of the cognitive processes assessed using TMT and the main 
neuropsychological indices of the test, as well as its usefulness in stroke studies. 

The association between TMT performance and IADLs underscores the clinical relevance of 
TMT in predicting individuals' capacity to navigate daily life tasks independently, making it 
pertinent for rehabilitation centers and long-term care facilities. Moreover, its role in assessing 
driving ability reveals its potential for safeguarding not only the patient but also the broader 
community, indicating its importance in assessing fitness to drive and informing licensing 
authorities. 
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The integration of TMT into executive function testing illuminates its pivotal role in revealing 
deficits in higher-order cognitive processes, aiding clinicians in formulating tailored rehabilitation 
strategies for stroke survivors seeking to regain cognitive and functional independence. Its linkage 
to gait assessment emphasizes the intricate interplay between cognitive and motor functions, offering 
novel insights into post-stroke mobility issues, thereby finding application in physical therapy and 
geriatric care settings. 

The correlation between TMT outcomes and speech abilities underscores its sensitivity to 
language-related impairments post-stroke, making it a crucial tool in speech therapy interventions. 
Equally noteworthy is the potential of TMT to capture mood status, facilitating a more 
comprehensive understanding of the emotional toll of stroke and aiding in holistic patient 
management, which is relevant in both clinical and psychological support context. 

The incorporation of TMT within interventional studies holds promise for refining therapeutic 
approaches and measuring treatment efficacy, contributing to the advancement of stroke 
rehabilitation protocols in research institutions and clinical trials. Its robustness in capturing clinical 
and neuroanatomical features further underscores its potential as a biomarker for stroke severity and 
lesion localization, which has implications for both academic research and diagnostic settings. 

Therefore, our comprehensive review underscores that the TMT stands as an invaluable asset in 
the stroke assessment toolkit, contributing nuanced insights into diverse cognitive, functional, and 
emotional dimensions. As research progresses, continued exploration of the TMT potential across 
these domains is encouraged, fostering a deeper comprehension of post-stroke dynamics and 
enhancing patient-centered care across hospitals, rehabilitation centers, research institutions, and 
community health settings. Its integration into both research and clinical practice reaffirms TMT 
status as an indispensable instrument in stroke-related evaluations, enabling holistic insights that 
extend beyond traditional neurological assessments. 

Strengths of this comprehensive review include a rigorous and comprehensive database search, 
covering a wide array of topics, ranging from TMT associations with cognitive and functional 
outcomes to its implications in various domains such as driving ability, executive functions, mood 
status, and more. This breadth of coverage ensures a holistic understanding of TMT multifaceted 
utility within the context of stroke assessment. Secondly, the incorporation of diverse sources of 
evidence, including RCTs, original studies, clinical trials, and theoretical frameworks, lends depth to 
the analysis and strengthens the conclusions drawn. Additionally, the emphasis on the applicability 
of TMT findings in clinical and research frameworks underscores the practical relevance of the 
review's insights. The present review has some limitations that need to be addressed. The review's 
reliance on existing literature up to a certain knowledge cutoff date could potentially omit relevant 
studies published afterward. The diversity of stroke populations, varying degrees of stroke severity, 
and individual patient characteristics might introduce heterogeneity in the results across studies, 
potentially influencing the generalizability of the findings. The diversity and the number of the 
surveys included did not allow quality assessment of the included studies nor a meta-analysis of the 
results. 

Future research endeavors in the realm of the TMT and stroke assessment hold great promise 
for refining clinical practice and advancing our knowledge. Longitudinal studies tracking TMT 
performance over time can illuminate cognitive recovery trajectories post-stroke, while investigations 
into the predictive validity of TMT scores can establish its role as a prognostic tool. Exploring 
neuroplasticity and cognitive training interventions in relation to TMT performance can uncover 
avenues for enhancing recovery. Integrating TMT with neuroimaging can deepen our understanding 
of its neural correlates, and accounting for cultural and linguistic factors can lead to culturally 
sensitive assessments. The feasibility of technology integration, the role of TMT in special 
populations, and combining it with other assessments all offer avenues for comprehensive stroke 
evaluations. Continual standardization efforts and updated norms ensure TMT consistent and 
reliable use. Overall, these research directions can enrich stroke rehabilitation strategies, bolster 
patient outcomes, and advance our comprehension of cognitive function and post-stroke recovery 
dynamics. 
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4. Conclusions 

In conclusion, the TMT emerges as a versatile and valuable neuropsychological tool with 
significant implications for stroke-related assessments. Our comprehensive review of its applications 
within the stroke population highlights its multifaceted utility in evaluating various domains of 
cognitive and functional abilities, spanning both acute and chronic phases of stroke recovery. 
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