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Abstract: River flood routing computes changes in shape of a flood wave over time as it travels downstream
along a river. Conventional flood routing models, especially hydrodynamic models require high quality and
quantity of input data such as measured hydrologic time series, geometric data, hydraulic structures and
hydrological parameters. Unlike physically based models, machine learning algorithms, which are data driven
models, do not require much knowledge about underlying physical processes and can identify complex
nonlinearity between inputs and outputs. Due to the higher performance, less complexity, and low
computation cost, novel machine learning methods as a single application or hybrid application were
introduced by researchers to achieve more accurate and efficient flood routing. This paper reviews the recent
application of machine learning methods in river flood routing.
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1. Introduction

Floods are one of the most devastating disasters that cause damages to human lives, society and
ecosystem. Accurate simulation of flood flow is significantly important for flood control and
reduction of flood losses. Physically based models and data-driven models are two main categories
of existing flood routing models. Physically based model can be divided into hydraulic and
hydrologic flood routing models constructed based on empirical or theoretical governing equations
describing the propagation of a flood wave along a river to estimate the changes in streamflow (depth
and discharge) with time. Various physical characteristics and boundary conditions are required to
be determined to construct physically based models, which requires in-depth (extensive) knowledge
in physical process. Widely used physically based models involve Muskingum model [1-3], and the
hydrodynamic model based on Saint-Venant equations which is solved by various numerical
methods [4-10].

Data-driven models map relationships between hydrological variables to describe hydrological
processes without requiring extensive knowledge of underlying physical principles. Simple data-
driven models based on linear assumptions for regression fitting include the auto-regressive moving
average (ARMA) model [11], and the autoregressive integrated moving average (ARIMA) model [12].
In recent decades, machine learning (ML) methods have gained popularity along with the
development of artificial intelligence. ML methods can deal with more complex hydrological
processes by mapping nonlinear relationships between hydrological variables. Commonly applied
ML methods in river flood routing computation include support vector regression (SVR) [13,14],
artificial neural networks (ANNSs) [15,16], multilayer perceptron (MLP) [14], gated recurrent units
(GRUs) [14,17], long short-term memory (LSTM) [14,18], and so on. Machine learning methods have
been widely applied in hydrological field such as rainfall-runoff models, and flood forecasting.
However, the applications for river flood routing are relatively limited.

This paper mainly reviews the single application and hybrid application of ML methods for river
flood routing as shown in Figure 1. The hybrid application of ML methods is divided into two
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categories: one is for optimization of physically based flood routing model and the other is for
combined usage with a physically based flood routing model to improve prediction accuracy.

Single
application

Optimization of
ML method flood routing
model

Hybrid
application

Hybridizing with
hydrodynamic
model

Figure 1. Application of ML methods for river flood routing.
2. ML methods

2.1. Single application

Numerous studies applied ML models for flood routing simulation. Physically based models
require physical parameters and river geometry data, while machine learning methods only use the
time series data from upstream gauging stations to estimate the water level or discharge at the
downstream locations of a river reach. Reviewed papers regarding the single application of ML
methods for flood routing computation are presented in Table 1.

Table 1. Single applications of ML method for flood routing simulation.

No. of Impact Modeling
Paper citatio Journal fagor Studied river Adopted method Compared models performance
criteria
[19] 73 Hydrological 32 Walla Walla River, Gp NMM RMSE, CC
Processes USA
Computers & Kushabhadra River, RMSE, R2,
(18] 125 Geosciences 8.1 India ANN MIKE 11 HD NSE, IOA, DP
Alexandria
[16] 164 Engineering 6.8 River Nile, Sudan ANN R2, RMSE
Journal
1 of Applied
(137 7 JoumalofApplied River Wyre, UK SVM Muskingum model SSE
Mathematics
[20] 19 Water Resources 42 Chindwin River, ANN CE, MRE,
Management Myanmar EQp, ETp
FF-GA, FF-PSO, Linear
Kheir Abad Ri i !
[21] 46 Natural Hazards 3.7 er Ifaan Ve ANN (FF-SBA)  regression, Non-linear R?, MSE
regression
Maryam Negar MAE, RMSE,
[22] 18 Natural Hazards 3.7 River, Iran ANN, ANFIS Bias, SI, S5Q
RCM, GA_RCM,
23] 40 Water 34 Tiber River, Italy ANN PSO_RCM, ACO_RCM, - EQp, ETp,

Saint-Venant, PSO_NMM, MAE, RMSE
ACO_NMM, GA_NMM
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Theoretical and
[24] 10 Applied 3.4  Gharesoo River, Iran GEP, ANN Muskingum model R?, RMSE
Climatology
South-to-North
Journal of water Diversion MWLP, RWLP, RMSE, MAE,
17 53 6.4 SVM, ANN
[17] Hydrology Project channel, LSTM, GRU ’ NSE, PCC, PI
China
Tanshui River, EEMD and
[25] 3 Hydrology 3.2 Taiwan stepw1_se CC, RMSE
regression
LSSVM, PSO-
Envi tal LSSVM, EMD-
nV}ronmen a Turnasuyu Stream, LSSVM, MAPE, NSE,
[26] 4 Science and 5.8
Pollution R h Turkey Wavelet- MBE, R2
ollution Researd] LSSVM, VMD-
LSSVM
St‘ochastlc Mera Stream, Sarisu BT, GBM, KNN,
Environmental L R2, RMSE,
[27] 1 K 4.2 Stream, Kizilirmak RF, SVM,
Research and Risk . MAE
River, Turkey XGBoost
Assessment
. EMD-CFBNN,
[28] 0 Water Supply 1.7 Mera River, Turkey EME-FFBNN CFBNN, FFBNN CC
Envi tal Ti Ri Central MAE, RMSE
(18] 0 nvironmental -5 o Hsza fiver Lenta LSTM  DLCM, MLP, Linear model, . ’
Sciences Europe Europe R?, WI
Yanetze Ri SVR, GPR, RFR, MAPE, RMSE,
n4 2 Water 34 angcff Ve MLP, LSTM, NSE, TSS,
ma GRU KGE

2.1.1. Support vector regression (SVR)

SVR is a ML technique based on structural risk minimization theory and statistical learning
hypothesis [29]. The idea of SVR is that an entire sample set can be represented by a small number of
support vectors [30]. In SVR, a kernel function is used to create a linearly divisible space by converting
the sample space, then predictive analysis on the new samples is performed using the maximum
interval partition line and support vectors [14]. The learning ability of a SVR model is highly affected
by the selected kernel function. The commonly used kernel functions are the linear kernel,
polynomial kernel, precomputed kernel, and radial basis function kernel. [13] used SVM in three
different flood routing problems. In this study, the dynamics of the studied floods were captured by
applying the SVM from observed data, and the model showed good performance for flood routing
modeling. [27] compared the performance of various machine learning models including SVM for
flood routing prediction in Eskisehir, Ankara and Sivas, and [14] used linear kernel in a SVR for flood
routing in the Yangtze River.

2.1.2. Artificial neural network (ANN)

ANN is a nonlinear modeling approach which mimic the human brain function [31]. The
nonlinear relationship between input and output variables in an ANN model is estimated by
neurons, weights and biases. In an ANN, it is important to properly determine the number of hidden
neurons, the number of hidden layers, and the activation functions. [32] showed that one hidden
layer is adequate for an ANN to solve hydrological problems. Therefore, many studies in
hydrological field used one hidden layer to estimate the nonlinear relationships [10,30]. The size of
hidden nodes is usually defined by performing a trial-and-error method [30]. However, [33]
proposed that the number of hidden nodes can be determined based on the number of samples. The
most widely used training method for ANNSs is the Levenberg-Marquardt (LM) algorithm as it is fast
and the most efficient technique [34].

In the last few years, ANN has been applied to river flood routing problems including estimation
at ungauged sites. [15] compared the performance of a MIKE11 hydrodynamic model and ANN
technique, and found that the trained ANN model performs much better than MIKE11HD results. In
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this study, an ANN with one hidden layer including 8 neurons was applied to predict downstream
water levels using measured hourly water level data at upstream gauging stations as inputs.

[16] used an ANN to simulate flows at a downstream location of the River Nile in Sudan based
on flows measured at upstream locations. This study examined four scenarios for which data from
different stations were used as inputs, and compared their performance in flood forecasting.

[23] trained an ANN to predict the downstream hydrograph and the results of the ANN were
compared to the nonlinear Muskingum models optimized by particle swarm optimization (PSO), ant
colony optimization (ACO), and GA, and numerical solutions of Saint-Venant equations. The results
of this study showed that the performance of flood routing applying machine learning algorithms is
as good as that of the Saint-Venant model.

ANNSs combined with meta-heuristic algorithms have been investigated by many researchers.
[21] presented an ANN optimized by social-based algorithm (SBA) to simulate flood routing. SBA is
one of the meta-heuristic approaches which combines evolutionary algorithm (EA) and imperialist
competitive algorithm (ICA) [35]. This paper showed that the hybrid optimization approach can
achieve better results in efficiency and performance. In addition, [22] optimized ANN flood routing
model with ICA, Bat algorithm (BA), PSO and GA, and their results showed that the ANN-ICA is the
best prediction model.

The multilayer perceptron (MLP) is one of ANNs which is the most widely used feedforward
model. A MLP consists of one input layer, at least one hidden layer, and one output layer, and the
layers of a MLP are fully connected [36]. [20] investigated the feedforward ANNSs to solve the
complex nonlinear problems of Muskingum flood routing for a natural river in Myanmar. A feed
forward multilayer perceptron (FMLP) structure was designed in this study based on the
Muskingum routing equations. Therefore, the FMLP has the same input and output variables with a
Muskingum routing approach. This study showed that the feedforward ANN is a promising
alternative in Muskingum routing after comparing the FMLP to the nonlinear Muskingum models
using other reported methods such as genetic algorithm (GA) [37], nelder-mead simplex (NMS)
algorithm [38], broyden-fletcher-goldfarb-shanno (BFGS) method [39] in solving the parameter
estimation. Besides, [14] applied a MLP with one hidden layer including 100 hidden neurons for the
flood routing.

2.1.3. Recurrent neural network (RNN)

RNN is a neural network originated from the idea that human cognition is based on the past
memory and experience [17]. The main difference compared to the MLP is that RNN can consider
the input of the previous moment and involve a memory function of the previous content. Widely
used hidden layer neurons are RNN, LSTM, and GRU.

LSTM is a recurrent neural network that uses the gated memory units to control input, memory,
output, and other information, so that the problem of gradient disappearance and explosion of the
RNN for long sequence data is solved [40]. [18] applied a LSTM for water level prediction using daily
water levels observed at 12 gauging stations. The LSTM model was compared to the discrete linear
cascade model (DLCM) in this study and it was shown that the LSTM model provides better results
than the DLCM. This study noted that the encoder-decoder architecture of the LSTM is effective at
solving multi-horizon forecasting problems.

GRU is a recurrent neural network which is similar to the structure of LSTM, but the number of
gates used in the construction of the two models is different. It has been reported that GRU is simpler
than LSTM, but has similar learning ability regarding long-term dependencies in time series data
[17]. [14] constructed a GRU model for flood routing in the Yangtze River and compared the
performance of the GRU with other machine learning models such as SVR, gaussian process
regression (GRP), multilayer perceptron (MLP), random forest regression (RFR) and LSTM. It was
demonstrated that the GRU model showed superior performance than other models. [17] adopted
MLP and RNNs including LSTM and GRU to predict the water level of cascaded channels by mining
the high-dimensional correlated hydrodynamic features considering the spatial and temporal
window. This study compared the RNN-based prediction models with various methods such as
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MLP-based prediction model, ANN, SVM, and RF, and demonstrated that the RNN-based prediction
model is more suitable for the water level prediction of cascade channels.

2.1.4. Random forest regression (RFR)

RFR is an ensemble machine learning proposed by [41]. It is based on the idea of integrated
learning and the definition of several independent trees. The results from randomized and de-
correlated decision trees are aggregated to obtain predictions [42]. The most important hyper-
parameters of the RFR are the number of trees and randomly selected features. [14] and [27] used the
RFR for flood routing and compared the performance of RFR to other various machine learning
models. [14] noted that the RFR model showed overfitting for inflow hydrograph prediction of the
Three Georges Reservoir.

2.1.5. K-nearest neighbor (KNN)

KNN is a non-parametric classification and regression algorithm [27]. It stores all of the available
cases and creates new clusters by classifying them based on their similarity measure. The KNN finds
the nearest neighbor using Euclidean distance and perform classification. [27] investigated the
performance of the KNN algorithm compared with kernel-based and tree-based algorithms for flood
routing prediction and concluded that the KNN can produce successful outputs for flood forecasting
in Ankara.

2.1.6. Other ML methods

[43] designed a network-based Fuzzy Inference System (FIS) based on the Muskingum formula
for describing the relationship between inflows and outflows. [24] applied the gene expression
programming (GEP) and ANN as alternative approaches of the Muskingum model to predict the
downstream outflow hydrograph. This study investigated inflow hydrographs at different time steps
for GEP and ANN models. The results showed that the GEP model presents better performance
compared with ANN and Muskingum model for multiple inflows system. [25] developed a new
model applying ensemble empirical mode decomposition (EEMD) and stepwise regression for water
level forecasting in a tidal river. Only water level data were used in the proposed model, and it was
found that the model is simple and highly accurate.

The genetic programming (GP) was derived from Darwin’s principle of natural evolution. GP
operates on parse trees to describe the relationship between input and output variables [19]. Control
parameters have to be set before applying the GP algorithm such as population size, maximum
number of generations, and crossover and mutation probability. [19] proposed a GP model as an
alternative to the non-linear Muskingum model. This study demonstrated that the GP model can
route complex flood hydrographs in natural channels and perform better than the non-linear
Muskingum model. Other machine learning method applied for flood routing includes GPR [14],
gradient-boosted machine (GBM) [27], bagged tree (BT) [27], and extreme gradient boosting
(XGBoost) [27].

Machine learning methods have been applied combining with mathematical techniques such as
wavelet packet decomposition [44] which divides an input time series into two components:
approximation and detail. [44] applied the hybrid models named wavelet packet-based artificial
neural network (WPANN) and wavelet packet-based adaptive neuro-fuzzy inference system
(WPANFIS) to forecast the downstream river stage using upstream observed river stage and lags.
The results of this study indicated that the ANN and ANFIS models for river stage forecasting
improved after combining wavelet packet decomposition. A hybrid approach applying empirical
model decomposition (EMD) and neural networks was proposed by [28] for flood routing prediction.
This study hybridized the EMD signal decomposition technique with the feed-forward
backpropagation neural network (FFBNN) and cascade forward backpropagation neural network
(CFBNN) algorithms. The results of this study showed that the EMD signal decomposition technique
can improve the performance of ML models, and the EMD-FFBNN model was the most successful
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algorithm in the flood routing calculation. Besides, hybrid machine learning models including least
squares support vector machine (LSSVM), PSO-LSSVM, EMD-LSSVM, Wavelet-LSSVM, and
variational model decomposition (VMD)-LSSVM were investigated by [26]. This research compared
the performance of the five flood routing methods and found that the PSO-LSSVM is the most
successful model.

2.2. Hybrid application

2.2.1. ML-based optimization technique

Intelligent optimization algorithms become popular due to their flexibility, simplicity to use,
effective handling of discrete problems, no need for differentiation, and the ability to find global
optima [45]. Muskingum routing, which is a hydrological method developed by [46], has been widely
used for river flood routing with the parameter estimation for linear and nonlinear forms [20]. In
order to improve the accuracy of the Muskingum model, numerous meta-heuristic algorithms have
been used in the optimization of the model parameters, whose results have been reported more
accurate than the outputs of the conventional method such as the Lagrange multiplier (LMM) and
segmented least square method (S-LSM) [47]. The inspiration of meta-heuristic algorithms originated
from natural concepts. For example, GA was proposed based on the Darwin’s “survival of the fittest”;
PSO simulates the collective behavior of birds; and clonal selection algorithm (CSA) comes from the
cuckoo nesting behavior. Table 2 shows the machine learning methods used for the estimation of
parameters of Muskingum models.

Table 2. ML methods used for the parameter estimation of Muskingum models.

Pape No. of Journal Impact Adopted
r citations factor method
[37] 261 Journal of Hydraulic Engineering 2.4 GA
(48] 278 Journal of the Ameri?ar} Water Resources o4 S
Association
[39] 95 Journal of Irrigation and Drainage Engineering 2.6 BFGS
[19] 73 Hydrological Processes 3.2 GP
[43] 87 Journal of Hydrologic Engineering 2.4 PSO
[49] 55 Journal of Hydrologic Engineering 2.4 ICSA
. . . NMS
[38] 218 Journal of Hydrologic Engineering 2.4 algorithm
Parameter-
[50] 65 Journal of Hydrologic Engineering 2.4 setting-free
HS
[51] 55 Journal of Hydrologic Engineering 2.4 DE
[52] 157 Journal of Hydrologic Engineering 24 BFGS-HS
[53] 55 Neural Computing and Application 6 HPSO
[54] 15 Journal of Irrigation and Drainage Engineering 2.6 SFLA-NMS
[55] 65 Journal of Hydrologic Engineering 2.4 :I/Ig}cfilt\ﬁg
[56] 23 Journal of Irrigation and Drainage Engineering 2.6 WOA
[57] 42 Water Resources Management 4.3 PSO
[58] 37 Water Resources Management 4.3 MHBMO-
GRG
BSA
[1] 33 Water Resources Management 4.3 evolutionar
y algorithm

[59] 39 Water 34 HBSA

doi:10.20944/preprints202401.0007.v1
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PSO, ACO,
[23] 40 Water 34 CA
[60] 11 Water Resources Management 4.3 SA
[61] 13 Water Resources Management 4.3 PSO-GA
[62] 9 Water & Climate Change 2.8 PSO
[63] 13 Water & Climate Change 2.8 PSO-LM
[47] 4 MethodsX 1.9 GWO
algorithm
[64] 0 Neural Processing Letters 3.1 C-QPSO
GPR, GMC,
[65] 0 Hydroinformatics 2.7 RF,
XGBoost

[37] applied genetic algorithm (GA) and found that GA is efficient to estimate the parameters of
nonlinear Muskingum routing models. [48] used a heuristic algorithm, harmony search (HS), and
demonstrated that HS performs better in the parameter determination of the nonlinear Muskingum
model than GA. The GA approach creates a new vector from only two vectors, while a new vector is
originated from every single existing vector in the HS algorithm, which allows the HS to find better
solutions with greater flexibility [48]. [43] compared the PSO algorithm to the GA and HS, and
showed that HS algorithm produces the most precise results. An improved backtracking search
algorithm (BSA) proposed by [1] was demonstrated to outperform PSO, GA, and differential
evolution (DE) [51] for parameter estimation of nonlinear Muskingum model. Other algorithms such
as immune clonal selection algorithm (ICSA) [49], parameter setting free-harmony search (PSF-HS)
algorithm [50], Nelder-Mead simplex (NMS) algorithm [38], harmony search-Broyden-Fletcher-
Goldfarb-Shanno (HS-BFGS) algorithm [52], modified honey-bee mating optimization (MHBMO)
algorithm [58] have been proposed due to their efficiency and fast convergence.

[64] proposed a hybrid cuckoo quantum-behavior particle swarm optimization (C-QPSO) and
demonstrated the global optimization ability of the algorithm in the application to the parameter
estimation of a nonlinear Muskingum model. Other hybrid optimization algorithms combining two
approaches include HS-BFGS [52], SFLA-NMS [54], and MHBMO-GRG [58]. These hybrid techniques
can provide appropriate initial guess for Muskingum parameters and reduce the uncertainties to
cause different results for different runs [58]. [53] presented a hybrid particle swarm optimization
(HPSO) by combining PSO with NMS method to estimate the Muskingum model parameters. This
study firstly used PSO algorithm to conduct the global optimization, then applied NMS method to
perform the local search of optimum. Similarly, [59] developed hybrid bat-swarm algorithm (HBSA),
which is a hybrid of bat algorithm (BA) and PSO algorithm, for the optimal estimation of four
parameters of the Muskingum model, so that a global optimum can be searched without trapping in
the local minimums. Another attempt to find global solution was made by [63] using hybrid PSO-LM
algorithm for the calibration of the nonlinear Muskingum model.

Efforts were also made to determine parameters of modified forms of nonlinear Muskingum
models by applying meta-heuristic optimization techniques. [58] proposed MHBMO-GRG for a six-
parameter Muskingum model. [56] applied weed optimization algorithm (WOA) in the estimation of
parameters for an extended nonlinear Muskingum model with introducing a parameterized initial
storage condition. [57] and [60] implemented PSO algorithm and Shark algorithm, respectively, for
four-parameter non-linear Muskingum models. [47] used Grey Wolf Optimizer (GWO) algorithm to
estimate the parameters of two nonlinear Muskingum models with three and four constant
parameters.

[65] applied ML techniques in the parameter calibration of the Routing Application for Parallel
computation of Discharge (RAPID) model without requiring measured streamflow. The RAPID
model uses a linear Muskingum routing algorithm. This study explored four ML architectures
including GPR, gaussian mixture copula (GMC), XGBoost, and random forest (RF) in learning the
relationship between river features and model parameters. The first two methods perform
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probabilistic predictions, while XGBoost and RF yield a single-point prediction. It was shown that
XGBoost performs best, followed by GPR, RF, and GMC.

2.2.2. Hybrid application of a hydraulic model and ML method

A number of simplifications and assumptions are involved for physically based river flood
routing models. Hydrologic and hydraulic methods are two main classes of conventional flood
routing methods. Hydrological models such as the Muskingum model solves the storage equation
and continuity equation to estimate the downstream flow hydrograph. Examples of hydraulic models
includes kinematic wave model and model based on Saint-Venant equations. The efficiency of
hydraulic models can be restricted due to the high demands on computer resources, the quality and
quantity of inputs [20]. In addition, a high resolution in space and small calculation time step lead to
quite high computational efforts [66], which restricts the application of a hydrodynamic model in real
time operation. Therefore, methodologies combining artificial intelligence and hydrodynamic
models have been proposed by many studies due to their robustness and fast speed. Table 3 shows
the studies on the hybrid application of a hydraulic model and a ML method for the flood routing

prediction.
Table 3. Hybrid applications of a hydraulic model and ML method.
. I A li
Paper .No. of Journal mpact Studied river dopted Compared Mode mg'per.formance
citations factor method model criteria
Hydrology AI\,IN & é one
and Earth Neckar River, dimensional
[67] 88 Svstem 6.3 German " hydrodynamic - CE, R? RMSE, DPF
SZience y numerical
model
. Freiberger
6] 40 AN 0 N deRiver, TECRAY® pECRAS R
Geosciences ANN
Germany
Water _ HEC-RAS, b PWRMSE, mean
[68] 14 Internationa 2.6 Karoon River, HEC-RAS & Muskineum error of time to peak,
) ’ Iran adaptive ANNs routing mgetho d volume error of highest
peaks
Water and Doosh River HEC-RAS &
[69] 36  Environme 2 OOgIran Vel ANN; HEC-  HEC-RAS NSE, MRE, RMSE
nt Journal RAS & ANFIS
Internationa KN2K & one- KF & one-
1 Journal of Huai River, dimensional dimensional
[70] 64 Sediment 36 China hydraulic hydraulic NSE, ANSE, SDE
Research model model
Journal of Eden 1 1SFLOOD-FP LISFLOOD-FP
[71] 101 6.4 Catchment, ! NSE, RMSE
Hydrology UK & CNN SVR
Han River,
[10] 0 Water 34 503?}1 Ii‘;iza HM-ANN  HM, ANN RMSE, NSE
Ain Shams HEC-RAS
HEC-RA !
[72] 2 Engineering 6 (liNNS & Muskingum Standard error, etc.
Journal method

[67] integrated flows computed from a one-dimensional hydrodynamic numerical model, at a

river section where measured data is not available, for ANN training and validation. In this study,
the studied river reach was divided into sub-reaches, and different ANN blocks were used for
individual sub-reaches. The integration of observations and results of numerical model into the ANN
model training enhanced the overall model performance. This study used a hydrodynamic numerical
model only to provide data for historical flood events. [66] applied the HEC-RAS, which simulates
one-dimensional hydrodynamic flow by numerically solving the Saint-Venant equations, to generate
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a training data of a multilayer-feedforward network (MLEN) covering possible extreme flood events
instead of only considering recorded floods. By combining the HEC-RAS and an ANN, this study
tried to overcome both the high computational demands regarding to the application of a
hydrodynamic model and the restricted extrapolation abilities of ANNs. Similarly, [68] used
synthetic floods generated by the HEC-RAS model to train adaptive ANN models for flood routing
in river systems. They applied a MLP, a RNN, a time delay neural network (TDNN) and a time delay
recurrent neural network (TDRNN) and found that the TDNN and the TDRNN, that are dynamic
networks, perform more accurately than the static MLP network. [69] used ANN and adaptive neuro-
fuzzy inference system (ANFIS) for flood routing. These two models were trained using the upstream
hydrographs generated by HEC-1 and routed hygrographs by the HEC-RAS at downstream end. The
two models used data of up to 10 previous time intervals (approximately 2.5 h) as inputs. This study
showed that the results of ANN and ANFIS models coincided with the results of the HEC-RAS, and
suggested the application of the two machine learning models due to their stability and high speed.
In addition, [72] performed sensitivity analysis using HEC-RAS to identify effective parameters on
the shape and the peak discharge of the downstream hydrograph. Then synthetic realizations
generated by the HEC-RAS were used to train, validate, and test the ANNSs to estimate peak discharge
and the outflow hydrograph at a downstream section. The first ANN was trained to predict the peak
discharge from base time of the upstream hydrograph, peak of this hydrograph, length of the reach,
bed slope of the channel, and Manning’s coefficient of the channel. The second ANN was trained to
estimate the outflow hydrograph from the inflow hydrograph at the upstream section. The ANN
showed better performance compared to the Muskingum method in the prediction of outflow
hydrograph.

[70] presented a new real-time updating approach named KN2K for a one-dimensional hydraulic
model by coupling the k-nearest neighbor (KNN) procedure and the Kalman filter (KF). This study
used the KNN procedure to improve the robustness and accuracy of the KF. The updating
performance of KN2K was compared to that of the KF method, and it was turned out that the KN2K
method is more reliable then the KF method.

[71] applied a deep convolutional neural network (CNN) model to rapidly predict fluvial flood
inundation. The modeling approach based on a CNN method was proposed to solve the problem of
high computational demand of two-dimensional (2D) hydraulic models in real-time application. The
inputs of the CNN include discharge time-series with lags and observation time, and the outputs of
the model are water depths. The inputs of the CNN are generated from the LISFLOOD-FP, which is
a 2D hydraulic model. The results of this study showed high accuracy in capturing flooded cells and
that the CNN model performs better than a SVR method.

[10] hybridized a hydrodynamic model based on the Saint-Venant equations with ANNs to
improve the accuracy of the flood forecasting for the Han River. This study applied ANNSs to correct
the errors of the hydrodynamic model using the observed discharge and flow, and outputs of the
hydrodynamic model. When the lead time of flood forecasting increases, the hybrid model showed
improved accuracy compared to a single ANN model, which indicates that the hybrid approach
presents less deterioration in forecasting accuracy at higher lead times. The results of this study
showed that the hybrid model performs better than the single application of the hydrodynamic
model or an ANN in flood forecasting.

3. Conclusions

This paper provides a comprehensive review on the application of machine learning techniques
for river flood routing prediction. The application of ML models demonstrated outstanding
performance in modeling flood routing with high accuracy. The advancement of the novel ML
methods is determined by properly designing learning algorithms and the performance of ML
models could be improved through coupling with other physically-based models, ML methods, and
soft computing techniques. Such hybrid applications were demonstrated to provide more efficient
and robust models that can effectively learn more complex flood routing prediction. In real-time
application, ML models can overcome the problems of stability and long computational time of
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conventional flood routing models such as hydrodynamic models. The difficulties of applying
hydrodynamic models in real-time operations were discussed by [66] who overcome such problems
by using ANNs. However, one of the main limitations of ML models is that the trained models are
difficult to be generalized due to the limited prediction ability when the inputs of the model beyond
the data used to train them. ML models can be highly sensitive to the input data [10,14]. The effect of
training data on the performance of ML models have not been fully studied as mentioned by [73].
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Nomenclature

ACO Ant colony optimization

ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network

ANSE Arithmetic mean

ARIMA Autoregressive integrated moving average
ARMA Auto-regressive moving averageo-regressive m
BA Bat algorithm

BFGS Broyden-fletcher-goldfarb-shanno

BSA Backtracking search algorithm

BT Bagged tree

cC Coefficient of correlation

CE Coefficient of efficiency

CFBNN Cascade forward backpropagation neural network
CNN Convolutional neural network

C-QPSO Cuckoo quantum-behaviour particle swarm optimization
CSA Clonal selection algorithm

DE Differential evolution

DE Differential evolution

DLCM Discrete linear cascade model

DP Difference in peak

DPF Difference in peak flow

EA Evolutionary algorithm

EEMD Ensemble empirical mode decomposition
EMD Empirical model decomposition

EQp Error of peak discharge

ETp Error of time to peak

FFBNN Feed-forward backpropagation neural network
FMLP Feed forward multilayer percetptron

GA Genetic algorithm

GBM Gradient-boosted machine

GEP Gene expression programming

GMC Gaussian mixture copula

GP Genetic programming

GPR Gaussian process regression

GRG Generalized reduced gradient

GRP Gaussian process regression

GRU Gated recurrent unit

GWO Grey wolf optimizer

HBSA Hybrid bat-swarm algorithm

HPSO Hybrid particle swarm optimization

HS Harmony search
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ICA Imperialist competitive algorithm
ICSA Immune clonal selectio algorithm
I0A Index of agreement
KF Kalman filter
KGE Kling-Gupta efficiency
KN2K KNN-KF
KNN K-nearest neighbor
LM Levenberg-Marquardt
LMM Lagrange multiplier
LSSVM Least squares support vector machine
LSTM Long short-term memory
MAE Mean absolute error
MAPE Mean absolute percentage error
MBE Mean bias error
MHBMO Modified honey bee mating optimization
ML Mahine Learning
MLFN Multilayer-feedforward network
MLP Multilayer perceptron
MRE Mean relative error
MSE Mean square error
MWLP MLP-based water level prediction
NMM Nonlinear Muskingum model
NMS Nelder-mead simplex
NSE Nash-Sutcliffe Coefficient
PCC Pearson correlation coefficient
PI Persistence index
PSF-HS Parameter setting free-harmony search
PSO Particle swarm optimization
PWRMSE Peak-weighted root mean square error
R? Coefficient of determination
RAPID Routing application for parallel computation of discharge
RCM Rating curve method
RF Random forest
RFR Random forest regression
RMSE Root mean square error
RNN Recurrent neural network
RWLP RNN-based water level prediction
SA Shark algorithm
SBA Social-based algorithm
SDE Standard deviation of the NSE
SFLA Shuffled frog leaping algorithm
SI Scatter index
S-LSM segmented least square method
SSE Sum of squared error
SSQ Sum of the square of the deviations between the observed and routed outflows
SVM Support vector machine
SVR Support vector regression
TDNN Time delay neural network
TDRNN Time delay recurrent neural network
TSS Taylor skill score
VMD Variational model decomposition
WI Willmott's index of agreement
WOA Weed optimizatio algorithm
WPANFIS Wavelet packet-based adaptive neuro-fuzzy inference system
WPANN Wavelet packet-based artificial neural network

XGBoost Extream gradient boosting
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