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Abstract: River flood routing computes changes in shape of a flood wave over time as it travels downstream 

along a river. Conventional flood routing models, especially hydrodynamic models require high quality and 

quantity of input data such as measured hydrologic time series, geometric data, hydraulic structures and 

hydrological parameters. Unlike physically based models, machine learning algorithms, which are data driven 

models, do not require much knowledge about underlying physical processes and can identify complex 

nonlinearity between inputs and outputs. Due to the higher performance, less complexity, and low 

computation cost, novel machine learning methods as a single application or hybrid application were 

introduced by researchers to achieve more accurate and efficient flood routing. This paper reviews the recent 

application of machine learning methods in river flood routing. 
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1. Introduction 

Floods are one of the most devastating disasters that cause damages to human lives, society and 

ecosystem. Accurate simulation of flood flow is significantly important for flood control and 

reduction of flood losses. Physically based models and data-driven models are two main categories 

of existing flood routing models. Physically based model can be divided into hydraulic and 

hydrologic flood routing models constructed based on empirical or theoretical governing equations 

describing the propagation of a flood wave along a river to estimate the changes in streamflow (depth 

and discharge) with time. Various physical characteristics and boundary conditions are required to 

be determined to construct physically based models, which requires in-depth (extensive) knowledge 

in physical process. Widely used physically based models involve Muskingum model [1–3], and the 

hydrodynamic model based on Saint-Venant equations which is solved by various numerical 

methods [4–10].  

Data-driven models map relationships between hydrological variables to describe hydrological 

processes without requiring extensive knowledge of underlying physical principles. Simple data-

driven models based on linear assumptions for regression fitting include the auto-regressive moving 

average (ARMA) model [11], and the autoregressive integrated moving average (ARIMA) model [12]. 

In recent decades, machine learning (ML) methods have gained popularity along with the 

development of artificial intelligence. ML methods can deal with more complex hydrological 

processes by mapping nonlinear relationships between hydrological variables. Commonly applied 

ML methods in river flood routing computation include support vector regression (SVR) [13,14], 

artificial neural networks (ANNs) [15,16], multilayer perceptron (MLP) [14], gated recurrent units 

(GRUs) [14,17], long short-term memory (LSTM) [14,18], and so on. Machine learning methods have 

been widely applied in hydrological field such as rainfall-runoff models, and flood forecasting. 

However, the applications for river flood routing are relatively limited.  

This paper mainly reviews the single application and hybrid application of ML methods for river 

flood routing as shown in Figure 1. The hybrid application of ML methods is divided into two 
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categories: one is for optimization of physically based flood routing model and the other is for 

combined usage with a physically based flood routing model to improve prediction accuracy. 

 

Figure 1. Application of ML methods for river flood routing. 

2. ML methods 

2.1. Single application 

Numerous studies applied ML models for flood routing simulation. Physically based models 

require physical parameters and river geometry data, while machine learning methods only use the 

time series data from upstream gauging stations to estimate the water level or discharge at the 

downstream locations of a river reach. Reviewed papers regarding the single application of ML 

methods for flood routing computation are presented in Table 1.  

Table 1. Single applications of ML method for flood routing simulation. 

Paper 
No. of 

citations 
Journal 

Impact 

factor 
Studied river Adopted method Compared models 

Modeling 

performance 

criteria 

[19] 73 
Hydrological 

Processes 
3.2 

Walla Walla River, 

USA 
GP  NMM RMSE, CC  

[15] 125 
Computers & 

Geosciences 
8.1 

Kushabhadra River, 

India 
ANN MIKE 11 HD 

RMSE, R2, 

NSE, IOA, DP 

[16] 164 

Alexandria 

Engineering 

Journal 

6.8 River Nile, Sudan ANN  R2, RMSE 

[13] 7 
Journal of Applied 

Mathematics 
- River Wyre, UK SVM Muskingum model SSE 

[20] 19 
Water Resources 

Management 
4.2 

Chindwin River, 

Myanmar 
ANN  

CE, MRE, 

EQp, ETp  

[21] 46 Natural Hazards 3.7 
Kheir Abad River, 

Iran 
ANN (FF-SBA) 

FF-GA, FF-PSO, Linear 

regression, Non-linear 

regression 

R2, MSE 

[22] 18 Natural Hazards 3.7 
Maryam Negar 

River, Iran 
ANN, ANFIS   

MAE, RMSE, 

Bias, SI, SSQ 

[23] 40 Water 3.4 Tiber River, Italy ANN 

RCM, GA_RCM, 

PSO_RCM, ACO_RCM, 

Saint-Venant, PSO_NMM, 

ACO_NMM, GA_NMM 

EQp, ETp, 

MAE, RMSE 
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[24] 10 

Theoretical and 

Applied 

Climatology 

3.4 Gharesoo River, Iran GEP, ANN Muskingum model R2, RMSE 

[17] 53 
Journal of 

Hydrology 
6.4 

South-to-North 

water Diversion 

Project channel, 

China 

MWLP, RWLP, 

LSTM, GRU 
SVM, ANN 

RMSE, MAE, 

NSE, PCC, PI  

[25] 3 Hydrology 3.2 
Tanshui River, 

Taiwan 

EEMD and 

stepwise 

regression 

 CC, RMSE 

[26] 4 

Environmental 

Science and 

Pollution Research 

5.8 
Turnasuyu Stream, 

Turkey 

LSSVM, PSO-

LSSVM, EMD-

LSSVM, 

Wavelet-

LSSVM, VMD-

LSSVM 

 
MAPE, NSE, 

MBE, R2  

[27] 1 

Stochastic 

Environmental 

Research and Risk 

Assessment 

4.2 

Mera Stream, Sarisu 

Stream, Kizilirmak 

River, Turkey 

BT, GBM, KNN, 

RF, SVM, 

XGBoost 

 
R2, RMSE, 

MAE 

[28] 0 Water Supply 1.7 Mera River, Turkey 
EMD-CFBNN, 

EME-FFBNN  
CFBNN, FFBNN CC 

[18] 0 
Environmental 

Sciences Europe 
5.9 

Tisza River, Central 

Europe 
LSTM DLCM, MLP, Linear model, 

MAE, RMSE, 

R2, WI 

[14] 2 Water  3.4 
Yangtze River, 

China 

SVR, GPR, RFR, 

MLP, LSTM, 

GRU 

 

MAPE, RMSE, 

NSE, TSS, 

KGE  

2.1.1. Support vector regression (SVR) 

SVR is a ML technique based on structural risk minimization theory and statistical learning 

hypothesis [29]. The idea of SVR is that an entire sample set can be represented by a small number of 

support vectors [30]. In SVR, a kernel function is used to create a linearly divisible space by converting 

the sample space, then predictive analysis on the new samples is performed using the maximum 

interval partition line and support vectors [14]. The learning ability of a SVR model is highly affected 

by the selected kernel function. The commonly used kernel functions are the linear kernel, 

polynomial kernel, precomputed kernel, and radial basis function kernel. [13] used SVM in three 

different flood routing problems. In this study, the dynamics of the studied floods were captured by 

applying the SVM from observed data, and the model showed good performance for flood routing 

modeling. [27] compared the performance of various machine learning models including SVM for 

flood routing prediction in Eskisehir, Ankara and Sivas, and [14] used linear kernel in a SVR for flood 

routing in the Yangtze River. 

2.1.2. Artificial neural network (ANN) 

ANN is a nonlinear modeling approach which mimic the human brain function [31]. The 

nonlinear relationship between input and output variables in an ANN model is estimated by 

neurons, weights and biases. In an ANN, it is important to properly determine the number of hidden 

neurons, the number of hidden layers, and the activation functions. [32] showed that one hidden 

layer is adequate for an ANN to solve hydrological problems. Therefore, many studies in 

hydrological field used one hidden layer to estimate the nonlinear relationships [10,30]. The size of 

hidden nodes is usually defined by performing a trial-and-error method [30]. However, [33] 

proposed that the number of hidden nodes can be determined based on the number of samples. The 

most widely used training method for ANNs is the Levenberg-Marquardt (LM) algorithm as it is fast 

and the most efficient technique [34]. 

In the last few years, ANN has been applied to river flood routing problems including estimation 

at ungauged sites. [15] compared the performance of a MIKE11 hydrodynamic model and ANN 

technique, and found that the trained ANN model performs much better than MIKE11HD results. In 
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this study, an ANN with one hidden layer including 8 neurons was applied to predict downstream 

water levels using measured hourly water level data at upstream gauging stations as inputs.  

[16] used an ANN to simulate flows at a downstream location of the River Nile in Sudan based 

on flows measured at upstream locations. This study examined four scenarios for which data from 

different stations were used as inputs, and compared their performance in flood forecasting.  

[23] trained an ANN to predict the downstream hydrograph and the results of the ANN were 

compared to the nonlinear Muskingum models optimized by particle swarm optimization (PSO), ant 

colony optimization (ACO), and GA, and numerical solutions of Saint-Venant equations. The results 

of this study showed that the performance of flood routing applying machine learning algorithms is 

as good as that of the Saint-Venant model.  

ANNs combined with meta-heuristic algorithms have been investigated by many researchers. 

[21] presented an ANN optimized by social-based algorithm (SBA) to simulate flood routing. SBA is 

one of the meta-heuristic approaches which combines evolutionary algorithm (EA) and imperialist 

competitive algorithm (ICA) [35]. This paper showed that the hybrid optimization approach can 

achieve better results in efficiency and performance. In addition, [22] optimized ANN flood routing 

model with ICA, Bat algorithm (BA), PSO and GA, and their results showed that the ANN-ICA is the 

best prediction model.  

The multilayer perceptron (MLP) is one of ANNs which is the most widely used feedforward 

model. A MLP consists of one input layer, at least one hidden layer, and one output layer, and the 

layers of a MLP are fully connected [36]. [20] investigated the feedforward ANNs to solve the 

complex nonlinear problems of Muskingum flood routing for a natural river in Myanmar. A feed 

forward multilayer perceptron (FMLP) structure was designed in this study based on the 

Muskingum routing equations. Therefore, the FMLP has the same input and output variables with a 

Muskingum routing approach. This study showed that the feedforward ANN is a promising 

alternative in Muskingum routing after comparing the FMLP to the nonlinear Muskingum models 

using other reported methods such as genetic algorithm (GA) [37], nelder-mead simplex (NMS) 

algorithm [38], broyden-fletcher-goldfarb-shanno (BFGS) method [39] in solving the parameter 

estimation. Besides, [14] applied a MLP with one hidden layer including 100 hidden neurons for the 

flood routing.  

2.1.3. Recurrent neural network (RNN) 

RNN is a neural network originated from the idea that human cognition is based on the past 

memory and experience [17]. The main difference compared to the MLP is that RNN can consider 

the input of the previous moment and involve a memory function of the previous content. Widely 

used hidden layer neurons are RNN, LSTM, and GRU.  

LSTM is a recurrent neural network that uses the gated memory units to control input, memory, 

output, and other information, so that the problem of gradient disappearance and explosion of the 

RNN for long sequence data is solved [40]. [18] applied a LSTM for water level prediction using daily 

water levels observed at 12 gauging stations. The LSTM model was compared to the discrete linear 

cascade model (DLCM) in this study and it was shown that the LSTM model provides better results 

than the DLCM. This study noted that the encoder-decoder architecture of the LSTM is effective at 

solving multi-horizon forecasting problems.  

GRU is a recurrent neural network which is similar to the structure of LSTM, but the number of 

gates used in the construction of the two models is different. It has been reported that GRU is simpler 

than LSTM, but has similar learning ability regarding long-term dependencies in time series data 

[17]. [14] constructed a GRU model for flood routing in the Yangtze River and compared the 

performance of the GRU with other machine learning models such as SVR, gaussian process 

regression (GRP), multilayer perceptron (MLP), random forest regression (RFR) and LSTM. It was 

demonstrated that the GRU model showed superior performance than other models. [17] adopted 

MLP and RNNs including LSTM and GRU to predict the water level of cascaded channels by mining 

the high-dimensional correlated hydrodynamic features considering the spatial and temporal 

window. This study compared the RNN-based prediction models with various methods such as 
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MLP-based prediction model, ANN, SVM, and RF, and demonstrated that the RNN-based prediction 

model is more suitable for the water level prediction of cascade channels. 

2.1.4. Random forest regression (RFR) 

RFR is an ensemble machine learning proposed by [41]. It is based on the idea of integrated 

learning and the definition of several independent trees. The results from randomized and de-

correlated decision trees are aggregated to obtain predictions [42]. The most important hyper-

parameters of the RFR are the number of trees and randomly selected features. [14] and [27] used the 

RFR for flood routing and compared the performance of RFR to other various machine learning 

models. [14] noted that the RFR model showed overfitting for inflow hydrograph prediction of the 

Three Georges Reservoir.  

2.1.5. K-nearest neighbor (KNN) 

KNN is a non-parametric classification and regression algorithm [27]. It stores all of the available 

cases and creates new clusters by classifying them based on their similarity measure. The KNN finds 

the nearest neighbor using Euclidean distance and perform classification. [27] investigated the 

performance of the KNN algorithm compared with kernel-based and tree-based algorithms for flood 

routing prediction and concluded that the KNN can produce successful outputs for flood forecasting 

in Ankara.  

2.1.6. Other ML methods 

[43] designed a network-based Fuzzy Inference System (FIS) based on the Muskingum formula 

for describing the relationship between inflows and outflows. [24] applied the gene expression 

programming (GEP) and ANN as alternative approaches of the Muskingum model to predict the 

downstream outflow hydrograph. This study investigated inflow hydrographs at different time steps 

for GEP and ANN models. The results showed that the GEP model presents better performance 

compared with ANN and Muskingum model for multiple inflows system. [25] developed a new 

model applying ensemble empirical mode decomposition (EEMD) and stepwise regression for water 

level forecasting in a tidal river. Only water level data were used in the proposed model, and it was 

found that the model is simple and highly accurate.  

The genetic programming (GP) was derived from Darwin’s principle of natural evolution. GP 
operates on parse trees to describe the relationship between input and output variables [19]. Control 

parameters have to be set before applying the GP algorithm such as population size, maximum 

number of generations, and crossover and mutation probability. [19] proposed a GP model as an 

alternative to the non-linear Muskingum model. This study demonstrated that the GP model can 

route complex flood hydrographs in natural channels and perform better than the non-linear 

Muskingum model. Other machine learning method applied for flood routing includes GPR [14], 

gradient-boosted machine (GBM) [27], bagged tree (BT) [27], and extreme gradient boosting 

(XGBoost) [27].  

Machine learning methods have been applied combining with mathematical techniques such as 

wavelet packet decomposition [44] which divides an input time series into two components: 

approximation and detail. [44] applied the hybrid models named wavelet packet-based artificial 

neural network (WPANN) and wavelet packet-based adaptive neuro-fuzzy inference system 

(WPANFIS) to forecast the downstream river stage using upstream observed river stage and lags. 

The results of this study indicated that the ANN and ANFIS models for river stage forecasting 

improved after combining wavelet packet decomposition. A hybrid approach applying empirical 

model decomposition (EMD) and neural networks was proposed by [28] for flood routing prediction. 

This study hybridized the EMD signal decomposition technique with the feed-forward 

backpropagation neural network (FFBNN) and cascade forward backpropagation neural network 

(CFBNN) algorithms. The results of this study showed that the EMD signal decomposition technique 

can improve the performance of ML models, and the EMD-FFBNN model was the most successful 
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algorithm in the flood routing calculation. Besides, hybrid machine learning models including least 

squares support vector machine (LSSVM), PSO-LSSVM, EMD-LSSVM, Wavelet-LSSVM, and 

variational model decomposition (VMD)-LSSVM were investigated by [26]. This research compared 

the performance of the five flood routing methods and found that the PSO-LSSVM is the most 

successful model.  

2.2. Hybrid application 

2.2.1. ML-based optimization technique 

Intelligent optimization algorithms become popular due to their flexibility, simplicity to use, 

effective handling of discrete problems, no need for differentiation, and the ability to find global 

optima [45]. Muskingum routing, which is a hydrological method developed by [46], has been widely 

used for river flood routing with the parameter estimation for linear and nonlinear forms [20]. In 

order to improve the accuracy of the Muskingum model, numerous meta-heuristic algorithms have 

been used in the optimization of the model parameters, whose results have been reported more 

accurate than the outputs of the conventional method such as the Lagrange multiplier (LMM) and 

segmented least square method (S-LSM) [47]. The inspiration of meta-heuristic algorithms originated 

from natural concepts. For example, GA was proposed based on the Darwin’s “survival of the fittest”; 
PSO simulates the collective behavior of birds; and clonal selection algorithm (CSA) comes from the 

cuckoo nesting behavior. Table 2 shows the machine learning methods used for the estimation of 

parameters of Muskingum models.  

Table 2. ML methods used for the parameter estimation of Muskingum models. 

Pape

r 

No. of 

citations 
Journal 

Impact 

factor 

Adopted 

method 

[37] 261 Journal of Hydraulic Engineering 2.4 GA 

[48] 278 
Journal of the American Water Resources 

Association 
2.4 HS 

[39] 95 Journal of Irrigation and Drainage Engineering 2.6 BFGS  

[19] 73 Hydrological Processes 3.2 GP 

[43] 87 Journal of Hydrologic Engineering 2.4 PSO 

[49] 55 Journal of Hydrologic Engineering 2.4 ICSA  

[38] 218 Journal of Hydrologic Engineering 2.4 
NMS 

algorithm 

[50] 65 Journal of Hydrologic Engineering 2.4 

Parameter-

setting-free 

HS 

[51] 55 Journal of Hydrologic Engineering 2.4 DE  

[52] 157 Journal of Hydrologic Engineering 2.4 BFGS-HS 

[53] 55 Neural Computing and Application 6 HPSO  

[54] 15 Journal of Irrigation and Drainage Engineering 2.6 SFLA-NMS 

[55] 65 Journal of Hydrologic Engineering 2.4 
MHBMO 

algorithm 

[56] 23 Journal of Irrigation and Drainage Engineering 2.6 WOA  

[57] 42 Water Resources Management 4.3 PSO 

[58] 37 Water Resources Management 4.3 
MHBMO-

GRG  

[1] 33 Water Resources Management 4.3 

BSA 

evolutionar

y algorithm 

[59] 39 Water 3.4 HBSA  
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[23] 40 Water 3.4 
PSO, ACO, 

GA 

[60] 11 Water Resources Management 4.3 SA  

[61] 13 Water Resources Management 4.3 PSO-GA 

[62] 9 Water & Climate Change 2.8 PSO 

[63] 13 Water & Climate Change 2.8 PSO-LM 

[47] 4 MethodsX 1.9 
GWO 

algorithm 

[64] 0 Neural Processing Letters 3.1 C-QPSO  

[65] 0 Hydroinformatics 2.7 

GPR, GMC, 

RF, 

XGBoost 

[37] applied genetic algorithm (GA) and found that GA is efficient to estimate the parameters of 

nonlinear Muskingum routing models. [48] used a heuristic algorithm, harmony search (HS), and 

demonstrated that HS performs better in the parameter determination of the nonlinear Muskingum 

model than GA. The GA approach creates a new vector from only two vectors, while a new vector is 

originated from every single existing vector in the HS algorithm, which allows the HS to find better 

solutions with greater flexibility [48]. [43] compared the PSO algorithm to the GA and HS, and 

showed that HS algorithm produces the most precise results. An improved backtracking search 

algorithm (BSA) proposed by [1] was demonstrated to outperform PSO, GA, and differential 

evolution (DE) [51] for parameter estimation of nonlinear Muskingum model. Other algorithms such 

as immune clonal selection algorithm (ICSA) [49], parameter setting free-harmony search (PSF-HS) 

algorithm [50], Nelder-Mead simplex (NMS) algorithm [38], harmony search-Broyden-Fletcher-

Goldfarb-Shanno (HS-BFGS) algorithm [52], modified honey-bee mating optimization (MHBMO) 

algorithm [58] have been proposed due to their efficiency and fast convergence.  

[64] proposed a hybrid cuckoo quantum-behavior particle swarm optimization (C-QPSO) and 

demonstrated the global optimization ability of the algorithm in the application to the parameter 

estimation of a nonlinear Muskingum model. Other hybrid optimization algorithms combining two 

approaches include HS-BFGS [52], SFLA-NMS [54], and MHBMO-GRG [58]. These hybrid techniques 

can provide appropriate initial guess for Muskingum parameters and reduce the uncertainties to 

cause different results for different runs [58]. [53] presented a hybrid particle swarm optimization 

(HPSO) by combining PSO with NMS method to estimate the Muskingum model parameters. This 

study firstly used PSO algorithm to conduct the global optimization, then applied NMS method to 

perform the local search of optimum. Similarly, [59] developed hybrid bat-swarm algorithm (HBSA), 

which is a hybrid of bat algorithm (BA) and PSO algorithm, for the optimal estimation of four 

parameters of the Muskingum model, so that a global optimum can be searched without trapping in 

the local minimums. Another attempt to find global solution was made by [63] using hybrid PSO-LM 

algorithm for the calibration of the nonlinear Muskingum model.  

Efforts were also made to determine parameters of modified forms of nonlinear Muskingum 

models by applying meta-heuristic optimization techniques. [58] proposed MHBMO-GRG for a six-

parameter Muskingum model. [56] applied weed optimization algorithm (WOA) in the estimation of 

parameters for an extended nonlinear Muskingum model with introducing a parameterized initial 

storage condition. [57] and [60] implemented PSO algorithm and Shark algorithm, respectively, for 

four-parameter non-linear Muskingum models. [47] used Grey Wolf Optimizer (GWO) algorithm to 

estimate the parameters of two nonlinear Muskingum models with three and four constant 

parameters.  

[65] applied ML techniques in the parameter calibration of the Routing Application for Parallel 

computation of Discharge (RAPID) model without requiring measured streamflow. The RAPID 

model uses a linear Muskingum routing algorithm. This study explored four ML architectures 

including GPR, gaussian mixture copula (GMC), XGBoost, and random forest (RF) in learning the 

relationship between river features and model parameters. The first two methods perform 
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probabilistic predictions, while XGBoost and RF yield a single-point prediction. It was shown that 

XGBoost performs best, followed by GPR, RF, and GMC. 

2.2.2. Hybrid application of a hydraulic model and ML method 

A number of simplifications and assumptions are involved for physically based river flood 

routing models. Hydrologic and hydraulic methods are two main classes of conventional flood 

routing methods. Hydrological models such as the Muskingum model solves the storage equation 

and continuity equation to estimate the downstream flow hydrograph. Examples of hydraulic models 

includes kinematic wave model and model based on Saint-Venant equations. The efficiency of 

hydraulic models can be restricted due to the high demands on computer resources, the quality and 

quantity of inputs [20]. In addition, a high resolution in space and small calculation time step lead to 

quite high computational efforts [66], which restricts the application of a hydrodynamic model in real 

time operation. Therefore, methodologies combining artificial intelligence and hydrodynamic 

models have been proposed by many studies due to their robustness and fast speed. Table 3 shows 

the studies on the hybrid application of a hydraulic model and a ML method for the flood routing 

prediction. 

Table 3. Hybrid applications of a hydraulic model and ML method. 

Paper 
No. of 

citations 
Journal 

Impact 

factor 
Studied river 

Adopted 

method 

Compared 

model 

Modeling performance 

criteria 

[67] 88 

Hydrology 

and Earth 

System 

Science 

6.3 
Neckar River, 

Germany 

ANN & a one-

dimensional 

hydrodynamic 

numerical 

model 

- CE, R2, RMSE, DPF  

[66] 40 
Advances in 

Geosciences 
1.6 

Freiberger 

Mulde River, 

Germany 

HEC-RAS & 

ANN 
HEC-RAS R2 

[68] 14 

Water 

Internationa

l 

2.6 
Karoon River, 

Iran 

HEC-RAS & 

adaptive ANNs 

HEC-RAS, 

Muskingum 

routing method 

CE, PWRMSE, mean 

error of time to peak, 

volume error of highest 

peaks 

[69] 36 

Water and 

Environme

nt Journal  

2 
Doogh River, 

Iran 

HEC-RAS & 

ANN; HEC-

RAS & ANFIS 

HEC-RAS NSE, MRE, RMSE 

[70] 64 

Internationa

l Journal of 

Sediment 

Research 

3.6 
Huai River, 

China 

KN2K & one-

dimensional 

hydraulic 

model 

KF & one-

dimensional 

hydraulic 

model 

NSE, ANSE, SDE  

[71] 101 
Journal of 

Hydrology 
6.4 

Eden 

Catchment, 

UK 

LISFLOOD-FP 

& CNN 

LISFLOOD-FP, 

SVR 
NSE, RMSE 

[10] 0 Water 3.4 
Han River, 

South Korea 
HM-ANN HM, ANN RMSE, NSE 

[72] 2 

Ain Shams 

Engineering 

Journal 

6  
HEC-RAS & 

ANN 

HEC-RAS, 

Muskingum 

method 

Standard error, etc. 

[67] integrated flows computed from a one-dimensional hydrodynamic numerical model, at a 

river section where measured data is not available, for ANN training and validation. In this study, 

the studied river reach was divided into sub-reaches, and different ANN blocks were used for 

individual sub-reaches. The integration of observations and results of numerical model into the ANN 

model training enhanced the overall model performance. This study used a hydrodynamic numerical 

model only to provide data for historical flood events. [66] applied the HEC-RAS, which simulates 

one-dimensional hydrodynamic flow by numerically solving the Saint-Venant equations, to generate 
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a training data of a multilayer-feedforward network (MLFN) covering possible extreme flood events 

instead of only considering recorded floods. By combining the HEC-RAS and an ANN, this study 

tried to overcome both the high computational demands regarding to the application of a 

hydrodynamic model and the restricted extrapolation abilities of ANNs. Similarly, [68] used 

synthetic floods generated by the HEC-RAS model to train adaptive ANN models for flood routing 

in river systems. They applied a MLP, a RNN, a time delay neural network (TDNN) and a time delay 

recurrent neural network (TDRNN) and found that the TDNN and the TDRNN, that are dynamic 

networks, perform more accurately than the static MLP network. [69] used ANN and adaptive neuro-

fuzzy inference system (ANFIS) for flood routing. These two models were trained using the upstream 

hydrographs generated by HEC-1 and routed hygrographs by the HEC-RAS at downstream end. The 

two models used data of up to 10 previous time intervals (approximately 2.5 h) as inputs. This study 

showed that the results of ANN and ANFIS models coincided with the results of the HEC-RAS, and 

suggested the application of the two machine learning models due to their stability and high speed. 

In addition, [72] performed sensitivity analysis using HEC-RAS to identify effective parameters on 

the shape and the peak discharge of the downstream hydrograph. Then synthetic realizations 

generated by the HEC-RAS were used to train, validate, and test the ANNs to estimate peak discharge 

and the outflow hydrograph at a downstream section. The first ANN was trained to predict the peak 

discharge from base time of the upstream hydrograph, peak of this hydrograph, length of the reach, 

bed slope of the channel, and Manning’s coefficient of the channel. The second ANN was trained to 

estimate the outflow hydrograph from the inflow hydrograph at the upstream section. The ANN 

showed better performance compared to the Muskingum method in the prediction of outflow 

hydrograph.  

[70] presented a new real-time updating approach named KN2K for a one-dimensional hydraulic 

model by coupling the k-nearest neighbor (KNN) procedure and the Kalman filter (KF). This study 

used the KNN procedure to improve the robustness and accuracy of the KF. The updating 

performance of KN2K was compared to that of the KF method, and it was turned out that the KN2K 

method is more reliable then the KF method.  

[71] applied a deep convolutional neural network (CNN) model to rapidly predict fluvial flood 

inundation. The modeling approach based on a CNN method was proposed to solve the problem of 

high computational demand of two-dimensional (2D) hydraulic models in real-time application. The 

inputs of the CNN include discharge time-series with lags and observation time, and the outputs of 

the model are water depths. The inputs of the CNN are generated from the LISFLOOD-FP, which is 

a 2D hydraulic model. The results of this study showed high accuracy in capturing flooded cells and 

that the CNN model performs better than a SVR method.  

[10] hybridized a hydrodynamic model based on the Saint-Venant equations with ANNs to 

improve the accuracy of the flood forecasting for the Han River. This study applied ANNs to correct 

the errors of the hydrodynamic model using the observed discharge and flow, and outputs of the 

hydrodynamic model. When the lead time of flood forecasting increases, the hybrid model showed 

improved accuracy compared to a single ANN model, which indicates that the hybrid approach 

presents less deterioration in forecasting accuracy at higher lead times. The results of this study 

showed that the hybrid model performs better than the single application of the hydrodynamic 

model or an ANN in flood forecasting.  

3. Conclusions 

This paper provides a comprehensive review on the application of machine learning techniques 

for river flood routing prediction. The application of ML models demonstrated outstanding 

performance in modeling flood routing with high accuracy. The advancement of the novel ML 

methods is determined by properly designing learning algorithms and the performance of ML 

models could be improved through coupling with other physically-based models, ML methods, and 

soft computing techniques. Such hybrid applications were demonstrated to provide more efficient 

and robust models that can effectively learn more complex flood routing prediction. In real-time 

application, ML models can overcome the problems of stability and long computational time of 
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conventional flood routing models such as hydrodynamic models. The difficulties of applying 

hydrodynamic models in real-time operations were discussed by [66] who overcome such problems 

by using ANNs. However, one of the main limitations of ML models is that the trained models are 

difficult to be generalized due to the limited prediction ability when the inputs of the model beyond 

the data used to train them. ML models can be highly sensitive to the input data [10,14]. The effect of 

training data on the performance of ML models have not been fully studied as mentioned by [73].  
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Nomenclature 

ACO Ant colony optimization  

ANFIS Adaptive neuro-fuzzy inference system 

ANN Artificial neural network 

ANSE Arithmetic mean 

ARIMA Autoregressive integrated moving average  

ARMA Auto-regressive moving averageo-regressive m 

BA Bat algorithm 

BFGS Broyden-fletcher-goldfarb-shanno  

BSA Backtracking search algorithm 

BT Bagged tree 

CC Coefficient of correlation 

CE Coefficient of efficiency 

CFBNN Cascade forward backpropagation neural network 

CNN Convolutional neural network 

C-QPSO Cuckoo quantum-behaviour particle swarm optimization 

CSA Clonal selection algorithm  

DE Differential evolution 

DE Differential evolution 

DLCM Discrete linear cascade model 
DP Difference in peak 

DPF  Difference in peak flow 

EA Evolutionary algorithm  

EEMD Ensemble empirical mode decomposition  

EMD Empirical model decomposition  

EQp Error of peak discharge 

ETp Error of time to peak 

FFBNN Feed-forward backpropagation neural network  

FMLP Feed forward multilayer percetptron  

GA Genetic algorithm 

GBM Gradient-boosted machine 

GEP Gene expression programming  

GMC Gaussian mixture copula 

GP Genetic programming 

GPR Gaussian process regression  

GRG Generalized reduced gradient  

GRP Gaussian process regression  

GRU Gated recurrent unit 
GWO Grey wolf optimizer 

HBSA Hybrid bat-swarm algorithm 

HPSO Hybrid particle swarm optimization 

HS Harmony search 
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ICA Imperialist competitive algorithm  

ICSA Immune clonal selectio algorithm 

IOA Index of agreement 
KF Kalman filter 

KGE Kling-Gupta efficiency 

KN2K KNN-KF 

KNN K-nearest neighbor  

LM Levenberg-Marquardt 
LMM Lagrange multiplier  

LSSVM Least squares support vector machine 

LSTM Long short-term memory 

MAE Mean absolute error 

MAPE Mean absolute percentage error 

MBE Mean bias error 

MHBMO Modified honey bee mating optimization 

ML Mahine Learning 

MLFN Multilayer-feedforward network 

MLP Multilayer perceptron 

MRE Mean relative error 

MSE Mean square error 

MWLP MLP-based water level prediction 

NMM Nonlinear Muskingum model 
NMS Nelder-mead simplex  

NSE Nash-Sutcliffe Coefficient 
PCC Pearson correlation coefficient 
PI Persistence index 

PSF-HS Parameter setting free-harmony search  

PSO Particle swarm optimization 

PWRMSE Peak-weighted root mean square error 

R2 Coefficient of determination 

RAPID Routing application for parallel computation of discharge 

RCM Rating curve method 

RF Random forest 
RFR Random forest regression  

RMSE Root mean square error 

RNN Recurrent neural network  

RWLP RNN-based water level prediction 

SA Shark algorithm 

SBA Social-based algorithm  

SDE Standard deviation of the NSE 

SFLA Shuffled frog leaping algorithm 

SI Scatter index 

S-LSM segmented least square method 

SSE Sum of squared error 

SSQ Sum of the square of the deviations between the observed and routed outflows 

SVM Support vector machine 

SVR Support vector regression 

TDNN Time delay neural network 

TDRNN Time delay recurrent neural network  

TSS Taylor skill score 

VMD Variational model decomposition  

WI Willmott's index of agreement 
WOA Weed optimizatio algorithm 

WPANFIS Wavelet packet-based adaptive neuro-fuzzy inference system 

WPANN Wavelet packet-based artificial neural network 

XGBoost Extream gradient boosting 
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