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Abstract: While current video quality assessment research predominantly revolves around resolutions

of 4K and beyond, targeted at Ultra High-Definition (UHD) displays, effective video quality for mobile

video streaming remains primarily within the range of 480p to 1080p. In this study, we conducted

a comparative analysis of the Quality of Experience (QoE) for widely implemented video codecs

on mobile devices, specifically Advanced Video Coding (AVC), its successor High-Efficiency Video

Coding (HEVC), and Google’s VP9. Our choice of 720p video sequences from a newly developed

database, all with identical bitrates, aimed to maintain a manageable subjective assessment duration,

capped at 35-40 minutes. To mimic real-time network conditions, we generated stimuli by streaming

original video clips over a controlled emulated setup, subjecting them to eight different packet

loss scenarios. We evaluated the quality and structural similarity of the distorted video clips using

objective metrics, including Video Quality Metric (VQM), Peak Signal-to-Noise Ratio (PSNR), Video

Multi-Method Assessment Fusion (VMAF), and Multi-Scale Structural Similarity Index (MS-SSIM).

Subsequently, we collected subjective ratings through a custom mobile application developed for

Android devices. Our findings revealed that VMAF accurately represents the degradation in video

quality compared to other metrics. Moreover, in most cases, HEVC exhibits an advantage over both

AVC and VP9 under low packet loss scenarios. However, it is noteworthy that in our test cases,

AVC outperformed HEVC and VP9 in scenarios with high packet loss, based on both subjective

and objective assessments. Our observations further indicate that user preferences for the presented

content contribute to video quality ratings, emphasizing the importance of additional factors that

influence the perceived video quality of end-users.

Keywords: QoE metrics; Video quality assessments; HEVC and AVC comparison; mobile codecs

efficiency; Multimedia Streaming; QoE IFs

1. INTRODUCTION

The affordability of handheld mobile devices with internet availability has resulted in the

tremendous growth of multimedia traffic. More brands are turning towards content creators for

the promotion of their products and the quality of content with good end-user experience is the key

to success due to severe competition among monetized offerings. The anticipated global monthly

data usage is 19-GB in 2023 as per the latest mobile data traffic forecasts [1,2]. There is a shift towards

the consumption of multimedia especially video streaming and gaming on mobile devices. The

global mobile gaming market has already reached around 185 billion US dollars as of 2022 and is

expected to grow threefold by the end of 2027 [3–5]. The ascent of multimedia and gaming on mobile

phones is emblematic of a transformative shift in how individuals engage with digital content and

entertainment. The convergence of powerful hardware, intuitive user interfaces, and a thriving app

ecosystem has turned mobile devices into multifunctional entertainment hubs. This paradigm shift can

be attributed to several key factors. Firstly, the increasingly sophisticated mobile hardware, equipped

with high-resolution displays, robust processors, and advanced graphics capabilities, has created an

ideal platform for delivering visually immersive multimedia and gaming experiences [6,7]. Secondly,
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the availability of high-speed internet connectivity, particularly the widespread deployment of 4G

and the emergence of 5G networks, has ensured seamless streaming and online multiplayer gaming

experiences [8,9]. Moreover, the app marketplaces, such as Apple’s App Store and Google Play, have

fostered an environment where developers can innovate and publish an extensive array of multimedia

and gaming applications, meeting diverse user preferences. As a result, mobile phones have become a

primary medium for entertainment consumption, reshaping the dynamics of the media and gaming

industries [10,11]. Thus, the success of any social media application with video at its core relies on

choosing the correct platform, codecs, and optimizations to adapt to end-to-end network quality

parameters.

Taking into consideration the aforementioned factors, we conducted an analysis of the

performance of the most widely employed video codecs across diverse hardware and software

platforms, particularly in the context of video streaming and mobile gaming. Video codecs are

fundamental in the compression and transmission of digital video content, and the comparison

between the AVC (Advanced Video Coding, H.264), HEVC (High-Efficiency Video Coding, H.265), and

VP9 codecs has attracted significant attention. While HEVC and VP9 may indeed offer superior coding

efficiency with respect to compression, AVC maintains a dominant market share of nearly 80% in the

mobile device sector [12]. This prevalence can be attributed to its lower processing overhead, resulting

in reduced computational demands, a vital consideration for mobile devices. This paper presents a

comprehensive codec comparison, evaluating both objective and subjective Quality of Experience (QoE)

metrics to gauge user perception. Additionally, we analyzed the impact of human-influencing factors,

such as user contentment with the displayed material, on video quality assessments. Beyond the

conventional Mean Opinion Score (MOS), we incorporate the Good or Better (GoB) and Poor or Worse

(PoW) metrics, which are highly recommended for delivering a more transparent and well-rounded

assessment of user ratings [13,14]. Our findings affirm that, regardless of its age, AVC demonstrates

superior performance atleast on mobile devices, owing to its optimization and lower computational

demands. Moreover, our results underscore the significance of human-influencing factors and their

potential to influence video quality ratings.

The paper is structured as follows: In Section 2, we offer an overview of the background

and a concise exploration of relevant technologies. Section 3 provides comprehensive details of

the experimental setup, including all parameters. Section 4 presents the assessment outcomes,

accompanied by essential explanations. Lastly, Section 5 outlines the conclusions drawn from our

study.

2. BACKGROUND

In this section, we have focused on the video codec standards, the QoE perspective for quality

comparison, and the role of additional impact factors. A summary of previous work relevant to this

paper is also provided.

Significant research has been conducted to evaluate the performance disparities between HEVC

and AVC across various scenarios encompassing bitrate, quality optimization, and computational

overhead. These investigations spanned from QoE assessments on high-definition displays to

crowdsourced studies. However, a noticeable research gap exists regarding the impact of these

codecs’ performance specifically on mobile devices, utilizing a database obtained within an emulated

network for future benchmarking. Song et al. [15] modeled the performance of AVC, HEVC, and

VP9, observing that VP9 and HEVC exhibit a superior bitrate performance of 33% to 44% respectively

across multiple resolutions compared to AVC. However, the database used in their study comprised

solely of encoded videos generated locally, lacking consideration for computational overhead. Casas et

al. [16] measured QoE provision on smartphones, employing lab-based assessments and user ratings

garnered through crowdsourcing. Their evaluation encompassed platforms like YouTube, WhatsApp,

and Facebook accessed via Chrome and Google Maps. Notably, this study did not delve into the

analysis of underlying codecs or specialized applications for quality assessment. Some other research
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studies have focused on codec performance within vehicular networks and live video broadcasting on

mobile devices, exploring platforms such as Periscope and Facebook Live. These studies emphasized

the performance evaluation of communication protocols like Real-time Messaging Protocol (RTMP)

and HTTP Live Streaming (HLS) and are not focused on underlying codec performance [17,18].

2.1. Video Codecs

Video coding standards are primarily evaluated based on compression performance alongside

the ability to maintain video quality. The implementation of coding standards within an application

is extremely important by maintaining the defined syntax of bit-stream and the decoding process,

while encoders generate standard-compliant bitstream and thus determine compression performance.

This is primarily the reason that old codec with a relatively higher degree of optimizations within

an application over the years may outperform the new codec with better theoretical compression

efficiency.

2.1.1. AVC and HEVC

H.264/MPEG-4-AVC [19] was launched back in 2004 and is still the widely used video coding

standard over diverse platforms. According to Bitmovin’s Video Developer Report, H.264 (AVC) is

the world’s most popular codec with an estimated 90% of video using it. Most modern devices with

heterogeneous platform support AVC, and due to the low computational overhead as compared to

its rivals, makes it a first choice for mobile-based applications [12]. AVC leverages both spatial and

temporal redundancy reduction techniques to compress video data effectively. Spatial compression

is facilitated through intra-frame coding, which encodes each frame independently. Temporal

compression, on the other hand, is achieved through inter-frame prediction, where subsequent frames

are predicted based on preceding frames, and only the differences (residuals) are encoded. Additionally,

AVC employs predictive coding, which involves predicting pixel values based on neighboring pixels,

thereby reducing the amount of information that needs to be transmitted. The codec also features

advanced entropy coding techniques, such as context-adaptive binary arithmetic coding (CABAC),

which adaptively encodes symbols based on the context, resulting in more efficient coding. AVC’s

versatility is evident in its support for a wide range of video resolutions and bit rates, rendering it

suitable for diverse applications, from low-resolution video conferencing to high-definition video

streaming [20,21].

HEVC, also known as H.265, represents a significant advancement in video compression standards.

Developed through a collaborative effort between the ITU-T Video Coding Experts Group (VCEG) and

the ISO/IEC Moving Picture Experts Group (MPEG), HEVC was introduced to address the growing

demand for more efficient video compression while maintaining high-quality video [22]. HEVC

introduces coding tree units (CTUs), enabling more flexible partitioning of coding units and improving

compression efficiency. It employs quad-tree block partitioning, variable block sizes, and a wider

range of prediction directions, enhancing its ability to capture intricate motion in video [23]. HEVC’s

advanced compression capabilities make it well-suited for ultra-high-definition (UHD) video content,

as it can deliver the same quality video at approximately half the bit rate of its predecessor, H.264.

2.1.2. VP9

Google’s VP9 is an open-source video codec that has emerged as a significant player in the domain

of video compression, particularly in web-based video streaming and mobile gaming. Designed as

a royalty-free alternative to established standards like H.264 and H.265, VP9 is part of Google’s

WebM project, which aims to provide efficient and high-quality video codecs for web applications.

VP9 employs a variety of advanced techniques to achieve its compression goals. These include

both intra-frame and inter-frame coding, enabling efficient compression by encoding individual

frames independently and using inter-frame prediction to reduce redundancy. The codec supports

a range of block sizes, allowing it to adapt to various types of video content. A notable advantage
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of VP9 is its capability to handle higher resolutions and bit depths, making it particularly suited for

ultra-high-definition (UHD) content [24,25]. This feature, combined with its open-source nature, has

made VP9 a popular choice for streaming and web video applications like YouTube, etc. However, the

codec may face challenges related to hardware decoder support on different devices as Apple devices

do not support VP9. Despite this, VP9 remains a significant contender in the landscape of video codecs,

offering efficient compression while avoiding licensing costs, particularly advantageous for web-based

video streaming.

2.2. QoE Perspective

The term QoE is defined by ITU-T as ’The degree of delight or annoyance of the user of an application or

service.’ [26], with reference to the full definition that continues with ’It results from the fulfillment of his

or her expectations with respect to the utility and / or enjoyment of the application or service in the light of the

user’s personality and current state’ [27]. QoE offers a spectrum of objective metrics aimed at gauging user

perception regarding video quality through various tools. However, the most dependable measure

resides in direct user interaction, achieved by conducting subjective assessments.

2.3. Objective Metrics

Evaluations of video quality can be categorized as full-reference, reduced-reference, or

no-reference, contingent upon the accessibility of original videos for reference. The complexities

inherent in aggregating video databases and the limited availability of full-reference necessitate the

development of diverse methodologies for gauging no-reference bitstream data such as progressive

downloads, image quality assessments, and adaptive video streaming [28–30]. Our research

focuses on mobile devices, prioritizing lifelike resolutions for video streaming. We’ve constructed

a video stimuli database within an emulated network environment, guaranteeing the availability

of extensive full-reference data for our evaluations. The objective metrics employed in evaluating

QoE span various families, such as structural similarity metrics encompassing methodologies like the

Multi-Scale Structural Similarity Index (MS-SSIM), among others. Additionally, within the realm of

principle quality metrics, notable members include the Peak Signal-to-Noise Ratio (PSNR) and Video

Multi-method Assessment Fusion (VMAF), etc [31]. These full-reference metrics primarily function to

measure the disparity between the original frames and those received, constituting the video stream.

Notably, different video codecs tend to yield distinct distortions, posing a challenge for these metrics.

This study integrates MS-SSIM, VMAF, PSNR, and Video Quality Metric (VQM) methodologies to

ascertain video quality, considering the nuanced implications of codec-induced distortions.

2.3.1. PSNR and MS-SSIM

SSIM and PSNR stand as the prevailing objective metrics for quantifying image and video quality

owing to their computational simplicity and extensive historical benchmarking, among other factors.

A multitude of scientific publications have evaluated the merits and demerits of these metrics. A

comprehensive synthesis of these deliberations is available via the MSU Graphics and Media Lab

Video Group link, drawing insights from an analysis encompassing 378 articles [32]. MS-SSIM is an

enhancement to the traditional structural similarity index by using sub-sampling on multiple stages

and involves structural distortion measurement instead of the error [33]. The MS-SSIM is defined as:

MS-SSIM =
1

N

N

∑
i=1

[

SSIMi(L) · (MS-SSIMi(C))
β
]

(1)
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Where:

MS-SSIM = Multi-Scale Structural Similarity Index

N = Number of scales

i = Scale index, ranging from 1 to N

SSIMi(L) = SSIM at scale i for the luminance (luma) component

MS-SSIMi(C) = Contrast component of MS-SSIM at scale i

β = Weighting parameter

2.3.2. VQM and VMAF

VQM assesses the perceptual impact of video distortions, encompassing aspects such as blurring,

irregular motion, global noise, block distortion, and color aberrations, combining these factors into a

unified metric. Empirical testing outcomes demonstrate a strong alignment between VQM scores and

subjective evaluations of video quality, leading to its adoption by ANSI as an benchmark for objective

video quality assessment [31,34].

VMAF is a video quality metric developed by Netflix in collaboration with multiple research

groups notably the Laboratory for Image and Video Engineering (LIVE) at The University of Texas.

The metric measures information fidelity loss, loss of details, impairments, and temporal difference

based on luminance [35]. It tends to outperform other metrics in both Netflix tests and other video

quality tools benchmarks [36,37].

2.4. Subjective Metrics

The Mean Opinion Score (MOS) serves as the prevailing subjective metric employed to quantize

user perception regarding a stimulus and has found extensive adoption within the industry for

assessing speech and video quality [26]. Several studies delve into the efficacy of MOS, debating

whether the disparity between ratings like ’Good’ and ’Excellent’ equates to the difference observed

between ’Poor’ and ’Bad.’ Conversely, other research explores the relevance of MOS in accurately

predicting user perception towards stimuli, highlighting its potential in assessing acceptability [38–

40]. On the other hand, many factors can influence the user ratings like user background, the test

environment, etc. The term Influence Factor (IF) is defined as ’Any characteristic of a user, system,

service, application, or context whose actual state or setting may have influence on the Quality of

Experience for the user’ [27].

In this paper, we have analyzed the impact of user liking (delight) towards the shown content on

his video quality ratings which resulted in multiple sub-groups. So, apart from standard statistical

computations, we have calculated one-way ANOVA to analyze the difference and statistical relevance

of our results where there are more than three sub-categories. The one-way ANOVA can be easily

calculated from mean-squared error and is commonly derived as shown below:

MSE =
∑

k
i=1 ∑

ni
j=1(Xij − X̄i)

2

N − k

where N be the total number of observations. - k be the number of groups or treatments. - ni be

the number of observations in the i-th group. We can compute the overall sample mean X̄ and the

between-group variability, also known as the mean squared treatment (MST), is given by:

MST =
∑

k
i=1 ni(X̄i − X̄)2

k − 1

The test statistic for one-way ANOVA is the ratio of between-group variability to within-group

variability, known as the F-statistic:
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F =
MST

MSE

Under the null hypothesis, the F-statistic follows an F-distribution with (k − 1, N − k) degrees of

freedom. We can compare the calculated F-statistic to the critical value from the F-distribution table to

make a decision. If F > Fα, we reject the null hypothesis in favor of the alternative.

3. EXPERIMENTAL SETUP

This section describes the reasons for the choice of video stimuli for this paper, the details about

the emulated network, induced transmission impairments, and the methodology used for conducting

the subjective assessment.

3.1. Video Selection

Drawing from our prior experiences and ongoing discussions pertaining to prolonged subjective

assessments involving numerous video stimuli lasting a few seconds each [41,42], it was observed

that the users tend to get bored and start losing focus which may affect their ratings. Consequently,

we created a database by selecting four original video clips from the xiph.org test suite, resulting in

a database of 112 video stimuli after distortions to maintain a reasonable duration for the subjective

assessment process. The technical specifications of these videos are available in the Table 1.

Table 1. Reference Videos Specifications

Name Length seconds f ps Resolution

Ducks 10 50 1280 × 720
Johnny 10 60 1280 × 720

KristenAndSara 10 60 1280 × 720
Vidyo1 10 60 1280 × 720

The source video sequences are in color-sensitive raw format i.e., YUV4Mpeg (.y4m). All four

videos belong to YUV 4:2:0 color space with three different temporal and spatial characteristics as per

ITU-T P.910 recommendations [43]. All four videos are different from each other in terms of spatial

characteristics. The spatial and temporal details of these videos can be found in these articles [44–46].

AVC and HEVC videos were encoded using libx264 and libx265 video coding libraries respectively

with Matroska [47] as the container. Whereas the VP9 videos are encoded using the libvpx-vp9

library and WEBM [24] as the container. Although the most common resolution for video streaming

over mobile devices is still hovering around 480p, we have chosen the 720p resolution which is the

most common resolution for video streaming on mobile devices for applications like YouTube over

high-speed 4G/5G networks or Wifi [48,49].

The sample frame from the original source sequences are shown in the Figure 1.

(a) Ducks (b) Johnny (c) KristenAndSara (d) Vidyo1

Figure 1. Frames from reference videos

As the focus of the research was on additional influence factors and to remain focused on the

benchmarking of objective and subjective metrics so apart from the Ducks video, the remaining three

videos fall in the low temporal index. The Ducks video has medium spatial and temporal effects while

Johnny, KristenAndSara, and Vidyo1 belong to different categories in terms of spatial index.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 December 2023                   doi:10.20944/preprints202312.2342.v1

https://doi.org/10.20944/preprints202312.2342.v1


7 of 17

3.2. Emulated Testbed and Network Impairments

The experimental setup used for collecting the video stimuli can be categorized into four

groups [40]:

1. to compress the test media using different codecs, resolutions, bps, and frame rates into the

local machine. The benchmarking of the resultant video and compression efficiency is used to

determine the quality of the video codec
2. to use the real-time network and streaming videos using different parameters mentioned above

and collecting the stimuli on the end-devices
3. to use simulation software to stream stimuli with different codec settings on a depicted network

with varying transmission impairments
4. to use an emulated testbed for real network experience with an opportunity for repeatable results

We have adopted the emulated network approach to replicate the real network conditions and manage

issues like priorities associated with video packets in a repeatable environment. The setup used for

establishing the emulated network is shown in the Figure 2.

Figure 2. Video Streaming Setup: Emulated Approach

The emulated testbed consists of a streaming media server, a network emulator, and a client. The

test network is designed to identify the effect of packet loss on the quality of videos encoded in H.264,

H.265, and VP9. The apparatus is designed to stream HD videos from the FFmpeg [50] streaming

server to a client encoded with different video codecs using RTSP protocol through a network emulator

(NetEm) [51], where different network impairments have been imposed on the passing traffic and

the distorted video stream is captured at the client. FFmpeg supports all the latest codecs including

H.264, H.265, and VP9. It also supports all types of UDP and TCP streaming protocols. NetEm is

responsible for routing between server and client using multiple network interfaces and hence, it acts as

an interface between the media server and streaming client. The details of the used hardware/software

can be found in Table 2.

Table 2. Hardware Specifications for the emulated testbed

Specifications Streaming Server Traffic Shaper Client

Platform HP ProLiant DL120 Dell OptiPlex 9020 Dell OptiPlex 3050 (AIO Series)
Processor Intel Xeon E5-1620 Intel Core i7 3.6 GHz-Quad Core Intel Core i7 3.4 GHz-Quad Core

RAM 16GB DDR4 8GB DDR3 8GB DDR4
OS Windows 10Pro Fedora 31(Server Edition) Windows 10Pro

Storage 512GB SSD 500 GB HDD 7200 RPMs 256GB SSD
Software FFMPEG 4.3.1 NetEm Kernel Version 5.5.8 FFMPEG 4.3.1

We have chosen nine packet loss scenarios ranging from 0% to 10% for streaming videos on the

emulated setup. There was no delay or jitter associated with the video stimuli used in this experiment.

The main reason for this choice was the length of the subjective assessment due to the benchmarking of

three codecs. In order to obtain the objective metrics mentioned in Section 2.3. The objective metrics are

obtained using the Video Quality Measurement Tool (VQMT) developed by Moscow State University.
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We have used the 13.1 free version which has some limitations as compared to the Pro version but

provides correct results, unlike the Demo version [52].

3.3. Subjective Assessment

As we were analyzing the codecs with both objective and subjective metrics along with the

additional influence factor of delight on a mobile device, we developed an Android application for

conducting the subjective assessment and Google Firebase [53] is used for the collection of the results.

The assessments were conducted on Samsung Note 10 Lite (SM-N770F/DS) mobile with 8GB of RAM.

Due to the nature of the experiment, it was not possible to conduct the assessment in the perceptual

lab but the method of conduction of individual assessment and rating scales were used as per the

ITU-T P.910 [43] and ITU-R BT.500-14 [54] recommendations. A training session was conducted before

every assessment, and users were provided with both verbal and written instructions as shown in the

Figure 3.

(a) ACR Scale (b) Training Session

(c) User Info (d) MOS

Figure 3. Mobile App for Subjective Assessment
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In the next step, test media without distortions was shown to the user, and they were asked

whether they liked it or not based on a binary scale of ‘Yes’ and ‘No’. The users were also requested

to provide their ranking of the content based on their delight towards the shown content on the 1–9

point scale. These ratings were scaled down to five-point scale with a step size of 0.5 using the formula

5 − (9 − R)/2 where R stands for delight rating on the nine-point scale. This conversion helped us in

comparing the effect of content delight with corresponding MOS. This categorization also helped us

to increase number of users in each sub-category. The basic user data along with influence factors is

taken from the users as shown in the Figure 3. The stimuli encoded with different codecs and packet

loss ratios but belonging to the same group i.e., Johnny, etc. were shown randomly to the subjects.

The users were provided the choice to take a break after watching the first two sets of videos and the

majority of users took a 3–5 minute break. The user ratings for video quality were obtained using the

Single-Stimulus method on a 5-point Absolute Category Rating (ACR) scale.

The selection of test media for this paper meant a total of 112 videos, including the originals

resulting in a total assessment time of around 35–40 minutes. A total of 51 participants rated the test

media resulting in the compilation of 5712 assessments. During the post-evaluation, three outliers

were detected and subsequently excluded from the dataset. Out of the remaining 48 subjects, 20 males

and 28 females participated with a mean age of 22.52 and mode 21. The majority of the participants

were Bachelor students of information technology and were aware of the issues related to the quality

of multimedia streaming.

4. RESULTS AND DISCUSSION

The foremost thing to mention is the encoding delay experienced by the streaming server. As the

processing of videos is done in batches, we have noticed that AVC has the least computing overhead

as compared to HEVC and VP9. In our experience, the encoding delay of HEVC was 3-4 times higher

than the AVC. The time taken was VP9 was slightly better than the HEVC but still far greater than the

AVC. This may be one of the foremost reasons for the resilience of AVC for low computing devices

nowadays. The dataset of the streamed videos was analyzed before the subjective assessment. It

was noted that due to the high temporal and spatial effects of the Ducks video, the results were not

consistent with the other three videos having somewhat similar characteristics. It is important to

mention that some videos like Duck_AVC at 0.7%, Johnny_VP9 at 0.5%, KristenAndSara_AVC at 0.7%,

and Vidyo1_HEVC at 0.1% have low quality as compared to the proceeding high loss video. This

shows the effect of high-priority packet loss associated with different types of encoding frames.

4.1. Objective Assessment

The results of objective metrics are shown in the Figure 4. AVC has outperformed VP9 and is

slightly better or on par with HEVC for most of the cases. It is important to mention that the VMAF

metric has the most reliable estimation of video quality as compared to other metrics. Based on our

results, the MSSSIM is the most unreliable metric as it failed to quantize the video degradation for

different packet loss scenarios and the results are mostly flat. In the case of KristenAndSara_AVC

at 0.7% and Vidyo1_HEVC at 0.1%, we can observe that VMAF can correctly depict the change

as compared to both PSNR and VQM. We can easily say that within the context of the VQMT

implementation used in this paper, VMAF emerges as the optimal metric for quantifying video

quality in multimedia streaming. These findings are in harmony with related research [36,55].

4.2. Subjective Ratings

The comparison of the three codecs for packet loss concerning MOS is shown in the Figure 5.

There are three major observations from the results:

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 December 2023                   doi:10.20944/preprints202312.2342.v1

https://doi.org/10.20944/preprints202312.2342.v1


10 of 17

(a) MSSSIM (b) PSNR

(c) VMAF (d) VQM

Figure 4. Ratings of objective metrics

(a) MOS_Ducks (b) MOS_Johnny

(c) MOS_KristenAndSara (d) MOS_Vidyo1

Figure 5. MOS of subjective assessment

1. The AVC overall outperforms both HEVC and VP9 in terms of human ratings.
2. The HEVC outperforms AVC or is on par in low packet loss scenarios, but its performance

deteriorates when the packet loss reaches around 0.7%.
3. The performance VP9 tend to perform better in higher packet loss environment but still can’t

match the ITU-T codecs.

One key observation is that the MOS ratings reflect the actual degradation of the video quality for

low packet loss ratios as compared to most objective metrics in the previous section. If the amount
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of overhead associated with HEVC and VP9 is considered as described above in Section 4, we can

understand that the performance gains for HEVC are not significant and that is the reason for the

popularity and resilience of AVC as of 2023. Moreover, it also shows that for mobile devices with the

requirements of computational and power efficiency, the AVC will remain the most popular codec in

the near future. The values of GoB and PoW metrics are shown in the Table 3.

Table 3. GoB and PoW metrics

AVC HEVC VP9
Stimuli PL% GoB% PoW% GoB% PoW% GoB% PoW%

Jo
h

n
n

y

0% 100% 0% 100% 0% 100% 0%
0.1% 100% 0% 100% 0% 62.5% 4.2%
0.3% 91.7% 0% 100% 0% 0% 25%
0.5% 43.8% 2.1% 64.6% 0% 0% 97.9%
0.7% 62.5% 0% 2.1% 50% 0% 100%
1% 39.6% 0% 0% 93.7% 0% 95.8%
3% 0% 91.7% 0% 100% 0% 100%
5% 0% 100% 0% 100% 0% 100%
10% 0% 100% 0% 100% 0% 100%

K
ri

st
en

A
n

d
S

ar
a

0% 100% 0% 100% 0% 100% 0%
0.1% 100% 0% 100% 0% 52.1% 4.2%
0.3% 50% 0% 100% 0% 2.1% 52.1%
0.5% 22.9% 8.3% 0% 18.8% 0% 75%
0.7% 0% 22.9% 0% 66.7% 0% 95.8%
1% 0% 47.9% 0% 68.7% 0% 89.6%
3% 0% 100% 0% 77.1% 0% 95.8%
5% 0% 100% 0% 95.8% 0% 100%
10% 0% 100% 0% 100% 0% 100%

V
id

y
o

1

0% 100% 0% 100% 0% 100% 0%
0.1% 100% 0% 100% 0% 10.4% 22.9%
0.3% 60.4% 0% 81.3% 0% 0% 89.6%
0.5% 22.9% 0% 52.1% 4.2% 0% 93.8%
0.7% 35.4% 0% 35.4% 18.8% 0% 87.5%
1% 16.7% 0% 0% 100% 0% 89.6%
3% 0% 100% 0% 100% 0% 100%
5% 0% 100% 0% 100% 0% 100%
10% 0% 100% 0% 100% 0% 100%

It is evident that the GoB percentage remains satisfactory up to a 0.5% packet loss. Additionally,

the figures reveal a significant degradation in video quality when using the VP9 implementation

in our testbed, even at low packet loss ratios. These metrics offer a more meaningful and easily

comprehensible insight compared to MOS values in our evaluation.
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4.3. Impact of delight of shown video content

Apart from the video quality, numerous human and system influence factors may affect user

ratings [56,57]. We have taken the input from the users towards their delight for the shown content

on a binary and ordinal scale as described in Section 2. The results of the MOS values based on user

delight with error bars are shown in the Figure 6.

(a) MOS_Ducks (b) MOS_Johnny

(c) MOS_KristenAndSara (d) MOS_Vidyo1

Figure 6. MOS of subjective assessment based on Delight for AVC

The effect of Delight on the shown content and its impact on MOS is evident. Although there are

only two groups of results for the binary scale, we have calculated one-way ANOVA to observe the

statistical relevance of the results. In the case of the Ducks video for AVC, apart from packet loss ratios

of 0.3 and 0.5%, the remaining ratings are either statistically relevant or very close to being relevant, i.e.,

α=0.05. It is very important to mention that for Johnny video where the majority of subjects didn’t like

the content, the impact is negligible for most of the scenarios. In the case of KristenAndSara and Vidyo1

with almost the same number of delights, the impact is statistically significant for some medium and

high packet loss ratios. These results are in line with our previous work where we have observed that

people showing delight towards a particular content are more critical if the video quality is degraded

to a level where their viewing experience is disturbed [58]. To investigate this behavior, we have also

used the user ratings towards the shown content on a 1—9 ordinal scale. The results for the Ducks

video for HEVC and VP9 are shown in the Table4.
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Table 4. One way ANOVA for Ducks Video

Codec Packet Loss Ratio Delight Ratings_Sig Delight_Sig

HEVC
0.5% 0.077 0.041
1% 0.227 0.044
3% 0.011 0.050

VP9
0.3% 0.20 0.056
0.5% 0.360 0.028
0.7% 0.018 0.011
1% 0.273 0.005
3% 0.430 0.004
5% 0.011 0.050

The issue here is a smaller number of subjects in each group due to nine subgroups i.e., Dislike

Extremely, Dislike Very Much, Dislike Moderately (n=3), Dislike Slightly (n=4), Neutral (n=4), Like Slightly

(n=5), Like Moderately (n=11), Like Very Much (n=10), Like Extremely (n=11) where n shows users within

the each group. Due to such a small sample size, we can observe the higher values of alpha for most of

the scenarios which are significant on the binary scale. So, we have plotted the mean values for user

ratings of one scenario where we have a higher significance level as compared to the binary scale, i.e.,

packet loss at 1%. The results are shown in the Figure 7.

(a) Ducks_HEVC (b) Ducks_VP9

Figure 7. Mean plot of delight for Ducks video

It can be observed that the users who have shown extreme delight towards the content are more

critical when the quality degrades below a certain level. We have observed this trend in most of the

remaining results. This shows that delight towards the content can influence user ratings and people

are more sensitive to the video quality of the content which they like extremely.

5. CONCLUSION

In this study, we conducted performance benchmarking of the AVC, HEVC, and VP9 codecs on a

mobile device. This evaluation encompassed both objective metrics and subjective assessments,

considering various packet loss ratios within an emulated network environment. Our analysis

focused on the prevailing video streaming resolution for high-speed networks on handheld devices.

Our findings revealed that videos streamed using the AVC codec exhibited superior quality and

greater resilience to transmission impairments. While HEVC occasionally matched or surpassed

AVC performance under low packet loss conditions, its substantial computational overhead and

subsequent power consumption offset this advantage. Conversely, VP9 consistently underperformed

in comparison to other codecs across the spectrum of test scenarios. Additionally, we observed

limitations in the accuracy of objective metrics, with VMAF emerging as the most reliable metric in

our study.

In line with existing research, we have found that user delight plays a significant role in the user

ratings of the shown video. Statistical significance was evident in most cases, and users exhibited
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heightened scrutiny of video quality degradation once they had a strong affinity for the content.

This underscores the significance of human-related factors and the necessity for collecting user input

beyond conventional MOS ratings. Ultimately, our work highlights the importance of incorporating

these user-related influences into future models to enhance the accuracy of user perception predictions.
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Abbreviations

The following abbreviations are used in this manuscript:

QoE Quality of Experience

AVC Advanced Video Coding

HEVC High-Efficiency Video Coding

VQM Video Quality Metric

PSNR Peak Signal-to-Noise Ratio

VMAF Video Multi-Method Assessment Fusion

MS-SSIM Multi-Scale Structural Similarity Index

MOS Mean Opinion Score

GoB Good or Better

PoW Poor or Worse

VQMT Video Quality Measurement Tool

ACR Absolute Category Rating
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