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Article 

Exploring Entropy‐Based Classification of Time 
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Abstract: Classification of time series based on machine learning (ML) analysis and entropy features 
is an urgent task in studying nonlinear signals. There are many types of entropies, which in turn 
have several customizable parameters. One of the main problems is assessing the effectiveness of 
entropies used as features for machine learning (ML) classification of nonlinear dynamics of time 
series. In this paper, we propose a method for assessing the effectiveness of entropy features using 
several  chaotic  mappings.  We  anlyze  fuzzy  entropy  (FuzzyEn)  and  neural  network  entropy 
(NNetEn) on four discrete mappings: the logistic map, the sine map, the Planck map, and the two‐
memristor‐based map, with a base length time series of 300 elements. FuzzyEn is shown to have 
improved global efficiency (GEFMCC) in the classification task compared to NNetEn. At the same 
time, there are local areas of the time series dynamics in which the classification efficiency NNetEn 
is higher than FuzzyEn. The results of using horizontal visibility graphs (HVG) instead of the raw 
time series are also shown. GEFMCC decreases after HVG time series transformation, but there are 
local areas of the time series dynamics in which the classification efficiency increases after including 
the HVG. The scientific community can use the results to explore the efficiency of entropy‐based 
classification of time series. 

Keywords:  chaotic maps; NNetEn;  neural  network  entropy;  horizontal  visibility  graphs;  fuzzy 
entropy; classification; entropy global efficiency; GEFMCC 

MSC: 37M10; 54C70; 68T01 
 

1. Introduction 

Classification of time series based on entropy analysis and machine learning (ML) is a trending 
task in studying nonlinear signals. For example, EEG classification in diagnosing Alzheimerʹs disease 
[1,2] and Parkinsonʹs disease [3–6]. There are many types of entropies, which in turn have several 
customizable  parameters,  for  example,  sample  entropy  (SampEn)  [7],  cosine  similarity  entropy 
(CoSiEn)  [8],  singular  value  decomposition  entropy  (SVDEn)  [9],  fuzzy  entropy  (FuzzyEn)  [10], 
permutation entropy (PermEn) [11], etc. In this context, it is a problem of paramount importance to 
assess the effectiveness of the different entropies when used as features in ML classification. Recently, 
Velichko et al. proposed the use of a LogNNet neural network [12,13] for neural network entropy 
(NNetEn) calculation [1]. LogNNet neural network is a feedforward neural network that uses filters 
based on the logistic function and a reservoir inspired by recurrent neural networks, thus enabling 
the  transformation of  a  signal  into  a high‐dimensional  space.  Its  efficiency was validated on  the 
MNIST‐10  data  set  [14].  They  showed  that  the  classification  performance  is  proportional  to  the 
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entropy of the  time series and has a stronger correlation  than  the Lyapunov exponent of the  time 
series used to feed the reservoir. The effectiveness of using NNetEn was shown on EEG signals in 
diagnosing Alzheimerʹs disease [1].    The effectiveness of fuzzy entropy was also demonstrated in 
the paper of Belyaev et al. [3] in diagnosing Parkinsonʹs disease. 

Natural visibility graph (NVG) graphs were introduced in [15] as a simple and computationally 
efficient method  to represent a  time series as a graph. Visibility graphs preserve  the periodic and 
chaotic properties of the discrete map [15]  , see also [16–18]. For example, periodic series result in 
regular graphs, random series in random graphs, and fractal series in scale‐free graphs. Horizontal 
Visibility Graphs (HVG) were introduced in [19] to simplify the previously described NVG. Visibility 
graphs  (VG) enable  to  reduce  the complexity of calculations which depend on  time  series, while 
preserving the accuracy on the results, see for instance [20–22] 

In  [23],  the  authors  describe  the  advantages  of  using  the  amplitude  difference  distribution 
instead of the degree distribution to collect information from the network formed by the horizontal 
visibility graph. Li and Shang introduce a combination of the amplitude difference distribution with 
discrete generalized past entropy to present a new method called Discrete Generalized Past Entropy 
based on the Amplitude Difference Distribution of the Horizontal Visibility Graph (AHVG‐DGPE). 
The  authors  note  its  efficiency  in  systems  evaluation  and  higher  accuracy  and  sensitivity  rate 
compared to the traditional method in characterizing dynamic systems, see also      [24–26] 

In  this paper, we propose a method  for assessing the effectiveness of entropies using chaotic 
mappings: We use it for analyzing the FuzzyEn and NNetEn entropies on four discrete mappings is 
given: the logistic map, the sine map, the Planck map, and the two‐memristor based map. We use the 
corresponding HVG degrees representation of these time series, which implies that the resulting time 
series does not consist of real numbers but only of integer numbers. The results of using horizontal 
visibility graphs (HVG) to classify time series are also shown: 

The major contributions of the paper are:   
 A concept for comparing the efficiency of classifying chaotic time series using entropy features 

is presented. 
 A new characteristic for assessing the global efficiency of entropy (GEFMCC) is presented. 
 A comparison of the effectiveness of FuzzyEn and NNetEn was investigated. FuzzyEn is shown 

to have improved GEFMCC in the classification task compared to NNetEn. At the same time, 
there are local areas of the time series dynamics in which the classification efficiency NNetEn is 
higher  than  FuzzyEn.  Matthews  correlation  coefficient  was  used  to  evaluate  binary 
classification.   

 The results of using HVG are shown. GEFMCC decreases after HVG time series transformation, 
but  there  are  local  areas  of  the  time  series  dynamics  in which  the  classification  efficiency 
increases after HVG. 
This paper is organized as follows: In Section 2, we introduce the methods we have used, while 

in Section 3, we explain the results we obtained, and finally, in Section 4, we discuss the results and 
state the conclusions, and we outline some ideas for future works. 

2. Materials and Methods 

2.1. Generation of synthetic time series 

To generate synthetic time series, we used several types of the discrete chaotic map. The control 
parameter rj (j = 1...Nr) varied discretely with step dr. 

1. Logistic map [27,28]: 

1 (1 )n j n nx r x x    
, 3.4 ≤ rj ≤ 4, x−999 = 0.1, dr = 0.002, r1 = 3.4, Nr = 301  (1)

2. Sine map [29]:   

1 sin( )n j nx r x   
, 0.7 ≤ rj ≤ 2, x−999 = 0.1, dr = 0.005, r1 = 0.7, Nr = 261  (2)

3. Planck map [30]: 
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(3)

4. Two‐memristor based map (TMBM) [31]:     
2
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  
       , ‐1.7 ≤ rj ≤ ‐1.5 

x−999 = 0.01, y−999 = 0.01, z−999 = 0.01, dr = 0.0005, r1 = ‐1.7, Nr = 401 
 

(4)

The first 1,000 elements (x‐999…x0) are ignored due to the transient period. If n > 0, then the time 
series is calculated for xn. To generate a class corresponding to one value of rj, 100‐time series were 
generated with a length of N = 300 elements. Elements in each series were calculated sequentially, (x1, 
…, x300), (x301, ..., x600), etc. A set of 100 time series was generated at a given rj. The value rj ran through 
the entire range with a certain step dr, see equations (1‐4). 

2.2. Natural and Horizontal Visibility Graphs 

Given a time series {(n,xn)}n∈ℕ indexed on the set of natural numbers ℕ, such that at time n the 
time series takes the value xn, an association between each node and each pair (n, xn) in order to obtain 
the graph associated to the time series. A natural visibility graph (NVG) is constructed as follows: 
given two nodes (n,xn) and (m, xm), these two nodes have visibility and thus they are connected in the 
graph by an edge if any other pair (c, xc) with n < c < m satisfies 

                                                                      (5)   

Horizontal Visibility Graphs  (HVG) were  introduced  in  [19,32]  to  simplify  the  requirements 
described for NVG.   

 

Figure  1.  Illustrative  example  of  the  NVG  representation  for  a  time  series  (left)  and  the  HVG 
representation for the same time series (right). 

When computing the HVG, each time series value is related a node in the resulting graph, as in 
the case of NVG. Two nodes (n, xn) and (m, xm) in this graph are connected if a horizontal line can be 
drawn connecting their corresponding visibility index without intersecting any intermediate value 
that is, if xn, xm > xc for all n < c < m, see the examples in Figure 1. 

Python library ts2vg was used to calculate HVG (‘time series to visibility graphs’) [33], which 
implements algorithms for plotting graphs based on time series data. The package utilizes a highly 
effective C backend  for  its operations  (using Cython)  and  seamlessly  integrates with  the Python 
environment. As  a  result,  ts2vg  can  effortlessly  process  input  data  from  various  sources  using 
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established Python tools. Additionally, it enables the examination and interpretation of the generated 
visibility graphs using a wide range of graph analysis, data science, visualization packages and tools 
compatible with Python. The HorizontalVG method was used to construct the HVG. 

2.3. Time series classification metrics 

We describe the method for calculating the classification metric for the time series of a discrete 
map for neighboring sets corresponding to two neighboring partitions by r. 

Figure 2a shows a section of the buffering diagram of the logistic mapping with two adjacent 
sets of series corresponding to rj‐1 = 3.634 and rj = 3.636; the distance between them corresponds to dr. 
Each set contains 100 time series. Examples of the first time series (x1, …, x300) for each set are shown 
in Figures 2b,c. FuzzyEn values for 100 time series in each set are shown in Figure 2d. We denote the 
average entropy value in each set as Entropy_AV (FuzzyEn_AV or NNetEn_AV). 

   
(a)  (b) 

 
 

(d)  (c) 

Figure 2. Section of the buffering diagram of the logistic map, on which two adjacent sets of series are 
highlighted corresponding to rj‐1 = 3.634 and rj = 3.636 (a), series (x1, …, x300) for rj‐1 = 3.634 (b), series 
(x1, …, x300) for rj = 3.636 (c), FuzzyEn values for 100 time series for two classes (MCC = 1) (d). 

As a result, we compiled a database with two classes. Class 1 contains 100 entropy values of time 
series generated at rj = 3.636, and Class 2 contains 100 entropy values of time series generated at rj‐1 = 
3.634. To classify the two classes, we will use the threshold model. 

The single feature threshold approach involves a simple ML model with a single threshold Vth 
separating the two classes. A formula can represent the separation algorithm. 

if Entropy value   then Class 1) else Class 2( ) (Vth     (6) 

The  search  for Vth was  carried out by  sequential  search within  the  limits of  changes  in  the 
entropy feature, with the determination of the maximum MCC (Matthews correlation coefficient [34]) 
value. We calculated MCC  for  the entire database without dividing  it  into  test and  training data, 
which is equivalent to calculating MCC on training data. 

 MCC is the correlation coefficient between observed and predicted classifications; it returns a 
value between ‐1 and +1. A coefficient of +1 represents a perfect prediction, 0 is a random prediction, 
and ‐1 indicates the opposite, inverted prediction. The higher the MCC module is, the more accurate 
the prediction is, too. A negative MCC value means that the classes must be swapped. The MCC is 
calculated using the values of the confusion matrix as [34]. 
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(TP TN - FP FN)
MСС

(TP FP) (TP FN) (TN FP) (TN FN)

 


            (7) 

where TP stands for (True Positive), TN for (True Negative), FP for (False Positive), and FN for (False 
Negative). The MCC metric is a popular metric in machine learning, including binary classification. 

Figure 2d shows an example where the classes are well separable and MCC = 1. Figure 3 shows 
an example of entropy distribution for classes with rj‐1 = 3.688 and rj = 3.69. It can be seen that the 
classes are poorly separable and MCC ~ 0.45. 

 
Figure 3. Distribution of FuzzyEn in Classes 1 and 2 with rj‐1 = 3.688 and rj = 3.69 (MCC~0.45). 

The MCC(rj) dependence was calculated for all neighboring rj‐1 and rj within the range of changes 
in r of each mapping j = 2…Nr. Let us introduce the concept of global efficiency (GEFMCC), which is 
calculated within the entire mapping under study using the formula 

2

( )

1

Nr

j

j
GEFMCC

MCC r

Nr





            (8) 

where j = 2…Nr is the index of partition by r, Nr is the maximum number of partitions, see equations 
(1‐4). The GEFMCC  characteristic  is equivalent  to  the average value of  the dependence modulus 
MCC(rj), and estimates the degree of entropy efficiency over the entire variety of time series of the 
chaotic mapping. 

2.4. FuzzyEn calculation 

FuzzyEn measures entropy based on fuzzily defined exponential functions for comparison of 
vectors similarity.  It differs  from approximate entropy and sample entropy, which use Heaviside 
function to calculate the irregularities in a time series data [35]. Fuzzy entropy can be calculated as 
follows. For a given  time series  𝑋 ൌ ሾ𝑥ଵ,𝑥ଶ, … , 𝑥ேሿ with given embedding dimension  ሺ𝑚ሻ, an 𝑚െ𝑣𝑒𝑐𝑡𝑜𝑟𝑠  as a form as: 𝑋௠ሺ𝑖ሻ ൌ ሾ𝑥௜ ,𝑥௜ାଵ, … , 𝑥௜ା௠ିଵሿ െ 𝑥0௜                                                    (9) 

These  vectors  represent  𝑚   consecutive  𝑥   values,  starting with  𝑖𝑡ℎ   point, with  the  baseline 𝑥0௜ ൌ ଵ௠∑ 𝑥௜ା௝௠ିଵ௝ୀ଴   removed.  Then,  the  distance  between  vectors  𝑋௠ሺ𝑖ሻ   and  𝑋௠ሺ𝑗ሻ ,  𝑑௜௝,௠   can  be 
defined as the maximum absolute difference between their scalar components. Given  𝑛  and  𝑟, the 
degree of similarity 𝐷௜௝,௠  of the vectors 𝑋௠ሺ𝑖ሻ  and 𝑋௠ሺ𝑗ሻ  is calculated using fuzzy function. 

𝐷௜௝,௠ ൌ 𝜇൫𝑑௜௝,௠𝑟൯ ൌ 𝑒𝑥𝑝 ൬ି൫ௗ೔ೕ,೘൯೙௥ ൰            (10) 

The function 𝜙௠  is defined as: 𝜙௠ሺ𝑛, 𝑟ሻ ൌ ଵேି௠∑ ቀ ଵேି௠ିଵ∑ 𝐷௜௝,௠ேି௠௝ୀଵ,௝ஷ௜ ቁேି௠௜ୀଵ         (11) 
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Repeating the same procedure from equation (9‐10) for the dimension to 𝑚൅ 1, vectors  𝑋௠ାଵሺ𝑖ሻ 
are formed and the function 𝜙௠ାଵ  is obtained. Therefore, FuzzyEn can be estimated as: 𝐹𝑢𝑧𝑧𝑦𝐸𝑛ሺ𝑚,𝑛, 𝑟,𝑁ሻ ൌ 𝑙𝑛𝜙௠ሺ𝑛, 𝑟ሻ െ 𝑙𝑛𝜙௠ାଵሺ𝑛, 𝑟ሻ    (11) 

In the computation of fuzzy entropy, the embedding dimension 𝑚 ൌ 1  and tolerance r = 0.2 x 
std were used  in  the analysis, where std  is a standard deviation of  𝑥௡ , argument exponent  (pre‐
division) r2 = 3 and time delay  𝜏 ൌ 1. 

2.5. NNetEn сalculation 

Figure 4 shows the process for calculating NNetEn [1], it involves several key steps, which are 
detailed below: 

Step 1: The initial step encompasses inputting the time series X = (x1…xN) of length N, into the 
reservoir.   

Six main methods  for  filling  the  reservoir  are  researched  in detail,  as  outlined  in  [36]. The 
methods M1 to M6 involve various techniques for filling the reservoir. M1—Row‐wise filling with 
duplication; M2—Row‐wise filling with an additional zero element; M3—Row‐wise filling with time 
series  stretching; M4—Column‐wise  filling with  duplication; M5—Column‐wise  filling with  an 
additional zero element; M6—Column‐wise filling with time series stretching. 

 
Figure 4. Main steps of NNetEn calculation [1]. 

Step 2: Selection of embedded Datasets 1 and 2, upon which of the classification metric will be 
computed. 

Step 3: Formation of the Y vector from the dataset, with the inclusion of a zero offset Y[0] = 1. 
Step 4: Normalization of the Y vector.   
Step 5: Multiplication of the Y vector with the reservoir matrix and the input vector Sh = W × Y 

to convert it into Sh vector. 
Step 6: Feeding vector Sh into the input layer of the classifier, with a dimension of P_max = 25. 
Step 7: Normalization of the vector Sh. 
Step 8: Utilization of a single‐layer output classifier. 
Step 9 to 10: The neural network is trained according to backpropagation method with a variable 

number of epochs (Ep) and then tested. The parameter of the entropy function is referred as Ep. 
Step 11: Transformation of the classification metric into the NNetEn entropy.   
The parameters used in this work to calculate the entropy of NNetEn are: MNIST database data 

set (database = ʹD1ʹ and mu = 1), method for forming a reservoir from the M3 time series (method = 
3), number of neural network training epochs (epoch) = 5 and the accuracy metric (ʹAccʹ). 

3. Results 

We  present  the  results  of  calculating  the  dependencies  between  the  FuzzyEn_AV(r)  and 
NNetEn_AV(r) for various discrete mappings before and after the HVG transformation of the time 
series. In this way, we observe if visibility graphs retain enough information from the time series in 
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order to calculate the entropies. The results of calculating the MCC(r) dependencies from which the 
characteristic of the global efficiency of GEFMCC from (8) is calculated are presented. 

3.1 Results for logistic, sin and Planck maps 

Figure 5a shows an example of a bifurcation diagram for a logistic map in the range of the control 
parameter  3.4  ≤  r  ≤  4,  with  a  sampling  step  dr  =  0.002.  Figure  5b  shows  the  FuzzyEn_AV(r) 
dependences  before  and  after  applying  the  HVG  transformation.  We  can  see  that  the  HVG 
transformation  leads to a significant  increase  in  the entropy value, while some areas change  their 
relative position.  In  regions A and B, we have  reduced  the  entropies  after having  computed  the 
HVGs, which  is natural  since  they  consist of ordered  time  series. The  relative position of area C 
remains unchanged. The application of the HVG transformation has virtually no effect on the shape 
of the NNetEn_AV(r) graph, causing only a slight upward shift of entropies. The increase in FuzzyEn 
and NNetE values after HVG is due to the fact, in our opinion, that HVG has filtering properties and 
reduces the constant components of time series. However, FuzzyEn and NNetEn are sensitive to the 
constant component of the time series, which can be seen, for example, from the entropy values for r 
< 3.45. 

 

(a) 
 

   
(c)    (b) 

Figure 5. Bifurcation diagrams for logistic map (a); the dependence of entropy on the parameter r for 
NNetEn_AV (b) and FuzzyEn_AV before and after HVG transformation (c). 

Figure 6a shows the MCC(r) dependences for FuzzyEn before and after HVG transformation, as 
well as their difference ΔMCC, which is computed as follows: 

MCC MCC after HVG MCC  
          (14) 
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(a)  (b) 

Figure 6. MCC(r) dependences for FuzzyEn before and after HVG transformation, as well as their 
difference ΔMCC (a) MCC(r) dependences for NNetEn before and after HVG transformation, as well 
as their difference ΔMCC (b). Calculations were made for logistic map. 

Positive values of ΔMCC > 0 indicate that, for a given value of r, the degree of classification of 
time series for rj‐1 and rj increases due to the HVG transformation. Conversely, negative ΔMCC values 
indicate  a decrease  in  classification  efficiency  after HVG  transformation. According  to  the  lower 
figure,  we  see  that  the  HVG  transformation  can  lead  to  both  an  increase  and  a  decrease  in 
classification efficiency for different rj. We provide detailed calculations of the GEFMCC values in 
Table 1. 

Figure 6b shows the MCC(r) dependences for NeNetEn before and after HVG transformation, 
and their difference ΔMCC. It can be seen that the amplitude of MCC for FuzzyEn is more significant 
than for NNetEn, which also affects the GEFMCC value in Table 1. 

Table 1 Comparison of GEFMCC value for different chaotic mappings and entropies, before and after 
HVG. 

  GEFMCC 
  Logistic map  Sine map  Planck map  TMBM map 

FuzzyEn no HVG  0.578  0.524  0.359  0.544 
FuzzyEn after HVG  0.310  0.366  0.267  0.256 
NNetEn no HVG  0.463  0.436  0.482  0.255 
NNetEn after HVG  0.245  0.266  0.208  0.216 

It is convenient to compare the local values of MCC(r) for FuzzyEn and NeNetEn using their 
difference ΔMCC (Figure 7). 

MCC MCC for NNetEn MCC for FuzzyEn  
      (14) 
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Figure 7. ΔMCC(r) dependences for FuzzyEn and NeNetEn. Calculations were made for logistic map. 

Figure 7 shows local areas of the dynamics of time series in which the classification efficiency 
NNetEn is higher than FuzzyEn (ΔMCC > 0), but most of the graph has ΔMCC < 0. 

Similar results were obtained for the sine and Planck maps. Figure A1a (Appendix A) shows an 
example of a bifurcation diagram  for a sin map  in  the control parameter range 0.7 ≤ r ≤ 2, with a 
sampling step dr = 0.005. Figure A1b,c shows the FuzzyEn_AV(r) and NNetEn_AV(r) dependences 
before and after applying the HVG transformation. Figure A2 shows the MCC(r) dependences for 
FuzzyEn and NNetEn before and after HVG transformation, and their difference ΔMCC. 

Figure A3a (Appendix A) shows an example of a bifurcation diagram for a Planck map in the 
control  parameter  range  3  ≤  r  ≤  7,  with  a  sampling  step  dr  =  0.01.  Figure  A3b,c  shows  the 
FuzzyEn_AV(r) and NNetEn_AV(r) dependences before and after applying the HVG transformation. 
Figure  4  shows  the  MCC(r)  dependences  for  FuzzyEn  and  NNetEn  before  and  after  HVG 
transformation, and their difference ΔMCC. 

3.2 Results for TMBM map 

The TMBM map is a multi‐parametric and more complex than the mappings from section 3.1. 
Figure 8a shows an example of a bifurcation diagram for a TMBM map in the control parameter range 
‐1.7 ≤ r ≤ ‐1.5, with a sampling step dr = 0.0005.   

 
(a) 

   
(c)  (b) 

Figure 8. Bifurcation diagrams for TMBM map (a); the dependence of entropy on the parameter r for 
NNetEn_AV (b) and FuzzyEn_AV before and after HVG transformation (c). 
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After applying of the HVG transformation, there is a notable increase in the entropy values of 
FuzzyEn_AV, as depicted in Figure 8b. Additionally, Figure 8c  illustrates a consistent decrease  in 
NNetEn_AV  across  a  wide  range  of  r  following  the  utilization  of  HVF.  Figure  9  shows  the 
dependencies of MCC(r) and the discernible differences, denoted as ΔMCC, before and after the HVG 
transformation for both FuzzyEn (refer to Figure 9a) and NNetEn (refer to Figure 9b). 

   

   

 
(a)  (b) 

Figure 9. MCC(r) dependences for FuzzyEn before and after HVG transformation, as well as their 
difference ΔMCC (a) MCC(r) dependences for NNetEn before and after HVG transformation, as well 
as their difference ΔMCC (b). Calculations were made for TMBM map. 

 

Figure 10. ΔMCC(r) dependences  for FuzzyEn and NeNetEn. Calculations were made  for TMBM 
map. 

Figure 10 shows that there are local areas of the time series dynamics in which the classification 
efficiency NNetEn is higher than FuzzyEn (ΔMCC > 0), but most of the graph has ΔMCC < 0. 

4. Discussion and Conclusions 

In  this work, we have proposed a method  for assessing  the effectiveness of entropy  features 
using chaotic mappings, that enables to explore the efficiency of entropy‐based classification of time 
series. 
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From Table 1, we have seen that the FuzzyEn has a better GEFMCC performance without the 
use of HVG transformation. At the same time, there are local areas of the time series dynamics in 
which  the  classification  efficiency  of  NNetEn  is  higher  than  using  FuzzyEn  (Figures  7,  10). 
Nevertheless, despite of reducing the amount of signal information after HVG transformations, we 
see that there are local areas of the time series dynamics in which the classification efficiency increases 
when an HVG transformation is applied to the time series (Figures 6, 9, A2, A4). As it has been already 
seen in other contexts, HVGT transformations preserve structural properties of the time series [15,18]   

All chaotic mappings analyzed in this work, present a similar GEFMCC trend when applying 
HVGs,  and  when  comparing  FuzzyEn  and  NNetEn,  which  indicates  the  universality  of  this 
characteristic. It is necessary to consider the fact that the results are given for specific entropy settings; 
for other parameters, the results may differ radically, since the effectiveness of entropies very much 
depends on the entropy calculation parameters. For future research, differing types of entropies can 
be  compared  under different parameters  on  one  of  the maps,  for  example,  on  the  sine map.  In 
addition,  it  is  interesting to  identify  the dependence of GEFMCC on the  length of  the time series. 
Also, further research should be conducted in exploring other dynamical systems, as it is the case of 
fractional dynamical systems based on  the  logistic and sine maps  [37–39], where visibility graphs 
have been already considered [40]. 

The fact that FuzzyEn turned out to be more effective in classifying short (N = 300) time series 
than NNetEn confirmed the results of our work on the classification of EEG signals [1]. However, 
individual pairs of time series can be better classified by NnetEn; this was also confirmed in the EEG 
experiment, where one channel performed better when using NNetEn as a feature. In the same work 
on EEG signals, the idea was put forward that classification based on several features may be better 
and the use of FuzzyEn and NNetEn may lead to a synergistic effect. 
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(c)  (b) 

Figure A1. Bifurcation diagrams for sin map (a); the dependence of entropy on the parameter r for 
NNetEn_AV (b) and FuzzyEn_AV before and after HVG transformation (c). 

   

   

   
(a)  (b) 

Figure A2. MCC(r) dependences for FuzzyEn before and after HVG transformation, as well as their 
difference ΔMCC (a) MCC(r) dependences for NNetEn before and after HVG transformation, as well 
as their difference ΔMCC (b). Calculations were made for sin map. 
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(c)  (b) 

Figure A3. Bifurcation diagrams for Planck map (a); the dependence of entropy on the parameter r 
for NNetEn_AV (b) and FuzzyEn_AV before and after HVG transformation (c). 

   

   
(a)  (b) 

Figure A4. MCC(r) dependences for FuzzyEn before and after HVG transformation, as well as their 
difference ΔMCC (a) MCC(r) dependences for NNetEn before and after HVG transformation, as well 
as their difference ΔMCC (b). Calculations were made for Planck map. 
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