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Abstract: Classification of time series based on machine learning (ML) analysis and entropy features
is an urgent task in studying nonlinear signals. There are many types of entropies, which in turn
have several customizable parameters. One of the main problems is assessing the effectiveness of
entropies used as features for machine learning (ML) classification of nonlinear dynamics of time
series. In this paper, we propose a method for assessing the effectiveness of entropy features using
several chaotic mappings. We anlyze fuzzy entropy (FuzzyEn) and neural network entropy
(NNetEn) on four discrete mappings: the logistic map, the sine map, the Planck map, and the two-
memristor-based map, with a base length time series of 300 elements. FuzzyEn is shown to have
improved global efficiency (GEFMCC) in the classification task compared to NNetEn. At the same
time, there are local areas of the time series dynamics in which the classification efficiency NNetEn
is higher than FuzzyEn. The results of using horizontal visibility graphs (HVG) instead of the raw
time series are also shown. GEFMCC decreases after HVG time series transformation, but there are
local areas of the time series dynamics in which the classification efficiency increases after including
the HVG. The scientific community can use the results to explore the efficiency of entropy-based
classification of time series.

Keywords: chaotic maps; NNetEn; neural network entropy; horizontal visibility graphs; fuzzy
entropy; classification; entropy global efficiency; GEFMCC

MSC: 37M10; 54C70; 68T01

1. Introduction

Classification of time series based on entropy analysis and machine learning (ML) is a trending
task in studying nonlinear signals. For example, EEG classification in diagnosing Alzheimer's disease
[1,2] and Parkinson's disease [3-6]. There are many types of entropies, which in turn have several
customizable parameters, for example, sample entropy (SampEn) [7], cosine similarity entropy
(CoSiEn) [8], singular value decomposition entropy (SVDEn) [9], fuzzy entropy (FuzzyEn) [10],
permutation entropy (PermEn) [11], etc. In this context, it is a problem of paramount importance to
assess the effectiveness of the different entropies when used as features in ML classification. Recently,
Velichko et al. proposed the use of a LogNNet neural network [12,13] for neural network entropy
(NNetEn) calculation [1]. LogNNet neural network is a feedforward neural network that uses filters
based on the logistic function and a reservoir inspired by recurrent neural networks, thus enabling
the transformation of a signal into a high-dimensional space. Its efficiency was validated on the
MNIST-10 data set [14]. They showed that the classification performance is proportional to the
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entropy of the time series and has a stronger correlation than the Lyapunov exponent of the time
series used to feed the reservoir. The effectiveness of using NNetEn was shown on EEG signals in
diagnosing Alzheimer's disease [1]. The effectiveness of fuzzy entropy was also demonstrated in
the paper of Belyaev et al. [3] in diagnosing Parkinson's disease.

Natural visibility graph (NVG) graphs were introduced in [15] as a simple and computationally
efficient method to represent a time series as a graph. Visibility graphs preserve the periodic and
chaotic properties of the discrete map [15] , see also [16-18]. For example, periodic series result in
regular graphs, random series in random graphs, and fractal series in scale-free graphs. Horizontal
Visibility Graphs (HVG) were introduced in [19] to simplify the previously described NVG. Visibility
graphs (VG) enable to reduce the complexity of calculations which depend on time series, while
preserving the accuracy on the results, see for instance [20-22]

In [23], the authors describe the advantages of using the amplitude difference distribution
instead of the degree distribution to collect information from the network formed by the horizontal
visibility graph. Li and Shang introduce a combination of the amplitude difference distribution with
discrete generalized past entropy to present a new method called Discrete Generalized Past Entropy
based on the Amplitude Difference Distribution of the Horizontal Visibility Graph (AHVG-DGPE).
The authors note its efficiency in systems evaluation and higher accuracy and sensitivity rate
compared to the traditional method in characterizing dynamic systems, see also ~ [24-26]

In this paper, we propose a method for assessing the effectiveness of entropies using chaotic
mappings: We use it for analyzing the FuzzyEn and NNetEn entropies on four discrete mappings is
given: the logistic map, the sine map, the Planck map, and the two-memristor based map. We use the
corresponding HVG degrees representation of these time series, which implies that the resulting time
series does not consist of real numbers but only of integer numbers. The results of using horizontal
visibility graphs (HVG) to classify time series are also shown:

The major contributions of the paper are:

e A concept for comparing the efficiency of classifying chaotic time series using entropy features
is presented.

e A new characteristic for assessing the global efficiency of entropy (GEFMCC) is presented.

e A comparison of the effectiveness of FuzzyEn and NNetEn was investigated. FuzzyEn is shown
to have improved GEFMCC in the classification task compared to NNetEn. At the same time,
there are local areas of the time series dynamics in which the classification efficiency NNetEn is
higher than FuzzyEn. Matthews correlation coefficient was used to evaluate binary
classification.

e  The results of using HVG are shown. GEFMCC decreases after HVG time series transformation,
but there are local areas of the time series dynamics in which the classification efficiency
increases after HVG.

This paper is organized as follows: In Section 2, we introduce the methods we have used, while
in Section 3, we explain the results we obtained, and finally, in Section 4, we discuss the results and
state the conclusions, and we outline some ideas for future works.

2. Materials and Methods

2.1. Generation of synthetic time series

To generate synthetic time series, we used several types of the discrete chaotic map. The control
parameter 7j (j = 1...Nr) varied discretely with step dr.
1. Logistic map [27,28]:

x .  =r-x -(1-x
=175, ”),3.4SrjS4,x7999=0.1,dr=0.002,r1=3.4,Nr=301 @)

2. Sine map [29]:

x =7 -sin(w-x
w =1 -si0( "),O.7Srjs2,x-999=0.1,dr=0.005,r1=0.7,Nr=261 )

3. Planck map [30]:
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3
I,
Xy = ©
I+e" 3<p<7, xo0=01,dr=001,rn=3, Nr=401
4. Two-memristor based map (TMBM) [31]:
X =10y - (b-]y, 1) (22 =1)-x, +c
yn+1 = yn + xn
Z,a=2,+r,-(b-y,|-D-x, )

,-1.7<r<-15
x-999 = 0.01, y-999 = 0.01, z-999 = 0.01, dr = 0.0005, r1=-1.7, Nr =401

The first 1,000 elements (x-999...x0) are ignored due to the transient period. If n > 0, then the time
series is calculated for x.. To generate a class corresponding to one value of rj, 100-time series were
generated with a length of N =300 elements. Elements in each series were calculated sequentially, (x1,
..., X300), (X301, ..., x600), etc. A set of 100 time series was generated at a given r;. The value rj ran through
the entire range with a certain step dr, see equations (1-4).

2.2. Natural and Horizontal Visibility Graphs

Given a time series {(1n,x:)}ne; indexed on the set of natural numbers 1N, such that at time n the
time series takes the value x», an association between each node and each pair (7, x») in order to obtain
the graph associated to the time series. A natural visibility graph (NVG) is constructed as follows:
given two nodes (1,xx) and (m, xu), these two nodes have visibility and thus they are connected in the
graph by an edge if any other pair (c, xc) with n < ¢ <m satisfies

Xe < T + (T, — ) 2=5

m—n
®)
Horizontal Visibility Graphs (HVG) were introduced in [19,32] to simplify the requirements
described for NVG.
Natural Visibility Graph Horizontal Vsibility Graph
500 - 500 - >
A ;
400 400 1
300 - 300 4
200 200
100 4 100 < >— > >
0 1L 0 ll L
o 1 2 3 4 5 6 7 8 o 1 2 3 4 5 6 7 8

Figure 1. Illustrative example of the NVG representation for a time series (left) and the HVG
representation for the same time series (right).

When computing the HVG, each time series value is related a node in the resulting graph, as in
the case of NVG. Two nodes (1, x») and (m, x») in this graph are connected if a horizontal line can be
drawn connecting their corresponding visibility index without intersecting any intermediate value
that is, if xu xm > xc for all n < c <m, see the examples in Figure 1.

Python library ts2vg was used to calculate HVG (‘time series to visibility graphs’) [33], which
implements algorithms for plotting graphs based on time series data. The package utilizes a highly
effective C backend for its operations (using Cython) and seamlessly integrates with the Python
environment. As a result, ts2vg can effortlessly process input data from various sources using
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established Python tools. Additionally, it enables the examination and interpretation of the generated
visibility graphs using a wide range of graph analysis, data science, visualization packages and tools
compatible with Python. The HorizontalVG method was used to construct the HVG.

2.3. Time series classification metrics

We describe the method for calculating the classification metric for the time series of a discrete
map for neighboring sets corresponding to two neighboring partitions by r.

Figure 2a shows a section of the buffering diagram of the logistic mapping with two adjacent
sets of series corresponding to ri1=3.634 and rj= 3.636; the distance between them corresponds to dr.
Each set contains 100 time series. Examples of the first time series (x1, ..., x300) for each set are shown
in Figures 2b,c. FuzzyEn values for 100 time series in each set are shown in Figure 2d. We denote the
average entropy value in each set as Entropy_AV (FuzzyEn_AV or NNetEn_AV).
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Figure 2. Section of the buffering diagram of the logistic map, on which two adjacent sets of series are
highlighted corresponding to 771 = 3.634 and rj = 3.636 (a), series (x1, ..., x300) for rj1=3.634 (b), series
(x1, ..., x300) for 1j = 3.636 (c), FuzzyEn values for 100 time series for two classes (MCC = 1) (d).

As a result, we compiled a database with two classes. Class 1 contains 100 entropy values of time
series generated at rj = 3.636, and Class 2 contains 100 entropy values of time series generated at -1 =
3.634. To classify the two classes, we will use the threshold model.

The single feature threshold approach involves a simple ML model with a single threshold Vth
separating the two classes. A formula can represent the separation algorithm.

if Entropy value > Vth then (Class 1) else (Class 2) ©)

The search for Vth was carried out by sequential search within the limits of changes in the
entropy feature, with the determination of the maximum MCC (Matthews correlation coefficient [34])
value. We calculated MCC for the entire database without dividing it into test and training data,
which is equivalent to calculating MCC on training data.

MCC is the correlation coefficient between observed and predicted classifications; it returns a
value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 is a random prediction,
and -1 indicates the opposite, inverted prediction. The higher the MCC module is, the more accurate
the prediction is, too. A negative MCC value means that the classes must be swapped. The MCC is
calculated using the values of the confusion matrix as [34].
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(TP-TN -FP-FN)

MCC =
J(TP+FP)-(TP+FN)-(TN + FP)- (TN + FN)

@)

where TP stands for (True Positive), TN for (True Negative), FP for (False Positive), and FN for (False
Negative). The MCC metric is a popular metric in machine learning, including binary classification.

Figure 2d shows an example where the classes are well separable and MCC = 1. Figure 3 shows
an example of entropy distribution for classes with 1= 3.688 and rj = 3.69. It can be seen that the
classes are poorly separable and MCC ~ 0.45.

0457 ® r=3688
e r=369

Class 1
° °

L] ik
® g% \Vth=035764

030 ® ~~Class2

MCC~0.45

0 20 40 60 80 100
time series number

Figure 3. Distribution of FuzzyEn in Classes 1 and 2 with rj1 = 3.688 and 1 = 3.69 (MCC~0.45).

The MCC(rj) dependence was calculated for all neighboring 11 and 7 within the range of changes
in r of each mapping j =2...N:. Let us introduce the concept of global efficiency (GEFMCC), which is
calculated within the entire mapping under study using the formula

Nr
Y |mMcce,)
GEFMCC ==
Nr—1 8)
where j=2...Nr is the index of partition by r, N: is the maximum number of partitions, see equations
(1-4). The GEFMCC characteristic is equivalent to the average value of the dependence modulus
MCC(rj), and estimates the degree of entropy efficiency over the entire variety of time series of the
chaotic mapping.

2.4. FuzzyEn calculation

FuzzyEn measures entropy based on fuzzily defined exponential functions for comparison of
vectors similarity. It differs from approximate entropy and sample entropy, which use Heaviside
function to calculate the irregularities in a time series data [35]. Fuzzy entropy can be calculated as
follows. For a given time series X = [x, X, ..., xy] with given embedding dimension (m), an m —
vectors as a form as:

Xm(©) = [Xi, Xit1, o Xigm-1] — x0; 9)

These vectors represent m consecutive x values, starting with ith point, with the baseline
x0; =% ;-";1 x;+; removed. Then, the distance between vectors X,,(i) and X,,(j), d;j, can be
defined as the maximum absolute difference between their scalar components. Given n and r, the
degree of similarity D;;,, of the vectors X;,(i) and X,,(j) is calculated using fuzzy function.

Dijm = u(dijmr) = exp (M) (10)

r

The function ¢,, is defined as:

1 — 1 —
(1) = = TN (= N Do ) (11)
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Repeating the same procedure from equation (9-10) for the dimension to m + 1, vectors X, (i)
are formed and the function ¢,,, is obtained. Therefore, FuzzyEn can be estimated as:

FuzzyEn(m,n,r,N) = In¢,,(n,r) — Ing .1 (n, 1) 1)

In the computation of fuzzy entropy, the embedding dimension m =1 and tolerance r = 0.2 x
std were used in the analysis, where std is a standard deviation of x,, argument exponent (pre-
division) r2 = 3 and time delay 7 = 1.

2.5. NNetEn calculation

Figure 4 shows the process for calculating NNetEn [1], it involves several key steps, which are
detailed below:

Step 1: The initial step encompasses inputting the time series X = (x1...xn) of length N, into the
reservoir.

Six main methods for filling the reservoir are researched in detail, as outlined in [36]. The
methods M1 to M6 involve various techniques for filling the reservoir. M1—Row-wise filling with
duplication; M2 —Row-wise filling with an additional zero element; M3 —Row-wise filling with time
series stretching; M4—Column-wise filling with duplication; M5—Column-wise filling with an
additional zero element; M6 —Column-wise filling with time series stretching.

Input Reservoir Classifier
M1 ... M6 S=w*y { Se
[ ]
Dataset 1 S T T o® 2 Accuracy
MNIST R TR MEEIEE 1§ :
. ' £ @ etEn=1< R2 Efficiency
or Xyq O . Xyyg O °o 9 E [ .
Dataset 2 ‘ °e = Pcarson Efficiency
SARS-CoV-2-RBV1 : ~— - ) u 1)
; , . 1B
oy ] Time series X Sh " Sout'=
P (x5 X, X ) L : ;
Stages 3 ; 6 ; : ;
2 4 5 1 7 8 9 10 11

Figure 4. Main steps of NNetEn calculation [1].

Step 2: Selection of embedded Datasets 1 and 2, upon which of the classification metric will be
computed.

Step 3: Formation of the Y vector from the dataset, with the inclusion of a zero offset Y[0] = 1.

Step 4: Normalization of the Y vector.

Step 5: Multiplication of the Y vector with the reservoir matrix and the input vector Sh=W x Y
to convert it into Sh vector.

Step 6: Feeding vector Sh into the input layer of the classifier, with a dimension of P_max = 25.

Step 7: Normalization of the vector Sh.

Step 8: Utilization of a single-layer output classifier.

Step 9 to 10: The neural network is trained according to backpropagation method with a variable
number of epochs (Ep) and then tested. The parameter of the entropy function is referred as Ep.

Step 11: Transformation of the classification metric into the NNetEn entropy.

The parameters used in this work to calculate the entropy of NNetEn are: MNIST database data
set (database = 'D1' and mu = 1), method for forming a reservoir from the M3 time series (method =
3), number of neural network training epochs (epoch) =5 and the accuracy metric ('Acc).

3. Results

We present the results of calculating the dependencies between the FuzzyEn_AV(r) and
NNetEn_AV(r) for various discrete mappings before and after the HVG transformation of the time
series. In this way, we observe if visibility graphs retain enough information from the time series in
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order to calculate the entropies. The results of calculating the MCC(r) dependencies from which the
characteristic of the global efficiency of GEFMCC from (8) is calculated are presented.

3.1 Results for logistic, sin and Planck maps

Figure 5a shows an example of a bifurcation diagram for a logistic map in the range of the control
parameter 3.4 < r < 4, with a sampling step dr = 0.002. Figure 5b shows the FuzzyEn_AV(r)
dependences before and after applying the HVG transformation. We can see that the HVG
transformation leads to a significant increase in the entropy value, while some areas change their
relative position. In regions A and B, we have reduced the entropies after having computed the
HVGs, which is natural since they consist of ordered time series. The relative position of area C
remains unchanged. The application of the HVG transformation has virtually no effect on the shape
of the NNetEn_AV(r) graph, causing only a slight upward shift of entropies. The increase in FuzzyEn
and NNetE values after HVG is due to the fact, in our opinion, that HVG has filtering properties and
reduces the constant components of time series. However, FuzzyEn and NNetEn are sensitive to the
constant component of the time series, which can be seen, for example, from the entropy values for r

®
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Figure 5. Bifurcation diagrams for logistic map (a); the dependence of entropy on the parameter r for
NNetEn_AV (b) and FuzzyEn_AYV before and after HVG transformation (c).

Figure 6a shows the MCC(r) dependences for FuzzyEn before and after HVG transformation, as
well as their difference AMCC, which is computed as follows:

AMCC =|MCC after HVG|-|[MCC|

[ FuzzyEn MCC for logistic map] [=—NNetEn MCC for logistic map]

R
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Figure 6. MCC(r) dependences for FuzzyEn before and after HVG transformation, as well as their
difference AMCC (a) MCC(r) dependences for NNetEn before and after HVG transformation, as well
as their difference AMCC (b). Calculations were made for logistic map.
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Positive values of AMCC > 0 indicate that, for a given value of r, the degree of classification of
time series for 71 and rj increases due to the HVG transformation. Conversely, negative AMCC values
indicate a decrease in classification efficiency after HVG transformation. According to the lower
figure, we see that the HVG transformation can lead to both an increase and a decrease in
classification efficiency for different 7. We provide detailed calculations of the GEFMCC values in
Table 1.

Figure 6b shows the MCC(r) dependences for NeNetEn before and after HVG transformation,
and their difference AMCC. It can be seen that the amplitude of MCC for FuzzyEn is more significant
than for NNetEn, which also affects the GEFMCC value in Table 1.

Table 1 Comparison of GEFMCC value for different chaotic mappings and entropies, before and after

HVG.
GEFMCC
Logistic map Sine map Planck map TMBM map
FuzzyEn no HVG 0.578 0.524 0.359 0.544
FuzzyEn after HVG 0.310 0.366 0.267 0.256
NNetEn no HVG 0.463 0.436 0.482 0.255
NNetEn after HVG 0.245 0.266 0.208 0.216

It is convenient to compare the local values of MCC(r) for FuzzyEn and NeNetEn using their
difference AMCC (Figure 7).

AMCC =|MCC for NNetEn|—|MCC for FuzzyEn| 14
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Figure 7. AMCC(r) dependences for FuzzyEn and NeNetEn. Calculations were made for logistic map.

Figure 7 shows local areas of the dynamics of time series in which the classification efficiency
NNetEn is higher than FuzzyEn (AMCC > 0), but most of the graph has AMCC <0.

Similar results were obtained for the sine and Planck maps. Figure Ala (Appendix A) shows an
example of a bifurcation diagram for a sin map in the control parameter range 0.7 < r < 2, with a
sampling step dr = 0.005. Figure Alb,c shows the FuzzyEn_AV(r) and NNetEn_AV(r) dependences
before and after applying the HVG transformation. Figure A2 shows the MCC(r) dependences for
FuzzyEn and NNetEn before and after HVG transformation, and their difference AMCC.

Figure A3a (Appendix A) shows an example of a bifurcation diagram for a Planck map in the
control parameter range 3 < r < 7, with a sampling step dr = 0.01. Figure A3b,c shows the
FuzzyEn_AV(r) and NNetEn_AV(r) dependences before and after applying the HVG transformation.
Figure 4 shows the MCC(r) dependences for FuzzyEn and NNetEn before and after HVG
transformation, and their difference AMCC.

3.2 Results for TMBM map

The TMBM map is a multi-parametric and more complex than the mappings from section 3.1.
Figure 8a shows an example of a bifurcation diagram for a TMBM map in the control parameter range
-1.7 <r <-1.5, with a sampling step dr = 0.0005.
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Figure 8. Bifurcation diagrams for TMBM map (a); the dependence of entropy on the parameter r for
NNetEn_AV (b) and FuzzyEn_AV before and after HVG transformation (c).
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After applying of the HVG transformation, there is a notable increase in the entropy values of
FuzzyEn_AYV, as depicted in Figure 8b. Additionally, Figure 8c illustrates a consistent decrease in
NNetEn_AV across a wide range of r following the utilization of HVF. Figure 9 shows the
dependencies of MCC(r) and the discernible differences, denoted as AMCC, before and after the HVG
transformation for both FuzzyEn (refer to Figure 9a) and NNetEn (refer to Figure 9b).
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Figure 9. MCC(r) dependences for FuzzyEn before and after HVG transformation, as well as their
difference AMCC (a) MCC(r) dependences for NNetEn before and after HVG transformation, as well
as their difference AMCC (b). Calculations were made for TMBM map.

+— (abs(MCC for NNetEn)-abs(MCC for FuzzyEn))\
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Figure 10. AMCC(r) dependences for FuzzyEn and NeNetEn. Calculations were made for TMBM
map.

Figure 10 shows that there are local areas of the time series dynamics in which the classification
efficiency NNetEn is higher than FuzzyEn (AMCC > 0), but most of the graph has AMCC <0.

4. Discussion and Conclusions

In this work, we have proposed a method for assessing the effectiveness of entropy features
using chaotic mappings, that enables to explore the efficiency of entropy-based classification of time
series.
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From Table 1, we have seen that the FuzzyEn has a better GEFMCC performance without the
use of HVG transformation. At the same time, there are local areas of the time series dynamics in
which the classification efficiency of NNetEn is higher than using FuzzyEn (Figures 7, 10).
Nevertheless, despite of reducing the amount of signal information after HVG transformations, we
see that there are local areas of the time series dynamics in which the classification efficiency increases
when an HVG transformation is applied to the time series (Figures 6,9, A2, A4). Asit has been already
seen in other contexts, HVGT transformations preserve structural properties of the time series [15,18]

All chaotic mappings analyzed in this work, present a similar GEFMCC trend when applying
HVGs, and when comparing FuzzyEn and NNetEn, which indicates the universality of this
characteristic. It is necessary to consider the fact that the results are given for specific entropy settings;
for other parameters, the results may differ radically, since the effectiveness of entropies very much
depends on the entropy calculation parameters. For future research, differing types of entropies can
be compared under different parameters on one of the maps, for example, on the sine map. In
addition, it is interesting to identify the dependence of GEFMCC on the length of the time series.
Also, further research should be conducted in exploring other dynamical systems, as it is the case of
fractional dynamical systems based on the logistic and sine maps [37-39], where visibility graphs
have been already considered [40].

The fact that FuzzyEn turned out to be more effective in classifying short (N = 300) time series
than NNetEn confirmed the results of our work on the classification of EEG signals [1]. However,
individual pairs of time series can be better classified by NnetEn; this was also confirmed in the EEG
experiment, where one channel performed better when using NNetEn as a feature. In the same work
on EEG signals, the idea was put forward that classification based on several features may be better
and the use of FuzzyEn and NNetEn may lead to a synergistic effect.
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Figure Al. Bifurcation diagrams for sin map (a); the dependence of entropy on the parameter r for
NNetEn_AV (b) and FuzzyEn_AV before and after HVG transformation (c).
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