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Abstract: Sums of M consecutive squared integers (a + i)? equaling squared integers (for a > 1,
0 <i < M — 1) yield remarkable regular linear features when plotting values of M in function of a.
These features correspond to groupings of pairs of a values for successive same values of M around
straight lines of equation M = 24 and are characterized in this paper for rational values of y.
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1. Introduction

The study of integer squares equal to sums of consecutive squared integers can be dated back to
1873 when Lucas stated [11] that (1% + ... + n?) is an integer square only for n = 1 and 24. Lucas
proposed later in 1875 [12] the well known cannonball problem, which was proven by several authors
[2,10,13,14,19,20,33].

Instead of starting at 1, finding all values of a for which the sum of M consecutive integer squares
starting from a? > 1 is itself an integer square s? is a more general problem that was addressed by
several authors (see e.g. [1,3,8,24]). More recently, this author showed [26] that there are no integer
solutions if M = 3,5,6,7,8 or 10 (mod 12) and that there are integer solutions for non squared integer
M congruent to 0,9,24 or 33 (mod72), or to 1,2 or 16 (mod 24), or to 11 (mod 12), and for squared
integer M congruent to 1 (mod 24).

In this paper, we investigate and characterize the properties of groupings of pairs of a values for a
same value of M that are found around inclined straight lines of equation M = 2a in the (a, M) plot
for rational values of y.

2. Linear features in the (a, M) plot

For M > 1,a,i,s € Z*, the sum of M consecutive squared integers (a + i)z equaling a squared integer
s% can be written [28] as
M-1\> M -1
—_— 1
(u +t— ) 1 ] 1)

For1 <a < 10°and 2 < M < 10°, there are only 4078 couples of values of 4 and M among the
approximately 100 possibilities such that (1) holds. Figure 1 shows the distribution of these 4078
couples in a (a, M) plot where several groupings of interest are seen.

M=1
Y (a+i)’=M
i=0

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. Distribution of M versus a for the 4078 couples (2, M) found such as (1) holds, with
1<a<10°and2 <M < 10°

The most visible is the grouping around a straight line of equation M = 24 + c where c is a
constant, corresponding to a double infinite family of a values that starts with the identity and the
Pythagorean relations

0+12 = 17 2)

F+4 = 5 (3)
for a same value of M = 2 and respectively for 2 = 0 and 3. This double infinite family has the
characteristics that couples of a values correspond to a same value of M. There are other similar
groupings and double infinite families around straight lines of general equation yuM = 2a + ¢, for
certain rational values of u > 0 and where c,, is a constant different for each value of y. Only groupings
around inclined lines are considered as the limit cases of 4 = 0 and # — oo corresponding to groupings

around respectively vertical and horizontal lines are not treated here. The "horizontal" case for which
one or several solutions in a exist for each values of M was investigated in [26-28].

Definition 1. For1 < j <2,M,x > 1,4, € Z*, for a given value of p € Q*, two values of a;, x are called
a pair (al,y,kr az%k) if for a same value of M,y and Vk € Z,

Akt ok = pMyp+1 (4)
Mk = Auk = fuk (5)
hold, where f,, x = fu (k) is a linear integer function of k for each value of , yielding
WMy =205,k £ fur—1 (6)
where the upper or lower sign is taken for j = 1 or 2.

The two families of a1, x and a, , x are characterized for each values of y around the straight line of
equation M = 2a + ¢, in the following theorem. However, relations (4) to (6) hold only for certain
values, called allowed values, of M,k and of y that are determined further.
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Theorem 1. For1 < j < 2,i,1,6, M, > La;,x € 7*, k, Siuk € Z, for allowed values of u € Q7 let
u = (1/6) be an irreducible fraction; if (al%k, az%k) is a pair of a; ,, x values for a same value of M,  and if

(1) _ 2 (1)

M 2 2 2
3(u+1)"+1 3(y+6)"+9o

uk = @)
holds Vk € Z, then the sums of squares of M, ;. consecutive integers (ﬂj,y,k + i) fori=0to M, —1are

always equal to squared integers 5]2- ok with

. My (3(7+0) +62) + 82
Uuk = 55 | MMuk+0F 3 8)

F(n+9) )

2
My [ M (30407 + ) + &2
Sjrl’l/k - 26 3

where the upper (respectively lower) sign is taken for j = 1 (resp. 2).
Proof. Let1 <j<2,i,%,6 My, >1a,k€ 7*, k, Siuk € Z, p = (n/6) € QT forming an irreducible

fraction, i.e. ged (17,6) = 1. Let further f, x be a yet unknown integer function of k for each value of .
Replacing in the second equality of (1) M by M, x and a by a; , ;. from (6) yields successively

M‘u,kfl > M B 2 M2 _ 1
. wk uk
Yo (auxti) = 2a; k+ M, —1 +]
B () = 2 e M=)+
M,y [ 2 M2 -1
_ H W
= 4 ((V"’l)My,k ?fy,k) +73
B 2
oM, (37+0)* +2) My N 32, 1
-4 362 3M,,
+6
= (’75> f%k] (10)

where the upper (respectively lower) sign in (10) is taken for j = 1 (resp. 2). For the expression between
brackets in (10) to be a square, replace in (10) f,, x by

(11)

My (30 +06)° +62) + 82
Juk = 352

from (7), yielding immediately (9). Replacing f, x (11) in (6) yields then (8). [
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In addition, from Theorem 2, the following relations hold Vk € Z
My (3(7+0)° +62) + 82
Muk — al,y,k = 352 (12)
2., 52 2
My (37 +0) +62) +5
SZ,]/L,k + Sl,y,k = My,k 302 (13)
= My,k (QZ,y,k - al,y,k) (14)
+4

sZ,y,k - Sl,y,k = My,k (115) (15)
= Mk taxt+M-—1 (16)

3. Parametric expressions of f;, v, My k, 4 kr Sk

Above results hold only for certain allowed values of M,,x and of u € Q, that can be determined as
follows. Relation (7) reads also

My,k + 1) a7

(5fy,k)2 — My (n+06)* =06 ( 3

It was shown [30] that for (17) to hold:

-6 =0(mod6),and 77 = 1 or 5 (mod 6), M, = 0 or 24 (mod 72), and M, (mod (62/3)) = 0;

-6 =1or5(mod6), and 7 = 1,3 or 5(mod 6) and either f, = 1(mod2) and M, ; = 2 (mod24), or
fuk =0 (mod2) and M, = 11 (mod 12), and M, (mod §*) = 0.

Parametric expressions of f, x, My, aj,,x and s; , x in function of k € Z, p = (17/6) and initial values
are found as follows.

Theorem 2. For1 <j<2,1,6, M%k >1e7Zt, Ajyu € 7*, k, Sipk € Z,u,v e Q*,for allowed values of

u = (n/6) and for pairs (al,y,k/ ”2,y,k)f fuk is a linear function of k, My, x and a; ,, . are quadratic functions of
k, and s; , i is a cubic function of k, as follows

fuk = (3 (4 6)* + 52> vk + fu0 a8)
My = 38 (3 1+ + 52) VK% + 662 f0vk + M0 (19)
Gk = % (370 (31 +0) +8) v + (609fu0 F (3 (1 +0)° +6) ) vh]
+aj,,0 20)
Sipk = % [352 (30r+0)+ 52)2 33

+35 (3 (n+6)2 + 52) (380 F (17 +6)) V2K

+ ((35fy,o F(n+ 5))2 — ((17 +6)+ 52)) vk] + 5,0 (21)

wherev =1 for 6 =1 or5(mod 6) and v = (2/3) for 6 = 0 (mod 6) and where the upper (respectively lower)
sign is taken for j = 1 (resp. 2).

Proof. For 1 <j <2,1,0,x,M,; >1¢€ VAS Ak € 2%, K8k € L, v € QT, for allowed values
of u = (1/9) and for pairs (all%k, ﬂz,y,k)/ let f, x (5) be a linear function of k, f, x = xk + f;,0 where
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fu0 = (a2,,0 — a1,4,0) is the initial value for k = 0 of the difference (5) and x an integer function to be
defined for some parameters. Then (7) yields

02 (3 (k + fu0)® — 1)
3(n+06)2+8
36%xk (xk +2f,0) &2 (3f;%,o - 1)

— + 22
3(+6*+82 3(y+6)*+82 22

My =

The second term on the right of (22) is M, by (7).
() If6 = 1or5(mod6),as M, x € Z*, (3 (14 06)* + 52> must divide x in the first term of (22), yielding
then (18) and (19) with v = 1.
(ii) If & = 0 (mod 6), simplifying the first term by 3, (22) reads
B 6%xk (xk +2f,,0)

M, = +M 23
@ )

As M, € L7, ((17 +6)% + (52/3)) is a factor of x. However, as = 1 or 5 (mod 6) for 6 = 0 (mod 6),
((17 +6)2+ ((52/3)) = 1(mod2) and as f, x (mod2) = f,0(mod2) Vk € Z, x must be replaced by
2 ((;7 +0)% + (82 /3)), yielding then (18) and (19) with v = (2/3).

(iii) Further, replacing fy,k and M, x by (18) and (19) in a; ;, from (6) and in Sk (9) with (11), yield
directly (20) and (21) with the upper (or lower) sign for j =1 (or 2). O

4. Finding allowed values of 1 = (17/6) and M, x

Finding the allowed values of . = (17/6), M, o and f,, o requires solving the generalized Pell equation
(17) for k = 0 in variables (df,,0) and (7 + 6).

In general, for X,Y,D, N, x fYypnE Z* and D square free (i.e. VD ¢ 7),a generalized Pell equation
X? — DY? = N admits either no solution, or one or several fundamental solution(s) (X1, Y;) and also
one or several infinite branches of solutions (X, Yy ). Several methods exist to find the fundamental
solutions of the generalized Pell equation (see [15,19,31]). Two methods are used further: first a brute

force search method, i.e. trying several values of Y until the smallest X; = /N +DY? € Z7 is
found; second, Matthews’ method [16] based on an algorithm by Frattini [4-6] using Nagell’s bounds
[18,21]. Once fundamental solution(s) (X3, Y1) have been found one way or another, noting (x Iz yf)

the fundamental solutions of the related simple Pell equation X?> — DY? = 1, the other solutions
(Xn, Yn) can be found by

X, + VDY, = + (X1 + \/BY1> (xf + \/Byf)" (24)
for a proper choice of sign £ [17], which can be written also in function of Chebyshev’s polynomials
[28]

X, = XiT, ; (xf> + DYiy Uy (xf) (25)
Yo = Xyl (xf> +Y1T (xf) (26)

where T),_4 (x f) and U, _» (x f) are Chebyshev polynomials of the first and second kinds evaluated
atx f


https://doi.org/10.20944/preprints202312.2327.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2023

6 of 10
The generalized Pell equation (17) can be written as
A’M A% (Mo +1
2 0 0
et~ (52 ) v o = D @

with X = Afy0, Y = (1+6), D = (A2M,,0/6*) and N = A% (M, 0+ 1) /3, and where A = 1if § = 1
or5(mod6)and A = 3if § =0 (mod6).

To use Matthews” method [16], the parameters D and N must be fixed with values of § and M,
that can be chosen from the allowed congruent values (see Section 3) and be tried one by one until
fundamental solutions are found. Alternatively, fixing the values of 7 and §, a brute force search
method can be used to find f,, o € Z* for the smallest value of M, € Z*, with from (11)

(28)

M, (3 (7 +6)* + (52> + 82
Juo = 302

Relation (28) yields then the allowed values of y, M, g and f,, o givenin Table 2 for 6 =1, u = n € Z7,
for 0 < u <100 (Y

Table 1. Values of M, and f, o for 0 < p <100

B Mo | fuo [[ 1 [ Muo [ fuo [[ # [ Myo [ fuo |
1 2 3 29 26 153 63 | 3263 | 3656

5 11 20 33 299 588 67 | 9563 | 6650
7 74 69 35 479 788 69 2 99

11 2 17 39 | 1391 | 1492 77 74 671
15 194 223 43 59 338 81 | 1202 | 2843
19 122 221 49 491 1108 83 146 1015
21 983 690 53 | 1739 | 2252 85 | 1874 | 3723
25 506 585 55 383 1096 97 23 470
27 47 192 57 | 2327 | 2798

andin [29] for 6 # 1, u = (/6) € Q*, for 0 < 17,6 < 100.
Once a set of values has been found for 77,6, M,, o and f,, o as fundamental solution(s) of the generalized
Pell equation (27), other allowed values for 77 and f, o can be found from the other solutions of (27)
using the values of § and M, o by (25) and (26) written as

funo = fur0Tn-1 (xf> + (AA;y,()) (i +6)yrln—2 (xf) (29)
M = AuoypUn-a (x7) + (0 +0) T () =0 (30)

Example 1. Ford =land y =n =1, Mo = 2and f1 = 3 from Table 1. Using M, o and & as constants in
(27) with A = 1, it reduces to a simple Pell equation fﬁlo —2(p+ 1)2 =1 (see e.g. [7,9,23,25]) which admits

1 [22] gives all values of (x + 1) such that (3 (p+1)7%+ 1) is prime for which (28) holds.

doi:10.20944/preprints202312.2327.v1
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the single fundamental solution (X1,Y1) = (fu,0, (1 +1)) = (3,2) or (fu,,0, 1) = (3,1) and an infinity
of other solutions that can be found ¥n € 7" by

(3+2v2)" + (3-2v2)"
fuo = 5 =3,17,99,577,3363, ... (31)

(3+2\@)"— (3-2v2)
Pn = 22

where pi, are the Pell numbers [32] of even indices minus one. These new values of (fy,, 0, ftn) for n > 1 define
new groupings around straight lines of general equation py, M = 2a + c,,, with the initial value My, o = 2.

n

—-1=1,11,69,407,2377, ... (32)

Foréo=1,1=1 Mp=2, f190=3,v=1,(19) to (21) yield

My = 39k + 18k + 2,

a1k = (39k* +5k) /2, 451, = (39k* 4+ 31k +6) /2,

1,1k = (507k3 + 273k? + 44k +2) /2, 5514 = (507k> + 429k* + 116k + 10) /2,
and values of M, x, a1, x and ap ;, x for —10 < k < 10 are given in Table 2.

Table 2. Values of Mk 01,30k 92,50k fory=1,5,(1/6) and —10 < k <10

p=1 u=>5 u=1/6
k My [ x| aouk Msi | aise [ aasi Miser | a11/6x | 821/6k
0 2 0 3 11 18 38 312 15 38
-1 23 17 7 218 590 501 5784 532 433
1 59 22 38 458 1081 1210 12408 962 1107

-2 122 73 50 1079 2797 2599 28824 2513 2292
2 194 83 112 1559 3779 4017 42072 3373 3640
-3 299 168 132 2594 6639 6332 69432 5958 5615
3 407 183 225 3314 8112 8459 89304 7248 7637
-4 554 302 253 4763 | 12116 | 11700 127608 | 10867 10402
4 698 322 377 5723 | 14080 | 14536 154104 | 12587 13098
-5 887 475 413 7586 | 19228 | 18703 || 203352 | 17240 16653
5 1067 | 500 568 8786 | 21683 | 22248 || 236472 | 19390 20023
-6 1298 | 687 612 11063 | 27975 | 27341 296664 | 25077 24368
6 1514 | 717 798 12503 | 30921 | 31595 || 336408 | 27657 28412
-7 1787 | 938 850 15194 | 38357 | 37614 || 407544 | 34378 33547
7 2039 | 973 1067 16874 | 41794 | 42577 || 453912 | 37388 38265
-8 2354 | 1228 | 1127 19979 | 50374 | 49522 || 535992 | 45143 44190
8 2642 | 1268 | 1375 21899 | 54302 | 55194 || 588984 | 48583 49582
-9 2999 | 1557 | 1443 25418 | 64026 | 63065 682008 | 57372 56297
9 3323 | 1602 | 1722 27578 | 68445 | 69446 741624 | 61242 62363
-10 || 3722 | 1925 | 1798 31511 | 79313 | 78243 845592 | 71065 69868
10 4082 | 1975 | 2108 33911 | 84223 | 85333 || 911832 | 75365 76608

Example 2. Ford =1and y =1y =5, Mso = 11 and f5 = 20 from Table 1. Using Ms and J as constants
in (27) with A = 1 yield the generalized Pell equation f;%,o —11(p+ 1)* =4 Using Matthews’ method [16]
yields the single fundamental solution (fy, o, (1 +1)) = (2,0) which is of no use. However, as the right hand

term is a squared integer, the equation can be rewritten as a simple Pell equation (f,0/2) o1 (n+1) /2% =
1, which admits the fundamental solution ((f,,0/2),((1 +1) /2)) = (10,3) or (fu,0, 1) = (20,5) and
an infinity of other solutions Vn € Z+

funo = (104 3\/11)n + (10— 3\/11)" = 20,398, 7940, 158402, .. (33)

(10+ 3&)" - (10-3vil

)T’l
= —1=>5,119,2393,47759, ... 34
i V11 G4
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Foré =1,1=5 Ms9 =11, f50 =20,v =1, (19) to (21) yield (see Table 2)
Ms = 327k* + 120k + 11,

15 = (1635k% + 491k +36) /2, ap 55 = (1635k2 + 709k + 76) /2,

s15k = (35643k> 4 17658k> + 2879k + 154) /2,

sp5k = (35643k> + 21582k2 + 4319k + 286) /2.

Example 3. Foryy = land 6 = 6, My /609 = 312 and f1,60 = 23 [29]. Using My ¢ and 6 as constants
in (27) with A = 3 yields (3 fy,o)z — 78 (174 6)* = 939, which by [16] has two fundamental solutions
((3fu10), (1114 6)) = (69,7) and (381,43), yielding (fy,0,1) = (23,1) and (127,37). The fundamental
solutions of the related simple Pell equation X*> — 78Y? = 1 are (xf, yf> = (53,6). Other values of (fu,,0,1n)
can be found on the two infinite branches corresponding to these two fundamental solutions by (29) and (30) as

fumo = 23T,_1(53) +1092U,_5 (53) (35)
= 23,2311,244943,25961647, 2751689639, ... (36)
n = 414U, 5 (53) + 7T, 1 (53) — 6 (37)
= 1,779,83197,8818727,934702489, ... (38)

for the first fundamental solution, and

funo = 127T, 1 (53) + 6708U,_ (53) (39)
= 127,13439,1424407,150973703, 16001788111, ... (40)

Mn = 2286U,_5 (53) +43T,_1(53) — 6 (41)
= 37,4559,483841,51283211, 5435537149, ... (42)

for the second fundamental solution. For § =1, = 6, My /60 = 312, f1/60 = 23, v = (2/3), (19) to (21)
yield (see Table 2)

M6 = 8784k? 4 3312k + 312,

11,6 = 732k? + 215k + 15, ap 1 /¢ = 732k* + 337k + 38,
S11/6k = 535824k> + 297924k* + 55188k + 3406,

S2,1/6x = 535824k + 308172k% + 59052k + 3770.

5. Conclusions

It is shown that regular linear features exist in the distribution of couples of values a2 and M in the
(a, M) plot, where a and M are the first term and the number of terms in sums of consecutive squared
integers equal to integer squares. These regular features correspond to groupings of pairs of a values
for successive same values of M around straight lines of equation uM = 2a for positive rational values
of u=(n/9).
For allowed values of 1 and ¢ such as 7 = 1(mod2) and 6 = 0,1 or 5(mod6), if M, =

52 (3 (ﬂz,y,k — al%k>2 - 1) / (3 (n+6)* + 52> holds Vk € Z and for pairs (al%k, az%k>, then the
sums of M, ; consecutive squared integers starting with a; ;, ; or a, , x are always equal to squared
integers si%k or s%,y,k Vk € Z. Parametric equations are found in function of k € Z: linear for
(“Zﬂ,k — al%k) , quadratic for My, x, a1, x and ay , x, and cubic for sy , x and s k-

The allowed values of 77,5, M, o and of the difference f, o0 = a2,,0 — 41,0 are found by solving the

generalized Pell equation (& f%())2 — Mo (n+6 )2 =82 (My,0 +1) /3 and further allowed values of
1n and f,, o can be calculated for fixed values of 6 and M, using Chebyshev polynomials.

doi:10.20944/preprints202312.2327.v1
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