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Abstract: Sums of M consecutive squared integers (a + i)2 equaling squared integers (for a ≥ 1,

0 ≤ i ≤ M − 1) yield remarkable regular linear features when plotting values of M in function of a.

These features correspond to groupings of pairs of a values for successive same values of M around
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1. Introduction

The study of integer squares equal to sums of consecutive squared integers can be dated back to

1873 when Lucas stated [11] that
(

12 + ... + n2
)

is an integer square only for n = 1 and 24. Lucas

proposed later in 1875 [12] the well known cannonball problem, which was proven by several authors

[2,10,13,14,19,20,33].

Instead of starting at 1, finding all values of a for which the sum of M consecutive integer squares

starting from a2 ≥ 1 is itself an integer square s2 is a more general problem that was addressed by

several authors (see e.g. [1,3,8,24]). More recently, this author showed [26] that there are no integer

solutions if M ≡ 3, 5, 6, 7, 8 or 10 (mod 12) and that there are integer solutions for non squared integer

M congruent to 0, 9, 24 or 33 (mod 72), or to 1, 2 or 16 (mod 24), or to 11 (mod 12), and for squared

integer M congruent to 1 (mod 24).

In this paper, we investigate and characterize the properties of groupings of pairs of a values for a

same value of M that are found around inclined straight lines of equation µM ≈ 2a in the (a, M) plot

for rational values of µ.

2. Linear features in the (a, M) plot

For M > 1, a, i, s ∈ Z∗, the sum of M consecutive squared integers (a + i)2 equaling a squared integer

s2 can be written [28] as

M−1

∑
i=0

(a + i)2 = M

[

(

a +
M − 1

2

)2

+
M2 − 1

12

]

(1)

For 1 ≤ a ≤ 105 and 2 ≤ M ≤ 105, there are only 4078 couples of values of a and M among the

approximately 1010 possibilities such that (1) holds. Figure 1 shows the distribution of these 4078

couples in a (a, M) plot where several groupings of interest are seen.
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Figure 1. Distribution of M versus a for the 4078 couples (a, M) found such as (1) holds, with

1 ≤ a ≤ 105 and 2 ≤ M ≤ 105

The most visible is the grouping around a straight line of equation M = 2a + c where c is a

constant, corresponding to a double infinite family of a values that starts with the identity and the

Pythagorean relations

02 + 12 = 12 (2)

32 + 42 = 52 (3)

for a same value of M = 2 and respectively for a = 0 and 3. This double infinite family has the

characteristics that couples of a values correspond to a same value of M. There are other similar

groupings and double infinite families around straight lines of general equation µM = 2a + cµ for

certain rational values of µ > 0 and where cµ is a constant different for each value of µ. Only groupings

around inclined lines are considered as the limit cases of µ = 0 and µ → ∞ corresponding to groupings

around respectively vertical and horizontal lines are not treated here. The "horizontal" case for which

one or several solutions in a exist for each values of M was investigated in [26–28].

Definition 1. For 1 ≤ j ≤ 2, Mµ,k > 1, aj,µ,k ∈ Z∗, for a given value of µ ∈ Q+, two values of aj,µ,k are called

a pair
(

a1,µ,k, a2,µ,k

)

if for a same value of Mµ,k and ∀k ∈ Z,

a1,µ,k + a2,µ,k = µMµ,k + 1 (4)

a2,µ,k − a1,µ,k = fµ,k (5)

hold, where fµ,k = fµ (k) is a linear integer function of k for each value of µ, yielding

µMµ,k = 2aj,µ,k ± fµ,k − 1 (6)

where the upper or lower sign is taken for j = 1 or 2.

The two families of a1,µ,k and a2,µ,k are characterized for each values of µ around the straight line of

equation µM = 2a + cµ in the following theorem. However, relations (4) to (6) hold only for certain

values, called allowed values, of Mµ,k and of µ that are determined further.
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Theorem 1. For 1 ≤ j ≤ 2, i, η, δ, Mµ,k > 1, aj,µ,k ∈ Z∗, k, sj,µ,k ∈ Z, for allowed values of µ ∈ Q+, let

µ = (η/δ) be an irreducible fraction; if
(

a1,µ,k, a2,µ,k

)

is a pair of aj,µ,k values for a same value of Mµ,k and if

Mµ,k =

(

3 f 2
µ,k − 1

)

3 (µ + 1)2 + 1
=

δ2
(

3 f 2
µ,k − 1

)

3 (η + δ)2 + δ2
(7)

holds ∀k ∈ Z, then the sums of squares of Mµ,k consecutive integers
(

aj,µ,k + i
)

for i = 0 to Mµ,k − 1 are

always equal to squared integers s2
j,µ,k, with

aj,µ,k =
1

2δ









ηMµ,k + δ ∓

√

√

√

√

Mµ,k

(

3 (η + δ)2 + δ2
)

+ δ2

3









(8)

sj,µ,k =
Mµ,k

2δ









√

√

√

√

Mµ,k

(

3 (η + δ)2 + δ2
)

+ δ2

3
∓ (η + δ)









(9)

where the upper (respectively lower) sign is taken for j = 1 (resp. 2).

Proof. Let 1 ≤ j ≤ 2, i, η, δ, Mµ,k > 1, aj,µ,k ∈ Z∗, k, sj,µ,k ∈ Z, µ = (η/δ) ∈ Q+ forming an irreducible

fraction, i.e. gcd (η, δ) = 1. Let further fµ,k be a yet unknown integer function of k for each value of µ.

Replacing in the second equality of (1) M by Mµ,k and a by aj,µ,k from (6) yields successively

Mµ,k−1

∑
i=0

(

aj,µ,k + i
)2

=
Mµ,k

4

[

(

2aj,µ,k + Mµ,k − 1
)2

+
M2

µ,k − 1

3

]

=
Mµ,k

4

[

(

(µ + 1) Mµ,k ∓ fµ,k

)2
+

M2
µ,k − 1

3

]

=
M2

µ,k

4





(

3 (η + δ)2 + δ2
)

Mµ,k

3δ2
+

3 f 2
µ,k − 1

3Mµ,k

∓2

(

η + δ

δ

)

fµ,k

]

(10)

where the upper (respectively lower) sign in (10) is taken for j = 1 (resp. 2). For the expression between

brackets in (10) to be a square, replace in (10) fµ,k by

fµ,k =

√

√

√

√

Mµ,k

(

3 (η + δ)2 + δ2
)

+ δ2

3δ2
(11)

from (7), yielding immediately (9). Replacing fµ,k (11) in (6) yields then (8).
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In addition, from Theorem 2, the following relations hold ∀k ∈ Z

a2,µ,k − a1,µ,k =

√

√

√

√

Mµ,k

(

3 (η + δ)2 + δ2
)

+ δ2

3δ2
(12)

s2,µ,k + s1,µ,k = Mµ,k

√

√

√

√

Mµ,k

(

3 (η + δ)2 + δ2
)

+ δ2

3δ2
(13)

= Mµ,k

(

a2,µ,k − a1,µ,k

)

(14)

s2,µ,k − s1,µ,k = Mµ,k

(

η + δ

δ

)

(15)

= a2,µ,k + a1,µ,k + M − 1 (16)

3. Parametric expressions of fµ,k, Mµ,k, aj,µ,k, sj,µ,k

Above results hold only for certain allowed values of Mµ,k and of µ ∈ Q+, that can be determined as

follows. Relation (7) reads also

(

δ fµ,k

)2
− Mµ,k (η + δ)2 = δ2

(

Mµ,k + 1

3

)

(17)

It was shown [30] that for (17) to hold:

- δ ≡ 0 (mod 6), and η ≡ 1 or 5 (mod 6), Mµ,k ≡ 0 or 24 (mod 72), and Mµ,k

(

mod
(

δ2/3
))

≡ 0;

- δ ≡ 1 or 5 (mod 6), and η ≡ 1, 3 or 5 (mod 6) and either fµ,k ≡ 1 (mod 2) and Mµ,k ≡ 2 (mod 24), or

fµ,k ≡ 0 (mod 2) and Mµ,k ≡ 11 (mod 12), and Mµ,k

(

mod δ2
)

≡ 0.

Parametric expressions of fµ,k, Mµ,k, aj,µ,k and sj,µ,k in function of k ∈ Z, µ = (η/δ) and initial values

are found as follows.

Theorem 2. For 1 ≤ j ≤ 2, η, δ, Mµ,k > 1 ∈ Z+, aj,µ,k ∈ Z∗, k, sj,µ,k ∈ Z, µ, ν ∈ Q+, for allowed values of

µ = (η/δ) and for pairs
(

a1,µ,k, a2,µ,k

)

, fµ,k is a linear function of k, Mµ,k and aj,µ,k are quadratic functions of

k, and sj,µ,k is a cubic function of k, as follows

fµ,k =
(

3 (η + δ)2 + δ2
)

νk + fµ,0 (18)

Mµ,k = 3δ2
(

3 (η + δ)2 + δ2
)

ν2k2 + 6δ2 fµ,0νk + Mµ,0 (19)

aj,µ,k =
1

2

[

3ηδ
(

3 (η + δ)2 + δ2
)

ν2k2 +
(

6ηδ fµ,0 ∓
(

3 (η + δ)2 + δ2
))

νk
]

+ aj,µ,0 (20)

sj,µ,k =
1

2

[

3δ2
(

3 (η + δ)2 + δ2
)2

ν3k3

+ 3δ
(

3 (η + δ)2 + δ2
)

(

3δ fµ,0 ∓ (η + δ)
)

ν2k2

+
(

(

3δ fµ,0 ∓ (η + δ)
)2 −

(

(η + δ)2 + δ2
))

νk
]

+ sj,µ,0 (21)

where ν = 1 for δ ≡ 1 or 5 (mod 6) and ν = (2/3) for δ ≡ 0 (mod 6) and where the upper (respectively lower)

sign is taken for j = 1 (resp. 2).

Proof. For 1 ≤ j ≤ 2, η, δ, x, Mµ,k > 1 ∈ Z+, aj,µ,k ∈ Z∗, k, sj,µ,k ∈ Z, µ, ν ∈ Q+, for allowed values

of µ = (η/δ) and for pairs
(

a1,µ,k, a2,µ,k

)

, let fµ,k (5) be a linear function of k, fµ,k = xk + fµ,0 where
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fµ,0 =
(

a2,µ,0 − a1,µ,0

)

is the initial value for k = 0 of the difference (5) and x an integer function to be

defined for some parameters. Then (7) yields

Mµ,k =
δ2
(

3
(

xk + fµ,0

)2 − 1
)

3 (η + δ)2 + δ2

=
3δ2xk

(

xk + 2 fµ,0

)

3 (η + δ)2 + δ2
+

δ2
(

3 f 2
µ,0 − 1

)

3 (η + δ)2 + δ2
(22)

The second term on the right of (22) is Mµ,0 by (7).

(i) If δ ≡ 1 or 5 (mod 6), as Mµ,k ∈ Z+,
(

3 (η + δ)2 + δ2
)

must divide x in the first term of (22), yielding

then (18) and (19) with ν = 1.

(ii) If δ ≡ 0 (mod 6), simplifying the first term by 3, (22) reads

Mµ,k =
δ2xk

(

xk + 2 fµ,0

)

(η + δ)2 + (δ2/3)
+ Mµ,0 (23)

As Mµ,k ∈ Z+,
(

(η + δ)2 +
(

δ2/3
)

)

is a factor of x. However, as η ≡ 1 or 5 (mod 6) for δ ≡ 0 (mod 6),
(

(η + δ)2 +
(

δ2/3
)

)

≡ 1 (mod 2) and as fµ,k (mod 2) ≡ fµ,0 (mod 2) ∀k ∈ Z, x must be replaced by

2
(

(η + δ)2 +
(

δ2/3
)

)

, yielding then (18) and (19) with ν = (2/3).

(iii) Further, replacing fµ,k and Mµ,k by (18) and (19) in aj,µ,k from (6) and in sj,µ,k (9) with (11), yield

directly (20) and (21) with the upper (or lower) sign for j = 1 (or 2).

4. Finding allowed values of µ = (η/δ) and Mµ,k

Finding the allowed values of µ = (η/δ), Mµ,0 and fµ,0 requires solving the generalized Pell equation

(17) for k = 0 in variables
(

δ fµ,0

)

and (η + δ).

In general, for X, Y, D, N, x f , y f , n ∈ Z+ and D square free (i.e.
√

D /∈ Z), a generalized Pell equation

X2 − DY2 = N admits either no solution, or one or several fundamental solution(s) (X1, Y1) and also

one or several infinite branches of solutions (Xn, Yn). Several methods exist to find the fundamental

solutions of the generalized Pell equation (see [15,19,31]). Two methods are used further: first a brute

force search method, i.e. trying several values of Y until the smallest X1 =
√

N + DY2
1 ∈ Z+ is

found; second, Matthews’ method [16] based on an algorithm by Frattini [4–6] using Nagell’s bounds

[18,21]. Once fundamental solution(s) (X1, Y1) have been found one way or another, noting
(

x f , y f

)

the fundamental solutions of the related simple Pell equation X2 − DY2 = 1, the other solutions

(Xn, Yn) can be found by

Xn +
√

DYn = ±
(

X1 +
√

DY1

) (

x f +
√

Dy f

)n
(24)

for a proper choice of sign ± [17], which can be written also in function of Chebyshev’s polynomials

[28]

Xn = X1Tn−1

(

x f

)

+ DY1y f Un−2

(

x f

)

(25)

Yn = X1y f Un−2

(

x f

)

+ Y1Tn−1

(

x f

)

(26)

where Tn−1

(

x f

)

and Un−2

(

x f

)

are Chebyshev polynomials of the first and second kinds evaluated

at x f .
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The generalized Pell equation (17) can be written as

(

λ fµ,0

)2 −
(

λ2Mµ,0

δ2

)

(η + δ)2 =
λ2
(

Mµ,0 + 1
)

3
(27)

with X = λ fµ,0, Y = (η + δ), D =
(

λ2Mµ,0/δ2
)

and N = λ2
(

Mµ,0 + 1
)

/3, and where λ = 1 if δ ≡ 1

or 5 (mod 6) and λ = 3 if δ ≡ 0 (mod 6).

To use Matthews’ method [16], the parameters D and N must be fixed with values of δ and Mµ,0

that can be chosen from the allowed congruent values (see Section 3) and be tried one by one until

fundamental solutions are found. Alternatively, fixing the values of η and δ, a brute force search

method can be used to find fµ,0 ∈ Z+ for the smallest value of Mµ,0 ∈ Z+, with from (11)

fµ,0 =

√

√

√

√

Mµ,0

(

3 (η + δ)2 + δ2
)

+ δ2

3δ2
(28)

Relation (28) yields then the allowed values of µ, Mµ,0 and fµ,0 given in Table 2 for δ = 1, µ = η ∈ Z+,

for 0 ≤ µ ≤ 100 (1)

Table 1. Values of Mµ,0 and fµ,0 for 0 ≤ µ ≤ 100

µ Mµ,0 fµ,0 µ Mµ,0 fµ,0 µ Mµ,0 fµ,0

1 2 3 29 26 153 63 3263 3656

5 11 20 33 299 588 67 9563 6650

7 74 69 35 479 788 69 2 99

11 2 17 39 1391 1492 77 74 671

15 194 223 43 59 338 81 1202 2843

19 122 221 49 491 1108 83 146 1015

21 983 690 53 1739 2252 85 1874 3723

25 506 585 55 383 1096 97 23 470

27 47 192 57 2327 2798

and in [29] for δ ̸= 1, µ = (η/δ) ∈ Q+, for 0 < η, δ ≤ 100.

Once a set of values has been found for η, δ, Mµ,0 and fµ,0 as fundamental solution(s) of the generalized

Pell equation (27), other allowed values for η and fµ,0 can be found from the other solutions of (27)

using the values of δ and Mµ,0 by (25) and (26) written as

fµn ,0 = fµ1,0Tn−1

(

x f

)

+

(

λMµ,0

δ2

)

(η1 + δ) y f Un−2

(

x f

)

(29)

ηn = λ fµ1,0y f Un−2

(

x f

)

+ (η1 + δ) Tn−1

(

x f

)

− δ (30)

Example 1. For δ = 1 and µ = η = 1, M1,0 = 2 and f1,0 = 3 from Table 1. Using M1,0 and δ as constants in

(27) with λ = 1, it reduces to a simple Pell equation f 2
µ,0 − 2 (µ + 1)2 = 1 (see e.g. [7,9,23,25]) which admits

1 [22] gives all values of (µ + 1) such that
(

3 (µ + 1)2 + 1
)

is prime for which (28) holds.
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the single fundamental solution (X1, Y1) =
(

fµ1,0, (µ1 + 1)
)

= (3, 2) or
(

fµ1,0, µ1

)

= (3, 1) and an infinity

of other solutions that can be found ∀n ∈ Z+ by

fµn ,0 =

(

3 + 2
√

2
)n

+
(

3 − 2
√

2
)n

2
= 3, 17, 99, 577, 3363, ... (31)

µn =

(

3 + 2
√

2
)n

−
(

3 − 2
√

2
)n

2
√

2
− 1 = 1, 11, 69, 407, 2377, ... (32)

where µn are the Pell numbers [32] of even indices minus one. These new values of
(

fµn ,0, µn

)

for n > 1 define

new groupings around straight lines of general equation µn M = 2a + cµn , with the initial value Mµn ,0 = 2.

For δ = 1, η = 1, M1,0 = 2, f1,0 = 3, ν = 1, (19) to (21) yield

M1,k = 39k2 + 18k + 2,

a1,1,k =
(

39k2 + 5k
)

/2, a2,1,k =
(

39k2 + 31k + 6
)

/2,

s1,1,k =
(

507k3 + 273k2 + 44k + 2
)

/2, s2,1,k =
(

507k3 + 429k2 + 116k + 10
)

/2,

and values of Mµ,k, a1,µ,k and a2,µ,k for −10 ≤ k ≤ 10 are given in Table 2.

Table 2. Values of Mµ,k, a1,µ,k, a2,µ,k for µ = 1, 5, (1/6) and −10 ≤ k ≤ 10

µ = 1 µ = 5 µ = 1/6

k M1,k a1,1,k a2,1,k M5,k a1,5,k a2,5,k M1/6,k a1,1/6,k a2,1/6,k

0 2 0 3 11 18 38 312 15 38

-1 23 17 7 218 590 501 5784 532 433

1 59 22 38 458 1081 1210 12408 962 1107

-2 122 73 50 1079 2797 2599 28824 2513 2292

2 194 83 112 1559 3779 4017 42072 3373 3640

-3 299 168 132 2594 6639 6332 69432 5958 5615

3 407 183 225 3314 8112 8459 89304 7248 7637

-4 554 302 253 4763 12116 11700 127608 10867 10402

4 698 322 377 5723 14080 14536 154104 12587 13098

-5 887 475 413 7586 19228 18703 203352 17240 16653

5 1067 500 568 8786 21683 22248 236472 19390 20023

-6 1298 687 612 11063 27975 27341 296664 25077 24368

6 1514 717 798 12503 30921 31595 336408 27657 28412

-7 1787 938 850 15194 38357 37614 407544 34378 33547

7 2039 973 1067 16874 41794 42577 453912 37388 38265

-8 2354 1228 1127 19979 50374 49522 535992 45143 44190

8 2642 1268 1375 21899 54302 55194 588984 48583 49582

-9 2999 1557 1443 25418 64026 63065 682008 57372 56297

9 3323 1602 1722 27578 68445 69446 741624 61242 62363

-10 3722 1925 1798 31511 79313 78243 845592 71065 69868

10 4082 1975 2108 33911 84223 85333 911832 75365 76608

Example 2. For δ = 1 and µ = η = 5, M5,0 = 11 and f5,0 = 20 from Table 1. Using M5,0 and δ as constants

in (27) with λ = 1 yield the generalized Pell equation f 2
µ,0 − 11 (µ + 1)2 = 4. Using Matthews’ method [16]

yields the single fundamental solution
(

fµ1,0, (µ1 + 1)
)

= (2, 0) which is of no use. However, as the right hand

term is a squared integer, the equation can be rewritten as a simple Pell equation
(

fµ,0/2
)2 − 11 ((µ + 1) /2)2 =

1, which admits the fundamental solution
((

fµ1,0/2
)

, ((µ1 + 1) /2)
)

= (10, 3) or
(

fµ1,0, µ1

)

= (20, 5) and

an infinity of other solutions ∀n ∈ Z+

fµn ,0 =
(

10 + 3
√

11
)n

+
(

10 − 3
√

11
)n

= 20, 398, 7940, 158402, ... (33)

µn =

(

10 + 3
√

11
)n

−
(

10 − 3
√

11
)n

√
11

− 1 = 5, 119, 2393, 47759, ... (34)
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For δ = 1, η = 5, M5,0 = 11, f5,0 = 20, ν = 1, (19) to (21) yield (see Table 2)

M5,k = 327k2 + 120k + 11,

a1,5,k =
(

1635k2 + 491k + 36
)

/2, a2,5,k =
(

1635k2 + 709k + 76
)

/2,

s1,5,k =
(

35643k3 + 17658k2 + 2879k + 154
)

/2,

s2,5,k =
(

35643k3 + 21582k2 + 4319k + 286
)

/2.

Example 3. For η = 1 and δ = 6, M1/6,0 = 312 and f1/6,0 = 23 [29]. Using M1/6,0 and δ as constants

in (27) with λ = 3 yields
(

3 fµ,0

)2 − 78 (η + 6)2 = 939, which by [16] has two fundamental solutions
((

3 fµ1,0

)

, (η1 + 6)
)

= (69, 7) and (381, 43), yielding
(

fµ1,0, η1

)

= (23, 1) and (127, 37). The fundamental

solutions of the related simple Pell equation X2 − 78Y2 = 1 are
(

x f , y f

)

= (53, 6). Other values of
(

fµn ,0, ηn

)

can be found on the two infinite branches corresponding to these two fundamental solutions by (29) and (30) as

fµn ,0 = 23Tn−1 (53) + 1092Un−2 (53) (35)

= 23, 2311, 244943, 25961647, 2751689639, ... (36)

ηn = 414Un−2 (53) + 7Tn−1 (53)− 6 (37)

= 1, 779, 83197, 8818727, 934702489, ... (38)

for the first fundamental solution, and

fµn ,0 = 127Tn−1 (53) + 6708Un−2 (53) (39)

= 127, 13439, 1424407, 150973703, 16001788111, ... (40)

ηn = 2286Un−2 (53) + 43Tn−1 (53)− 6 (41)

= 37, 4559, 483841, 51283211, 5435537149, ... (42)

for the second fundamental solution. For η = 1, δ = 6, M1/6,0 = 312, f1/6,0 = 23, ν = (2/3), (19) to (21)

yield (see Table 2)

M1/6,k = 8784k2 + 3312k + 312,

a1,1/6,k = 732k2 + 215k + 15, a2,1/6,k = 732k2 + 337k + 38,

s1,1/6,k = 535824k3 + 297924k2 + 55188k + 3406,

s2,1/6,k = 535824k3 + 308172k2 + 59052k + 3770.

5. Conclusions

It is shown that regular linear features exist in the distribution of couples of values a and M in the

(a, M) plot, where a and M are the first term and the number of terms in sums of consecutive squared

integers equal to integer squares. These regular features correspond to groupings of pairs of a values

for successive same values of M around straight lines of equation µM ≈ 2a for positive rational values

of µ = (η/δ).

For allowed values of η and δ such as η ≡ 1 (mod 2) and δ ≡ 0, 1 or 5 (mod 6), if Mµ,k =

δ2

(

3
(

a2,µ,k − a1,µ,k

)2
− 1

)

/
(

3 (η + δ)2 + δ2
)

holds ∀k ∈ Z and for pairs
(

a1,µ,k, a2,µ,k

)

, then the

sums of Mµ,k consecutive squared integers starting with a1,µ,k or a2,µ,k are always equal to squared

integers s2
1,µ,k or s2

2,µ,k ∀k ∈ Z. Parametric equations are found in function of k ∈ Z: linear for
(

a2,µ,k − a1,µ,k

)

, quadratic for Mµ,k, a1,µ,k and a2,µ,k, and cubic for s1,µ,k and s2,µ,k.

The allowed values of η, δ, Mµ,0 and of the difference fµ,0 = a2,µ,0 − a1,µ,0 are found by solving the

generalized Pell equation
(

δ fµ,0

)2 − Mµ,0 (η + δ)2 = δ2
(

Mµ,0 + 1
)

/3 and further allowed values of

ηn and fµn ,0 can be calculated for fixed values of δ and Mµ,0 using Chebyshev polynomials.
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