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Abstract: Objective: To investigate the efficacy of a magnetic resonance imaging (MRI) radiomics
model in predicting colorectal cancer liver metastasis (CRLM). Methods: A total of 120 patients who
underwent baseline MRI examination at the Affiliated Hospital of North Sichuan Medical College
from June 2016 to August 2022 and were pathologically confirmed to have colorectal cancer (CRC)
were randomly divided into a training group and a validation group. The clinical risk factors and
MRI data of all patients were collected. Univariate and multivariate analysis were used to screen
the clinically independent risk factors for CRLM. The radiomic features of each sequence were
extracted from oblique axial or axial fat-free T>-weighted imaging (T>WI) and diffusion-weighted
imaging (DWI) sequences. Least absolute shrinkage and selection operator (LASSO) regression was
used to screen the optimal radiomic features of each sequence. Logistic regression was used to
establish a prediction model of each sequence (T2WI and DWImodels), a combined radiomics model
(M) integrating the features of T-WI and DWI sequences, and a combined imaging-clinical model
(U) combining the radiomic features of each sequence with clinically independent risk factors. The
area under the receiver operating characteristic curve (AUC) was calculated to evaluate the
predictive performance of each model. Results: Among the 120 CRC patients enrolled, 57 had liver
metastasis, and 63 did not. The tumor markers carcinoembryonic antigen and carbohydrate antigen
19-9 were clinically independent risk factors for CRLM. Three optimal radiomic features were
screened from ToWI and DWI sequences through LASSO regression analysis, respectively. The AUC
values of the T-WI, DWI, M, and U models were 0.811, 0.803, 0.824, and 0.899 in the training group
and 0.795, 0.798, 0.813, and 0.889 in the validation group, respectively. The predictive performance
of the combined models was better than that of the single-sequence models. The U model performed
best at predicting CRLM. Conclusion: An MRI radiomics model based on CRC primary lesions can
predict CRLM well. Our combined model integrating the radiomic features of each sequence and
clinically independent risk factors had the best predictive performance.

Keywords: radiomics; MRI; colorectal cancer; liver metastasis

1. Introduction

Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract [1]. Globally,
CRC ranks third in incidence among malignant tumors [2-5] and is the third leading cause of cancer-
related deaths [1,6]. There are more than 1,800,000 new cases of CRC each year [2] and approximately
900,000 deaths [2,7]. Even more worryingly, the incidence of CRC is increasing, especially in the
young population [1]. Studies have shown that up to 20% of CRC patients have metastases when
initially diagnosed [7], and approximately 50% of patients who receive radical surgical treatment will

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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also develop metastasis within 5 years [8]. Because mesentery blood drains into the hepatic portal
system, the liver is the most common organ involved in the hematogenous metastasis of CRC [3,4,9-
11]. Liver metastasis (LM) is the leading cause of death in CRC patients [4,9,10, and the median
survival of untreated colorectal liver metastases (CRLM) patients is only 6.9 months [9,10];
furthermore, the 5-year survival rate is <5% [10]. However, for patients who undergo radical resection
for LM or who achieve no evidence of disease (NED), the median survival time increases to 35
months, and the 5-year survival rate increases to 30-57%. [9,10 Therefore, early detection and active
treatment of LM are highly important for improving the prognosis of CRC patients. Traditional
imaging methods have been widely used in the preoperative clinical assessment of CRLM; however,
their diagnostic accuracy is still unsatisfactory [12,13]. Although some clinicopathological features
can be used to assess the potential risk of CRLM, these indicators can be obtained only after radical
resection [14-16]. Therefore, there is an urgent clinical need for noninvasive and accurate
preoperative prediction of CRLM.

The concept of radiomics was first proposed by Lambin et al. in 2012 [17], who mined and
extracted a large amount of quantitative features from existing image data [18,19. Subsequently,
analytical methods such as machine learning were used with radiomics to achieve disease
classification and prognosis prediction [20-25]. Currently, magnetic resonance imaging (MRI) is the
preferred method for the clinical assessment of CRLM; among the various MRI modalities, T2-
weighted imaging (T2WI) and diffusion-weighted imaging (DWI) sequences obtained via axial MRI
are key for finely annotating CRC. However, to date, very few studies have investigated the ability
of MR T2WI and DWI-based radiomic models to predict CRLM. This study investigated the
performance in predicting LM by a radiomic model based on baseline MR T2W1 and DWI sequences
of CRC primary lesions.

2. Results
2.1. Patient Characteristics

A total of 120 patients were enrolled in the study, including 85 males and 35 females; the age of
the patients ranged from 25 to 88 years, and the mean age was 61.06+12.83 years. There were 93
patients with rectal cancer (RC) and 27 patients with colon cancer (CC). Among all the patients, 57
developed LM by the follow-up date, while 63 did not develop. The patients were randomly divided
into a training group (83 patients) and a validation group (37 patients) at a ratio of 7:3. The results of
univariate and multivariate analyses of the clinical characteristics revealed significant differences in
carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) levels between the LM
group and the non-LM group (P <0.05) (Table 2).

Table 2. Clinical features of patients with CRLM(+) and CRLM(-) in the training and validation

cohorts.
Training Validation
CRLM(+) CRLM(-) P CRLM(+) CRLM(-) P
(n=39) (n =44) value (n =18) (n=19) value
Age/yr
64.97+11.76  59.50+12.89  0.052 60.06+13.95 57.58+12.73  0.565
(MeantSD)
Sex (%) 0.228 0.419
Male 28(71.8) 26(59.1) 16(88.9) 15(78.9)
Female 11(28.2) 18(40.9) 2(11.1) 4(21.1)
MRT stage (%) 0.988 0.810
T1 0(0) 1(2.3) 0(0) 0(0)

T2 0(0) 9(20.5) 1(5.6) 2(10.5)
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T3 26(66.7) 24(54.5) 11(61.1) 10(52.6)

T4 13(33.3) 10(22.7) 6(33.3) 7(36.8)
MRN stage (%) 0.887 0.890
NO 8(20.5) 11(25.0) 5(27.8) 6(31.6)

N1 11(28.2) 12(27.3) 5(27.8) 4(21.0)

N2 20(51.3) 21(47.7) 8(44.4) 9(47.4)
CEA level (%) <0.001 0.001
Normal 7(17.9) 31(70.5) 2(11.1) 14(73.7)
Elevated 32(82.1) 13(29.5) 16(88.9) 5(26.3)

CA19-9 level (%) <0.001 0.999
Normal 19(48.7) 42(95.5) 9(50.0) 19(100)
Elevated 20(51.3) 2(4.5) 9(50.0) 0(0)

Notes: CRLM, colorectal cancer liver metastasis; CEA, carcinoembryonic antigen; CA19-9,
carbohydrate antigen 19-9.

2.2. Feature Extraction and Selection

A total of 352 features were extracted from the T2W and DW datasets, and features with an
ICC<0.75 were excluded. Based on these findings, 38 features were excluded in the T2WI dataset (8
features were excluded by the intragroup consistency test, 36 features were excluded by the
intergroup consistency test, and 6 features were duplicated within and between groups), while a total
of 19 features were excluded from the DWI dataset (5 features were excluded by the intragroup
consistency test, 19 features were excluded by the intergroup consistency test, and 5 features were
duplicated within and between groups). For the radiomic features screened by the intragroup and
intergroup consistency tests, the independent sample t test or Mann—-Whitney U test was used to
further exclude 20 and 64 features from the T2WI and DWI datasets, respectively, leaving 294 and
269 features that were statistically significant (P <0.05). Finally, LASSO regression analysis yielded 3
and 3 optimal features, respectively, from the statistically significant omics features (Table 3) (Figures

3-5).
Table 3. Selected features predictive of CRLM.
Prediction Feature category CRLM (+) vs. CRLM (-)
model
T2WI model Texture features GLCM X0.4 Inverse Variance
Shape features Shape Compactness 1
Max3D Diameter
DWI model Texture features GLCM X45.7 Information
MeasureCorrl
X135.7 Information
MeasureCorrl
Shape features Shape Max3D Diameter

Notes: CRLM, colorectal cancer liver metastasis; GLCM, gray-level co-occurrence matrix; GLCM
features were constructed in four directions (8 = 0°, 45°, 90°, and 135°) and three offsets (d =1, 4, 7).
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Figure 3. Intragroup consistency test: evaluation of the repeatability of MRI radiomic feature
extraction by the intraclass correlation coefficient (ICC). (A) T>-weighted imaging features; (B)
Diffusion-weighted imaging features.
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Figure 4. Intergroup consistency test: evaluation of the repeatability of MRI radiomic feature
extraction by the intraclass correlation coefficient (ICC). (A) T>-weighted imaging; (B) Diffusion-
weighted imaging.
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Figure 5. Feature selection using least absolute shrinkage and selection operator (LASSO) regression
to predict CRLM. (A1-A2) T2-weighted imaging. (B1-B2) Diffusion-weighted imaging.

2.3. Model evaluation

The area under the curve (AUC) values of the T2WI, DWI, M, and U models were 0.811, 0.803,
0.824, and 0.899, respectively, in the training cohort and 0.795, 0.798, 0.813, and 0.889, respectively, in
the validation cohort. Among them, the combined clinical-radiomics model (the U model) performed
the best in predicting CRLM (Table 4, Figure 6).

Table 4. Performance of the constructed models in predicting CRLM.

Cohort Prediction AUC Sen Spe PPV NPV ACC Fl-score
model

Training cohort
T2WI model 0.811 0.795 0.718 0.761 0.757 0.759 0.778
DWI model 0.803 0.750 0.769 0.786 0.732 0.759 0.767
M model 0.824 0.773 0.769 0.791 0.750 0.771 0.782
U model 0.899 0.795 0.744 0.778 0.763 0.772 0.787

Validation cohort
T2WI model 0.795 0.842 0.778 0.800 0.824 0.811 0.821
DWI model 0.798 0.737 0.778 0.778 0.737 0.757 0.757
M model 0.813 0.789 0.778 0.789 0.778 0.784 0.789
U model 0.889 0.895 0.833 0.850 0.882 0.865 0.872

Notes: CRLM, colorectal cancer liver metastasis; M model, multisequence radiomic model; U model,
union of the multisequence radiomic model and clinical model; AUC, area under the receiver
operating characteristic curve; Sen, sensitivity; Spe, specificity; PPV, positive predictive value; NPV,
negative predictive value; and ACC, accuracy.
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Figure 6. Receiver operating characteristic (ROC) curves show the predictive performance of the T2WI
model, the DWI model, the M model, and the U model for CRLM in the training (A) and validation

(B) groups.

3. Discussion

Radiomics aims to extract large amounts of high-dimensional data from traditional imaging
sequences to mine the underlying pathophysiological information at the microscopic level [26-28]
and has demonstrated important roles in diagnosing and treating tumors [29-32]. Most existing
studies on the radiomic prediction of CRLM are based on imaging data from the liver parenchyma
[33-36]; few studies have used radiomic models based on baseline MRI of the primary lesion in CRC
patients to predict CRLM. Liang et al. [37] constructed a radiomics prediction model based on MRI
T2WI and venous-phase images of the primary lesion in RC. The results showed that the baseline
MRI-omics model based on primary lesion images had predictive potential for LM. Liu et al. [16]
established a prediction model using the T2W images of 127 RC patients combined with the levels of
tumor markers CEA and CA19-9, which showed good performance in predicting LM. However, none
of these studies investigated the role of fine-annotated key sequences (such as DWI) in CRC. Recently,
Li et al. [38] reported the effectiveness of radiomics based on multiparametric MRI of first-diagnosed
rectal cancer patients in predicting LM in rectal cancer patients. The results showed that the area
under the curve (AUC) values of the optimal single sequence model were 0.861 in the training cohort
and 0.844 in the validation cohort. Similarly, the AUC values of the DWI+HD T2WTI joint model were
0.896 in the training cohort and 0.889 in the validation cohort. The integration of radiomic features
into the clinical model improved the predictive performance, with AUC values of 0.916 in the training
cohort and 0.911 in the validation cohort. In this study, based on the preoperative baseline T2ZW and
DWI radiomic characteristics of the primary CRC lesion, we created a T2ZWI model, a DWI model and
a T2W+DWI model (M model) and integrated all optimal imaging characteristics and clinical risk
factors to establish a clinical-radiomic joint model (U model) to predict CRLM. The results showed
that the predictive performance of the T2WI + DWI joint model was better than that of the T2WI or
DWI model alone, while the joint clinical-radiomics model had the best predictive performance. The
results of this study are consistent with those of Li et al [31].

In addition, these data showed that CEA and CA19-9 levels are independent clinical risk factors
for CRLM, which is consistent with the findings of Zhu et al. [39] and Zhang et al. [40]. Li et al. [41-
43] reported that TNM stage was a risk factor for CRLM. However, in the present study, there was
no difference in the T or N stage of CRC patients between the liver metastasis group and the group
without liver metastasis, which may be related to the small sample size of this study.
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This study has the following limitations. (1) This was a retrospective study with a small sample
size. A prospective study with a large sample should be conducted in the future for further validation.
(2) This study used single-center data and lacked external validation. Integrating data from multiple
sources can capture more accurate information, resulting in more robust predictions [26]; ideally,
model validation should be performed using external data [44]. Multicenter data should also be
employed in future studies.

4. Materials and Methods
4.1. Patients

The study subjects included CRC patients who underwent MRI at the Affiliated Hospital of
North Sichuan Medical University between June 2016 and August 2022. The patient inclusion criteria
were as follows: (1) CRC confirmed by colonoscopy biopsy or postoperative histopathology; (2) no
other malignant tumors. (3) complete baseline MR images of good image quality before treatment
and no prior antitumor treatment (including radiotherapy, chemotherapy, chemoradiotherapy, or
surgery) before the baseline MR examination. (4) follow-up for CRC for a minimum of 1 year. During
the follow-up period and at least 1 year after the diagnosis of the primary lesion, patients underwent
enhanced CT, MRI or ultrasound examination of the whole abdomen (or upper abdomen) to
determine whether they had LM. The exclusion criteria were as follows: (1) histopathologically
confirmed mucinous adenocarcinoma (because of the poor prognosis and high risk of developing
MLM) (4 patients in the LM group and 14 patients in the no LM group); (2) incomplete imaging data
or images of insufficient quality for image segmentation (31 patients in the LM group and 41 patients
in the no LM group); (3) primary CRC lesions of insufficient size or lacking clear outlines on MR
images (5 patients in the LM group and 5 patients in the no LM group). This group of LM patients
was diagnosed by liver biopsy, pathological examination of surgical resection, enhanced CT/MRI or
ultrasound examination for typical metastasis features. A total of 220 patients were recruited, and
120 patients were eventually included in this study (Figure 1).

CRC patients who underwent MRI
before treatment between June 2016
and August 2022 (n=220)

Exclusion criteria:

1. Histopathologically confirmed mucinous
adenocarcinoma (n=18)

2. Incomplete imaging data or image quality
insufficient for image segmentation (n=72).

3. Primary colorectal lesions of insufficient size or
with unclear outlines on MRI (n=10).

v

Final number of patients included in the
study (n=120)

Figure 1. Flowchart of patient enrollment.

The following clinical data were collected from the patients: sex, age, pathological results, MRI
T stage, MRI N stage, CEA level and CA19-9 level. MRI TN staging was performed according to the
8th edition of the TNM staging system of the American Cancer Society [45]. The interval between the
collection of blood samples for the detection of preoperative CEA and CA19-9 levels and the baseline
MRI examination was not more than 2 weeks.
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4.2. MRI acquisition

In this study, a standardized rectangular cancer MRI scan protocol was employed with a
Discovery 750 3.0T superconducting MRI scanner with 32-channel phased-array surface coils. All
patients fasted 4 h before examination, and a glycerol enema (20 mL of glycerol) was used to cleanse
the intestinal tract before the examination. Anisodamine or scopolamine (20 mg) was intramuscularly
injected half an hour before the examination (none of the patients presented with contraindications
before the injection) to prevent movement artifacts caused by physiological peristalsis of the
gastrointestinal tract, bladder and other organs. Acquisition sequences included standard sagittal or
coronal T2W images without fat compression, (oblique) axial T2W images without fat compression,
and high b-value (b=800) DW images (where the oblique axial view refers to the body position
perpendicular to the long axis of the rectal lesion). Standard sagittal or coronal T2W images without
fat compression were used to determine the location and boundary of the lesion, and the (oblique)
axial T2ZW and DW images without fat compression were used as region of interest (ROI) annotation
sequences (Table 1).

Table 1. (Oblique) axial T2WI and DWI parameters for colorectal cancer.

Sequence TR/TE (ms) ST (mm) Matrix (mm2) FOV (mm?) FA (°)
(oblique) axial T2WI ~ 1700-5050/110-120  4-6 320-384x256  200-360x200-360 90
(oblique) axial DWI  3000-7000/50-80 4-6 128-160x192  340-380x340-380 90

Notes: TR, repetition time; TE, echo time; ST, section thickness; FOV, field of view; FA, flip angle.

4.3. Image segmentation and feature extraction

The open-source software IBEX ((31.0,http://bitly/IBEX MDAnderson) was used for ROI
annotation. On (oblique) axial T2ZWI and DWI, the volume of the entire tumor was manually
delineated layer by layer along the edge of the lesion as the ROI (Figure 2). Gas in the intestinal lumen,
cystic degeneration between the lesion and the normal bowel, necrotic and transitional areas and
adipose tissue around the intestinal wall were avoided. The operator was not aware of the basic
information of the patient, such as the clinical and pathological results, before the target volume was
delineated. Four types of radiomic features, namely, gray-level co-occurrence matrix (GLCM), gray-
level run-length matrix (GLRLM), intensity histogram and shape, were extracted using IBEX. Finally,
the T2ZWI and DWI feature datasets were generated.
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Figure 2. On oblique axial T2ZWI and DWI, the ROI was manually delineated layer by layer along the
edge of the rectal cancer lesion. (A) T-weighted imaging; (B) Diffusion-weighted imaging.

4.4. Feature dimensionality reduction and selection

For the intraobserver consistency test, radiologist A (with 2 years of work experience) randomly
selected approximately 1/3 of the patients from the entire cohort to repeat ROI delineation with a
between-delineation interval of at least 1 week. For the interobserver consistency test, radiologists A
and B (with 4 years of work experience) each independently delineated the target volume once, and
the selected cases were consistent with the intragroup consistency test. The intraclass correlation
coefficient (ICC) was used to evaluate the reproducibility of the extracted radiomic features. When
the ICC was 20.75, the consistency was considered good. Intraobserver and interobserver consistency
tests were performed on the dataset generated for each sequence, and features with ICCs <0.75 were
excluded. The multicategorical variable MRI TN stage was turned into a dummy variable. The
continuous variables CEA and CA19-9 were divided into two groups: the normal group and the
elevated group. The mean filling method was used to fill in missing values among the radiomic
features to improve sample utilization. To eliminate differences in the index dimension of the data,
all the radiomic features were standardized using the z-score statistical method to convert them into
feature values with a mean of 0 and a standard deviation of 1.

The features screened by the consistency test were subjected to univariate statistical analysis to
further determine the features that were significantly associated with CRLM (P <0.05). Finally, the
LASSO regression analysis method was used to select the optimal radiomic features for predicting
CRLM risk. Using the 1-standard error (1-SE) method, a 10-fold cross-validation adjustment was used
to select the regularization parameter (A) of the features.

4.5. Model construction and evaluation

Logistic regression was used to construct radiomic prediction models for T2WI and DWI single
sequences and for the T2ZWI-DWT joint model (M). The independent risk factors for predicting CRLM
(P <0.05) were screened from among the clinical indicators using univariate and multivariate
analyses, and the factors were combined with the T2ZWI and DWI sequence features to construct a
clinical-radiomics joint model (U). The AUC, sensitivity (Sen), specificity (Spe), positive predictive
value (PPV), negative predictive value (NPV), accuracy (ACC), and F-1 score were calculated from
the confusion matrix and used to assess the predictive performance of the models.
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4.6. Statistical methods

R statistical software (4.2.2, https://www.r-project.org/) was used for statistical analysis. For
continuous variables, the Shapiro-Wilk test was used to determine the normality, and the Bartlett test
was used to determine the homogeneity of variance. Data satisfying the conditions of normality and
homogeneity of variance were analyzed with the independent sample ¢ test; otherwise, the Mann—
Whitney U test was used, and in both cases, the mean value is used to describe the data. Categorical
variables were analyzed using the chi-square test and are presented as percentiles. A two-sided P
value <0.05 was considered to indicate statistical significance.

5. Conclusions

The radiomic model based on features from the T2WI and DWI sequences of CRC primary
lesions could predict CRLM well; the combination of clinically independent risk factors and radiomic
features further improved the predictive performance of the model.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org.
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