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Abstract: Objective: To investigate the efficacy of a magnetic resonance imaging (MRI) radiomics 

model in predicting colorectal cancer liver metastasis (CRLM). Methods: A total of 120 patients who 

underwent baseline MRI examination at the Affiliated Hospital of North Sichuan Medical College 

from June 2016 to August 2022 and were pathologically confirmed to have colorectal cancer (CRC) 

were randomly divided into a training group and a validation group. The clinical risk factors and 

MRI data of all patients were collected. Univariate and multivariate analysis were used to screen 

the clinically independent risk factors for CRLM. The radiomic features of each sequence were 

extracted from oblique axial or axial fat-free T2-weighted imaging (T2WI) and diffusion-weighted 

imaging (DWI) sequences. Least absolute shrinkage and selection operator (LASSO) regression was 

used to screen the optimal radiomic features of each sequence. Logistic regression was used to 

establish a prediction model of each sequence (T2WI and DWI models), a combined radiomics model 

(M) integrating the features of T2WI and DWI sequences, and a combined imaging-clinical model 

(U) combining the radiomic features of each sequence with clinically independent risk factors. The 

area under the receiver operating characteristic curve (AUC) was calculated to evaluate the 

predictive performance of each model. Results: Among the 120 CRC patients enrolled, 57 had liver 

metastasis, and 63 did not. The tumor markers carcinoembryonic antigen and carbohydrate antigen 

19-9 were clinically independent risk factors for CRLM. Three optimal radiomic features were 

screened from T2WI and DWI sequences through LASSO regression analysis, respectively. The AUC 

values of the T2WI, DWI, M, and U models were 0.811, 0.803, 0.824, and 0.899 in the training group 

and 0.795, 0.798, 0.813, and 0.889 in the validation group, respectively. The predictive performance 

of the combined models was better than that of the single-sequence models. The U model performed 

best at predicting CRLM. Conclusion: An MRI radiomics model based on CRC primary lesions can 

predict CRLM well. Our combined model integrating the radiomic features of each sequence and 

clinically independent risk factors had the best predictive performance. 
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1. Introduction 

Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract [1]. Globally, 

CRC ranks third in incidence among malignant tumors [2–5] and is the third leading cause of cancer-

related deaths [1,6]. There are more than 1,800,000 new cases of CRC each year [2] and approximately 

900,000 deaths [2,7]. Even more worryingly, the incidence of CRC is increasing, especially in the 

young population [1]. Studies have shown that up to 20% of CRC patients have metastases when 

initially diagnosed [7], and approximately 50% of patients who receive radical surgical treatment will 
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also develop metastasis within 5 years [8]. Because mesentery blood drains into the hepatic portal 

system, the liver is the most common organ involved in the hematogenous metastasis of CRC [3,4,9–

11]. Liver metastasis (LM) is the leading cause of death in CRC patients [4,9,10, and the median 

survival of untreated colorectal liver metastases (CRLM) patients is only 6.9 months [9,10]; 

furthermore, the 5-year survival rate is <5% [10]. However, for patients who undergo radical resection 

for LM or who achieve no evidence of disease (NED), the median survival time increases to 35 

months, and the 5-year survival rate increases to 30-57%. [9,10 Therefore, early detection and active 

treatment of LM are highly important for improving the prognosis of CRC patients. Traditional 

imaging methods have been widely used in the preoperative clinical assessment of CRLM; however, 

their diagnostic accuracy is still unsatisfactory [12,13]. Although some clinicopathological features 

can be used to assess the potential risk of CRLM, these indicators can be obtained only after radical 

resection [14–16]. Therefore, there is an urgent clinical need for noninvasive and accurate 

preoperative prediction of CRLM. 

The concept of radiomics was first proposed by Lambin et al. in 2012 [17], who mined and 

extracted a large amount of quantitative features from existing image data [18,19. Subsequently, 

analytical methods such as machine learning were used with radiomics to achieve disease 

classification and prognosis prediction [20–25]. Currently, magnetic resonance imaging (MRI) is the 

preferred method for the clinical assessment of CRLM; among the various MRI modalities, T2-

weighted imaging (T2WI) and diffusion-weighted imaging (DWI) sequences obtained via axial MRI 

are key for finely annotating CRC. However, to date, very few studies have investigated the ability 

of MR T2WI and DWI-based radiomic models to predict CRLM. This study investigated the 

performance in predicting LM by a radiomic model based on baseline MR T2W1 and DWI sequences 

of CRC primary lesions. 

2. Results 

2.1. Patient Characteristics 

A total of 120 patients were enrolled in the study, including 85 males and 35 females; the age of 

the patients ranged from 25 to 88 years, and the mean age was 61.06±12.83 years. There were 93 

patients with rectal cancer (RC) and 27 patients with colon cancer (CC). Among all the patients, 57 

developed LM by the follow-up date, while 63 did not develop. The patients were randomly divided 

into a training group (83 patients) and a validation group (37 patients) at a ratio of 7:3. The results of 

univariate and multivariate analyses of the clinical characteristics revealed significant differences in 

carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) levels between the LM 

group and the non-LM group (P <0.05) (Table 2). 

Table 2. Clinical features of patients with CRLM(+) and CRLM(-) in the training and validation 

cohorts. 

  Training   Validation  

 
 CRLM(+) 

(n =39) 

 CRLM(-) 

(n =44) 

 P 

value 

 CRLM(+) 

(n =18) 

 CRLM(-) 

(n =19) 

 P 

value 

 Age/yr 

(Mean±SD) 
64.97±11.76 59.50±12.89 0.052 60.06±13.95 57.58±12.73 0.565 

 Sex (%)   0.228   0.419 

 Male 28(71.8) 26(59.1)  16(88.9) 15(78.9)  

 Female 11(28.2) 18(40.9)  2(11.1) 4(21.1)  

 MRT stage (%)   0.988   0.810 

T1 0(0) 1(2.3)  0(0) 0(0)  

T2 0(0) 9(20.5)  1(5.6) 2(10.5)  
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 T3 26(66.7) 24(54.5)  11(61.1) 10(52.6)  

T4 13(33.3) 10(22.7)  6(33.3) 7(36.8)  

 MRN stage (%)   0.887   0.890 

 N0 8(20.5) 11(25.0)  5(27.8) 6(31.6)  

N1 11(28.2) 12(27.3)  5(27.8) 4(21.0)  

N2 20(51.3) 21(47.7)  8(44.4) 9(47.4)  

 CEA level (%)   <0.001   0.001 

 Normal 7(17.9) 31(70.5)  2(11.1) 14(73.7)  

 Elevated 32(82.1) 13(29.5)  16(88.9) 5(26.3)  

CA19-9 level (%)   <0.001   0.999 

 Normal 19(48.7) 42(95.5)  9(50.0) 19(100)  

 Elevated 20(51.3) 2(4.5)  9(50.0) 0(0)  

Notes: CRLM, colorectal cancer liver metastasis; CEA, carcinoembryonic antigen; CA19-9, 

carbohydrate antigen 19-9. 

2.2. Feature Extraction and Selection 

A total of 352 features were extracted from the T2W and DW datasets, and features with an 

ICC<0.75 were excluded. Based on these findings, 38 features were excluded in the T2WI dataset (8 

features were excluded by the intragroup consistency test, 36 features were excluded by the 

intergroup consistency test, and 6 features were duplicated within and between groups), while a total 

of 19 features were excluded from the DWI dataset (5 features were excluded by the intragroup 

consistency test, 19 features were excluded by the intergroup consistency test, and 5 features were 

duplicated within and between groups). For the radiomic features screened by the intragroup and 

intergroup consistency tests, the independent sample t test or Mann‒Whitney U test was used to 

further exclude 20 and 64 features from the T2WI and DWI datasets, respectively, leaving 294 and 

269 features that were statistically significant (P <0.05). Finally, LASSO regression analysis yielded 3 

and 3 optimal features, respectively, from the statistically significant omics features (Table 3) (Figures 

3–5). 

Table 3. Selected features predictive of CRLM. 

 Prediction 

model 

 Feature category   CRLM (+) vs. CRLM (-) 

 T2WI model  Texture features  GLCM  X0.4 Inverse Variance 

  Shape features  Shape  Compactness 1 

    Max3D Diameter 

 DWI model  Texture features  GLCM  X45.7 Information 

MeasureCorr1 

    X135.7 Information 

MeasureCorr1 

  Shape features  Shape  Max3D Diameter 

Notes: CRLM, colorectal cancer liver metastasis; GLCM, gray-level co-occurrence matrix; GLCM 

features were constructed in four directions (θ = 0°, 45°, 90°, and 135°) and three offsets (d = 1, 4, 7). 
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A 

 
B 

Figure 3. Intragroup consistency test: evaluation of the repeatability of MRI radiomic feature 

extraction by the intraclass correlation coefficient (ICC). (A) T2-weighted imaging features; (B) 

Diffusion-weighted imaging features. 
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B 

Figure 4. Intergroup consistency test: evaluation of the repeatability of MRI radiomic feature 

extraction by the intraclass correlation coefficient (ICC). (A) T2-weighted imaging; (B) Diffusion-

weighted imaging. 

 

A1 

 

A2 
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B1 

 

B2 

Figure 5. Feature selection using least absolute shrinkage and selection operator (LASSO) regression 

to predict CRLM. (A1-A2) T2-weighted imaging. (B1-B2) Diffusion-weighted imaging. 

2.3. Model evaluation 

The area under the curve (AUC) values of the T2WI, DWI, M, and U models were 0.811, 0.803, 

0.824, and 0.899, respectively, in the training cohort and 0.795, 0.798, 0.813, and 0.889, respectively, in 

the validation cohort. Among them, the combined clinical-radiomics model (the U model) performed 

the best in predicting CRLM (Table 4, Figure 6). 

Table 4. Performance of the constructed models in predicting CRLM. 

Cohort 
Prediction 

model 
AUC Sen Spe PPV NPV ACC F1-score 

Training cohort 

 

        

T2WI model 0.811 0.795 0.718 0.761 0.757 0.759 0.778 

DWI model 0.803 0.750 0.769 0.786 0.732 0.759 0.767 

M model 0.824 0.773 0.769 0.791 0.750 0.771 0.782 

U model 0.899 0.795 0.744 0.778 0.763 0.772 0.787 

Validation cohort         

 T2WI model 0.795 0.842 0.778 0.800 0.824 0.811 0.821 

 

 

DWI model 0.798 0.737 0.778 0.778 0.737 0.757 0.757 

M model 0.813 0.789 0.778 0.789 0.778 0.784 0.789 

U model 0.889 0.895 0.833 0.850 0.882 0.865 0.872 

Notes: CRLM, colorectal cancer liver metastasis; M model, multisequence radiomic model; U model, 

union of the multisequence radiomic model and clinical model; AUC, area under the receiver 

operating characteristic curve; Sen, sensitivity; Spe, specificity; PPV, positive predictive value; NPV, 

negative predictive value; and ACC, accuracy. 
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B 

Figure 6. Receiver operating characteristic (ROC) curves show the predictive performance of the T2WI 

model, the DWI model, the M model, and the U model for CRLM in the training (A) and validation 

(B) groups. 

3. Discussion 

Radiomics aims to extract large amounts of high-dimensional data from traditional imaging 

sequences to mine the underlying pathophysiological information at the microscopic level [26–28] 

and has demonstrated important roles in diagnosing and treating tumors [29–32]. Most existing 

studies on the radiomic prediction of CRLM are based on imaging data from the liver parenchyma 

[33–36]; few studies have used radiomic models based on baseline MRI of the primary lesion in CRC 

patients to predict CRLM. Liang et al. [37] constructed a radiomics prediction model based on MRI 

T2WI and venous-phase images of the primary lesion in RC. The results showed that the baseline 

MRI-omics model based on primary lesion images had predictive potential for LM. Liu et al. [16] 

established a prediction model using the T2W images of 127 RC patients combined with the levels of 

tumor markers CEA and CA19-9, which showed good performance in predicting LM. However, none 

of these studies investigated the role of fine-annotated key sequences (such as DWI) in CRC. Recently, 

Li et al. [38] reported the effectiveness of radiomics based on multiparametric MRI of first-diagnosed 

rectal cancer patients in predicting LM in rectal cancer patients. The results showed that the area 

under the curve (AUC) values of the optimal single sequence model were 0.861 in the training cohort 

and 0.844 in the validation cohort. Similarly, the AUC values of the DWI+HD T2WI joint model were 

0.896 in the training cohort and 0.889 in the validation cohort. The integration of radiomic features 

into the clinical model improved the predictive performance, with AUC values of 0.916 in the training 

cohort and 0.911 in the validation cohort. In this study, based on the preoperative baseline T2W and 

DWI radiomic characteristics of the primary CRC lesion, we created a T2WI model, a DWI model and 

a T2W+DWI model (M model) and integrated all optimal imaging characteristics and clinical risk 

factors to establish a clinical-radiomic joint model (U model) to predict CRLM. The results showed 

that the predictive performance of the T2WI + DWI joint model was better than that of the T2WI or 

DWI model alone, while the joint clinical-radiomics model had the best predictive performance. The 

results of this study are consistent with those of Li et al [31]. 

In addition, these data showed that CEA and CA19-9 levels are independent clinical risk factors 

for CRLM, which is consistent with the findings of Zhu et al. [39] and Zhang et al. [40]. Li et al. [41–

43] reported that TNM stage was a risk factor for CRLM. However, in the present study, there was 

no difference in the T or N stage of CRC patients between the liver metastasis group and the group 

without liver metastasis, which may be related to the small sample size of this study. 
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This study has the following limitations. (1) This was a retrospective study with a small sample 

size. A prospective study with a large sample should be conducted in the future for further validation. 

(2) This study used single-center data and lacked external validation. Integrating data from multiple 

sources can capture more accurate information, resulting in more robust predictions [26]; ideally, 

model validation should be performed using external data [44]. Multicenter data should also be 

employed in future studies. 

4. Materials and Methods 

4.1. Patients 

The study subjects included CRC patients who underwent MRI at the Affiliated Hospital of 

North Sichuan Medical University between June 2016 and August 2022. The patient inclusion criteria 

were as follows: (1) CRC confirmed by colonoscopy biopsy or postoperative histopathology; (2) no 

other malignant tumors. (3) complete baseline MR images of good image quality before treatment 

and no prior antitumor treatment (including radiotherapy, chemotherapy, chemoradiotherapy, or 

surgery) before the baseline MR examination. (4) follow-up for CRC for a minimum of 1 year. During 

the follow-up period and at least 1 year after the diagnosis of the primary lesion, patients underwent 

enhanced CT, MRI or ultrasound examination of the whole abdomen (or upper abdomen) to 

determine whether they had LM. The exclusion criteria were as follows: (1) histopathologically 

confirmed mucinous adenocarcinoma (because of the poor prognosis and high risk of developing 

MLM) (4 patients in the LM group and 14 patients in the no LM group); (2) incomplete imaging data 

or images of insufficient quality for image segmentation (31 patients in the LM group and 41 patients 

in the no LM group); (3) primary CRC lesions of insufficient size or lacking clear outlines on MR 

images (5 patients in the LM group and 5 patients in the no LM group). This group of LM patients 

was diagnosed by liver biopsy, pathological examination of surgical resection, enhanced CT/MRI or 

ultrasound examination for typical metastasis features. A total of 220 patients were recruited, and 

120 patients were eventually included in this study (Figure 1). 

 

Figure 1. Flowchart of patient enrollment. 

The following clinical data were collected from the patients: sex, age, pathological results, MRI 

T stage, MRI N stage, CEA level and CA19-9 level. MRI TN staging was performed according to the 

8th edition of the TNM staging system of the American Cancer Society [45]. The interval between the 

collection of blood samples for the detection of preoperative CEA and CA19-9 levels and the baseline 

MRI examination was not more than 2 weeks. 
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4.2. MRI acquisition 

In this study, a standardized rectangular cancer MRI scan protocol was employed with a 

Discovery 750 3.0T superconducting MRI scanner with 32-channel phased-array surface coils. All 

patients fasted 4 h before examination, and a glycerol enema (20 mL of glycerol) was used to cleanse 

the intestinal tract before the examination. Anisodamine or scopolamine (20 mg) was intramuscularly 

injected half an hour before the examination (none of the patients presented with contraindications 

before the injection) to prevent movement artifacts caused by physiological peristalsis of the 

gastrointestinal tract, bladder and other organs. Acquisition sequences included standard sagittal or 

coronal T2W images without fat compression, (oblique) axial T2W images without fat compression, 

and high b-value (b=800) DW images (where the oblique axial view refers to the body position 

perpendicular to the long axis of the rectal lesion). Standard sagittal or coronal T2W images without 

fat compression were used to determine the location and boundary of the lesion, and the (oblique) 

axial T2W and DW images without fat compression were used as region of interest (ROI) annotation 

sequences (Table 1). 

Table 1. (Oblique) axial T2WI and DWI parameters for colorectal cancer. 

Sequence TR/TE (ms) ST (mm) Matrix (mm2) FOV (mm2) FA (°) 

(oblique) axial T2WI 1700-5050/110-120 4-6 320-384×256 200-360×200-360 90 

(oblique) axial DWI 3000-7000/50-80 4-6 128-160×192 340-380×340–380 90 

Notes: TR, repetition time; TE, echo time; ST, section thickness; FOV, field of view; FA, flip angle. 

4.3. Image segmentation and feature extraction 

The open-source software IBEX (β1.0,http://bit.ly/IBEX MDAnderson) was used for ROI 

annotation. On (oblique) axial T2WI and DWI, the volume of the entire tumor was manually 

delineated layer by layer along the edge of the lesion as the ROI (Figure 2). Gas in the intestinal lumen, 

cystic degeneration between the lesion and the normal bowel, necrotic and transitional areas and 

adipose tissue around the intestinal wall were avoided. The operator was not aware of the basic 

information of the patient, such as the clinical and pathological results, before the target volume was 

delineated. Four types of radiomic features, namely, gray-level co-occurrence matrix (GLCM), gray-

level run-length matrix (GLRLM), intensity histogram and shape, were extracted using IBEX. Finally, 

the T2WI and DWI feature datasets were generated. 

 

A 
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Figure 2. On oblique axial T2WI and DWI, the ROI was manually delineated layer by layer along the 

edge of the rectal cancer lesion. (A) T2-weighted imaging; (B) Diffusion-weighted imaging. 

4.4. Feature dimensionality reduction and selection 

For the intraobserver consistency test, radiologist A (with 2 years of work experience) randomly 

selected approximately 1/3 of the patients from the entire cohort to repeat ROI delineation with a 

between-delineation interval of at least 1 week. For the interobserver consistency test, radiologists A 

and B (with 4 years of work experience) each independently delineated the target volume once, and 

the selected cases were consistent with the intragroup consistency test. The intraclass correlation 

coefficient (ICC) was used to evaluate the reproducibility of the extracted radiomic features. When 

the ICC was ≥0.75, the consistency was considered good. Intraobserver and interobserver consistency 

tests were performed on the dataset generated for each sequence, and features with ICCs <0.75 were 

excluded. The multicategorical variable MRI TN stage was turned into a dummy variable. The 

continuous variables CEA and CA19-9 were divided into two groups: the normal group and the 

elevated group. The mean filling method was used to fill in missing values among the radiomic 

features to improve sample utilization. To eliminate differences in the index dimension of the data, 

all the radiomic features were standardized using the z-score statistical method to convert them into 

feature values with a mean of 0 and a standard deviation of 1. 

The features screened by the consistency test were subjected to univariate statistical analysis to 

further determine the features that were significantly associated with CRLM (P <0.05). Finally, the 

LASSO regression analysis method was used to select the optimal radiomic features for predicting 

CRLM risk. Using the 1-standard error (1-SE) method, a 10-fold cross-validation adjustment was used 

to select the regularization parameter (λ) of the features. 

4.5. Model construction and evaluation 

Logistic regression was used to construct radiomic prediction models for T2WI and DWI single 

sequences and for the T2WI-DWI joint model (M). The independent risk factors for predicting CRLM 

(P <0.05) were screened from among the clinical indicators using univariate and multivariate 

analyses, and the factors were combined with the T2WI and DWI sequence features to construct a 

clinical-radiomics joint model (U). The AUC, sensitivity (Sen), specificity (Spe), positive predictive 

value (PPV), negative predictive value (NPV), accuracy (ACC), and F-1 score were calculated from 

the confusion matrix and used to assess the predictive performance of the models.  
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4.6. Statistical methods 

R statistical software (4.2.2, https://www.r-project.org/) was used for statistical analysis. For 

continuous variables, the Shapiro‒Wilk test was used to determine the normality, and the Bartlett test 

was used to determine the homogeneity of variance. Data satisfying the conditions of normality and 

homogeneity of variance were analyzed with the independent sample t test; otherwise, the Mann‒

Whitney U test was used, and in both cases, the mean value is used to describe the data. Categorical 

variables were analyzed using the chi-square test and are presented as percentiles. A two-sided P 

value <0.05 was considered to indicate statistical significance. 

5. Conclusions 

The radiomic model based on features from the T2WI and DWI sequences of CRC primary 

lesions could predict CRLM well; the combination of clinically independent risk factors and radiomic 

features further improved the predictive performance of the model. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 

paper posted on Preprints.org.  
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