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Abstract: Improper design of friction pendulum bearings can lead to poor seismic reduction 

performance and may result in the failure of local vulnerable components. And the parameter 

design of friction pendulum bearings mainly relies on experience and verification calculations at 

present. This paper proposes an adaptive genetic algorithm considering the overall evolution state 

of the population, adjusting crossover and mutation probabilities adaptively based on individual 

fitness and population diversity. Compared to traditional algorithms, it exhibits better global search 

capabilities and convergence efficiency. Combining the improved genetic algorithm with finite 

element models, a parameter optimization method is proposed. The parameters of friction 

pendulum bearings are optimized, providing reference for the design of seismic isolation devices. 

Keywords: parameter optimization; adaptive genetic algorithm; seismic design; friction pendulum 

bearing 

 

1. Introduction 

After the COVID-19 pandemic, the growth of the global urban population is re-turning to a 

positive trajectory, with an estimated addition of 2.2 billion urban resi-dents by 2050. Mega-cities 

such as Tokyo, Shanghai, and Mexico City, with populations exceeding ten million, are facing 

challenges like land resource constraints and traffic congestion [1,2]. Global urban development 

experiences indicate that scientific development and utilization of urban underground space are 

essential pathways to improve living spaces in cities and transform urban development patterns [3,4]. 

However, in some countries, the development and utilization of underground space face the threat 

of seismic disasters. Taking China as an example, it is located between the Pacific seismic zone and 

the Eurasian seismic zone, making it the world's largest region with intense seismic activity 

originating from shallow sources. The frequency, intensity, and widespread distribution of seismic 

activity in this region are high. In recent years, the concept of seismic reduction has gradually been 

applied in underground structures. By reducing the seismic response of underground structures, 

their seismic resistance can be effectively improved. The common method for seismic reduction in 

underground structures is to install seismic isolation devices at vulnerable components in the 

structure. These seismic isolation devices concentrate seismic damage, protecting critical components 

from damage during earthquakes and preventing overall instability and failure of underground 

structures. Commonly used seismic isolation devices for underground structures include shear panel 

dampers [5], lead-core rubber bearings [6], friction pendulum bearings [7], and column-end sliding 

bearings [8]. 

When enhancing the seismic resistance of underground structures using seismic isolation 

devices, improper design of these devices may reduce the seismic reduction effectiveness and could 

potentially lead to the damage of local vulnerable components [9]. At present, the parameter design 

of these seismic isolation devices mainly relies on experience and verification calculations. In the 

optimization design of seismic isolation devices, qualitative analysis methods are predominantly 
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employed, resulting in low optimization precision [10]. With the development of computer 

technology, various intelligent algorithms to optimize complex nonlinear problems have been 

introduced. Researchers have gradually applied these algorithms in the field of engineering. Di 

Trapani et al. implemented the calculation of section forces for a three-dimensional reinforced 

concrete frame structure within OpenSees. They utilized a genetic algorithm to optimize the location 

and quantity of steel jacketing, effectively enhancing the seismic resistance and deformability of 

reinforced concrete structures under earthquake effects [11]. Bekdas et al. proposed a method 

utilizing the bat algorithm to optimize parameters of tuned mass dampers. This approach was 

applied to optimize design variables such as mass, period, and damping ratio of tuned mass dampers 

[12]. 

Genetic algorithms treat each feasible solution as an individual in the population. By simulating 

the biological evolution process in nature, genetic operations such as crossover, recombination, and 

mutation are applied to individuals. This process retains superior individuals while eliminating 

inferior ones, gradually guiding the population toward the global optimum, ultimately obtaining the 

global optimal solution [13]. The genetic algorithm exhibits weak correlation with the initial 

population settings. It possesses strong robustness, and can find the global optimal solution for 

optimization problems. This paper proposes an improvement to the traditional genetic algorithm and 

combines the enhanced algorithm with the finite element calculation method to introduce a 

parameter optimization method. Taking the friction pendulum bearing as an example, the paper 

optimizes the parameters of seismic isolation devices. 

2. Influence of Cross Probability and Mutation Probability on Genetic Algorithm 

Genetic algorithms require repeated crossover and mutation operations on individual genes 

during the optimization process. The algorithm controls these operations through the crossover 

probability (Pc) and mutation probability (Pm). Pc and Pm are key parameters in genetic algorithms. 

In traditional genetic algorithms, the values of Pc and Pm are fixed. To investigate the specific impact 

of Pc and Pm on the optimization process of genetic algorithms, the Rastrigin function was chosen to 

test the optimization efficiency and global search capability under different parameter settings. 

Rastrigin function is a highly multimodal function [14], and its expression is: 𝑅𝑎𝑠(𝑥, 𝑦) = 20 + 𝑥2 + 𝑦2 − 10[(𝑐𝑜𝑠2𝜋𝑥) + cos(2𝜋𝑦)] (1) 
The diagram of the Rastrigin function is shown in Figure 1. The function has a minimum value 

of 0 when x=0 and y=0. As seen in the figure, the function has numerous local optima to challenge the 

global optimization capability of the algorithm. 

 

Figure 1. Rastigin function diagram. 

The initial population size for the genetic algorithm is set to 50, the chromosome length is 24, the 

number of generations is 1000, the Pc varies from 0.6 to 1.0, and the Pm ranges from 0 to 0.4. When 

the Pm is 0.2, the optimization process of the genetic algorithm with different Pc is illustrated in 

Figure 2. 
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Figure 2. Optimization process with different Pc. 

It can be observed from the figure that when Pc is low, the genetic algorithm converges quickly, 

and the search process is stable, but it is prone to local optimum, known as premature convergence. 

However, when Pc is high, the stability of the genetic algorithm decreases, leading to a reduction in 

search efficiency. 

When the Pm is 0.8, the optimization process of the genetic algorithm with different Pm is 

illustrated in Figure 3. 

 

Figure 3. Optimization process with different Pm. 

It can be observed from the figure that as the Pm increases, the global search capability of the 

genetic algorithm enhances, making it easier to escape the local optimum traps of the Rastrigin 

function. However, with the increase in the Pm, the search becomes unstable, evolving towards 

deteriorating individuals from the global optimum. 

The orthogonal analysis of the genetic algorithm's Pc and Pm is conducted. The errors in the 

optimal values for x and y after optimization are illustrated in Figure 4 and Figure 5 respectively. 
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Figure 4. Errors for x of different combinations Pc and Pm. 

 

Figure 4. Errors for y of different combinations Pc and Pm. 

According to the optimization results of the genetic algorithm, it can be observed that when the 

Pc and Pm are too small, the optimization tends to converge to a local optimum. However, when the 

Pc and Pm are too large, the population may evolve in a direction far from the optimal solution, 

making it difficult to converge. The value of Pc and Pm is crucial for the optimization process of the 

genetic algorithm. 

3. Adaptive Genetic Algorithm Considering the Overall Evolutionary Status 

3.1. Adaptive Genetic Algorithm 

In traditional genetic algorithms, the values of crossover probability and mutation probability 

are fixed. Recognizing that fixed Pc and Pm values may not meet the requirements of complex 

optimization problems, Srinivas et al. introduced an adaptive genetic algorithm where Pc and Pm are 

dynamically adjusted during the algorithm's execution. The algorithm's Pc and Pm are automatically 

adjusted based on the fitness of the population individuals [15]. When an individual has good fitness, 

the adaptive genetic algorithm lowers the individual's Pc and Pm to prevent disruption of excellent 

genes. Conversely, for individuals with poor fitness, larger Pc and Pm are used to enhance the 

algorithm's global search capabilities. Building upon this concept, various adaptive genetic 

algorithms have been developed [16–19]. Yan et al. proposed a bilinear adjustment model for 

crossover and mutation probabilities [18]. And Wang introduced a nonlinear adaptive model [19]. 

These adaptive genetic algorithms primarily use individual fitness as the basis for adjusting Pc and 

Pm, overlooking the impact of population evolutionary status on algorithm efficiency. 
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3.2. Genetic algorithm considering population diversity 

Population diversity refers to the distribution state of individuals in the feasible space. When the 

population diversity is high, individuals are dispersed in space. When the population diversity is 

low, individuals in the population are similar, and the search is concentrated in a small area. As 

genetic optimization progresses, the number of similar individuals increases. Population diversity 

gradually decreases, and global search capability weakens accordingly. Population diversity can 

reflect the evolutionary status of a genetic algorithm. Increasing the Pc and Pm when diversity 

decreases can effectively enhance the algorithm's global search capability. 

Population diversity has been assessed using various metrics. Currently, commonly used 

indicators include population fitness standard deviation, individual Hamming distance, and 

population entropy. Hamming distance is typically applicable only to genes encoded in binary, 

limiting its use. Population entropy requires clustering analysis and may not accurately represent 

population diversity in a timely manner. Population fitness standard deviation has become a widely 

adopted and effective evaluation metric. A larger fitness standard deviation indicates higher 

dispersion of the population in the feasible space, reflecting greater population diversity. 

Proposed an adaptive genetic algorithm that simultaneously considers individual fitness and 

population diversity. The Pc and Pm for inferior individuals should be increased when the 

population diversity is low to enhance the search capability. Conversely, when the population 

diversity is high, the Pc and Pm for superior individuals should be decreased to ensure the 

preservation of their excellent genetic. The formulas for calculating the Pc and Pm are as follows: 

𝑃𝑐 =
{  
  
  𝑃𝑐1 + (𝑃𝑐2 − 𝑃𝑐1)exp⁡[−10(𝑓′ − 𝑓)̅𝑓𝑚𝑎𝑥 − 𝑓̅ ]，𝑓′ ≥ 𝑓̅𝑃𝑐2 + (𝑃𝑐1 − 𝑃𝑐2)(𝑓′ − 𝑓)̅𝑓𝑚𝑖𝑛 − 𝑓̅ ，𝑓′ < 𝑓，̅𝑆𝑖 ≥ 𝑆02𝑃𝑐2 + (𝑃𝑐0 − 𝑃𝑐2)(𝑓′ − 𝑓)̅𝑓𝑚𝑖𝑛 − 𝑓̅ ，𝑓′ < 𝑓，̅𝑆𝑖 < 𝑆02

(2) 

𝑃𝑚 =
{  
  
  𝑃𝑚1 + (𝑃𝑚2 − 𝑃𝑚1)exp⁡[−10(𝑓′ − 𝑓)̅𝑓𝑚𝑎𝑥 − 𝑓̅ ]，𝑓′ ≥ 𝑓̅𝑃𝑚2 + (𝑃𝑚1 − 𝑃𝑚2)(𝑓′ − 𝑓)̅𝑓𝑚𝑖𝑛 − 𝑓̅ ，𝑓′ < 𝑓，̅𝑆𝑖 ≥ 𝑆02𝑃𝑚2 + (𝑃𝑚0 − 𝑃𝑚2)(𝑓′ − 𝑓)̅𝑓𝑚𝑖𝑛 − 𝑓̅ ，𝑓′ < 𝑓，̅𝑆𝑖 < 𝑆02

(3) 
where, 𝑓𝑚𝑎𝑥  is the maximum fitness of individuals in the population, 𝑓̅ is the average fitness of 

individuals in the population, 𝑓′ is the fitness of the individual with higher fitness in the parent 

individuals, 𝑓  is the fitness of the individual entering the mutation operator, 𝑆𝑖  is the fitness 

standard deviation of the current population, 𝑆0 is the initial fitness standard deviation, 𝑃𝑐0 > 𝑃𝑐1 >𝑃𝑐2 > 𝑃𝑐3 , and 𝑃𝑚0 > 𝑃𝑚1 > 𝑃𝑚2 > 𝑃𝑚3 , with all values in the range [0, 1]. The adaptive genetic 

algorithm considering population diversity is illustrated in Figure 5. 
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Figure 5. Improved adaptive genetic algorithm flowchart. 

3.3. Validation of the efficiency of the improved genetic algorithm 

The traditional genetic algorithm is denoted as GA, the basic adaptive genetic algorithm as 

AGA-1, the bilinear adaptive genetic algorithm as AGA-2, the nonlinear adaptive genetic algorithm 

as AGA-3, and the adaptive genetic algorithm considering the overall evolutionary status of the 

population as AGACO. The optimization capabilities of these five adaptive genetic algorithms are 

compared using the minimum value problem of the Rastrigin function. Here, 𝑃𝑐0 = 0.7, 𝑃𝑐1 = 0.6, 𝑃𝑐2 = 0.4, 𝑃𝑐3 = 0.2, 𝑃𝑚0 = 0.3, 𝑃𝑚1 = 0.2, 𝑃𝑚2 = 0.1, 𝑃𝑚3 = 0.02。The population size is set to 100, 

the chromosome length is 24, and the number of generations is 500. The process of finding the 

minimum value of the function using different genetic algorithms is shown in Figure 6. 

 

Figure 6. Optimization processes of different genetic algorithms. 

It can be observed from the figure that GA, AGA-1, and AGA-2 converge to local optimal 

solutions without finding the global optimum. AGA-3 and AGACO find the global optimum. 

AGACO converges earlier than AGA-3, and AGA-3 has a final error of 0.02419, while AGACO has a 

final error of 0.00342. By comparing the five genetic algorithms, it can be concluded that the 

traditional genetic algorithm, due to fixed Pc and Pm, are prone to premature convergence or the 

destruction of excellent genotypes in complex optimization problems. And adaptive genetic 

algorithms can reduce the destruction of excellent genotypes while enhancing global search 

efficiency. However, if only the individual fitness is considered and the overall evolutionary status 

is ignored, there is still a risk of getting stuck in local optima when population diversity decreases. 
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The genetic algorithm that simultaneously considers the population diversity and individual fitness 

can effectively improve convergence efficiency and avoid premature convergence. 

4. Finite Element Numerical Simulation 

Daikai Station is chosen as the underground structure for the application of friction pendulum 

bearings. The cross-section of the station is illustrated in Figure 8, representing a two-span station on 

one level. The station has a width of 17m, a height of 7.17m, a central pillar width of 0.4m, side wall 

thickness of 0.7m, top plate thickness of 0.8m, and bottom plate thickness of 0.85m. The spacing of 

the central pillars along the tunnel alignment is 3.5m. To simplify the analysis, the station materials 

were considered equivalent to homogeneous materials, using an elastic constitutive model. The 

material has a density of 2500kg/m3, a Poisson's ratio of 0.2, and an elastic modulus of 31.5Gpa. 

 

Figure 7. Cross-section of Daikai station. 

Based on historical seismic damage records [20,21], the burial depth of the station is 4.8m, and 

the soil layers at the site can be roughly divided into six layers, each with specific soil properties as 

indicated in Table 1. Rayleigh damping is employed for the soil layers. Using Abaqus modal analysis 

functionality, the first and second mode frequencies of the site were determined to be 1.8Hz and 

4.2Hz respectively. Calculating with Formula (4), the Rayleigh damping coefficients for the soil layers 

were obtained as α=0.799 and β=0.00264. 𝜉 = 𝛼2 × 1𝜔1 + 𝛽2 × 𝜔2 (4) 
Table 1. Material properties of each soil layer. 

Soil 

type 

Thickne

ss (m) 

Den

sity 

(kN/

m3) 

Shear wave 

velocity (m/s) 

Poisson'

s ratio 

Dynamic modulus of 

elasticity (Mpa) 

Clay 1 19 140 0.333 99.3 

Sand 4.1 19 140 0.488 111 

Sand 3.2 19 170 0.493 164 

Clay 3.1 19 190 0.494 205 

Clay 5.8 19 240 0.49 326 

Sand 22 20 330 0.487 648 

The friction pendulum bearing has a height of 110mm and a width of 400mm. The beam 

elements are used to simulate the friction pendulum bearing, and the finite element model is shown 

in the Figure 8. A linear elastic constitutive model was selected to simulate the material properties. 

The material of the friction pendulum bearing is steel, with a density of 7850kg/m3, elastic modulus 

of 206GPa, and Poisson's ratio of 0.3. 
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Figure 8. Finite element model of the friction pendulum bearing. 

The friction pendulum bearing is placed at the top of the column in the station, and the overall 

finite element model is shown in the Figure 9. 

 

Figure 9. Overall finite element model. 

5. Parameter optimization of friction pendulum bearings 

5.1. Key parameters of friction pendulum bearings 

During the seismic process, the slider of the friction pendulum bearing is mainly subjected to 

the vertical pressure W, the normal force on the sliding surface N, frictional force f, and the horizontal 

restoring force F transmitted by the structure. Assuming the friction coefficient of the sliding surface 

is μ, the equivalent radius of sliding surface is R, the angle of rotation is θ and the horizontal sliding 

distance of the slider is D, the following calculation formula can be obtained based on the moment 

balance condition: 𝑊 = 𝑁 · 𝑐𝑜𝑠𝜃 (5) 𝑓 = 𝜇𝑊 · 𝑠𝑔𝑛( 𝜃. ) (6) 𝐹 ⋅ 𝑅 𝑐𝑜𝑠 𝜃 = 𝑊 ⋅ 𝐷 + 𝑓 ⋅ 𝑅 (7) 
When θ is relatively small, formula (7) can be simplified to formula (8): 𝐹 = 𝑊𝐷𝑅 + 𝑓 = 𝑊𝐷𝑅 + 𝜇𝑊 𝑠𝑔𝑛( 𝜃. ) (8) 

The force-displacement curves of friction pendulum bearings with different equivalent radius 

and friction coefficients under the same vertical pressure are shown in Figure 10. 
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Figure 10. Force-displacement curve with different equivalent radius and friction coefficients. 

When simulating friction pendulum bearings, the focus is on modeling the mechanical 

characteristics, particularly the force-displacement curve. The mechanical performance of friction 

pendulum bearings is mainly influenced by the friction coefficient and the equivalent radius, which 

are the key parameters of friction pendulum bearings. 

5.2. Key parameters of friction pendulum bearings 

Kobe seismic wave is selected as the input wave, and Dakai station is selected as the 

underground structure. The optimization variables include the friction coefficient and equivalent 

radius of the friction pendulum bearing, with the friction coefficient values ranging from 0.01 to 0.10 

and the equivalent radius values from 1m to 10m. The parameters are encoded using Gray code, with 

each parameter represented by a code of 6 units in length. The optimization objective is to maximize 

the friction pendulum bearing's seismic reduction effectiveness. The calculation formula for seismic 

reduction effectiveness is as follows: 𝛾 = 𝑅0 − 𝑅𝑓𝑅0 (9) 
where, 𝑅𝑓 is the dynamic response of the central column with the seismic isolation device installed, 

and 𝑅0 is the dynamic response without the seismic isolation device. 

The optimization of friction pendulum bearing parameters can be viewed as a mathematical 

problem of finding the maximum value of a function. Design parameters serve as independent 

variables, while seismic reduction effectiveness represents the dependent variable. Utilizing the finite 

element model as a function solver, the model parameters are adjusted based on design parameters, 

and the seismic reduction effectiveness is computed. 

Set the crossover probabilities for the adaptive genetic algorithm as 𝑃𝑐0 = 0.7, 𝑃𝑐1 = 0.6, 𝑃𝑐2 =0.4 , 𝑃𝑐3 = 0.2 , and mutation probabilities as 𝑃𝑚0 = 0.3 , 𝑃𝑚1 = 0.2 , 𝑃𝑚2 = 0.1 , 𝑃𝑚3 = 0.02 . The 

population size is set to 30, and the total number of generations is set to 100. The formula for 

calculating individual fitness is: 𝑓𝑘 = 𝛾𝑘 − 𝛾𝑚𝑖𝑛𝛾𝑚𝑎𝑥 − 𝛾𝑚𝑖𝑛 + 1𝑒−3 (10) 
where, 𝑓𝑘 is the fitness of the k-th individual in the population, 𝛾𝑚𝑎𝑥 is the fitness of the individual 

with the highest fitness and 𝛾𝑚𝑖𝑛 is the fitness of the individual with the lowest fitness. To avoid 

hiding individuals with zero fitness, a small constant value is added after the calculation. The 

optimization process for the friction pendulum bearing parameters is shown in Figure 11. 

  

(a) (b) 

Figure 11. Evolution process of two key parameters: (a) Evolution process of friction coefficients; (b) 

Evolution process of equivalent radius. 
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It can be observed from the figure that, due to the utilization of an adaptive genetic algorithm 

considering overall evolutionary status, even in the later stages of evolution, some individuals 

continue to perform random searches in the space attempting to find the other optimum. Eventually, 

the friction coefficient of the friction pendulum bearing converges to 0.01, and the equivalent radius 

converges to 3.30m. When the friction pendulum bearing is set to these parameter values, the seismic 

reduction effectiveness is maximized. 

3. Conclusion 

This paper analyzes the impact of Pc and Pm on the optimization process of genetic algorithms. 

A genetic algorithm considering the overall evolutionary status is proposed. Utilizing the improved 

genetic algorithm and finite element calculation method, the parameters of friction pendulum 

bearings are optimized, leading to the following conclusions: 

1) When the Pc and Pm of the genetic algorithm are small, the algorithm converges quickly, and 

the optimization process is stable, but it is prone to converge to local optimal solution rather than 

global optimal solution. When the Pc and Pm are large, the randomness of spatial search is high, and 

the genes of excellent individuals are easily disrupted, making convergence difficult. Choosing 

appropriate values of Pc and Pm is crucial for the optimization ability of genetic algorithms. 

2) Using the population diversity as an evaluation metric, an adaptive genetic algorithm 

considering the overall evolutionary status is proposed. The algorithm dynamically adjusts the Pc 

and Pm based on the fitness of individuals and the diversity of the population. Comparing AGACO 

with other genetic algorithms validates that AGACO has better global search capability and 

convergence efficiency. 

3) Combining the improved genetic algorithm with the finite element model, the parameters of 

friction pendulum bearings are optimized. The optimization results provide reference suggestions 

for the design of friction pendulum bearings in future. 
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