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Abstract: We investigate Ly-approximation problems in the worst case setting in the weighted
Hilbert spaces H(Kg d"w) with weights Rin,y under parameters 1 > 91 > 79, > -+ > 0 and
1 < ap < ap < ---. Several interesting weighted Hilbert spaces H(Kg d,m) appear in this paper.
We consider the worst case error of algorithms that use finitely many arbitrary continuous linear
functionals. We discuss tractability of Ly-approximation problems for the involved Hilbert spaces,
which describes how the information complexity depends on d and e~!. As a consequence we study
the strongly polynomial tractability (SPT), polynomial tractability (PT), weak tractability (WT), and
(t1, t2)-weak tractability ((t1,t,)-WT) for all t; > 1 and f; > 0 in terms of the introduced weights
under the absolute error criterion or the normalized error criterion.

Keywords: multivariate approximation; information complexity; tractability; weighted Hilbert
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1. Introduction

We investigate multivariate approximation problems S; with large or even huge d. Examples
include these problems in statistics, computational finance and physics. In order to solve these
problems we usually consider algorithms using finitely many evaluations of arbitrary continuous
linear functionals. We use either the absolute error criterion (ABS) or the normalized error criterion
(NOR). For X € {ABS,NOR} we define the information complexity n*(e, S;) to be the minimal
number of linear functionals which are needed to find an algorithm whose worst case error is at most
e. The behavior of the information complexity nX(g, Sy) is the major concern when the accuracy e
of approximation goes to zero and the number d of variables goes to infinity. For small € and large
d, tractability is aimed at studying how the information complexity nX (¢, S;) behaves as a function
of d and ¢!, while the exponential convergence-tractability (EC-tractability) is aimed at studying
how the information complexity nX(e, S;) behaves as a function of d and (1 + In(e!)). Recently the
study of tractability and EC-tractability in the worst case setting has attracted much interest in analytic
Korobov spaces, weighted Korobov spaces and weighted Gaussian ANOVA spaces; see [1-12] and the
references therein.

Weighted multivariate approximation of functions on space [0, 1] are studied in many problems.
We are interested in weighted Hilbert spaces of functions in this paper. We present three examples
of weighted Hilbert spaces, which are similar but also different. We devote to discussing worst case
tractability of Ly-approximation problem

APP = {APP; : H(Kg,, ) = L2([0,1]) } ;.
with APPy(f) = f forall f € H(Kg,, ) in weighted Hilbert spaces H(Kg,,, ) with three weights Ry,
under positive parameter sequences y = {7} ey and & = {a;}jen. The tractability and EC-tractability
of such problem APP in weighted Korobov spaces with parameters 1 > v > 9, > .-+ > 0 and
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1 < way; =ap =--- were discussed in [2,4,6,11] and in [13], respectively. Additionally, [4] considered
the tractability of the Ly-approximation in several weighted Hilbert spaces for permissible information
class consisting of arbitrary continuous linear functionals and consisting of functions evaluations.
In this paper we study SPT, PT, WT and (t1, f)-WT for all t; > 1 and t, > 0 of the above problem
APP with parameters
122712220,

and
I1<ap <ap<---

for the ABS or the NOR under the information class consisting of arbitrary continuous linear functionals.
Especially, we get a compete sufficient and necessary condition for SPT, PT and WT, respectively, and
the exponent of SPT.

The paper is organized as follows. In Section 2 we give preliminaries about multivariate
approximation problems in Hilbert spaces for information class consisting of arbitrary continuous
linear functionals in the worst case setting, and definitions of tractability. In Section 3 we present
several examples of weighted Hilbert spaces and study some facts and relations between them. In
Section 4 we discuss the tractability properties of Ly-approximation problems in the above weighted
Hilbert spaces, then state out main result Theorem 4.1.

2. Approximation and tractability in Hilbert spaces

2.1. Approximation in Hilbert spaces

Let F; and G, be two sequences of Hilbert spaces. Consider a sequence of compact linear operators
Si:F;— Gy

for all d € N. We approximation S; by algorithm A, ; of the form

n

An,d(f) = Z Ti(f)gi/ for f € 5S4, (2‘1)

i=1

where functions g; € G; and continuous linear functionals T; € Fj fori =1, -+ ,n. The worst case
error for the algorithm A, ; of the form (2.1) is defined as

e(Aya) = sup  |[|Sa(f) — Ana(F)llc,
feRulIfllg,<1

The nth minimal worst-case error, for n > 1, is defined by

e(n,Sy) := infe(A, 4),
An,d !
where the infimum is taken over all linear algorithms of the form (2.1). For n = 0, we use A4 = 0. We
call

e(0,55) = sup  [[Sa(f)llg,
feEIfllr, <1

the initial error of the problem S.

The information complexity for S; can be studied using either the absolute error criterion (ABS),
or the normalized error criterion (NOR). The information complexity nX (e, S;) for X € {ABS,NOR} is
defined by

n*(g,S4) := min{n € Ny : e(n,S,;) < eCRI,},
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where

1 for X = ABS
CRl, := ! ¢
d { e(0,S,), for X = NOR.

Here, Ng ={0,1,--- }and N={1,2,--- }.

It is well known, see e.g., [7,14], that the nth minimal worst case errors e(n, S;) and the information
complexity nX (e, S;) depend on the eigenvalues of the continuously linear operator W; = S5S, : F; —
F;. Let (Ad,jr 77d,j) be the eigenpairs of Wy, i.e.,

Wanaj = Agjnaj forall j €N,
where the eigenvalues A, ; are ordered,
Ag1 2 Agp > -+ 20,
and the eigenvectors 7, ; are orthonormal,
(Ma,ir ’7d,j>Fd = ¢;j forall i, j € N.

Then the nth minimal error is obtained for the algorithm

n
oif =Y (fnajyena, forall f € Fy,
=1

and
e(n,Sq) = e(A; 4) = \/Adns forall n € Ny.

Hence the information complexity is equal to

nx(e, Sd) = min{n € Np: \/Ad,n—i-l < ECRId}
=min{n € Ny : Aj,41 < SZCRIg}
=[{n € N: Ay, > £CR3}|, (2.2)

with e € (0,1) and d € N. We focus on the rate of the information complexity when the error threshold
e tends to 0 and the problem dimension d grows to infinity.

2.2. Tractability

In order to characterize the dependency of the information complexity nX(e, S;) for the absolute
error criterion and the normalized error criterion on the dimension d and the error threshold ¢, we will
briefly recall some of the basic tractability and exponential convergence-tractability (EC-tractability)
notions.

Let S = {S;}4en. For X € {ABS,NOR}, we say S is

e strongly polynomially tractable (SPT) iff there exist non-negative numbers C and p such that for
alld e N, e € (0,1),

n*(e,S4) < Ce™")P.

str

The exponent p
holds.

e polynomially tractable (PT) iff there exist non-negative numbers C, p and g such that for all
deN,ee(0,1),

of SPT is defined to be the infimum of all p for which the above inequality

nX(e,Sy4) < Cdi(e 1)P.
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e quasi-polynomially tractable (QPT) iff there exist two constants C,¢ > 0 such that for all
deN, ee€(0,1),
nX(g,S;) < Cexp(t(1+Ine 1)(1 +Ind)).

The exponent tP°! of QPT is defined to be the infimum of all t for which the above inequality
holds.
o uniformly weakly tractable (UWT) iff for all ¢1,¢, > O,

In TIX(S, Sd)
li ——— =0
s*lJlrrdnaoo dh + (€71)t2

e weakly tractable (WT) iff
. InnX(e, Sy)
lim ———

=0.
eltdooo d+el

o (t1,t2)-weakly tractable ((t1, f2)-WT) for fixed positive t; and ¢, iff

InnX(e, Sy)
im —— =
e~ 1d—oo dft + (8_1)t2

We call that S suffers from the curse of dimensionality if there exist positive numbers Cy, Cy, €9
such that for all 0 < € < gp and infinitely many d € N,

n(e,d) > Cr(1+ C)".

e Exponential convergence-strongly polynomially tractable (EC-SPT) iff there exist non-negative
numbers C and p such that foralld € N, e € (0,1),

nX(e,S4) < C(1+1In(e1))".

The exponent of SPT is defined to be the infimum of all p for which the above inequality holds.
e Exponential convergence-polynomially tractable (EC-PT) iff there exist non-negative numbers
C, pand g such that foralld € N, e € (0,1),

nX(e,Sg) < Cd7(1+In(e1))".
o Exponential convergence-uniformly weakly tractable (EC-UWT) iff for all t1,t, > 0

X
lim Inn* (e, Sy) :
e 1+d—oo dt1 4+ (1 + ]n(g*l)) 2

e Exponential convergence-weakly tractable (EC-WT) iff

X
lim Inn”(e, APPy) 0.
e lid—soo d+ ln(€_1)

¢ Exponential convergence-(t1, tp)-weakly tractable (EC-(t1, t;)-WT) for fixed positive f; and ¢, iff

X
lim Inn’ (e, Sy) =0
e~ lrd—oo gt 4 (1 + ]n(g*l)) 2

Clearly, (1,1)-WT is the same as WT, and EC-(1,1)-WT is the same as EC-WT. Obviously, in the
definitions of SPT, PT, QPT, UWT, WT and (t1, t»)-WT, if we replace g1 by (1+ In(e71)), we get the


https://doi.org/10.20944/preprints202312.2272.v1

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 January 2024

50f17

definitions of EC-SPT, EC-PT, EC-QPT, EC-UWT, EC-WT and EC-(t1, t;)-WT, respectively. We also
have
SPT — PT — QPT — UWT — WT,

EC-SPT = EC-PT = EC-QPT = EC-UWT = EC-WT,
EC-SPT = SPT, EC-PT = PT, EC-QPT = QPT,

and
EC-(t,t2)-WT = (t1,1,)-WT, EC-UWT — UWT, EC-WT — WT.

We can learn more information about tractability of multivariate problems in the volumes [7-9]
by Novak and WoZniakowski.

Lemma 2.1. ([7] Theorem 5.2) Consider the non-zero problem S = {S;} for compact linear problems S defined
over Hilbert spaces. Then S is PT for NOR iff there exist ¢ > 0 and T > 0 such that

Cry :=sup ( 'Z(Ad’ll )T)%d_q < co. (2.3)

Expecially, S is SPT for NOR iff (2.3) holds with q=0. The exponent of SPT is
p*'" = inf{27|7 satisfies (2.3) with q = 0}.

3. Weighted Hilbert spaces

Let the space H(Kg,, ) with weight Ry, , under positive parameter sequences ¢ = {;};en and
& = {a;}jcn satisfying

12mzm=>--20, (3.1)

and
l<a;p <ap<--v (3.2)

be a reproducing kernel Hilbert space. The reproducing kernel function Kg,, . : [0, 1]% x [0,1]* — C of
the space H(Kg,, . ) is given by

KRd,a,'y (x/ y) = HKR“k"Vk (Xk,yk),
x=(x1,%0, ,x3), y=(y1, Y2, ,Yq) € [O,l}d, where

KR, (%,y) := Y Raq(k)exp(2mik - (x —y)), x, y € [0,1]
keNy

is a universal weighted function. Here Fourier weight R, , : Ng — R* be a summable function, i.e.,
Yken, Ra,y (k) < co. We will consider weight R, later on in some examples.
Then we have

Kiaqy(x,y) = Y Riaq(k)exp(2mik-(x—y)), x, y € [0,1]%, (3.3)
keNd

and the corresponding inner product

1

0 3.4
ot Ran ) (k)8 (k) (34)

(f, g)H(KRdM) =

doi:10.20944/preprints202312.2272.v1
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and
||f||H(KRd' f Fhu H(Kg,, )’
where .
Rd,a,'y(k) = HR”‘j/'Yj(kf)’ k= (kl,kz,. . -/kd) € Nd,
j=1
d d
x-yi=Y Xy x=(x1,x2...,%), y= (V1. y2,-..,ya) € [0,1]%,
k=1
and
f(k) = : f( ) exp(—2mik - x)dx.
0,1)4
We note that the kernel Kd,a,,y(x,y) is well defined for 1 < ay < ap < --- and forallx, y € [0, 1]d,
since |Kd,/x,'y(xry)| < ZkeNg Rd,a,’y(k) = H?:](ZkeNo Raj,’yj(k)) <oo. Ifyy =72 =-=1and
a1 = &y = --- > 1 then the space is called unweighted space.

The weights are introduced to model the importance of the functions from the space. The idea
can be seen in the reference [15] by Sloan and WoZniakowski. There are various ways to introduce
weighted Hilbert spaces. We consider possible choices for Fourier weights R , , on three examples.

3.1. A Korobov space

Letw = {«;}jcny and ¢ = {7} ;e satisfy (3.1) and (3.2), respectively. We are interesting in the
weighted Korobov space H(Kg dM) defined by Irrgeher and Leobacher (see [16]) with kernel (3.3) and
corresponding inner product (3.4), where weight Ry, , (k) = 74,4, (k) := H}i:1 ra;y; (kj) with

1, fork =0,
r“”(k> = { wa fork>1
KlaT” - 4

fora > 1and v € (0,1]. Note that we have r,, (k) € (0,1] for all k € Nj.
The space H(Kg d,m) := H(Ky,, ) is a reproducing kernel Hilbert space with parameter sequences

@ = {a;}jen and ¥ = {7j}jen-
3.2. A first variant of the Korobov space

Letw = {a;}jcy and v = {7;}jen satisfy (3.1) and (3.2), respectively. We consider the reproducing
kernel Hilbert space H(Kg dM) with kernel (3.3) and corresponding inner product (3.4) determined by

Riuy (k) = lpd,a,'y(k) = H?:l Paj (kj) with

1, fork =0,
Py (k) == L, for1<k<[a],
,ﬂk_kill—a-‘)!’ for k 2 [“1/

fora > 1and vy € (0,1].

The following lemma gives the upper bound and the lower bound of the weight ¢, , (k), which
shows that i, (k) has the same decay rate as the weight 7y, (k) of the Korobov space H(Ky,, . ) under
the same parameter sequences a and 7.

Lemma 3.1. Forall j, k € N we have

r“jr')’j(k) < llJD‘jr'Yj(k) < [D‘j—l kil rvéjﬁj (k>
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Proof. First for all j, k € N we want to prove

‘/’amj(k) < [aj] kil Tujyj (k).

For 1 <k < [a;] we have

Py () = Z{ <9< Wj(faﬂ)

For k > [a;] we have

vk — o)t i
l/’txﬂ]( ) = k! : k(k—l)---(li—ftxﬂ—l—l)
i _ v

< =
T (k= [a DI gl g [y

7] _ Tl
klol(1 — %)M Kl

%

We find for all k € N that

‘/JIXJ'/Y; (k) <

% a1, ().

Next, for all j, k € N we need to prove

Pajv; (k) > Taj; (k).

For 1 <k < [a;] we have

Yj Yj Yi
11[]“]‘/7]‘( )= k_ > F > kel
For k > [a;] we have
vk — Ta;])! Vj j
e = = > .
Paj (k) k! k(k—=1) - (k—[aj] +1) ~ Kl
Hence for all j, k € N we obtain
vi
lp”‘jr')’j (k) > k[“]ﬂ = rlxjr'Yj(k)'

This finishes the proof. O

3.3. A second variant of the Korobov space

In [17], the reproducing kernel Hilbert space H(Kg dM) was considered with kernel (3.3) and
corresponding inner product (3.4). Here Ry (k) = W o (k) := H7=1 Waj,y; (k) was defined as

We, (k) :( 291 )1,
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k!
gl(k) = { (k=01 for k Z l’

0, for0<k<lI.

Note that for k € N we have

Indeed, for k = 1 we have

=1
for2 < k < [a] we have
|—1X.| k 1 k—1 <)
Y ok =) K - =k %gklz%gkxegzkkgzkw,
I=1 =1 (k=1) 1=0 I 1=0 I

and for k > [a] we have

[a] [a] [a] [a] _
Y ok)=Y. « ,ngl:k“‘uk K <o,
1=1 I=1 (k—1)! =1 k=1

Lemma 3.2. Forall j, k € N we have

1 )
gr“jr')’j(k) < Wy (k) < [a] [a]]r“jﬁ/j (k).

Proof. First for all j, k € N we want to prove
g5 () <[] 70 (K).
For1 <k < [a;] we have

i

gy = (14 [2] 0) = (14 5 l_fl a0) < (5 00 )

For k > [a;] we have

1 7k = [a])!

1 [D(]] -1 _1
wyi (k) =1+ = Gk) <<9“,k> =
@y ®)= (143 o) < (7 o ® .

Hence for all j, k € N we get
w"‘jz')’j (k) < ll)lxj/)’j (k)/

and thus by Lemma 3.1
Wa,y (k) < lpt’éj,“rj (k) < [‘Xj—| [aj]r“j/’)/j(k)
holds.
Next, for all j, k € N we need to prove

1
Waj,; (k) > 37w (k).

8of 17

(3.5)
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It follows from (3.5) that for all j, k € N we have

[ai] -1 a1\ —1 [a]N —1
1 < 2k 3k!%i 1
Wy (k) = <1+7jz—219’(k)> - (H v ) - ( v ) = 370 (k-

This proof is complete. []

Remark 3.3. Set Ryn .y € {7da,y: Py Wiy} for all j, k € N. From Lemma 3.1 and Lemma 3.2 we
have forall j, k € N,

1 )
3701 (6) < Ruy (k) <[] r 5 (). (3:6)

Note that for all j, k € N we have ¢, (k) < $u;,(k), Ta;0;(k) < Ty 05(k), and waq,(k) <
Way ,7; (k), which means that

Ry, (k) < Ry, (k), forall j, k€ N. 3.7)

Combining with (3.6) and (3.7), we conclude

1 «
3701 (K) < Ry, (k) < Ry, (k) < ] 1% Tr o, (K), (38)

forallj, k € N.

Remark 3.4. The weight R, , , are used to describe the importance of the different coordinates for
the functions from the space H(Kg iy ). According to (3.6) we have the weight ¢4, , and the weight
W44,y have the same decay rate as the weight r; , ,, of the Korobov space H(K,, . ). Hence the above
reproducing kernel Hilbert spaces H(Ky,, . ), H(Ky,, ,) and H(K,, , ) are different but also similar.

4. Ly-approximation in weighted Hilbert spaces and main results

In this section we consider Ly-approximation
APP; : H(Kg,, ) = L2([0,1]%)

with APP4(f) = f for all f € H(Kg,, ) in Hilbert spaces H(Kg,, ) with weights Ry,, €
{Tanyr Pawy Wianqy )t It is well known from [6] that this embedding APP, is compact with 1 <
ap < ap < ---. The kernel Kg, . (x,y) is well defined for a; > 1 and forall x,y € [0,1]%, since by (3.7)

d
KR g ()| < Zd Ry (k) = 11(1 + [ar 11917 (Tar])7;) < oo,
keN =

where {(+) is the Riemann zeta function.

In the worst case setting the tractability and EC-tractability of Ly-approximation problems S;
with G; = L,([0,1]%) were investigated in analytic Korobov spaces and weighted Korobov spaces; see
[1-3,6,10-13]. Additionally, [2,6,11,13] discussed tractability and EC-tractability in weighted Korobov
spaces.

From subsection 2.1 the information complexity of APP; depends on the eigenvalues of the
operator W; = APP;APP; : H(KR,, ) = H(KR,, ). Let (A4,74;) be the eigenpairs of Wy,

Wd’?d,j = /\d,jﬂd,j for all ] €N,

doi:10.20944/preprints202312.2272.v1
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where the eigenvalues Ad,]- are ordered,
Mg > Agp >+ >0,

and the eigenvectors 77, ; are orthonormal,
<17d,ir ﬂd'j>H(KRda7) = (Si,]' forall i, ] eN.

Obviously, we have ¢(0, APP;) = 1 (or see [6]). Hence the NOR and the ABS for the problem
APP; coincide in the worst case setting. We abbreviate n* (e, APP,) as n(e, APPy), i.e.,

n(e, APP,) := nX(e, APP,).

It is well known that the eigenvalues of the operator Wy are R , - (k) with k € N% see, e.g., [7, p.
215]. Hence by (2.2) we have

n(e, APPy) = [{n € N: Ay, > &2} = |[{k € N§ : Rygq (k) > €}

d
= [{k € NG : [T Ry (kj) > €2}
j=1

Tractability such as SPT, PT, WT, and (t1, t)-WT for t; > 1, and EC-tractability such as EC-WT
and EC-(t1,1)-WT for t; < 1 of the above problem APP = {APP;} with the parameter sequences

Y= {'Yj}jeN and a = {‘Xj}jeN satisfying
12mz27m=>---20
and
1<0(:(x1:p(2:...

have been solved by [2,4,11] and [13], respectively. The following conditions have been obtained
therein:
o For Ry € {Tduys Pdasy Wiy}, PT holds iff SPT holds iff

Sy ::inf{K>0: Z’y}‘ <00} < oo,
j=1
and the exponent of SPT is
1
str __ -
P> = 2max (57, 0‘).
® For Ry = T4, QPT, UWT and WT are equivalent and hold iff

= inf v; < 1.
v = inf;

For Rd,lx,’y € {(Pd,uc,'yr wd,oc,'y}r
Y1 <
implies QPT.

In those cases the exponent of QPT is

1 _1
ol . 2max (g, gyt ), for 45 #0,
2 for vy =0.

o’

doi:10.20944/preprints202312.2272.v1
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e For Ryny € {Tauyys Panyyr Wdaqyt and ty > 1, (t,t2)-WT holds forall 1 > 91 > 92 > -+ > 0.
e For Ry 4 = 74,0,y EC-WT holds iff

]
® For Ry o, = gy and t < 1, EC-(t1,1)-WT holds iff

Inj
lim =)
jreeIn(y; )

We will research the worst case tractability of the problem APP with sequences satisfying (3.1)
and (3.2).

Theorem 4.1. Let the sequences v = {7}jen and & = {a;}jcn satisfy (3.1) and (3.2). Consider the
Lo-approximation APP for the weighted Hilbert spaces Hg,, ., Ria, € {Tduyr Pdayr Wy }- Then we have
the following tractability results:

(1) SPT and PT are equivalent and hold iff

1

Invy;
6 := lim inf —
j—ro0 nj

> 0. 4.1)

The exponent of SPT is
1 1
str
=2max{—, ——=.
' EAmE
(2) For Rjn = Tan, WT holds iff
lim v < 1.
J—
(3) For t1 > 1, (1, t2)-WT holds.
Proof. (1) For the problem APP we have A;; = 1. Assume that APP is PT. From Lemma 2.1 there exist
g > 0and T > 0 such that

Crq:=sup (), Aq)) T4 < oo,
deN  j=1

It follows from

00 d co
g%:ﬂ(2®m®m:HO+me®m, (42)
Fa

and (3.8) that
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[ . 1
oo > er > (ZlAd,])Td q
]:
d 0 1
> TT (14 X (57 (R)7) "0
j=1 k=1
d 1 1
= (q (1+ 5=772([w]7)) ) "
]:
d Y 1
INT\g—
> (IT0+30)7)d
]:
Yivd -
> (1+ s—f)rd 9
We conclude that p i
'Yd 'Yd
InCry+qlnd > = ln(l + 3T) 2 50 3
where we used In(1 + x) > 7 for all x € [0, 1]. We further get
In(InCrq +¢lnd) > Ind — Tlny; "' —In(27-37),
ie.,
ngl>1nd—hmmcnw+qmd)—hmmﬂ33
Ind — T-Ind ’
Hence we obtain
In
5 = liminfy .o ny, > 1 ~>0. 4.3)

Ind
Note that if APP is SPT, then it is PT. It implies that if APP is SPT, then (4.3) holds and the exponent

P > 2 max{

5 a7

On the other hand, assume that (4.1) holds. For an arbitrary ¢ € (0, %), there exists an integer
N > 0 such that for all j > N we have

In~y;t
’Y]. >0 —c¢.
Inj
It means that for all j > N
7 <j e

Choosing T = ;=; 25 and noting that 3 > 1, we have

RS DY AIE D W R
j=N j=N j=N

which yields that

Y 7] <o (4.4)
=1
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From (3.8) we get
1 d o T
(ZA ) =11 (1 +k21(1<ajm(k))f) a1
j= -
d o
<TT(1+ X (Tan) 1 vy, ()7 ) a-
j=1 k=1
d 1
=d 1 exp{ln (1—{ (1+ [aq] [} T@([“lh’))?)}
j=
d
=41 exp{%z‘iln (14 [aq]'™ 5([“117))}
j=
d
<di. exp {% Zl[aﬂ [ar]T Tg |—0é1—| }
j=
_ d‘qoexp{ [aq] [t Tg([zxﬂ"r i'y }
j=
1. exp {121 L))
41
<d-exp{ ]; 7}
< o0

forany g > Oand 7 > ( nE We further get

Crq =sup ( ZAd] d 7 < o
deN ]:

forany g > Oand T > ﬁ It follows from Lemma 2.1 that APP is SPT or PT and the exponent

Pt < 27. Setting € — 0, we obtain
p*r <27 < 2rr1ax{1 L}
- 6" [aq]
. _ 11
Hence the exponent of SPT is p* = 2max {3, Ta }.
(2) Let T > 0. Due to

we have

Noting that A;,, < &2 holds for
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we get

min{n|Ag, 4 < €}

[; Agje ]
j=

n(e, APP,)

IN

<142y AL

j=1
d )

=14+e 2 [ (1+ ¥ (Raj, (0))")
j=1 k=1

f[( ik% 7 (K ) (4.5)

where we used (4.2).
Set Rin,qy = Tdn,q- Assume that lim; , 7; < 1. Then we have from (4.5) that

Inn(e, APP,) < In (2572'( H;‘i:l (14 X% (R, (k))T)>
d+e1  — d+el

_In (2677 (14 52 (g (0)7))
d+e1

I (25 1L, (1+972([]7)))

d+e!
2e~ ZTH? . 1+'y] C(Jaq]T )))
d+et
_ 24 2tIn(e) £ In (14+17¢([a]7)))
< — + y
1n2—|—i1'11n( ) I n]é((txﬂ w6

ln

We will consider two cases:
e Case lim; o, j = 0: It means that for any § > 0 there exists a positive integer ] = J(J) such that

7; < 6 forall j>J.
Then we conclude from (4.6) that

Inn(e, APPd) In2+27In(e!) ):?:1 ’Y]'Té( [a1]7)

d+el  — e—1 d
(d
_ 242t (- D@0+ 5 pre@n) L[] D)
_1 + d
which deduces that
lim (e APPg) <5 ([ar]7).

dielseo d+el

Setting & — 0, we have limy 1o, 2250 — 0 This yields WT.
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e Case lim; ;o 7j € (0,1): Then, for every lim; o, 7; < 7« < 1 there exists a positive integer Jo = J(7x)
such that
vj <7+ forall j > Jo.

We have from (4.6) that

Inn(e, APP) < ln2—|—2'rln(s_l) 1’7] fe([ar]T)
d+el - g1 d
L In2+2in(e ) (e T)
_1 d
N z;‘:,;“w Lyie([a)7)
d
1n2+2ﬂn< D, Uo=De([m]7)
< L& :
i o Y ([ar]7)
d 7
which means
lim  DUEAPPD) a7,

dtelse0 d4el

g( ) P k“ <— / Y& \ ] > 4

and setting T — oo, we obtain

lim Inn(e, APP,)

< lim A7 _
dtelose  d+e71 - Tlgrolo’y*g([aﬂr)

This implies WT.
On the other hand, it suffices to show that WT yields limj%oo 7; < 1. Assume on the contrary that
lim; o ; = 1. It yields that y; = 1 for all j € N. It follows that

1 =744,k > €2
for all k € {0,1}4. Then we have
n(e, APPy) = |{k € N{ : 74, (k) > €}| > 2°.

Hence APP suffers from the curse of dimensionality. We cannot have WT.
(3) Let T > 0. Due to (4.5) and (3.8) we have

d
n(e, APP;) < 2¢ 27| (1 +
j=1 k

e

(Rayy (6)))

1

d
<26 [T (1+ [ ]9 g ([ar 7)),

j=1
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It follows that

(e, APPy) _ I (26T TTL (1 ] 1772 o] 7))
dh +e-2 — dh 4 gt
In2+42tIn(e 1) + 2}111 In (14 [ay] [mr'YjTg( [a1]7))
- dh + et
In2+27In(e™!) + T, [ar 1117y 7 ([ar]7)
dh et
In2+27In(e™?) + [ag ] 17¢ ([ay 1) Ky o7
dh et
_ In2+27in(e™) + [ ]*17dg ([a ] 1)
= dh + et
In2427In(e7)  [ag]la17dg(Taq])
< + .
et dh

<

<

We obtain forall t; > 1and t, > 0,

lim lnn(s,AIde) _o,
epdse dh e
which means APP is (t1,t,)-WT for all t; > 1 and t, > 0.
O]

In this paper we consider the SPT, PT, WT and (t1,t,)-WT for all t; < 1 and t, > 0 for worst
case Lp-approximation in weighted Hilbert spaces Hg,, with parameters1 > 91 > 92 > --- >0

and 1 < a3 < ap < ---. We get the matching necessary and sufficient conditions on SPT or PT for
Riuy € {%i,.x,'y/ rd,tx,'yrwd,tx,'y} and WT for R;,, = 744, In particular, it is (t1,t2)-WT forall t; > 1
and t, > 0.
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