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Abstract: Accurate estimation of Remaining Useful Life (RUL) for aircraft engines is essential for 

ensuring safety and uninterrupted operations in the aviation industry. Numerous investigations 

have leveraged the success of attention-based Transformer architecture in sequence modeling tasks, 

particularly in its application to RUL prediction. These studies primarily focus on utilizing onboard 

sensor readings as input predictors. While various Transformer-based approaches have 

demonstrated improvement in RUL predictions, their exclusive focus on temporal attention within 

multivariate time series sensor readings, without considering sensor-wise attention, raises concerns 

about potential inaccuracies in RUL predictions. To address this concern, our paper proposes a 

novel solution in the form of a two-stage attention based hierarchical transformer (STAR) 

framework. This approach incorporates a two-stage attention mechanism, systematically 

addressing both temporal and sensor-wise attentions. Furthermore, we enhance the STAR RUL 

prediction framework by integrate hierarchical encoder-decoder structures to capture valuable 

information across different time scales. By conducting extensive numerical experiments with the 

CMAPSS datasets, we demonstrate that our proposed STAR framework significantly outperforms 

current state-of-the-art models for RUL prediction. 

Keywords: two-stage attention; multiscale transformer; remaining useful life prediction; turbofan 

aircraft engine 

 

1. Introduction 

With the progression of modern sensor technologies and the continual rise in automation, 

prognostic and health management (PHM) assumes a pivotal role in facilitating the shift of aviation 

management systems. This shift involves moving from traditional corrective and preventive 

maintenance approaches towards a paradigm known as condition-based predictive maintenance 

(CBPM), an approach focused on proactively evaluating the health and maintenance requirements of 

critical systems, with the goal of preventing unscheduled downtime, streamlining maintenance 

processes, and ultimately boosting productivity and profitability [1,2].  

Central to the CBPM methodology is the prediction of remaining useful life (RUL), an extremely 

challenging task that has attracted considerable interest from the research community in recent years. 

The objective of RUL prediction is to accurately estimate the time span between the current moment 

and the projected conclusion of a system's operational life cycle. This estimation serves as a crucial 

input for subsequent maintenance scheduling, enabling proactive and timely maintenance actions.  

Conventional methods for estimating RUL encompass two main approaches: physics-based 

methods and statistics-based methods. Physics-based methods employ mathematical tools such as 

differential equations to model the degradation process of a system, offering insights into the physical 

mechanisms governing its deterioration [3–10]. On the other hand, statistics-based methods rely on 

probabilistic models, such as the Bayesian hidden Markov model (HMM), to approximate the 

underlying degradation process [11–16]. Nevertheless, these conventional methods either depend on 

prior knowledge of system degradation mechanics or rest on probabilistic assumptions about the 
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underlying statistical degradation processes. The inherent complexity of real-world degradation 

processes poses a significant challenge in accurately modeling them. Consequently, the application 

of these methods in real-world CBPM systems may lead to suboptimal prediction performance and 

less effective decisions in maintenance scheduling. 

To overcome the limitations of traditional physics-based and statistics-based methods, 

researchers are redirecting their focus towards the adoption of artificial intelligence and machine 

learning (AI/ML) techniques for predicting RUL. This strategic shift is prompted by the demonstrated 

successes of AI/ML applications in diverse domains, including but not limited to cybersecurity 

[17,18], geology [19,20], and engineering [21,22]. The growing prevalence of data and the continuous 

advancements in computational power further underscore the potential of AI/ML in increasing the 

accuracy of RUL prediction. This trend offers a promising avenue for overcoming the inherent 

limitations associated with traditional methodologies. 

Recurrent neural networks (RNN) and convolutional neural networks (CNN) stand out as 

widely employed AI/ML methodologies for RUL prediction, leveraging their abilities in capturing 

temporal patterns and spatial features in multidimensional time series data. Peng et al. [23] proposed 

a method that combines one-dimensional CNN with fully convolutional layers (1-FCCNN) and long 

short-term memory (LSTM) network to predict RUL for turbofan engines. Remadna et al. [24] 

developed a hybrid approach for RUL estimation combining CNN and bidirectional LSTM (BiLSTM) 

networks to extract spatial and temporal features sequentially. Hong et al. [25] developed a BiLSTM 

model, achieving heightened accuracy, while addressing challenges of dimensionality and 

interpretability using dimensionality reduction and Shapley additive explanation (SHAP) techniques 

[26]. Rosa et al. [27] introduced a generic fault prognosis framework employing LSTM-based 

autoencoder feature learning methods, emphasizing semi-supervised extrapolation of reconstruction 

errors to address imbalanced data in an industrial context. Ji et al. [28] proposed a hybrid model for 

accurate airplane engine failure prediction, integrating principal component analysis (PCA) for 

feature extraction and BiLSTM for learning the relationship between sensor data and RUL. Peng et 

al. [29] introduced a dual-channel LSTM neural network model for predicting the RUL of machinery, 

addressing challenges related to noise impact in complex operations and diverse abnormal 

environments. Their proposed method adaptively selects and processes time features, incorporates 

first-order time feature information extraction using LSTM, and creatively employs a momentum-

smoothing module to enhance the accuracy of RUL predictions. Similarly, Zhao et al. [30] designed a 

double-channel hybrid prediction model for efficient RUL prediction in industrial engineering, 

combining CNN and BiLSTM network to address drawbacks in spatial and temporal feature 

extraction. Wang et al. [31] addressed challenges in RUL prediction by introducing a novel fusion 

model, B-LSTM, combining a broad learning system (BLS) for feature extraction and LSTM for 

processing time-series information. Yu et al. [32] presented a sensor-based data-driven scheme for 

system RUL estimation, incorporating a bidirectional RNN-based autoencoder and a similarity-based 

curve matching technique. Their approach involves converting high-dimensional multi-sensor 

readings into a one-dimensional health index (HI) through unsupervised training, allowing for 

effective early-stage RUL estimation by comparing the test HI curve with pre-built degradation 

patterns. 

While RNNs and CNNs have demonstrated effectiveness in RUL estimation, they come with 

certain limitations. RNNs, due to their sequential nature, may suffer from slow training and 

prediction speeds, particularly when dealing with long sequences of time-series data. The vanishing 

gradient problem in RNNs can impede their ability to capture dependencies across extended time 

intervals, potentially leading to inadequate modeling of degradation patterns. Additionally, RNNs 

may struggle with incorporating contextual information from distant time steps, limiting their 

effectiveness in capturing complex temporal relationships. On the other hand, CNNs, designed for 

spatial feature extraction, may overlook temporal dependencies crucial in RUL prediction tasks, 

potentially leading to suboptimal performance. 

The Transformer architecture [33], initially introduced for natural language processing tasks, 

represents a paradigm shift in sequence modeling. Unlike traditional models like RNNs and CNNs, 
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Transformers rely on a self-attention mechanism, enabling the model to weigh the importance of 

different elements in a sequence dynamically. This attention mechanism allows Transformers to 

capture long-range dependencies efficiently, overcoming the vanishing gradient problem associated 

with RNNs. Moreover, Transformers support parallelization of computation, making them 

inherently more scalable than sequential models like RNNs. The self-attention mechanism in 

Transformers also addresses the challenges faced by CNNs in capturing temporal dependencies in 

sequential data, as it does not rely on fixed receptive fields.  

Within the realm of RUL prediction, numerous studies have introduced diverse customized 

Transformer architectures tailored specifically for RUL estimation. By utilizing a Transformer 

encoder as the central component, Mo et al. [34] presented an innovative method for predicting RUL 

in industrial equipment and systems. The model proposed tackles constraints found in RNNs and 

CNNs, providing adaptability to capture both short- and long-term dependencies, facilitate parallel 

computation, and integrate local contexts through the inclusion of a gated convolutional unit. 

Introducing the dynamic length transformer (DLformer), Ren et al. [35] proposed an adaptive 

sequence representation approach, acknowledging that individual time series may require different 

sequence lengths for accurate prediction. The DLformer achieves significant gains in inference speed, 

up to 90%, while maintaining a minimal degradation of less than 5% in model accuracy across 

multiple datasets. Zhang et al. [36] introduced an enhanced Transformer network tailored for multi-

sensor signals to improve the decision-making process for preventive maintenance in industrial 

systems. Addressing the limitations of existing Transformer models, the proposed model 

incorporates the Trend Augmentation Module (TAM) and Time-Feature Attention Module (TFAM) 

into the traditional Transformer architecture, demonstrating superior performance in various 

numerical experiments.  

Li et al. [37] introduced an innovative approach to enhance RUL prediction accuracy using a 

novel encoder-decoder architecture with Gated Recurrent Units (GRUs) and a dual attention 

mechanism. Integrating domain knowledge into the attention mechanism, their proposed method 

simultaneously emphasizes critical sensor data through knowledge attention and extracts essential 

features across multiple time steps using time attention. Peng et al. [38] developed a multiscale 

temporal convolutional Transformer (MTCT) for RUL prediction. The unique features of MTCT 

include a convolutional self-attention mechanism incorporating dilated causal convolution for 

improved global and local modeling and a temporal convolutional network attention module for 

enhanced local representation learning. Xiang et al. [39] introduced the Bayesian Gated-Transformer 

(BGT) model, a novel approach for RUL prediction with a focus on reliability and quantified 

uncertainty. Rooted in the transformer architecture and incorporating a gated mechanism, the BGT 

model effectively quantifies both epistemic and aleatory uncertainties and providing risk-aware RUL 

predictions. Most recently, Fan et al. [40] introduced the BiLSTM-DAE-Transformer framework for 

RUL prediction, utilizing the Transformer's encoder as the framework's backbone and integrating it 

with a self-supervised denoising autoencoder that employs BiLSTM for enhanced feature extraction.  

Although Transformer-based methods for RUL prediction outperform traditional RNN and 

CNNs, they are not without their limitations. Firstly, in the application of the self-attention 

mechanism to time series sensor readings for RUL prediction, these methods emphasize the weights 

of distinct time steps while overlooking the significance of individual sensors within the data 

stream—an aspect critical for comprehensive prediction performance. Secondly, in the utilization of 

temporal self-attention, these methods treat sensor readings within a single time step as tokens. 

However, a single time step reading usually has few semantic meanings. Consequently, a singular 

focus on the attention of individual time steps proves inadequate for capturing nuanced local 

semantic information requisite for RUL prediction. Inspired by recent advances in multivariate time 

series prediction, particularly those aimed at improving accuracy through the incorporation of both 

temporal and variable attention [41–43], we introduce the STAR framework to tackle these challenges. 

The proposed framework integrates a two-stage attention mechanism, sequentially capturing 

temporal and sensor-specific attentions, and incorporates a hierarchical encoder-decoder structure 

designed to encapsulate temporal information across various time scales. 
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The study conducted in [44] and [45] share some similarities with our current research. Notably, 

they also integrate sensor-wise attention into the prediction process. However, these approaches treat 

temporal attention and sensor-wise variable attention as independent entities. In other words, they 

generate two copies of the input sensor readings: one for computing temporal attention and the other 

for calculating sensor-wise variable attention. Subsequently, a fusion layer is employed to combine 

these two forms of attention together. In contrast to their methodology, our approach takes a distinct 

route by utilizing a two-stage attention mechanism. Our approach sequentially capture temporal 

attention and sensor-wise variable attention, addressing each aspect separately.  This two-stage 

attention strategy is designed to provide a nuanced understanding of both temporal dynamics and 

individual sensor contributions for more comprehensive prediction capabilities. 

The main contributions of this work are as follows: 

1. We incorporate a two-stage attention mechanism capable of capturing both temporal attention 

and sensor-wise variable attention, representing the first successful application of such a 

mechanism to turbofan engine RUL prediction. 

2. We propose a hierarchical encoder-decoder framework to capture temporal information across 

various time scales. While multiscale prediction has shown superior performance in numerous 

computer vision and time series classification tasks [43,46], our work marks the first successful 

implementation of multiscale prediction in RUL prediction. 

3. Through a series of experiments conducted on four CMAPSS turbofan engine datasets, we 

demonstrate that our model outperforms existing state-of-the-art methods. 

The rest of the paper is structured as follows: Section 2 provides a comprehensive exposition of 

the STAR model architecture. Section 3 intricately explores the experimental details, presents results, 

and offers a thorough analysis. Finally, Section 4 concludes the paper. 

2. Methodology 

Our study is dedicated to predicting the RUL of a turbofan engine based on historical 

multivariate time series sensor readings denoted as 𝑥1:𝑇 ∈ 𝑅𝑇×𝐷, where 𝑇 represents the number of 

time steps in the input data, and 𝐷  is the number of onboard sensors. The proposed STAR 

framework, illustrated in Figure 1, comprises five key components:  

1. Dimension-wise segmentation and embedding (section 2.1): Each sensor's univariate time series 

is segmented into 𝐾 disjoint patches with length 𝐿. To embed individual patches, a combination 

of an affine transformation and positional embedding is utilized [33]. 

2. Encoder (section 2.2): Adapting the traditional Transformer encoder [33], we introduce a 

modification that integrates a two-stage attention mechanism to capture both temporal and 

sensor-wise attentions. 

3. Decoder (section 2.3): Refining the conventional Transformer decoder [33], our modification 

introduces a two-stage attention mechanism aimed at capturing both temporal and sensor-wise 

attentions. 

4. Patch merging (section 2.4): Merging neighboring patches for each sensor in the temporal domain 

facilitates the creation of a coarser patch segmentation, enabling the capture of multiscale 

temporal information. 

5. Prediction layer (section 2.5): The final RUL prediction is achieved by concatenating information 

across different time scales through the use of a multi-layer perceptron (MLP). 

The subsequent subsections elaborate on each of these five components. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 December 2023                   doi:10.20944/preprints202312.2236.v1

https://doi.org/10.20944/preprints202312.2236.v1


 5 

 

 

Figure 1. Overall structure of the proposed STAR frameworks. 

2.1. Dimension-Wise Segmentation and Embedding 

The original development of the Transformer architecture focused on natural language 

processing tasks like neural machine translation [33,47]. Consequently, when applied to time series 

prediction tasks, the conventional approach treats each time step in the time series data as a token, 

akin to the treatment of words in natural language processing tasks. However, the information 

contained in a single time step is often limited, potentially resulting in suboptimal performance for 

time series prediction tasks. Inspired by the recent success of using Transformers in computer vision 

tasks, where input image data is segmented into small patches, researchers in time series predictions 

have adopted a similar segmentation procedure, leading to enhanced performance in time series 

prediction tasks [41–43]. In line with this approach, we employ a similar segmentation procedure in 

our work for RUL prediction.  

The dimension-wise segmentation segments each sensor time series readings into 𝐾 smaller 

disjoint patches with length 𝐿 as shown in the top left of Figure 1. Each segmentation is denoted as 𝑥𝑘,𝑑 ∈ 𝑅𝐿  (𝑘 = 1,… , 𝐾, 𝑑 = 1,… , 𝐷 ) and embedded with an affine transformation and positional 

encoding: 𝑥𝑘,𝑑(𝑒) = 𝐴 ⋅ 𝑥𝑘,𝑑 + 𝐸𝑘,𝑑 
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where 𝐴 ∈ 𝑅𝑑𝑚𝑜𝑑𝑒𝑙 ×𝐿 is a learnable matrix for embedding and 𝐸𝑘,𝑑 ∈ 𝑅𝑑𝑚𝑜𝑑𝑒𝑙 denotes the learnable 

positional encoding for each patch. As a result, the information of original patch 𝑥𝑘,𝑑 is embedded 

into a 𝑑𝑚𝑜𝑑𝑒𝑙 dimensional space. 

2.2. Two-Stage Attention Based Encoder 

Denote 𝑋(𝑒) ∈ 𝑅𝐾×𝐷×𝑑𝑚𝑜𝑑𝑒𝑙 as the embedded inputs, which act as the input for the encoder, as 

depicted at the top of Figure 2. 

 

Figure 2. Two-stage attention-based encoder. 

The input is initially partitioned into 𝐷 distinct fragments. Each fragment 𝑋:,𝑑,:(𝑒)
 is then fed into 

the temporal attention calculation block, closely resembling the conventional multi-head self-

attention (MSA) [33], as depicted in Figure 3 (a). This block is responsible for capturing temporal 

dependencies within each sensor's readings. 
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(a) (b) 

Figure 3. Temporal and sensor-wise variable attentions. (a) Network architecture for temporal 

attention. (b) Network architecture for sensor-wise variable attention. 

MSA is a critical mechanism in the Transformer architecture, particularly beneficial for tasks 

involving sequential data processing. In the original Transformer formulation, the self-attention 

mechanism is enhanced by introducing multiple attention heads. This extension allows the model to 

attend to different positions in the input sequence simultaneously and learn diverse relationships 

between elements. 

The standard self-attention mechanism computes attention scores using the following equation 

for a single attention head: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑄𝐾𝑇√𝑑𝑘)𝑉 (1) 

Here, 𝑄,𝐾,  and 𝑉  denote the query, key, and value matrices, respectively. The softmax 

operation normalizes the attention scores, and 𝑑𝑘 is a scaling factor to control the magnitude of the 

scores. The resulting attention values are then multiplied by the value matrix to obtain the weighted 

sum. 

In the multi-head attention mechanism, the process is parallelized across ℎ attention heads, 

each with distinct learned linear projections of the input 𝑄,𝐾, and 𝑉 matrices. The final output is 

obtained by concatenating the outputs from all attention heads with a linear transformation: 𝑀𝑆𝐴(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑜 (2) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 December 2023                   doi:10.20944/preprints202312.2236.v1

https://doi.org/10.20944/preprints202312.2236.v1


 8 

 

Here, 𝑊𝑜 is a learned linear transformation matrix applied to the concatenated outputs. Then, 

the temporal attention block can be expressed as follows: 𝑋̂:,𝑑,:(𝑒) = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋:,𝑑,:(𝑒) +𝑀𝑆𝐴(𝑋:,𝑑,:(𝑒) , 𝑋:,𝑑,:(𝑒) , 𝑋:,𝑑,:(𝑒))) (3) 𝑋:,𝑑,:𝑡𝑒𝑚𝑝 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋̂:,𝑑,:(𝑒) + 𝐹𝑜𝑟𝑤𝑎𝑟𝑑(𝑋̂:,𝑑,:(𝑒))) (4) 

Following the temporal attention block, 𝑋𝑡𝑒𝑚𝑝 ∈ 𝑅𝐾×𝐷×𝑑𝑚𝑜𝑑𝑒𝑙  is subsequently fed into the 

sensor-wise attention block, depicted in Figure 3 (b), to capture sensor-wise attention. The 

computation within the sensor-wise attention block is analogous to that of the temporal attention 

block, utilizing the input 𝑋𝑘,:,:𝑡𝑒𝑚𝑝. This mechanism allows the model to attend to important sensors 

and capture relevant features in the context of the temporal sequence. 

2.3. Patch Merging 

As illustrated in Figure 1, the output of the two-stage attention-based encoder, denoted as 𝑋𝑒𝑛𝑐,𝑠, 
undergoes processing in the patch merging block to generate coarser patches, facilitating multiscale 

predictions. Specifically, in the patch merging block (see Figure 4), adjacent patches for each sensor 

are combined in the time domain, creating a coarser patch segmentation. These resultant coarser 

patches serve as input for the subsequent layer/scale (𝑠 + 1) in the encoder. This hierarchical structure 

enables the model to capture temporal information across different time scales, enhancing its 

predictive capabilities. 

 

Figure 4. Two-stage attention-based encoder. 

The concatenated coarser patch undergoes an affine transformation to maintain the 

dimensionality at 𝑑𝑚𝑜𝑑𝑒𝑙. The procedure is summarized by the equation below: 𝑋𝑖𝑒𝑛𝑐,𝑠+1 = 𝐵 ⋅ [𝑋2𝑖,𝑑𝑒𝑛𝑐,𝑠, 𝑋2𝑖+1,𝑑𝑒𝑛𝑐,𝑠 ] (5) 

Here, 𝐵 ∈ 𝑅𝑑𝑚𝑜𝑑𝑒𝑙×2𝑑𝑚𝑜𝑑𝑒𝑙  represents a learnable matrix employed for dimensionality 

preservation during the patch merging process. 

2.4. Two-Stage Attention Based Decoder 

At layer/scale 𝑠, the inputs of two-stage attention-based decoder are 𝑋𝑒𝑛𝑐,𝑠 and 𝑋𝑑𝑒𝑐,𝑠−1, where 𝑋𝑑𝑒𝑐,𝑠−1 is the output of the decoder from previous layer/scale 𝑠 − 1. The decoder architecture closely 

resembles that of the original Transformer network, with the modification of replacing the masked 

multi-head self-attention (MMSA) with a two-stage attention mechanism, as illustrated in Figure 5. 
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Figure 5. Two-stage attention-based decoder. 

In the decoder process, the output of the decoder at the previous layer 𝑠 − 1 undergoes the two-

stage attention block, followed by a residual connection and layer normalization. Subsequently, the 

output of the encoder in the current layer 𝑠 serves as the keys and values for the MSA block. This 

modification enhances the decoder's ability to capture both temporal and sensor-wise attention, 

contributing to improved RUL prediction accuracy. It's important to note that the input of the decoder 

at the initial layer/scale comprises a fixed positional encoder defined by trigonometric functions, as 

introduced by Vaswani et al. [33]. 

2.5. Prediction Layer 

As depicted in the right part of Figure 1, the outputs of the decoders at different layers/scales 

are fed into separate MLPs to further embed the information, enhancing the model's ability to capture 

intricate patterns for RUL prediction. The outputs from these individual MLP blocks are then 

concatenated and passed into another MLP to make the final prediction. This hierarchical embedding 

and fusion process enable the model to capture both local and global dependencies, contributing to 

improved accuracy in predicting the RUL of turbofan engines. 

3. Experimental Results and Analysis 

The experiments were performed on a computational system comprising an Intel Core i9 3.6 

GHz processor, 64 GB of RAM, and 4 NVIDIA RTX 3080 GPU. 

In the following subsections, we will initially present the CMAPSS dataset utilized in our 

experiments and discuss data preprocessing in Section 3.1. Subsequently, Section 3.2 will delve into 

the details of hyperparameter tuning and implementation specifics. The performance metrics 

employed to evaluate the proposed STAR framework are introduced in Section 3.3. The performance 

results of the STAR framework will be presented and compared with several existing benchmarks in 
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Section 3.4. Finally, in Section 3.5, a set of ablation studies is conducted to demonstrate the importance 

of each component in our STAR framework. 

3.1. Data and Preprocessing 

We opted to utilize the NASA Commercial Modular Aero-Propulsion System Simulation 

(CMAPSS) dataset as the benchmark for assessing our model. Developed by NASA, CMAPSS is an 

extensive simulation framework designed to replicate the behavior of commercial aircraft turbofan 

engines, facilitating detailed investigations into engine performance, diagnostics, and prognostics. 

Widely recognized in the field of Prognostics and Health Management (PHM) for aircraft turbofan 

engines, the CMAPSS dataset is generated within this simulation environment, providing a valuable 

repository of multivariate time-series data. Simulating the operation of a fleet of engines under 

diverse conditions and fault scenarios, the dataset includes sensor readings from various engine 

components. Researchers leverage this resource to explore and devise methods for tasks such as RUL 

prediction, fault diagnosis, and performance analysis. Figure 6 illustrates the structure of a turbofan 

engine within CMAPSS, comprising five modules: fan, low-pressure turbine (LPT), high-pressure 

turbine (HPT), low-pressure compressor (LPC), and high-pressure compressor (HPC). 

 

Figure 6. Turbofan engine model [48]. 

The dataset is organized into four sub-datasets, FD001, FD002, FD003, and FD004, based on fault 

modes and operating conditions, and each sub-dataset is further divided into training and testing 

subsets as shown in Table 1 below. The training set spans the entire operational lifecycle of the 

turbofan engine, capturing data from its initial operation to degradation and failure. Conversely, the 

test set begins at a healthy state and undergoes arbitrary truncation, with the operating time periods 

leading up to system failure calculated from these truncated data. Additionally, the test set includes 

the actual RUL values of the test engine, facilitating the assessment of the model’s accuracy in 
predicting the time remaining until failure.  

Table 1. Parameters of the C-MAPSS dataset. 

Dataset FD001 FD002 FD003 FD004 

No. of Training Engines 100 260 100 249 

No. of Testing Engines 100 259 100 248 

No. of Operating Conditions 1 6 1 6 

No. of Fault Modes 1 1 2 2 

Each observation in the dataset is a snapshot of data taken during a single operating time cycle 

with 21 onboard sensors monitoring the engine's health status, as detailed in Table 2. 

Table 2. C-MAPSS Monitoring Sensor Data Description. 

Symbol Description Units 
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T2 Total temperature at fan inlet R 

T24 Total temperature at LPC 

inlet 

R 

T30 Total temperature at HPC 

inlet 

R 

T50 Total temperature at LPT inlet R 

P2 Pressure at fan inlet psia 

P15 Total pressure in bypass-duct psia 

P30 Total pressure at HPC outlet psia 

Nf Physical fan speed rpm 

Ne Physical core speed rpm 

epr Engine pressure ratio - 

Ps30 Static pressure at HPC outlet psia 

Phi Ratio of fuel flow to Ps30 pps/psi 

NRf Corrected fan speed rpm 

NRe Corrected core speed rpm 

BPR Bypass ratio - 

farB Burner fuel-air ratio - 

htBleed Bleed Enthalpy - 

Bf-dmd Demanded fan speed rpm 

PCNfR-dmd Demanded corrected fan 

speed 

rpm 

W31 HPT coolant bleed lbm/s 

W32 LPT coolant bleed lbm/s 

However, not all sensors contribute useful information for RUL prediction, as some remain 

constant until failure [34,38,45]. Following the approach outlined in [34], we selectively incorporate 

data from 14 sensors (sensors 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20, 21) into our training and testing 

processes. Additionally, we apply max-min normalization to the sensor readings, which is expressed 

by the formula: 𝑥′ = 𝑥 − 𝑥𝑚𝑖𝑛 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 (6) 

Here, 𝑥  represents the original sensor readings, 𝑥𝑚𝑖𝑛  is the minimum value of the sensor 

readings, and 𝑥𝑚𝑎𝑥  is the maximum value of the sensor readings. This normalization technique 

scales the sensor values to a consistent range [0, 1], promoting uniformity and aiding in the training 

process for effective RUL prediction models. The selective inclusion of sensors and normalization 

contribute to improved model performance and robustness [49]. 

In traditional RUL estimation, the common practice involves assigning target values that 

decrease linearly with time, assuming a linear degradation of the system's health over its operational 

life. However, this simplified assumption may not accurately reflect the real-world behavior of 

system degradation, especially during the initial stages when degradation is typically negligible. To 

address this limitation, our approach, inspired by a piece-wise linear RUL target function proposed 

in previous studies [49,50], introduces a more nuanced labeling strategy for RUL in the CMAPSS 

datasets. In our approach, RULs are initially labeled with a constant value (𝑅𝑈𝐿𝑚𝑎𝑥), representing a 

phase of minimal degradation. Subsequently, the system enters a phase of linear degradation until it 
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reaches failure. This truncated linear model better captures the complex evolution of RUL, 

considering varying degradation rates over different life cycle phases. By aligning our RUL labeling 

with the actual behavior of turbofan engines, our method provides a more realistic representation of 

system health progression, especially during the initial stages of operation. 

3.2. Hyperparameter Tuning 

The hyperparameter tuning process for the proposed STAR model involves an extensive grid 

search to identify the optimal configuration in terms of root mean squared error (RMSE). The grid 

search encompasses key hyperparameters, such as learning rate, batch size, optimizer, input time 

series length, the number of layers/scales for multiscale prediction, and the dimension of embedding 

space and number of heads in MSA. A detailed breakdown of the possible range and grid for these 

hyperparameters is provided in Table 3. This grid search methodology allows for a comprehensive 

examination of various parameter combinations, facilitating the identification of the most effective 

setup for RUL prediction. 

Table 3. Hyperparameters and Ranges. 

Hyperparameter Range 

Learning Rate [0.0001,0.01] 

Batch Size 16, 32, 64 

Optimizer Adam, SGD, RMSProp 

Time Series Length 32, 48, 64 

Number of Layers/Scales 1, 2, 3, 4 

Dimension of Embedding Space 128, 256, 512, 1024 

Number of Head for MSA 1, 2, 4, 6 

The optimal hyperparameter combinations for FD001 to FD004 are presented in Table 4. 

Subsequently, the prediction model is instantiated using these sets of hyperparameters to predict 

RUL for testing engines. 

Table 4. Best hyperparameter combinations for FD001, FD002, FD003 and FD004 data sets. 

Hyperparameter FD001 FD002 FD003 FD004 

Learning Rate 0.0002 0.0002 0.0002 0.0002 

Batch Size 32 64 32 64 

Optimizer Adam Adam Adam Adam 

Time Series Length 32 64 48 64 

Number of Layers/Scales 3 4 1 4 

Dimension of Embedding Space 128 64 128 256 

Number of Head for MSA 1 4 1 4 
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It is evident from the results that FD002 and FD004 datasets necessitate a longer time series 

length, a greater number of layers/scales, and more heads in MSA compared to FD001 and FD003 

datasets. We posit that this disparity arises from the fact that FD002 and FD004 datasets are simulated 

under diverse operational conditions. Consequently, they demand a more intricate network structure 

to extract valuable features for RUL prediction. Additionally, these datasets require longer input 

sequences, containing more information to generate accurate predictions. 

3.3. Evaluation Metric 

In evaluating the predictive performance of the proposed model for RUL, two key metrics are 

employed: the RMSE and an effectiveness Score. The RMSE, expressed by Equation (7), is a widely 

used metric in RUL estimation evaluation, providing equal penalty weights for both underestimation 

and overestimation of RUL. It calculates the square root of the mean squared differences between the 

true RULs values 𝑦𝑖 and the predicted RUL values 𝑦̂𝑖.  
𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛𝑖=1 𝑁  (7) 

On the other hand, the effectiveness Score, defined by Equation (8), introduces distinct penalty 

weights for the direction of prediction deviation. The Score penalizes advancements (where 𝑦̂𝑖 is 

smaller than 𝑦𝑖) with a smaller coefficient, recognizing the opportunity for proactive maintenance 

planning. Conversely, when predictions lag (where 𝑦̂𝑖 is larger than 𝑦𝑖), a larger penalty coefficient 

is applied, reflecting the potential for more severe consequences when the maintenance is performed 

too late.  

𝑆𝑐𝑜𝑟𝑒 =
{  
  ∑𝑒−(𝑦𝑖−𝑦̂𝑖13 ) − 1,   𝑑 < 0𝑁
𝑖=1∑𝑒−(𝑦𝑖−𝑦̂𝑖10 ) − 1,   𝑑 ≥ 0𝑁
𝑖=1

 (8) 

3.4. RUL Prediction 

In this section, we rigorously evaluate the performance of the proposed STAR framework for 

RUL prediction. To benchmark its effectiveness, we compare the proposed model against a suite of 

existing methods widely recognized in the field. These methods include MLP [51], support vector 

regression (SVR) [51], CNN [51], LSTM [49], BiLSTM [52], DAG [53], the gated convolutional 

Transformer (GCT) [34], CNN + LSTM [54], multi-head CNN + LSTM [55], B-LSTM [31], BiLSTM 

attention model [56], DAST [44], DLformer [35], and BiLSTM-DAE-Transformer [40]. Table 5 shows 

the comparison results. 

Table 5. Performance comparison. The bold number represents the best model, while the underscore 

number represents the second-best model. 

Method 
FD001 FD002 FD003 FD004 

RMSE Score RMSE Score RMSE Score RMSE Score 

MLP (2016) 37.56 - 80.03 - 37.39 - 77.37 - 

SVR (2016) 20.96 - 42.00 - 21.05 - 45.35 - 

CNN (2016) 18.45 - 30.29 - 19.82 - 29.16 - 
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LSTM (2017) 16.14 338 24.49 4450 16.18 852 28.17 5550 

BiLSTM (2018) 13.65 295 23.18 4130 13.74 317 24.86 5430 

DAG (2019) 11.96 229 20.34 2730 12.46 535 22.43 3370 

CNN + LSTM (2019) 16.16 303 20.44 3440 17.12 1420 23.25 4630 

Multi-head CNN + LSTM 

(2020) 
12.19 259 19.93 4350 12.85 343 22.89 4340 

GCT (2021) 11.27 - 22.81 - 11.42 - 24.86 - 

BiLSTM Attention (2021) 13.78 255 15.94 1280 14.36 438 16.96 1650 

B-LSTM (2022) 12.45 279 15.36 4250 13.37 356 16.24 5220 

DAST (2022) 11.43 203 15.25 924 11.32 154 18.23 1490 

DLformer (2023) - - 15.93 1283 - - 15.86 1601 

BiLSTM-DAE-Transformer 

(2023) 
10.98 186 16.12 2937 11.14 252 18.15 3840 

Proposed Method 10.61 169 13.47 784 10.71 202 15.87 1449 

As presented in Table 5, the proposed STAR framework consistently outperforms existing RUL 

prediction models across all datasets, showcasing its superior predictive capabilities. Notably, for 

FD001 and FD002 datasets, our method demonstrates the best performance, achieving the lowest 

RMSE and Score values. Remarkably, the STAR framework exhibits significant improvements in both 

RMSE and Score metrics for the challenging FD002 dataset, surpassing state-of-the-art models by 12% 

and 15% in terms of RMSE and Score, respectively. This highlights the effectiveness of capturing 

sensor-wise attention, which is particularly crucial in cases such as FD002, simulated under diverse 

operating conditions. For the FD003 dataset, our STAR framework attains the best performance in 

terms of RMSE and the second-best performance in terms of Score. This observation suggests a 

tendency to underestimate RUL for this dataset, leading to a larger penalty when calculating the 

Score metric. Consequently, while our model excels when evaluated based on RMSE, there is a slight 

deviation when employing the Score metric. Contrarily, for the FD004 dataset, the trends are reversed 

compared to FD003. In this scenario, our model achieves the second-best performance in terms of 

RMSE while securing the top position in Score. It is noteworthy that the difference in RMSE between 

our method and the best model for FD004 (DLformer) is only 0.01, highlighting the competitive 

performance of the STAR framework. 

Figure 7 serves as a comprehensive visual representation, offering a detailed comparison 

between the predicted RUL generated by our STAR model and the ground-truth RULs across the 

FD001 to FD004 testing datasets. The x-axis corresponds to the Engine Unit Index, while the y-axis 

depicts the RUL. The graphical depiction provides insights into the model's performance under 

varying conditions.  
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Figure 7. Comparisons between predicted RUL and ground truth RUL for all four CMAPSS datasets. 

The x-axis in the figures corresponds to the Engine Unit Index, while the y-axis represents the 

Remaining Useful Life. (a) RUL prediction for FD001; (b) RUL prediction for FD002; (c) RUL 

prediction for FD003; (d) RUL prediction for FD004. 

For enhanced clarity in visualization, we adhere to the conventional practice of arranging all test 

sequences along the x-axis in ascending order based on their ground truth RUL. In Figures 7 (a) and 

(c), the model exhibits notable precision, especially for scenarios where the ground-truth RUL is 

relatively small (below 60). However, for FD002 and FD004 datasets, the prediction results display a 

discernible level of noise compared to the smoother outcomes observed in FD001 and FD003. This 

observed variability may be attributed to differences in operational complexities, as evidenced by 

varying numbers of operating conditions and fault modes, along with the size of the training dataset. 

Notably, FD002 and FD004 involve simulations under six distinct operating conditions, while FD001 

and FD003 are conducted under a single operating condition. The heightened complexity in FD002 

and FD004 likely contributes to the observed noise in predictions, underscoring the model's 

sensitivity to the intricacies of working conditions and the dataset size across diverse scenarios. 

3.5. Ablation Study 

In this section, we conduct ablation experiments to assess the impact of individual components 

in our proposed model. Specifically, we compare the prediction performances, evaluated in terms of 

RMSE, for the following models, all utilizing the same set of hyperparameters selected from Table 4: 

• STAR: The proposed model with a two-stage attention mechanism and hierarchical encoder-

decoder. 

• STAR-Temporal: The proposed model with temporal attention only and a hierarchical encoder-

decoder. 

• STAR-SingleScale: The proposed model with a two-stage attention mechanism and hierarchical 

encoder-decoder, excluding the patch merging step between different layers/scales as depicted 

in Figure 1. 
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The findings revealed in Table 6 emphasize the importance of each component in our proposed 

STAR model, shedding light on their respective contributions to achieving noteworthy prediction 

performance. Notably, the STAR model without sensor-wise variable attention and multiscale 

information exhibits a decline in prediction performance, particularly evident in the case of more 

complex FD002 and FD004 datasets. 

Table 6. Ablation study of the proposed STAR architecture. 

Model FD001 FD002 FD003 FD004 

STAR 10.61 13.47 10.71 15.87 

STAR-Temporal 11.62 16.67 12.01 18.44 

STAR-SingleScale 12.33 16.11 12.49 17.71 

4. Conclusions  

This paper presents an innovative STAR framework designed for predicting the RUL of turbofan 

engines. Leveraging a two-stage attention mechanism, our proposed model adeptly captures both 

temporal and sensor-wise variable attention. By utilizing a hierarchical encoder-decoder structure to 

integrate multiscale information, the model produces hierarchical predictions, demonstrating 

superior performance in predicting RUL. Using the CMAPSS dataset, we illustrate the importance of 

incorporating both temporal attention and sensor-wise variable attention for RUL prediction through 

a series of numerical experiments. The results highlight the promising potential of the STAR 

framework in achieving accurate and reliable RUL predictions, thereby contributing to advancements 

in prognostics for the health management of aircraft engines. 

Despite the superior performance demonstrated by the proposed methods in predicting RUL, 

it’s important to note that the model inherently lacks the ability to provide explanations for its 

identification of equipment approaching failure. Therefore, a promised area for future research 

involves incorporating Explainable Artificial Intelligence (XAI) methods, such as SHAP and LIME, 

to unravel the prediction logic of the model. This enhancement has the potential to increase the 

applicability of the prediction model in practical scenarios, particularly within the context of CBPM. 
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