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Abstract: Accurate estimation of Remaining Useful Life (RUL) for aircraft engines is essential for
ensuring safety and uninterrupted operations in the aviation industry. Numerous investigations
have leveraged the success of attention-based Transformer architecture in sequence modeling tasks,
particularly in its application to RUL prediction. These studies primarily focus on utilizing onboard
sensor readings as input predictors. While various Transformer-based approaches have
demonstrated improvement in RUL predictions, their exclusive focus on temporal attention within
multivariate time series sensor readings, without considering sensor-wise attention, raises concerns
about potential inaccuracies in RUL predictions. To address this concern, our paper proposes a
novel solution in the form of a two-stage attention based hierarchical transformer (STAR)
framework. This approach incorporates a two-stage attention mechanism, systematically
addressing both temporal and sensor-wise attentions. Furthermore, we enhance the STAR RUL
prediction framework by integrate hierarchical encoder-decoder structures to capture valuable
information across different time scales. By conducting extensive numerical experiments with the
CMAPSS datasets, we demonstrate that our proposed STAR framework significantly outperforms
current state-of-the-art models for RUL prediction.

Keywords: two-stage attention; multiscale transformer; remaining useful life prediction; turbofan
aircraft engine

1. Introduction

With the progression of modern sensor technologies and the continual rise in automation,
prognostic and health management (PHM) assumes a pivotal role in facilitating the shift of aviation
management systems. This shift involves moving from traditional corrective and preventive
maintenance approaches towards a paradigm known as condition-based predictive maintenance
(CBPM), an approach focused on proactively evaluating the health and maintenance requirements of
critical systems, with the goal of preventing unscheduled downtime, streamlining maintenance
processes, and ultimately boosting productivity and profitability [1,2].

Central to the CBPM methodology is the prediction of remaining useful life (RUL), an extremely
challenging task that has attracted considerable interest from the research community in recent years.
The objective of RUL prediction is to accurately estimate the time span between the current moment
and the projected conclusion of a system's operational life cycle. This estimation serves as a crucial
input for subsequent maintenance scheduling, enabling proactive and timely maintenance actions.

Conventional methods for estimating RUL encompass two main approaches: physics-based
methods and statistics-based methods. Physics-based methods employ mathematical tools such as
differential equations to model the degradation process of a system, offering insights into the physical
mechanisms governing its deterioration [3-10]. On the other hand, statistics-based methods rely on
probabilistic models, such as the Bayesian hidden Markov model (HMM), to approximate the
underlying degradation process [11-16]. Nevertheless, these conventional methods either depend on
prior knowledge of system degradation mechanics or rest on probabilistic assumptions about the
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underlying statistical degradation processes. The inherent complexity of real-world degradation
processes poses a significant challenge in accurately modeling them. Consequently, the application
of these methods in real-world CBPM systems may lead to suboptimal prediction performance and
less effective decisions in maintenance scheduling.

To overcome the limitations of traditional physics-based and statistics-based methods,
researchers are redirecting their focus towards the adoption of artificial intelligence and machine
learning (AI/ML) techniques for predicting RUL. This strategic shift is prompted by the demonstrated
successes of AI/ML applications in diverse domains, including but not limited to cybersecurity
[17,18], geology [19,20], and engineering [21,22]. The growing prevalence of data and the continuous
advancements in computational power further underscore the potential of AI/ML in increasing the
accuracy of RUL prediction. This trend offers a promising avenue for overcoming the inherent
limitations associated with traditional methodologies.

Recurrent neural networks (RNN) and convolutional neural networks (CNN) stand out as
widely employed AI/ML methodologies for RUL prediction, leveraging their abilities in capturing
temporal patterns and spatial features in multidimensional time series data. Peng et al. [23] proposed
a method that combines one-dimensional CNN with fully convolutional layers (1-FCCNN) and long
short-term memory (LSTM) network to predict RUL for turbofan engines. Remadna et al. [24]
developed a hybrid approach for RUL estimation combining CNN and bidirectional LSTM (BiLSTM)
networks to extract spatial and temporal features sequentially. Hong et al. [25] developed a BILSTM
model, achieving heightened accuracy, while addressing challenges of dimensionality and
interpretability using dimensionality reduction and Shapley additive explanation (SHAP) techniques
[26]. Rosa et al. [27] introduced a generic fault prognosis framework employing LSTM-based
autoencoder feature learning methods, emphasizing semi-supervised extrapolation of reconstruction
errors to address imbalanced data in an industrial context. Ji et al. [28] proposed a hybrid model for
accurate airplane engine failure prediction, integrating principal component analysis (PCA) for
feature extraction and BiLSTM for learning the relationship between sensor data and RUL. Peng et
al. [29] introduced a dual-channel LSTM neural network model for predicting the RUL of machinery,
addressing challenges related to noise impact in complex operations and diverse abnormal
environments. Their proposed method adaptively selects and processes time features, incorporates
first-order time feature information extraction using LSTM, and creatively employs a momentum-
smoothing module to enhance the accuracy of RUL predictions. Similarly, Zhao et al. [30] designed a
double-channel hybrid prediction model for efficient RUL prediction in industrial engineering,
combining CNN and BiLSTM network to address drawbacks in spatial and temporal feature
extraction. Wang et al. [31] addressed challenges in RUL prediction by introducing a novel fusion
model, B-LSTM, combining a broad learning system (BLS) for feature extraction and LSTM for
processing time-series information. Yu et al. [32] presented a sensor-based data-driven scheme for
system RUL estimation, incorporating a bidirectional RNN-based autoencoder and a similarity-based
curve matching technique. Their approach involves converting high-dimensional multi-sensor
readings into a one-dimensional health index (HI) through unsupervised training, allowing for
effective early-stage RUL estimation by comparing the test HI curve with pre-built degradation
patterns.

While RNNs and CNNs have demonstrated effectiveness in RUL estimation, they come with
certain limitations. RNNs, due to their sequential nature, may suffer from slow training and
prediction speeds, particularly when dealing with long sequences of time-series data. The vanishing
gradient problem in RNNs can impede their ability to capture dependencies across extended time
intervals, potentially leading to inadequate modeling of degradation patterns. Additionally, RNNs
may struggle with incorporating contextual information from distant time steps, limiting their
effectiveness in capturing complex temporal relationships. On the other hand, CNNs, designed for
spatial feature extraction, may overlook temporal dependencies crucial in RUL prediction tasks,
potentially leading to suboptimal performance.

The Transformer architecture [33], initially introduced for natural language processing tasks,
represents a paradigm shift in sequence modeling. Unlike traditional models like RNNs and CNN,
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Transformers rely on a self-attention mechanism, enabling the model to weigh the importance of
different elements in a sequence dynamically. This attention mechanism allows Transformers to
capture long-range dependencies efficiently, overcoming the vanishing gradient problem associated
with RNNs. Moreover, Transformers support parallelization of computation, making them
inherently more scalable than sequential models like RNNs. The self-attention mechanism in
Transformers also addresses the challenges faced by CNNss in capturing temporal dependencies in
sequential data, as it does not rely on fixed receptive fields.

Within the realm of RUL prediction, numerous studies have introduced diverse customized
Transformer architectures tailored specifically for RUL estimation. By utilizing a Transformer
encoder as the central component, Mo et al. [34] presented an innovative method for predicting RUL
in industrial equipment and systems. The model proposed tackles constraints found in RNNs and
CNNs, providing adaptability to capture both short- and long-term dependencies, facilitate parallel
computation, and integrate local contexts through the inclusion of a gated convolutional unit.
Introducing the dynamic length transformer (DLformer), Ren et al. [35] proposed an adaptive
sequence representation approach, acknowledging that individual time series may require different
sequence lengths for accurate prediction. The DLformer achieves significant gains in inference speed,
up to 90%, while maintaining a minimal degradation of less than 5% in model accuracy across
multiple datasets. Zhang et al. [36] introduced an enhanced Transformer network tailored for multi-
sensor signals to improve the decision-making process for preventive maintenance in industrial
systems. Addressing the limitations of existing Transformer models, the proposed model
incorporates the Trend Augmentation Module (TAM) and Time-Feature Attention Module (TFAM)
into the traditional Transformer architecture, demonstrating superior performance in various
numerical experiments.

Li et al. [37] introduced an innovative approach to enhance RUL prediction accuracy using a
novel encoder-decoder architecture with Gated Recurrent Units (GRUs) and a dual attention
mechanism. Integrating domain knowledge into the attention mechanism, their proposed method
simultaneously emphasizes critical sensor data through knowledge attention and extracts essential
features across multiple time steps using time attention. Peng et al. [38] developed a multiscale
temporal convolutional Transformer (MTCT) for RUL prediction. The unique features of MTCT
include a convolutional self-attention mechanism incorporating dilated causal convolution for
improved global and local modeling and a temporal convolutional network attention module for
enhanced local representation learning. Xiang et al. [39] introduced the Bayesian Gated-Transformer
(BGT) model, a novel approach for RUL prediction with a focus on reliability and quantified
uncertainty. Rooted in the transformer architecture and incorporating a gated mechanism, the BGT
model effectively quantifies both epistemic and aleatory uncertainties and providing risk-aware RUL
predictions. Most recently, Fan et al. [40] introduced the BILSTM-DAE-Transformer framework for
RUL prediction, utilizing the Transformer's encoder as the framework's backbone and integrating it
with a self-supervised denoising autoencoder that employs BiLSTM for enhanced feature extraction.

Although Transformer-based methods for RUL prediction outperform traditional RNN and
CNNs, they are not without their limitations. Firstly, in the application of the self-attention
mechanism to time series sensor readings for RUL prediction, these methods emphasize the weights
of distinct time steps while overlooking the significance of individual sensors within the data
stream —an aspect critical for comprehensive prediction performance. Secondly, in the utilization of
temporal self-attention, these methods treat sensor readings within a single time step as tokens.
However, a single time step reading usually has few semantic meanings. Consequently, a singular
focus on the attention of individual time steps proves inadequate for capturing nuanced local
semantic information requisite for RUL prediction. Inspired by recent advances in multivariate time
series prediction, particularly those aimed at improving accuracy through the incorporation of both
temporal and variable attention [41-43], we introduce the STAR framework to tackle these challenges.
The proposed framework integrates a two-stage attention mechanism, sequentially capturing
temporal and sensor-specific attentions, and incorporates a hierarchical encoder-decoder structure
designed to encapsulate temporal information across various time scales.
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The study conducted in [44] and [45] share some similarities with our current research. Notably,
they also integrate sensor-wise attention into the prediction process. However, these approaches treat
temporal attention and sensor-wise variable attention as independent entities. In other words, they
generate two copies of the input sensor readings: one for computing temporal attention and the other
for calculating sensor-wise variable attention. Subsequently, a fusion layer is employed to combine
these two forms of attention together. In contrast to their methodology, our approach takes a distinct
route by utilizing a two-stage attention mechanism. Our approach sequentially capture temporal
attention and sensor-wise variable attention, addressing each aspect separately. This two-stage
attention strategy is designed to provide a nuanced understanding of both temporal dynamics and
individual sensor contributions for more comprehensive prediction capabilities.

The main contributions of this work are as follows:

1. We incorporate a two-stage attention mechanism capable of capturing both temporal attention
and sensor-wise variable attention, representing the first successful application of such a
mechanism to turbofan engine RUL prediction.

2. We propose a hierarchical encoder-decoder framework to capture temporal information across
various time scales. While multiscale prediction has shown superior performance in numerous
computer vision and time series classification tasks [43,46], our work marks the first successful
implementation of multiscale prediction in RUL prediction.

3. Through a series of experiments conducted on four CMAPSS turbofan engine datasets, we
demonstrate that our model outperforms existing state-of-the-art methods.

The rest of the paper is structured as follows: Section 2 provides a comprehensive exposition of
the STAR model architecture. Section 3 intricately explores the experimental details, presents results,
and offers a thorough analysis. Finally, Section 4 concludes the paper.

2. Methodology

Our study is dedicated to predicting the RUL of a turbofan engine based on historical
multivariate time series sensor readings denoted as x;.; € R™*P, where T represents the number of
time steps in the input data, and D is the number of onboard sensors. The proposed STAR
framework, illustrated in Figure 1, comprises five key components:

1. Dimension-wise segmentation and embedding (section 2.1): Each sensor's univariate time series
is segmented into K disjoint patches with length L. To embed individual patches, a combination
of an affine transformation and positional embedding is utilized [33].

2. Encoder (section 2.2): Adapting the traditional Transformer encoder [33], we introduce a
modification that integrates a two-stage attention mechanism to capture both temporal and
sensor-wise attentions.

3. Decoder (section 2.3): Refining the conventional Transformer decoder [33], our modification
introduces a two-stage attention mechanism aimed at capturing both temporal and sensor-wise
attentions.

4. Patch merging (section 2.4): Merging neighboring patches for each sensor in the temporal domain
facilitates the creation of a coarser patch segmentation, enabling the capture of multiscale
temporal information.

5. Prediction layer (section 2.5): The final RUL prediction is achieved by concatenating information
across different time scales through the use of a multi-layer perceptron (MLP).

The subsequent subsections elaborate on each of these five components.
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Figure 1. Overall structure of the proposed STAR frameworks.

2.1. Dimension-Wise Segmentation and Embedding

The original development of the Transformer architecture focused on natural language
processing tasks like neural machine translation [33,47]. Consequently, when applied to time series
prediction tasks, the conventional approach treats each time step in the time series data as a token,
akin to the treatment of words in natural language processing tasks. However, the information
contained in a single time step is often limited, potentially resulting in suboptimal performance for
time series prediction tasks. Inspired by the recent success of using Transformers in computer vision
tasks, where input image data is segmented into small patches, researchers in time series predictions
have adopted a similar segmentation procedure, leading to enhanced performance in time series
prediction tasks [41—43]. In line with this approach, we employ a similar segmentation procedure in
our work for RUL prediction.

The dimension-wise segmentation segments each sensor time series readings into K smaller
disjoint patches with length L as shown in the top left of Figure 1. Each segmentation is denoted as
Xxa €ERY (k=1,..,K,d=1,..,D) and embedded with an affine transformation and positional
encoding:

x,g =A-XpqtEpa
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where A € R%modet XL ig 3 learnable matrix for embedding and Ej , € R%model denotes the learnable
positional encoding for each patch. As a result, the information of original patch x4 is embedded
into a dpqe dimensional space.

2.2. Two-Stage Attention Based Encoder

Denote X(© € RK*PXdmodel ag the embedded inputs, which act as the input for the encoder, as
depicted at the top of Figure 2.

Input

T T I\ i
h1I8 : I .’\“ \ ' LIS LY AP L Patches for sach
Vi) \ ATTLA LAY Pt AT VAL { VIV | |t v dimension
/ fuy i (L AT \
Temporal attention Temporal attention Temporal attention

T

After temporal
attention and
concatenation

Paiches for each
temporal
‘segmentation

Output of two-stage
aftention

Figure 2. Two-stage attention-based encoder.

The input is initially partitioned into D distinct fragments. Each fragment X 52’): is then fed into
the temporal attention calculation block, closely resembling the conventional multi-head self-
attention (MSA) [33], as depicted in Figure 3 (a). This block is responsible for capturing temporal
dependencies within each sensor's readings.
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Figure 3. Temporal and sensor-wise variable attentions. (a) Network architecture for temporal
attention. (b) Network architecture for sensor-wise variable attention.

MSA is a critical mechanism in the Transformer architecture, particularly beneficial for tasks
involving sequential data processing. In the original Transformer formulation, the self-attention
mechanism is enhanced by introducing multiple attention heads. This extension allows the model to
attend to different positions in the input sequence simultaneously and learn diverse relationships
between elements.

The standard self-attention mechanism computes attention scores using the following equation
for a single attention head:

. QKT
Attention(Q,K,V) = softmax (F) 14 (1)
k
Here, Q,K, and V denote the query, key, and value matrices, respectively. The softmax
operation normalizes the attention scores, and dj, is a scaling factor to control the magnitude of the
scores. The resulting attention values are then multiplied by the value matrix to obtain the weighted
sum.
In the multi-head attention mechanism, the process is parallelized across h attention heads,
each with distinct learned linear projections of the input Q, K, and V matrices. The final output is
obtained by concatenating the outputs from all attention heads with a linear transformation:

MSA(Q,K,V) = Concat(head?, head?, ..., head™) W, ()
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Here, W, is a learned linear transformation matrix applied to the concatenated outputs. Then,
the temporal attention block can be expressed as follows:

X = LayerNorm(X(Q) + MSAX(S), X5, X)) ®)

XM = LayerNorm(8'S), + Forward(£5)) (4)

Following the temporal attention block, X*™P € RK*P*dmodel js subsequently fed into the
sensor-wise attention block, depicted in Figure 3 (b), to capture sensor-wise attention. The
computation within the sensor-wise attention block is analogous to that of the temporal attention
block, utilizing the input X,". This mechanism allows the model to attend to important sensors
and capture relevant features in the context of the temporal sequence.

2.3. Patch Merging

Asillustrated in Figure 1, the output of the two-stage attention-based encoder, denoted as X°"“*,
undergoes processing in the patch merging block to generate coarser patches, facilitating multiscale
predictions. Specifically, in the patch merging block (see Figure 4), adjacent patches for each sensor
are combined in the time domain, creating a coarser patch segmentation. These resultant coarser
patches serve as input for the subsequent layer/scale (s + 1) in the encoder. This hierarchical structure
enables the model to capture temporal information across different time scales, enhancing its
predictive capabilities.

|
\
i |

| v f\ v v 1y

| Concatenate | | Concatenate |

Figure 4. Two-stage attention-based encoder.

The concatenated coarser patch undergoes an affine transformation to maintain the
dimensionality at d,,q.;- The procedure is summarized by the equation below:

enc,s+1 __ enc,s enc,s
Xi =B- [XZi,d 'X2i+1,d] )

Here, B € R%modet*2dmodel represents a learnable matrix employed for dimensionality
preservation during the patch merging process.

2.4. Two-Stage Attention Based Decoder

Atlayer/scale s, the inputs of two-stage attention-based decoder are X°"“S and X decs—1 where
Xdees=1 jgthe output of the decoder from previous layer/scale s — 1. The decoder architecture closely
resembles that of the original Transformer network, with the modification of replacing the masked

multi-head self-attention (MMSA) with a two-stage attention mechanism, as illustrated in Figure 5.
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Figure 5. Two-stage attention-based decoder.

In the decoder process, the output of the decoder at the previous layer s — 1 undergoes the two-
stage attention block, followed by a residual connection and layer normalization. Subsequently, the
output of the encoder in the current layer s serves as the keys and values for the MSA block. This
modification enhances the decoder's ability to capture both temporal and sensor-wise attention,
contributing to improved RUL prediction accuracy. It's important to note that the input of the decoder
at the initial layer/scale comprises a fixed positional encoder defined by trigonometric functions, as
introduced by Vaswani et al. [33].

2.5. Prediction Layer

As depicted in the right part of Figure 1, the outputs of the decoders at different layers/scales
are fed into separate MLPs to further embed the information, enhancing the model's ability to capture
intricate patterns for RUL prediction. The outputs from these individual MLP blocks are then
concatenated and passed into another MLP to make the final prediction. This hierarchical embedding
and fusion process enable the model to capture both local and global dependencies, contributing to
improved accuracy in predicting the RUL of turbofan engines.

3. Experimental Results and Analysis

The experiments were performed on a computational system comprising an Intel Core i9 3.6
GHz processor, 64 GB of RAM, and 4 NVIDIA RTX 3080 GPU.

In the following subsections, we will initially present the CMAPSS dataset utilized in our
experiments and discuss data preprocessing in Section 3.1. Subsequently, Section 3.2 will delve into
the details of hyperparameter tuning and implementation specifics. The performance metrics
employed to evaluate the proposed STAR framework are introduced in Section 3.3. The performance
results of the STAR framework will be presented and compared with several existing benchmarks in
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Section 3.4. Finally, in Section 3.5, a set of ablation studies is conducted to demonstrate the importance
of each component in our STAR framework.

3.1. Data and Preprocessing

We opted to utilize the NASA Commercial Modular Aero-Propulsion System Simulation
(CMAPSS) dataset as the benchmark for assessing our model. Developed by NASA, CMAPSS is an
extensive simulation framework designed to replicate the behavior of commercial aircraft turbofan
engines, facilitating detailed investigations into engine performance, diagnostics, and prognostics.
Widely recognized in the field of Prognostics and Health Management (PHM) for aircraft turbofan
engines, the CMAPSS dataset is generated within this simulation environment, providing a valuable
repository of multivariate time-series data. Simulating the operation of a fleet of engines under
diverse conditions and fault scenarios, the dataset includes sensor readings from various engine
components. Researchers leverage this resource to explore and devise methods for tasks such as RUL
prediction, fault diagnosis, and performance analysis. Figure 6 illustrates the structure of a turbofan
engine within CMAPSS, comprising five modules: fan, low-pressure turbine (LPT), high-pressure
turbine (HPT), low-pressure compressor (LPC), and high-pressure compressor (HPC).

Fan Compressor  Combustor Turbine
Modules { | (LPC and HPC) (HPT and LPT)

Physical
sensor { Temp. Temp. Temp.
meas. Pressure  Pressure Pressure  Speed Temp.  Temp.

Figure 6. Turbofan engine model [48].

The dataset is organized into four sub-datasets, FD001, FD002, FD003, and FD004, based on fault
modes and operating conditions, and each sub-dataset is further divided into training and testing
subsets as shown in Table 1 below. The training set spans the entire operational lifecycle of the
turbofan engine, capturing data from its initial operation to degradation and failure. Conversely, the
test set begins at a healthy state and undergoes arbitrary truncation, with the operating time periods
leading up to system failure calculated from these truncated data. Additionally, the test set includes
the actual RUL values of the test engine, facilitating the assessment of the model’s accuracy in
predicting the time remaining until failure.

Table 1. Parameters of the C-MAPSS dataset.

Dataset FD001 FD002 FD003 FD004
No. of Training Engines 100 260 100 249
No. of Testing Engines 100 259 100 248
No. of Operating Conditions 1 6 1 6
No. of Fault Modes 1 1 2 2

Each observation in the dataset is a snapshot of data taken during a single operating time cycle
with 21 onboard sensors monitoring the engine's health status, as detailed in Table 2.

Table 2. C-MAPSS Monitoring Sensor Data Description.

Symbol Description Units
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T2 Total temperature at fan inlet R
T24 Total temperature at LPC R
inlet
T30 Total temperature at HPC R
inlet
T50 Total temperature at LPT inlet R
P2 Pressure at fan inlet psia
P15 Total pressure in bypass-duct psia
P30 Total pressure at HPC outlet psia
Nf Physical fan speed rpm
Ne Physical core speed rpm
epr Engine pressure ratio -
Ps30 Static pressure at HPC outlet psia
Phi Ratio of fuel flow to Ps30 pps/psi
NRf Corrected fan speed rpm
NRe Corrected core speed rpm
BPR Bypass ratio -
farB Burner fuel-air ratio -
htBleed Bleed Enthalpy -
Bf-dmd Demanded fan speed rpm
PCN{R-dmd Demanded corrected fan rpm
speed
W31 HPT coolant bleed Ibm/s
W32 LPT coolant bleed Ibm/s

However, not all sensors contribute useful information for RUL prediction, as some remain
constant until failure [34,38,45]. Following the approach outlined in [34], we selectively incorporate
data from 14 sensors (sensors 2, 3,4, 7, 8,9, 11, 12, 13, 14, 15, 17, 20, 21) into our training and testing
processes. Additionally, we apply max-min normalization to the sensor readings, which is expressed
by the formula:

x' = M (6)
Xmax — Xmin

Here, x represents the original sensor readings, X,;; is the minimum value of the sensor
readings, and X4, is the maximum value of the sensor readings. This normalization technique
scales the sensor values to a consistent range [0, 1], promoting uniformity and aiding in the training
process for effective RUL prediction models. The selective inclusion of sensors and normalization
contribute to improved model performance and robustness [49].

In traditional RUL estimation, the common practice involves assigning target values that
decrease linearly with time, assuming a linear degradation of the system's health over its operational
life. However, this simplified assumption may not accurately reflect the real-world behavior of
system degradation, especially during the initial stages when degradation is typically negligible. To
address this limitation, our approach, inspired by a piece-wise linear RUL target function proposed
in previous studies [49,50], introduces a more nuanced labeling strategy for RUL in the CMAPSS
datasets. In our approach, RULs are initially labeled with a constant value (RUL,,q,), representing a
phase of minimal degradation. Subsequently, the system enters a phase of linear degradation until it
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reaches failure. This truncated linear model better captures the complex evolution of RUL,
considering varying degradation rates over different life cycle phases. By aligning our RUL labeling
with the actual behavior of turbofan engines, our method provides a more realistic representation of
system health progression, especially during the initial stages of operation.

3.2. Hyperparameter Tuning

The hyperparameter tuning process for the proposed STAR model involves an extensive grid
search to identify the optimal configuration in terms of root mean squared error (RMSE). The grid
search encompasses key hyperparameters, such as learning rate, batch size, optimizer, input time
series length, the number of layers/scales for multiscale prediction, and the dimension of embedding
space and number of heads in MSA. A detailed breakdown of the possible range and grid for these
hyperparameters is provided in Table 3. This grid search methodology allows for a comprehensive
examination of various parameter combinations, facilitating the identification of the most effective
setup for RUL prediction.

Table 3. Hyperparameters and Ranges.

Hyperparameter Range
Learning Rate [0.0001,0.01]

Batch Size 16, 32, 64
Optimizer Adam, SGD, RMSProp

Time Series Length 32,48, 64

Number of Layers/Scales 1,2,3 4

Dimension of Embedding Space 128, 256, 512, 1024
Number of Head for MSA 1,2,4,6

The optimal hyperparameter combinations for FD001 to FD004 are presented in Table 4.
Subsequently, the prediction model is instantiated using these sets of hyperparameters to predict
RUL for testing engines.

Table 4. Best hyperparameter combinations for FD001, FD002, FD003 and FD004 data sets.

Hyperparameter FDO001 FD002 FDO003 FD004
Learning Rate 0.0002 0.0002 0.0002 0.0002
Batch Size 32 64 32 64
Optimizer Adam Adam Adam Adam
Time Series Length 32 64 48 64
Number of Layers/Scales 3 4 1 4
Dimension of Embedding Space 128 64 128 256

Number of Head for MSA 1 4 1 4

doi:10.20944/preprints202312.2236.v1
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It is evident from the results that FD002 and FD004 datasets necessitate a longer time series
length, a greater number of layers/scales, and more heads in MSA compared to FD001 and FD003
datasets. We posit that this disparity arises from the fact that FD002 and FD004 datasets are simulated
under diverse operational conditions. Consequently, they demand a more intricate network structure
to extract valuable features for RUL prediction. Additionally, these datasets require longer input
sequences, containing more information to generate accurate predictions.

3.3. Evaluation Metric

In evaluating the predictive performance of the proposed model for RUL, two key metrics are
employed: the RMSE and an effectiveness Score. The RMSE, expressed by Equation (7), is a widely
used metric in RUL estimation evaluation, providing equal penalty weights for both underestimation
and overestimation of RUL. It calculates the square root of the mean squared differences between the
true RULs values y; and the predicted RUL values ;.

Z?=1(yi _5;1')2 (7)

RMSE =
N

On the other hand, the effectiveness Score, defined by Equation (8), introduces distinct penalty
weights for the direction of prediction deviation. The Score penalizes advancements (where J; is
smaller than y;) with a smaller coefficient, recognizing the opportunity for proactive maintenance
planning. Conversely, when predictions lag (where y; is larger than y;), a larger penalty coefficient
is applied, reflecting the potential for more severe consequences when the maintenance is performed
too late.

N PRy 3%
fz B 1, a<o
_Ji=1
Score —4 N _(yl'l—f/i) (8)

LZe 0/—-1,d=0

i=1

3.4. RUL Prediction

In this section, we rigorously evaluate the performance of the proposed STAR framework for
RUL prediction. To benchmark its effectiveness, we compare the proposed model against a suite of
existing methods widely recognized in the field. These methods include MLP [51], support vector
regression (SVR) [51], CNN [51], LSTM [49], BiLSTM [52], DAG [53], the gated convolutional
Transformer (GCT) [34], CNN + LSTM [54], multi-head CNN + LSTM [55], B-LSTM [31], BiLSTM
attention model [56], DAST [44], DLformer [35], and BiLSTM-DAE-Transformer [40]. Table 5 shows
the comparison results.

Table 5. Performance comparison. The bold number represents the best model, while the underscore
number represents the second-best model.

FD001 FD002 FD003 FD004
Method
RMSE Score RMSE Score RMSE Score RMSE Score
MLP (2016) 37.56 - 80.03 - 37.39 - 77.37 -
SVR (2016) 20.96 - 42.00 - 21.05 - 45.35 -

CNN (2016) 18.45 - 30.29 - 19.82 - 29.16 -
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LSTM (2017) 16.14 338 2449 4450 16.18 852 28.17 5550
BiLSTM (2018) 13.65 295 23.18 4130 13.74 317 24.86 5430
DAG (2019) 11.96 229 20.34 2730 1246 535 2243 3370
CNN + LSTM (2019) 16.16 303 2044 3440 17.12 1420 2325 4630

Multi-head CNN + LSTM

(2020) 12.19 259 1993 4350 12.85 343 22.89 4340

GCT (2021) 11.27 - 22.81 - 11.42 - 24.86 -

BiLSTM Attention (2021) 13.78 255 1594 1280  14.36 438 1696 1650

B-LSTM (2022) 12.45 279 1536 4250 13.37 356 16.24 5220
DAST (2022) 11.43 203 15.25 924 11.32 154 18.23 1490
DLformer (2023) - - 1593 1283 - - 15.86 1601

BiLSTM-DAE-Transformer 10.98 186
(2023) -

—_
[o)

16.12 2937 11.14 252 18.15 3840

Proposed Method 10.61 169 13.47 784 10.71 202 15.87 1449

As presented in Table 5, the proposed STAR framework consistently outperforms existing RUL
prediction models across all datasets, showcasing its superior predictive capabilities. Notably, for
FDO001 and FDO002 datasets, our method demonstrates the best performance, achieving the lowest
RMSE and Score values. Remarkably, the STAR framework exhibits significant improvements in both
RMSE and Score metrics for the challenging FD002 dataset, surpassing state-of-the-art models by 12%
and 15% in terms of RMSE and Score, respectively. This highlights the effectiveness of capturing
sensor-wise attention, which is particularly crucial in cases such as FD002, simulated under diverse
operating conditions. For the FD003 dataset, our STAR framework attains the best performance in
terms of RMSE and the second-best performance in terms of Score. This observation suggests a
tendency to underestimate RUL for this dataset, leading to a larger penalty when calculating the
Score metric. Consequently, while our model excels when evaluated based on RMSE, there is a slight
deviation when employing the Score metric. Contrarily, for the FD004 dataset, the trends are reversed
compared to FD003. In this scenario, our model achieves the second-best performance in terms of
RMSE while securing the top position in Score. It is noteworthy that the difference in RMSE between
our method and the best model for FD004 (DLformer) is only 0.01, highlighting the competitive
performance of the STAR framework.

Figure 7 serves as a comprehensive visual representation, offering a detailed comparison
between the predicted RUL generated by our STAR model and the ground-truth RULs across the
FDO001 to FD004 testing datasets. The x-axis corresponds to the Engine Unit Index, while the y-axis
depicts the RUL. The graphical depiction provides insights into the model's performance under
varying conditions.

doi:10.20944/preprints202312.2236.v1
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Figure 7. Comparisons between predicted RUL and ground truth RUL for all four CMAPSS datasets.
The x-axis in the figures corresponds to the Engine Unit Index, while the y-axis represents the
Remaining Useful Life. (a) RUL prediction for FD001; (b) RUL prediction for FD002; (c) RUL
prediction for FD003; (d) RUL prediction for FD004.

For enhanced clarity in visualization, we adhere to the conventional practice of arranging all test
sequences along the x-axis in ascending order based on their ground truth RUL. In Figures 7 (a) and
(c), the model exhibits notable precision, especially for scenarios where the ground-truth RUL is
relatively small (below 60). However, for FD002 and FD004 datasets, the prediction results display a
discernible level of noise compared to the smoother outcomes observed in FD001 and FD003. This
observed variability may be attributed to differences in operational complexities, as evidenced by
varying numbers of operating conditions and fault modes, along with the size of the training dataset.
Notably, FD002 and FD004 involve simulations under six distinct operating conditions, while FD001
and FDO003 are conducted under a single operating condition. The heightened complexity in FD002
and FDO004 likely contributes to the observed noise in predictions, underscoring the model's
sensitivity to the intricacies of working conditions and the dataset size across diverse scenarios.

3.5. Ablation Study

In this section, we conduct ablation experiments to assess the impact of individual components
in our proposed model. Specifically, we compare the prediction performances, evaluated in terms of
RMSE, for the following models, all utilizing the same set of hyperparameters selected from Table 4:

e  STAR: The proposed model with a two-stage attention mechanism and hierarchical encoder-
decoder.

e  STAR-Temporal: The proposed model with temporal attention only and a hierarchical encoder-
decoder.

e  STAR-SingleScale: The proposed model with a two-stage attention mechanism and hierarchical
encoder-decoder, excluding the patch merging step between different layers/scales as depicted
in Figure 1.
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The findings revealed in Table 6 emphasize the importance of each component in our proposed
STAR model, shedding light on their respective contributions to achieving noteworthy prediction
performance. Notably, the STAR model without sensor-wise variable attention and multiscale
information exhibits a decline in prediction performance, particularly evident in the case of more
complex FD002 and FD004 datasets.

Table 6. Ablation study of the proposed STAR architecture.

Model FD001 FD002 FD003 FD004
STAR 10.61 13.47 10.71 15.87
STAR-Temporal 11.62 16.67 12.01 18.44
STAR-SingleScale 12.33 16.11 12.49 17.71

4. Conclusions

This paper presents an innovative STAR framework designed for predicting the RUL of turbofan
engines. Leveraging a two-stage attention mechanism, our proposed model adeptly captures both
temporal and sensor-wise variable attention. By utilizing a hierarchical encoder-decoder structure to
integrate multiscale information, the model produces hierarchical predictions, demonstrating
superior performance in predicting RUL. Using the CMAPSS dataset, we illustrate the importance of
incorporating both temporal attention and sensor-wise variable attention for RUL prediction through
a series of numerical experiments. The results highlight the promising potential of the STAR
framework in achieving accurate and reliable RUL predictions, thereby contributing to advancements
in prognostics for the health management of aircraft engines.

Despite the superior performance demonstrated by the proposed methods in predicting RUL,
it’s important to note that the model inherently lacks the ability to provide explanations for its
identification of equipment approaching failure. Therefore, a promised area for future research
involves incorporating Explainable Artificial Intelligence (XAI) methods, such as SHAP and LIME,
to unravel the prediction logic of the model. This enhancement has the potential to increase the
applicability of the prediction model in practical scenarios, particularly within the context of CBPM.
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