
Article

Not peer-reviewed version

ARMOSA Model Parametrization on

Winter Durum Wheat Cultivation under

Diverse Cropping Management

Practices in Mediterranean Environment

Pasquale Garofalo 

*

 , Marco Parlavecchia , Luisa Giglio , Ivana Campobasso , Alessandro Vittorio Vonella ,

Marco Botta , Tommaso Tadiello , Vincenzo Tucci , Francesco Fornaro , Rita Leogrande , Carolina Vitti ,

Alessia Perego , Marco Acutis , Domenico Ventrella

Posted Date: 28 December 2023

doi: 10.20944/preprints202312.2200.v1

Keywords: long term experiment; modelling; agronomy; calibration; soil organic carbon; sustainability

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/127403
https://sciprofiles.com/profile/643948
https://sciprofiles.com/profile/643886
https://sciprofiles.com/profile/1683287
https://sciprofiles.com/profile/1886999
https://sciprofiles.com/profile/911760
https://sciprofiles.com/profile/1576235
https://sciprofiles.com/profile/755673
https://sciprofiles.com/profile/780152
https://sciprofiles.com/profile/743169


 

Article 

ARMOSA Model Parametrization on Winter Durum 
Wheat Cultivation under Diverse Cropping 
Management Practices in Mediterranean 
Environment 
Pasquale Garofalo 1*, Marco Parlavecchia 1, Luisa Giglio 1, Ivana Campobasso 1, Alessandro 
Vittorio Vonella 1, Marco Botta 2, Tommaso Tadiello 2, Vincenzo Tucci 3, Francesco Fornaro 1, Rita 
Leogrande 1, Carolina Vitti 1, Alessia Perego 2, Marco Acutis 2 and Domenico Ventrella 1 

1 Council for Agricoltural Research and Economics - Agriculture and Environment; crea@crea.gov.it 
2 Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, 

Milan, Italy; unimi@postecert.it 
3 Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy 

* Correspondence: pasquale.garofalo@crea.gov.it; Tel.: +39 080 547 5011  

Abstract: In view of the expected climate changes, a paradigm shift in soil management, through reduced 
tillage and/or a different use of crop residues, can be a key point in the mitigation of the climate impacts. The 
transition from a traditional cropping system (i.e., durum wheat in continuous cropping system under 
conventional tillage and/or straw removal) to those undergoing the conservative practices require to be 
evaluated in a medium to long time frame to reach an equilibrium and thus to be properly investigated. In this 
regard, cropping system simulation models are fundamental tools for the in-silico evaluation of the response 
of crop growth and soil organic matter dynamics to varying cropping scenarios. This paper reports the 
evaluations on the parameterization and reliability of the ARMOSA crop simulation model calibrated and 
validated on experimental datasets collected on durum wheat grown in continuous cropping system under 
several straw and soil management strategies in a Mediterranean environment. 
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1. Introduction 

Globally, cereals are the main source of food supply for humans. The European Union is the 
largest producer of wheat [1]. In Italy, the production of durum wheat plays a fundamental role in 
the food industry. Italy is the second highest-producing country in the world of durum wheat after 
Canada. The total annual production of durum wheat is 4.2 million tons and is concentrated in 
southern Italy and the Islands with 65.6% [2]. 

Global warming (GW) is the principal cause of the rise of the average temperature, the reduction 
of rainfall, the increase of the severity and frequency of drought and floods events, and the carbon 
dioxide concentration in the atmosphere [3-5]. 

Thus, it is necessary to provide strategies to adapt and mitigate the effects of GW on crop yield 
and product quality. Adaptation strategies aim to minimize the negative effects of GW on agricultural 
production, while mitigation strategies aim to reduce greenhouse gas emissions, maintaining or 
increasing the organic carbon content in soil. Then, integrated analyses are necessary to adapt the 
cropping systems to the mutated climate conditions, in areas with homogeneous agronomic and 
pedo-climatic characteristics, such as the Mediterranean basin. 

Nowadays, all of the above-mentioned issues caused from the GW adversely affects yields of 
wheat in many lower-latitude regions, while they have increased in many higher-latitude zones, 
during the recent decades [6]. 
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Projections at the global level confirm this trend [7]. On the other hand, literature reports limited 
information concerning to the impacts of GW on production in Italy, mainly resulting from analyses 
of continental or global scale [7-9]. In any case, the use of accurate climate data is essential, especially 
in areas with high pedo-climatic and topographical variability, such as Italy [10]. 

Recently, in the province of Foggia (Northern Apulia), durum wheat is often grown in rotation 
of two or three years with tomato (two years of wheat and one of tomato) and/or with irrigated high-
income crops. Traditional agronomic practices include the use of mould ploughing and additional 
tillage operations, such as harrowing. Straw and stubble, after being chopped, are buried in the 
ground by ploughing or, alternatively, are burned in early September and then ploughed and 
incorporated into the soil [11]. 

Field experiments aiming at the evaluation of the soil organic matter dynamics and crop yield in 
response to tillage are typically expensive and time consuming. A viable solution to overcome this 
limitation is the use of properly calibrated and validated process-based models to evaluate the impact 
of different soil and crop management practices on crop productivity and water–nutrients dynamics. 
Model application helps identify the most suitable management according to the pedo-climatic 
conditions [12-15]. 

In literature, there are studies testing different practices of soil and crop management of 
conservation agriculture (CA) on crop growth and yield, and nutrient and water dynamics in the soil-
water-atmosphere system under different agro-environmental conditions [16-17]. However, most of 
the simulation models tested in the last years are not capable to depict the long-term effects of 
differences between CA practices, such as no-tillage (NT) and minimum tillage (MT), and traditional 
cropping managements [18]. 

Combining process-based crop modeling with climate data and weather projections is critical to 
gaining knowledge about the effects of climate change caused by global warming on agricultural 
production and identifying the most appropriate crop management strategies. In this way, crop 
modelling could provide information on mitigations and adaptations to climate change by 
recognizing appropriate CA practices [17, 19-20]. ARMOSA is a process-based cropping system 
model suitable for field crops and for simulating different soil-management practices under diverse 
environmental conditions [15, 21-22] 

The purpose of this work was the definition of a correct crop management aimed at preserving 
and/or increasing soil fertility, stabilizing durum wheat yields over time, thanks to the choosing and 
the application of appropriate and adequately calibrated models. Therefore, ARMOSA crop 
simulation model was calibrated using a dataset collected along a long-term experiment (LTE) of 
durum wheat in continuous cropping system, cultivated in Foggia (Southern Italy) since 1977 to date 
under several straw practices contemplated for CA. Reliability of ARMOSA was assessed by 
validation step on a different LTE dataset used for ARMOSA parametrization, carried out at the same 
experimental farm and under two different tillage options (NT and MT). 

2. Materials and Methods 

2.1. Experimental field 

All the field experiments were carried out in Podere 124 (P124) experimental station, located in 
Foggia, Apulia region, Southern Italy (latitude, 41°88’7’’N; longitude, 15°83’05’’E; altitude, 90 m 
a.s.l.), in two experimental parcels: P124_P30 used to calibrate the model, and P124_P32 used to 
validate it.  

The soil, a vertisol of alluvial origin [23], is classified as silty-clay with the following 
physicochemical properties: 48.5% clay, 38.7% silt, 12.8% sand, bulk density 1.11 t m-3, organic matter: 
2.1%; total N: 0.122%; NaHCO3-extractable P: 41 ppm; NH4OAc extractable K2O: 1598 ppm; pH: 8.3; 
field capacity water content: 0.396 m3 m-3; permanent wilting point water content : 0.195 m3 m-3; 
available water: 202 mm m-1. 

The climate is classified as “accentuated thermo-mediterranean” [24], characterized by 
temperatures below 0 °C in winter and above 40 °C in summer, with an annual average of 550 mm of 
rainfall, mostly concentrated in winter months [11]. The daily meteorological data of temperature, 
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humidity, rainfall, wind parameters and solar radiation were recorded in the meteorological station 
located at P124.  

2.2. LTE data-sets 

LTE dataset used to parametrize ARMOSA and to check the robustness and reliability of the 
model , consisted of winter durum wheat in continuous cropping system since 1977, submitted to 
three different straw management and namely: i) chopping and incorporation of crop residue into 
soil with ploughing (T2); ii) chopping, supply of 150 kg of mineral nitrogen per hectare on straw and 
incorporation of crop residue into soil with ploughing (T5) and; iii) chopping, supply of 150 kg of 
mineral nitrogen per hectare and of 500 m3 ha-1 of irrigation water on straw and incorporation of 
crop residue into soil (T8).  

The experimental design was arranged in a randomized block design with five replications of 8 
m x 10 m cropped area and a spacing of 15 cm (between two rows) x 5 cm (on the rows) for each 
replication, placed in one experimental plot (area of 3500 m2) here named P_30.  

For all experimental treatments, sowing, which took place in the first half of November, was 
preceded by fertilization with superphosphate (100 kg P2O5 ha-1) plowing (with soil incorporation of 
the chopped straw), harrowing with the disc harrow and tilling with the rotary tiller. 100 kg N ha-1 
was supplied to the crop as top dressing in the first half of March and the harvest was performed in 
the middle two weeks of June.  

Before harvesting, plant samples taken over an area of 2 m2 was collected to estimate the total 
above dry biomass (TDM), placing the sample in a ventilated oven at 78 ° C, until a constant weight 
was reached.  

The harvest wheat took place with the support of a plot combine, which determined, thanks to 
a portable module, grain yield for each replication and the related moisture (from which the dry 
weight of grain was calculated).   

In addition, from 1983 to 2009, the soil organic carbon content (TOC; kg ha-1; 0-40 cm depth) was 
determined discontinuously on three soil samples of about 500 gr each for each replication.  

In P_30 the following cultivars (cvs) succeeded each other over the harvesting years: Valgeraldo 
1978-1982, Appulo 1983-1987, Latino 1988-1992, Appio 1993-1996, Simeto 1997-2000 and 2007-2013, 
Ofanto 2001-2006, Claudio 2014-2018, Saragolla 2019-2021.  

Consistency of ARMOSA was probed on a separate dataset applied on the parameterization 
process. Here, figures were gathered on another LTE consisting of the wheat in continuous cropping 
system since 2003, cultivated under two CA schemes NT and MT. 

The experimental design was planned in the randomized block design with three replications 
for each treatment with an area extension of 500 m2 (20 m x 25 m) arranged in one experimental plot 
(P_32) with a total surface of 4450 m2. 

NT provided for sowing (in the first half of November) with the no-tiller seeder and without 
further disturbance of soil. 

Under MT, a single field operation before sowing, was performed by the combined farm device 
with subsoiler and rotary cultivator disturbing the first layer of soil at 0-0.10 m depth. 

For all soil management, straw and stubble were chopped after harvest and spread back. 
Mineral nitrogen fertilization was split in two doses, as basal dressing before sowing in the form 

of di-ammonium phosphate (36 and 92 kg ha-1 of N and P2O5, respectively) and ammonium nitrate as 
top dressing (68 kg ha-1) in the first half of March. Weed was kept under control by chemicals applied 
at pre-sowing and post-emergence. 

The experimental design was structured in the randomized block design with three replications 
for the two treatments with of an area extension of 500 m2 (20 m x 25 m) arranged in one experimental 
plot (P_32) with a total surface of 4450 m2. 

The cvs that followed one another over the years in P_32 was: i) Simeto, from 2003 to 2010; ii) 
Claudio, from 2011 to 2018 and iii) Saragolla from 2018 to 2020. 
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As for P_30, the plot harvester collected data about grain yield and moisture (dry weight of grain 
was calculated accordingly) for each replication, over a period from 10 June to 25 June of the 
examined growing seasons. 

Even for P_32, TOC (0-30 cm depth) from 2002 to 2020 (not continuously) was determined on 
three soil samples of about 500 gr each for each replication. 

At emergence, flowering and physiological maturity stage verified in the experimental plots of 
P_30 and P_32, were associated the related calendar days (specific for each growing season, but 
common to all cvs). Thermal sum (°C) was computed for the specific phenological stage, accordingly. 

2.3. The ARMOSA model 
ARMOSA is a cropping system model that simulates crop and soil related variables at a daily 

time-step as affected by pedoclimatic conditions and agronomic management. The software is written 
in Java and structured with a high level of modularity. The model simulates the water balance, the 
evapotranspiration, and the N and C cycling in the soil layers, and the crop development and growth. 
The soil properties (i.e., texture, bulk density, initial soil organic carbon) are set for each layer of the 
profile. The water dynamic is simulated with the bucket approach with travel time [25].  

The reference evapotranspiration is estimated using the Penman-Monteith, Priestley-Taylor, or 
the Hargreaves equation. Crop evapotranspiration is estimated using the FAO 56 approach [26], and 
the actual evapotranspiration is based on the water stress factor [27], which also affects the dry matter 
production and partitioning. 

The simulation of crop growth and development follows the WOFOST approach [28] with two 
substantial differences: (i) the canopy being divided into 5 layers with different light interception and 
(ii) the development being described with the BBCH scale. Carbon and nitrogen related processes are 
simulated similarly to the SOILN model [29] with some improvements due to the fact that each input 
of organic matter is simulated independently according to a specific decomposition rate, C and N 
concentration, and soil depth incorporation. Required input data: daily weather data, soil properties 
(texture, bulk density, SOC, with the option to enter the measured water retention parameters), 
cropping system information (i.e., crop type and rotation, sowing and harvesting dates), data on 
fertilizers (i.e., mineral or organic, amount, timing, application depth, carbon to nitrogen ratio, 
ammonia and nitrate content), irrigation (i.e., water amount, timing, automatic irrigation as a function 
of water depletion threshold), tillage and crop residues management.  

The effect of tillage is simulated as a function of tillage type (depth, degree of soil layers mixing 
and perturbation) as reported in the WEPP model [30]. As reported in [22] the mixing of two or more 
adjacent soil layers causes pools (either inorganic or organic) and state variables (e.g., soil water 
content) mixing. The tillage operation determines an increase in the mineralization rate of the organic 
carbon pools as it increase the microporosity, in agreement with [31]. Soil hydrological parameters of 
the water retention curve are daily computed as a function of the daily values of bulk density and 
soil organic carbon. The decomposition of the crop residues is simulated according to the specific 
decomposition rate and amount of the biomass that remains into the soil at the harvesting date 
(percentage of the simulated biomass of the crop organs, leaves, stem, roots). 

2.3. The ARMOSA model  

To adapt the predictive algorithms of durum wheat growth implemented in ARMOSA to the 
data harvested in LTE, the adjustment of the crop coefficients was assessed according to the "trial and 
error" procedure, to reflect reasonable simulations or to approach the model output closer to the 
observed data. Calibration of ARMOSA was conducted firstly for nitrogen and carbon cycling and 
then for crop growth and development, using the genetic simplex method according to [32].  

The selection of parameters to calibrate was performed through the screening method of Morris 
modified by [33].  

According to this sensitivity analysis, the mineralisation rates of the soil organic matter fractions 
(litter and stable pools) and the parameter PCO2 and GDD from emergence to flowering were 
calibrated separately for the cvs. Maximization of the Nash-Sutcliffe modelling efficiency NSE [34] 
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was chosen as the objective function, where first the NSE for data of simulated and observed SOC 
were maximized and second the NSE for observed and simulated yield data, separately for the cvs. 

Test bench for calibrating ARMOSA was T2, on which the model was primarily modeled. 
Afterward, a fine tuning of crop parameters was further implemented to approach the model outputs 
as closely as possible to the collected data in LTE also for T5 and T8, as well as T2. 

After calibrating ARMOSA, its reliability in replicating the growth of cvs and TOC dynamic was 
assessed by means of appropriate evaluative indices: 

𝑅𝑀𝑆𝐸 =  √∑ (𝑋𝑜𝑏𝑠,𝑖 − 𝑋𝑚𝑜𝑑𝑒𝑙,𝑖)𝑛=𝑖 2𝑛  

where: 
RMSE is the Root Mean Square Error or the measure of the difference between values predicted 

by a model and the values actually observed from the environment that is being modeled [35]; 
Xobs,i is the observed value; 
Xmodel,i is the forecast value. 𝐺𝑆𝐷 = 𝑅𝑀𝑆𝐸𝑋̅𝑜𝑏𝑠  

where: 
GSD is the General Standard Deviation and it can be interpreted as a fraction of the overall range 

that is typically resolved by the model [36]; 𝑋̅𝑜𝑏𝑠 is is the average of observation value. 𝐸𝐹 = 1 − ∑ (𝑋𝑜𝑏𝑠,𝑖 − 𝑋𝑚𝑜𝑑𝑒𝑙,𝑖)𝑛=𝑖 2∑ (𝑋𝑜𝑏𝑠,𝑖 − 𝑋̅𝑜𝑏𝑠)𝑛=𝑖  

where: 
EF is the Nash-Sutcliffe efficiency [37], a normalized statistic that determines the relative 

magnitude of the residual variance compared to the measured data variance; 𝑑 = 1 − ∑ (𝑋𝑜𝑏𝑠,𝑖 − 𝑋𝑚𝑜𝑑𝑒𝑙,𝑖)𝑛=𝑖 2∑ (|𝑋𝑚𝑜𝑑𝑒𝑙,𝑖 − 𝑋̅𝑜𝑏𝑠| + |𝑋𝑜𝑏𝑠,𝑖𝑋̅𝑜𝑏𝑠|)𝑛=𝑖 2 

where: 
d is the Index of agreement [38]. 
The index of agreement can detect additive and proportional differences in the observed and 

simulated means and variances. 𝐶𝑅𝑀 = 1 − ∑ 𝑋𝑚𝑜𝑑𝑒𝑙,𝑖𝑛=𝑖∑ 𝑋𝑜𝑏𝑠,𝑖𝑛=𝑖  

where: 
CRM is the Coefficient of Residual Mass [39] that can assume positive values indicating an 

underestimation of the model outcome, negative values if there is an overestimation of the model 
output while values close to zero indicate the absence of trends. 

For each evaluation index, a score ranging between -1 (worst) and 1 (best) was assigned, 0.5 for 
the middle one. 𝐺𝑆𝐷 = { 1 𝑖𝑓 25 > 𝐺𝑆𝐷 > 0;0.5 𝑖𝑓 25 < 𝐺𝑆𝐷 < 40;−1 𝑖𝑓 𝐺𝑆𝐷 > 40.  

𝐸𝐹 = {1 𝑖𝑓 1.0 > 𝐸𝐹 > 0.4;0.5 𝑖𝑓 0 < 𝐸𝐹 < 0.4;−1 𝑖𝑓 𝐸𝐹 < 0.  

𝑑 = { 1 𝑖𝑓 1.0 > 𝐸𝐹 > 0.7;0.5 𝑖𝑓 0.4 < 𝐸𝐹 < 0.7;−1 𝑖𝑓 𝑑 < 0.4.  

𝐶𝑅𝑀 = {1 𝑖𝑓 0.01 > 𝐶𝑅𝑀 > −0.01;0.5 𝑖𝑓 − 0.1 < 𝐶𝑅𝑀 < 0.1;−1 𝑖𝑓 0.1 < 𝐶𝑅𝑀 < −0.1.  
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The comparison by means of these indices was carried out on the specific phenology for date of 
emergence, flowering and physiological maturity dry biomass at harvest and grain yield and TOC. 

To rank the abovementioned valuation indices, was implemented less stringent criteria than 
those reported by others modeling exercises [40, 41]. The authors, indeed, performed comparison 
between observed and simulated dataset on a specific growing season and single cvs, which are less 
treacherous than calibration on multiple growing years and/or cvs. 

The distinct inquiry of the four evaluative indexes implied a struggle in expressing a quick and 
easy to read verdict of ARMOSA's performance. Accordingly, a conclusive evaluation based on the 
aggregation of the scores related to single indicators (-1, 0.5 and 1), was implemented.  

This final score ascribable to the reliability of ARMOSA in replicating the wheat growth and 
productivity, assumed the following criteria: i) Very good = total score from 3.5 to 4; Good = total score 
from 2.5 to 3; Fair = total score from 1.5 to 2; Bad = total score from 0 to 1 

The robustness of the model tested by validation step was assessed investigating the parameters 
of the 1: 1 regression model (i.e., R2, angular coefficient (β) and significance of the regression model) 
applied on yield and TOC of P_32. 

3. Results and discussions 

3.1. Calibration 

The growth and productivity of wheat showed a high variability both among cvs and across the 
growing seasons sown with the same cvs (Figure 1a and Figure 1b). 
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Figure 1. Trend of the total dry biomass (a) and grain yield (b) at the harvest of durum wheat 
following one another in the growing years for P_30. Va stands for Valgerardo, Ap for Appulo, La for 
Latino, Ai for Appio, Si for Simeto, Cl fro Claudio and Sa for Saragolla. 

Valgerardo and Latino were characterized by a remarkable reduced growth in some years with 
negative consequences on productivity. Indeed, for Valgerardo, dry biomass accumulation stopped 
at values ranging between 4157 kg ha-1 (T5) and 5447 kg ha-1 (T8), in 1982. The grain yield behaved 
accordingly, with values well below 1000 kg ha-1 for all straw treatments.  

The following year, a storm that occurred just before harvest caused lodging of the plants 
resulting in loss of grain. Thus, data from this year were excluded from the modelling exercise here 
reported. 

For Latino, dry biomass and productivity at harvest in 1992, remained below 5000 kg ha -1 and 
1000 kg ha-1, respectively. 

A fair stability of growth and productivity over the growing years was achieved by Ofanto and 
Appulo, with comparable values in terms of TDM (slightly higher than 10000 kg ha-1 for both) and 
grain yield (around 3000 kg ha-1). 

Simeto and Claudio were the cvs that showed the greatest yield potential, as evidenced by the 
high productivity in some l years (with peaks of over 5000 kg ha-1) when compared to the remaining 
cvs. 

However, even for these two cvs, some growing seasons proved to be critical for the growth and 
accumulation of biomass with limited grain yield which for Simeto fell below 2000 kg ha-1. 

Ultimately, Saragolla was the cv that provided some of the highest (4508 kg ha-1 in 2021; T2) and 
lowest yield values (1692 kg ha-1 in 2020; T5) even if for the worst performances, the corresponding 
TDM was not so bad (from 11723 kg ha-1 to 13974 kg ha-1). 

As for Valgerardo, a storm that occurred shortly before harvesting, heavily compromised the 
grain harvesting in 2001 (cv Ofanto) and 2018 (cv Claudio for T2 and T5 treatments); thus, the wheat 
data of these growing seasons were not taken into consideration for model parametrization. 

The calibrated values achieved by “trial and error” procedure for the coefficient of parameters 
underlying the crop growth, concerned: i) the assimilation of CO2; ii) conversion into biomass; iii) 
separation in the various organs of the plant; iv) development of the canopy and intercepted 
radiation; v) root length; vi) senescence (Tables 1 and 2). 

Table 1. Calibrated values of crop parameters per cultivar. Only modified values are showed in the 
table. 

Parameter Defau

lt 

value 

   Cultiva

rs 

    

  

Appi

o 

Appu

lo 

Claud

io Latino 

Ofan

to 

Saragol

la 

Sime

to 

Valgerar

do 

SPar 12 - 14 - - 14 19 - - 

EAIfactor 0.5 - - - - 0.4 - - - 

LAITHmin 4 - - - - 3 - - - 

MaintenanceLeaves 0.05 - - 0.01 - - 0.02 0.01 - 

MaintenanceRoots 0.015 0.05 - 0.01 - - 0.01 0.01 0.03 

MaintenanceStem 0.015 0.05 0.005 0.01 - - 0.01 0.01 0.09 

MaintenanceStorage 0.01 0.05 0.07 0.003 - - 0.03 0.003 0.01 

PARAgeDLAI 0.3 0.08 0.7 - 0.2 0.2 0.2 0.43 - 

MaxCO2Net 1200 - 1500 - - - - - 1000 
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PCO2 0.0052 - 0.015 0.003 0.001 0.004 0.0099 0.002

5 

0.0009 

MaxRootDepth 800 - - 900 1000 1000 - - - 

SLA 0.017 - 0.005 - - - - - - 

TmaxCO2 40 36 37 36 36 36 36 33 25 

TOffCO2 40 - - - - - - 37 36 

DeathAgeingLeaves

Start 

60 - - 40 40 - - - - 

Acrit 0.053 0.04

3 

0.043 - - - - - - 

Amin 0.022 - - - -  0.012 - - 

Amax 0.083 - - - - 0.05 - - - 

KET BBCH 50 1.05 - 1.1 - - - 0.95 - 1.1 

KET BBCH 78 1.05 - 1.1 - - - 0.95 - 1.1 

KET BBCH 97.125 0.9 - 1.85 - - - 0.7 - - 

Table 2. Calibrated values of plant partition parameters per cultivar. Only modified values are 
showed in the table. 

Paramete

r 

Defaul

t value 

   Cultivar

s 

    

  

Appi

o 

Appul

o 

Claudi

o Latino 

Ofant

o 

Saragoll

a 

Simet

o 

Valgerard

o 

FDMLeaves 

BBCH 40 

0.4 0.5 - - - - - - - 

FDMLeaves 

BBCH 

0.4 - - - - - - 0.3 - 

FDMLeaves 

BBCH 

0.4 0.3 - - - - 0.3 - - 

FDMLeaves 

BBCH 61 

0.1 0 0.3 0.3 - 0 0.2 - 0.2 

FDMLeaves 

BBCH 75 

0 - 0.2 - - - - - - 

FDMStem 

BBCH 0 

1 - 0 - - - - - - 

FDMStem 

BBCH 40 

0.6 0.5 - - - - - - 0.5 

FDMStem 

BBCH 

0.6 - - - - - - 0.7 0.5 

FDMStem 

BBCH 

0.6 0.4 - - - - - - 0.4 

FDMStem 

BBCH 61 

0 - 0.2 0.3 - - 0.6 - - 

FDMStem 

BBCH 75 

0 - 0.1 - - - 0.2 - - 

FDMStem 

BBCH 80 

0 - - - - - 0.1 - - 

FDMStorage 

BBCH 0 

0 - 1 - - - - - - 

FDMStorage 

BBCH 40 

0 - - - - - - - 0.1 

FDMStorage 

BBCH 

0 - - - - - - - 0.1 

FDMStorage 

BBCH 

0 0.3   - - - - 0.2 

FDMStorage 

BBCH 61 

0 1 0.5 0.4 0.9 1 0.1 0.9 0.8 

FDMStorage 

BBCH 75 

0.9 1 0.7 1 1 1 0.6 1 1 

FDMStorage 

BBCH 80 

0 

 

- - - - - 0.9 - - 

FDMShoot 

BBCH 0 

0.5 - 0.3 - - - - - - 
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FDMShoot 

BBCH 9 

0.5 - 0.3 - - - - - - 

FDMShoot 

BBCH 

0.55 - 0.5 - - - - - - 

FDMShoot 

BBCH 

0.9 - - - - - - 0.85 1 

In addition to these parameters, the coefficients of algorithms governing the simulation of 
evapotranspiration (Table 2), specific partitions for each phenological phase (Table 2) and degree days 
(GDD; Table 3) to achieve the phenological stages were also modified. 

Table 3. Calibrated values of phenological stage specific parameters per cultivar. Only modified 
values are showed in the table. 

Parameter Defaul

t value 

   Cultivar

s 

    

  Appi

o 

Appul

o 

Claudi

o 

Latino Ofant

o 

Saragoll

a 

Simet

o 

Valgerard

o 

GDDsum 

Emergence 

50 90 - 70 70 70 - 90 60 

GDDsum 

Tillering 

400 250 - 250 350 450 300 250 200 

GDDsum 

Flowering 

350 250 300 300 - - 300 - - 

GDDsum 

Physiologic

600 300 220 300 250 200 300 300 350 

Tbase 

Emergence 

5 7 7 - - - - - - 

Tbase 

Tillering 

5 - 7 - - - - - - 

Tbase 

Flowering 

8 - 5 - - - - - - 

Tbase 

Physiologic

8 - 6 - - 6 7 7 - 

For the emergence, flowering and maturity stages, an excellent match between the observed and 
simulated data was reached, both in terms of similarity of values averaged for all growing seasons 
and in the inter-annual variability (Table 4). 

Table 4. Comparison between observed and simulated data for the phenological stages recorded for 
all cultivars and treatments of P_30. Observed and simulated data of phenology was equal for all 

cvs. White, light gray and gray cells indicate the best (1), mid (0.5) and worst (0) scores, respectively. 

Parameter Unit Obs Mean Dev.st RMSE GSD EF d CRM Score 

  n° Obs Sim Obs Sim (GDD) (%)     

Emergence GDD (°C) 43 352 347 18 20 11 3.06 0.70 0.92 -0.01 Very good 

Flowering GDD (°C) 43 129 131 8 10 9 6.82 0.21 0.74 0.01 Very good 

Maturity GDD (°C) 43 158 157 9 8 9 6.01 -0.36 0.62 0.00 Good 

 Very good = total score from 3.5 to 4; Good = total score from 2.5 to 3; Fair = total score from 1.5 to 2; Bad = total score from 0 

to 1. The same for the other tables. 

Accurate calibration of crop phenology is considered the primary, basic step in the application 
of crop simulation models [42]. In our modelling exercise, emergence and flowering stages of wheat 
as formalized by ARMOSA, attained the highest scores, the latter being capable to capture both the 
averaged GDD to reach these phenological stages and variability across years.  
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GDD to reach maturity stage was well formalized by ARMOSA, slightly penalized by the low 
score of EF and the middle score of d, but well depicted by GSD and CRM figures. 

The better the accuracy of a simulation model in replicating the crop phenology, the greater the 
ability of the same framework to capture the genetic variability underlying canopy development and 
biomass accumulation [43].  

The accumulation of biomass is related to the amount of radiation intercepted by the leaf surface 
which in turn is responsible for the conversion of the assimilated CO2 into carbohydrate which is a 
cultivar specific trait. 

In the light of this, the coefficients of some algorithms underlying the development and 
senescence of the canopy, the conversion of CO2 into dry matter, maintenance respiration and water 
and temperature stresses for each cultivar were changed to best fit the simulation of biomass 
accumulation with that gathered in LTE (see Table 1). 

As for phenology, the calibration phase showed the goodness of ARMOSA in faithfully 
replicating the total dry biomass at the harvest averaged for all soil treatments (Table 5).  

Table 5. Comparison between simulated and observed data of total dry biomass and performance 
evaluation indices of the model applied to straw treatments. White, light gray and gray cells 

indicate the best (1), mid (0.5) and worst (0) scores, respectively. 

Paramete

r 

Uni

t 

Ob

s 
Mean Dev.st 

RMS

E 
GSD EF d 

CR

M 

Scor

e 

treatment  n° Obs Sim Obs Sim 
(kg ha-

1) 
(%)     

T2 
kg 

ha-1 
36 

1083

5 

1047

5 

± 

4005 

± 

307

6 

2916 
26.9

1 

0.4

5 

0.8

1 
0.03 

Very 

good 

T5 
kg 

ha-1 
36 

1082

4 

1150

9 

± 

3884 

± 

430

3 

2877 
26.5

8 

0.4

4 

0.8

6 
-0.06 

Goo

d 

T8 
kg 

ha-1 
37 

1112

4 

1187

3 

±369

6 

± 

416

3 

2653 
23.8

5 

0.4

7 

0.8

7 
-0.07 

Very 

good 

P_30 
kg 

ha-1 
109 

1093

0 

1129

1 

± 

3829 

± 

389

8 

2816 
25.7

7 

0.4

5 

0.8

5 
-0.03 

Very 

good 

Indeed, the highest score was for three out of four evaluation indices, with only a negligible 
deviation of GSD from the optimal value (25.77% vs 25%). By assessing the response of ARMOSA for 
the cropping systems separately (T2, T5 and T8), the brilliant match between observed TDM and the 
model output for T2 and T8 came out, with a narrow deviation from the optimal value of GSD for the 
former and a slight overestimation of the model for the latter. Anyway, even the response of 
ARMOSA in replicating T5 could be deemed satisfactory with the best performance for EF and d, but 
with a slight overestimation and deviation of the simulated data compared to the observed one.  

The environment (Mediterranean climate) of the area under investigation is characterized by 
erratic pattern rainfall whit prolonged conditions of drought especially during the spring-summer 
period during the spring-summer period with high rainfall. Furthermore, for durum wheat cropped 
in Mediterranean area, the common agronomic practices do not provide for irrigation. The sum of 
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these conditions subjects the crop to extremely variable water supply and water stress among the 
years and within the same growing season [44-46]. 

By examining the ratio between standard deviation and the mean value of TDM, it emerged that 
some cvs were more susceptible to climatic erraticism (i.e., Valgerardo, Latino, Appio) than others 
(Ofanto and Appulo; Table 6). 

Table 6. Comparison between simulated and observed data of total dry biomass and performance 
evaluation indices of the model applied to individual cultivars. White, light gray and gray cells 

indicate the best (1), mid (0.5) and worst (0) scores, respectively. 

So, a meticulous calibration of the crop coefficients related to the adaptative mechanisms to 
temperature and rainfall pattern and any water / temperature stresses (i.e. WSPar, TmaxCO2, 
TOffCO2, KET) was performed for each cv. 

On 8 cvs, ARMOSA was able to accurately replicate TDM at the end of growing season for 4 of 
them, fairly good for 3 cvs and only for one cv the simulation was not satisfactory. 

It should be noted that for Saragolla, we investigated only 3 growing seasons (from 2019 to 2021) 
and this led to a reduced number of observations not adequate to optimize ARMOSA's response for 
this cv.  

Simeto and Valgerardo resulted the cvs for which ARMOSA accurately simulated both the inter-
annual variability and the average TDM observed in the field, with a slight overestimation for Simeto. 

For the remaining cvs there was a mixed response; for some of them ARMOSA was efficient in 
replicating the biomass accumulation at harvest, returning negligible differences between the 
observed and simulated mean data, but less effective in capturing the variability between the various 
years (see GSD, EF and d for Appulo, Claudio and Ofanto). 

For other cvs, the simulations comprehensively caught the inter-annual variability (i.e., Claudio 
and Latino) but overestimated or underestimated the average trend of TDM. 

The cropping systems carried out in LTE, were characterized by the release of straw and their 
incorporation into the soil, differentiating for the supplement or not of nitrogen and water. 

Definitively, by analysing the response of ARMOSA in simulating TDM at harvest, it emerged 
as the calibration process correctly trained the cropping system model to effectively replicate the data 
observed in the field across LTE under P_30 treatments. 

Thus, the correct estimate of TDM by ARMOSA and therefore of biomass incorporated in the 
soil was the first key point for an adequate simulation of TOC dynamic. 

Paramete Uni Ob Mean Dev.st RMS GSD EF d CR Scor

cv  N° Obs Sim Obs Sim (kg ha- (%)     

Appio kg 12 9148 8713 ± ± 939 2473 27.0 - 0.3 0.05 Fair 

Appulo kg 12 1034 1070 ± ± 667 1625 15.1 - 0.3 -0.03 Fair 

Claudio kg 13 1591 1470 ± ± 3368 21.1 0.1 0.7 0.08 Goo

Latino kg 15 7393 8953 ± ±254 2250 30.4 0.2 0.8 -0.21 Fair 

Ofanto kg 12 1098 1134 ± ± 2318 21.1 - 0.4 -0.03 Goo

Saragolla kg 9 1551 1703 ± ± 6427 41.4 - 0.4 -0.12 Bad 

Simeto kg 24 1134 1180 ± ± 1971 17.3 0.5 0.8 -0.06 Very 

Valgerard kg 12 7411 7045 ± ± 737 9.94 0.8 0.9 0.05 Very 
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In previous studies ARMOSA was calibrated and validated on a wide range of climate and soil 
conditions throughout Europe, conventional systems, and CA simulating TOC dynamics with very 
good or even excellent results (Valkama et al., 2020). 

Thus, the calibration step for the TOC dynamic focused only on two parameters controlling the 
evolution of soil organic matter, namely Khumus (1.4*10-4) and CMicrobEfficiency (0.4), leaving all 
the other parameters unchanged.  

ARMOSA replicated the dynamics of TOC quite agreeably, attaining the "Good" score for all the 
treatments under investigation (Table 7; Figure 2). This result was reached thanks to the accurate 
estimate of mean value of TOC (averaged for all treatments; 64965 vs 64758 kg ha-1, Table 7). 

Table 7. Comparison between simulated and observed data of TOC (0-40 cm) for P_30 and 
performance evaluation indices of the model applied to each treatment. White, light gray and gray 

cells indicate the best (1), mid (0.5) and worst (0) scores, respectively. 

Paramete Uni Ob Mean Dev.st RMS GS EF d CR Scor

  N° Obs Sim Obs Sim (kg ha- (%)     

T2 kg 8 6634 6454 ± ± 6371 9.60 - 0.5 0.03 Goo

T5 kg 13 6431 6506 ± ± 6071 9.44 - 0.5 -0.01 Goo

T8 kg 13 6422 6512 ±551 ± 5780 9.00 - 0.3 -0.01 Goo

P_30 kg 34 6475 6496 ± ± 6035 9.32 - 0.4 0.00 Goo

Although CRM index indicated a perfect alignment of the simulated values with the measured 
ones, it should be noted that ARMOSA tended to slightly underestimate the data collected in the 
initial course of LTE and then overestimate the data in the central part of LTE (Figure 2). 

It was not possible to measure the robustness of ARMOSA in formalizing TOC dynamics of in 
the last part of LTE because of the lack of soil sampling, which instead occurred in the validation 
phase (see in the next section). 

The high variability of the measured TOC both between consecutive years and within the same 
sampling (high standard deviation) is highlighted (Figure 2).  

The source of this erraticism could derive from a series of conditions associated to the sampling 
time and sampling point. The sampling dates over the years occurred between the beginning of 
September and the end of November; in this period straw could still be intact (i.e., early September) 
or already partially degraded (i.e., late November), state also related to the moment of their burial 
with respect to the soil sampling. This could affect the amount of organic matter and organic carbon 
in the shallow layers of soil as well as the sampling point which could be affected by the substantial 
content (and dynamic) of crop residues [47].  
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Figure 2. Comparison between simulated and observed data of TOC (0-40 cm) for P_30. Bars indicate 
the standard deviation. 

This may explain the reduced matching between the measured and simulated variability of TOC 
(low EF and d score), although AROMSA formalized a high variability of this variable between the 
beginning and the end of growing period (due to the degradation dynamic of straw). 

Contrasting results were obtained in the simulation of the grain yield (Table 8). 
Although the total score of yield simulated averaged for all treatments was "Fair", only for T2 

was achieved a good result, while for the other two treatments the outcome was not adequate. 

Table 8. Comparison between simulated and observed data of grain yield at harvest for P_30 and 
performance evaluation indices of the model applied to each treatment. White, light gray and gray 

cells indicate the best (1), mid (0.5) and worst (0) scores, respectively. 

Paramete Uni Ob Mean Dev.st RMS GSD EF d CRM Score 

  N° Obs Sim Obs Sim (kg ha- (%)     

T2 kg 40 307 2832 ± ± 1175 38.22 0.04 0.78 0.08 Good 

T5 kg 40 273 3114 ± ± 1413 51.66 - 0.69 -0.13 Bad 

T8 kg 41 290 3265 ± ± 1411 48.62 - 0.66 -0.13 Bad 

Total kg 121 290 3072 ± ± 1338 46.07 - 0.71 -0.06 Fair 

This pattern was consequently confirmed also for the simulated yield of the several cvs. Out of 
8 cvs, half did not achieve a satisfactory score, three obtained a fairly good score and only one reached 
the maximum score (Table 9). 

GSD ranged from a minimum of 24.45% for Latino to a maximum of 66.51 % for Claudio. The 
latter had a low fitting in the calibration test with EF (-9.93) and CRM (-0.23), which were the worst 
among the simulated varieties. Apart Latino, calibration of Simeto allowed to reach satisfactory 
performance in terms of EF (0.1) and d (0.77), followed by Valegerardo (0.18 and 0.83 for EF and d, 
respectively). 

The poor result of Saragolla should also be shown, with EF and d far from the optimum values, 
even if simulation of the mean yield was aligned with the observed data (CRM of 0.03). 
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Table 9. Comparison between simulated and observed data of grain yield and performance 
evaluation indices of the model applied to individual cultivars. White, light gray and gray cells 

indicate the best (1), mid (0.5) and worst (0) scores, respectively. 

Calibration of ARMOSA was focused on the parameters controlling the partition of the biomass 
between the different organs, therefore the grain and the maintenance respiration of the same (Table 
2). 

The observed data showed that grain yield was not linearly related to the biomass produced at 
harvest. 

Several authors achieved poor performance when calibrating crop simulation models on wheat 
yield across different sites, years and cultivars, especially in hot-arid environments. 

Specifically, some authors claimed that the grain production depends on genetic coefficients that 
are not only site-specific [48] but also year-specific [49-50].  

Our results after the calibration of ARMOSA confirm what was reported by [51] who stated that 
it was difficult to accurately predict the production of wheat with low levels and / or in environments 
characterized by high temperatures. 

The simulation of grain production becomes pernicious when situations of water and / or 
thermal stress occur during seed formation [52]. 

In the climatic condition of the experimental site of LTE, there are frequent situations of low 
rainfall and heat waves that have heavily compromised the potential productivity of the crop. Not to 
mention short but intense storms and strong gusts of wind that led to the lodging of the crop.  

These extreme events which occur during seed filling, which significantly impact the final yield 
are hardly formalized by crop growth simulation models [53]. 

Parameter Unit Obs Mean Dev.st RMSE GSD EF d CRM Score 

  N° Obs Sim Obs Sim (kg ha-

1) 

(%)     

Appio kg 

ha-1 

12 2325 2361 ± 

1031 

± 

393 

1239 53.3 -

0.58 

0.1 -0.02 Bad 

Appulo kg 

ha-1 

12 2903 3114 ± 

306 

± 

353 

1564 19.39 -

2.72 

0.23 -0.06 Fair 

Claudio kg 

ha-1 

13 3754 4618 ± 

786 

± 

2624 

2497 66.51 -

9.93 

0.37 -0.23 Bad 

Latino kg 

ha-1 

15 2135 2029 ± 

1093 

± 

912 

524 24.54 0.71 0.92 0.05 Very 

good 

Ofanto kg 

ha-1 

15 3092 2641 ± 

437 

± 

989 

1066 34.47 -

5.38 

0.42 0.15 Bad 

Saragolla kg 

ha-1 

9 3049 2966 ± 

1293 

± 

1091 

2095 68.71 -

1.96 

0.06 0.03 Bad 

Simeto kg 

ha-1 

33 3477 3818 ± 

1274 

± 

1292 

1190 34.22 0.1 0.77 -0.10 Fair 

Valgerardo kg 

ha-1 

12 1600 1973 ± 

817 

± 

1044 

708 44.25 0.18 0.83 -0.23 Fair 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 December 2023                   doi:10.20944/preprints202312.2200.v1

https://doi.org/10.20944/preprints202312.2200.v1


 15 

 

However, the 1:1 regression line between observed and simulated data (Figure 3) showed the 
good aptitude of ARMOSA in capturing the variability of the average grain yield among cvs (Table 
8), with R2 of 0.82 and angular coefficient of 1.06. 

 

Figure 3. Linear regression (thin line) between observed grain yield (Obs_yield) and simulated grain 
yield (Sim_yield) of P_30. Empty circles indicate the yield averaged for each cultivar. 

3.1. Validation 

The good robustness of ARMOSA in the simulation of phenology was also confirmed in the 
validation step, with maximum scores reached for the emergence and flowering phases. 

Even if formalization of maturity stage did not reach the degree of excellence (EF of -1.05 and 
CRM of 0.46), ARMOSA was aligned with the observed mean value (156 days vs 155 days; Table 10). 

Table 10. Comparison between observed and simulated data for the phenological stages recorded for 
all cultivars and treatments of P_32 in the validation step. Observed and simulated data of phenology 
was equal for all cvs. White, light gray and gray cells indicate the best (1), mid (0.5) and worst (0) 
scores, respectively. 

Indication on the reliability of ARMOSA in replicating the productivity of the cvs (Simeto, 
Claudio and Saragolla) along validation process were drawn from the results of the 1: 1 regression 
(Figure 4a; Table 11). 
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Parameter Unit Obs Mean Dev.st RMSE GSD EF d CRM Score 

  n° Obs Sim Obs Sim (GDD) (%)     

Emergence GDD 14 365 368 27 35 

13 3.56 0.74 0.95 -0.01 

Very 

good 

Flowering GDD 14 123 128 7 11 10 8.13 -

1.11 

0.63 -0.04 Very 

good 

Maturity GDD 14 

155 156 6 7 9 5.81 

-

1.05 0.46 -0.01 

Good 
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Figure 4. Linear regression between observed yield (Obs_yield) and simulated yield (Sim_yield) 
achieved by NT (gray line), MT (thin black line), P_32 (dashed line) in the validation step (a). TOC (0-
40 cm) dynamics of observed (obs) and simulated (sim) NT and MT verified across experimental years 
of LTE (b). 

Table 11. Comparison between observed and simulated data of grain yield in the validation step 
and main parameters of the related linear regression. 

Parameter Unit Obs Mean Dev.st R-squared p-val (fit) β p-val (β) 

  n° Obs Sim Obs Sim     

Simeto kg ha-1 8 3267 4416 ± 957 ± 720 0.87 < .001 1.24 < .001 

Claudio kg ha-1 7 4300 4392 ± 617 ± 2027 0.86 < .001 1.02 < .001 

Saragolla kg ha-1 2 3089 2867 ±656 ± 402 0.99 < .001 0.92 < .001 

NT kg ha-1 17 3703 4202 ± 953 ± 1481 0.86 < .001 1.08 < .001 

MT kg ha-1 17 3684 4246 ± 963 ± 1478 0.87 < .001 1.11 < .001 

P_32 kg ha-1 34 3676 4224 ± 944 ± 1457 0.87 < .001 1.1 < .001 

The average value of grain yield of Claudio was aligned between the model output and the 
observed data (4300 kg ha-1 vs 4392 kg ha-1). Although the standard deviation was much higher in 

P_32; y = 0.98x; R² = 0.99

MT; y = 1.01x; R² = 0.99

NT; y = 0.96x; R² = 0.99
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ARMOSA compared to the LTE data, the model reasonably captured the observed variability among 
years (see dispersion around the 1:1 regression line). What turned out to be off-scale were the 
outcomes related to a single growing season for NT and MT, in which the simulated values (8154 kg 
ha-1, as mean) were much higher than the observed productivity (4565 kg ha-1). 

For Saragolla, ARMOSA was inclined to slightly underestimate the actual yield (β = 0.92) but 
with an excellent fit between simulated and observed data (R2 = 0.99), even if the compared growing 
seasons were only two for a total of four yield productivity figures. 

For Simeto, the overestimation of grain production by ARMOSA was around 24% (3267 kg ha-1 
vs 4416 kg ha-1). As for Claudio, a very high inconsistency between the output and the actual grain 
yield was observed for one growing season (2349 kg ha-1 vs 5919 kg ha-1 as mean), but definitively 
Simeto proved to be the trickiest cv for ARMOSA (although not so dramatically) of validation phase. 

Evaluating ARMOSA overall for NT and MT treatments, the tendency of the model to slightly 
overestimate (+ 10%) the observed grain productivity was highlighted, to which was added a larger 
variability generated by the model, as computed by the coefficient of variation (ratio between the 
standard deviation and the mean) which was approximately 35% for ARMOSA and 26% for LTE. 

Summing up the results obtained during the testing of ARMOSA, it was shown that the model 
tends to slightly overestimate the yield, with a broader sensitivity in modulating the crop 
performance to different climate patterns (CV = 34%) with respect to the actual plant dynamics (CV = 
25%). 

Testing the response of ARMOSA in formalizing TOC (Figure 4b), it emerged how the model 
responded differently to the two soil treatments (NT and MT) and aligning the outputs with what 
was observed during LTE. 

Indeed, in LTE, TOC went from about 51000 kg ha-1 at the beginning of the experimental test 
(2002) to 63200 kg ha-1 in NT and 55800 kg ha-1 in MT, respectively, in 2020. 

ARMOSA did not go far from the observed data, returning for 2020 TOC value of 63045 kg ha-1 
and 65247 kg ha-1 for NT and MT, respectively. 

This opposes when comparing the simulated and observed data for some of the several 
experimental years (i.e., 2015 and 2019), in which substantial differences were recorded among 
ARMOSA outputs and actual soil TOC content.  

This is because TOC determined by laboratory analysis is strongly affected by the organic 
substance deriving from the total or partial degradation of crop residues, the content of which can be 
extremely variable depending on the sampling point [47]. 

This also explains the extreme variability of the figures (see standard deviation in Figure 4b) 
observed for each sampling, both in NT and MT. 

In the light of that, ARMOSA can be considered reliable in the simulation of TOC fluctuation, 
particularly if one considers the evolution over a period long enough to capture the correct dynamics 
of TOC under different crop systems [54]. 

4. Conclusions 

In this modeling exercise, ARMOSA crop growth simulation model was tested for the reliability 
of replicating three growing variables of durum wheat (phenology, dry biomass accumulation and 
grain yield) cropped under five different soil and straw options and their impact on TOC dynamics. 

After calibrating ARMOSA on eight phenotypes of durum wheat, agreeable results were 
achieved on phenology and biomass at harvest in almost all the investigated cvs. 

On the other hand, the grain simulation generated discordant results, with some cvs being 
replicated sufficiently well, while others scoring unsatisfactory. 

The validation step to verify the robustness of ARMOSA showed that, although in some years 
the deviation between the simulated data and the observed ones has been high, the model has 
adequately captured the grain yield averaged for all the growing seasons. 

Accordingly, the application of simulation models to replicate the productivity of durum wheat 
across several growing periods rather than single year, in hot-arid environments with low grain yield 
has proved challenging, as reported by various modeling investigations. 
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For what concerns TOC dynamic, ARMOSA proved to be suitable in replicating the average 
trend of soil organic carbon both in the calibration and in the validation processes. Although the 
variability among years was not slavishly captured by the model (also due to the extreme spatial 
variability of this parameter), TOC progression in the time frame concerned LTE was adequately 
copied. 

To finalize, ARMOSA showed great potential in formalizing the growth of durum wheat 
cropped in Mediterranean environment under a wide range of options concerning tillage and the 
impact of such agronomic schemes on TOC dynamics. 

Improvements would be desirable regarding the effect of heat waves and / or prolonged drought 
on the final grain yield. 
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