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Abstract: In view of the expected climate changes, a paradigm shift in soil management, through reduced
tillage and/or a different use of crop residues, can be a key point in the mitigation of the climate impacts. The
transition from a traditional cropping system (i.e., durum wheat in continuous cropping system under
conventional tillage and/or straw removal) to those undergoing the conservative practices require to be
evaluated in a medium to long time frame to reach an equilibrium and thus to be properly investigated. In this
regard, cropping system simulation models are fundamental tools for the in-silico evaluation of the response
of crop growth and soil organic matter dynamics to varying cropping scenarios. This paper reports the
evaluations on the parameterization and reliability of the ARMOSA crop simulation model calibrated and
validated on experimental datasets collected on durum wheat grown in continuous cropping system under

several straw and soil management strategies in a Mediterranean environment.

Keywords: long term experiment; modelling; agronomy; calibration; soil organic carbon; sustainability

1. Introduction

Globally, cereals are the main source of food supply for humans. The European Union is the
largest producer of wheat [1]. In Italy, the production of durum wheat plays a fundamental role in
the food industry. Italy is the second highest-producing country in the world of durum wheat after
Canada. The total annual production of durum wheat is 4.2 million tons and is concentrated in
southern Italy and the Islands with 65.6% [2].

Global warming (GW) is the principal cause of the rise of the average temperature, the reduction
of rainfall, the increase of the severity and frequency of drought and floods events, and the carbon
dioxide concentration in the atmosphere [3-5].

Thus, it is necessary to provide strategies to adapt and mitigate the effects of GW on crop yield
and product quality. Adaptation strategies aim to minimize the negative effects of GW on agricultural
production, while mitigation strategies aim to reduce greenhouse gas emissions, maintaining or
increasing the organic carbon content in soil. Then, integrated analyses are necessary to adapt the
cropping systems to the mutated climate conditions, in areas with homogeneous agronomic and
pedo-climatic characteristics, such as the Mediterranean basin.

Nowadays, all of the above-mentioned issues caused from the GW adversely affects yields of
wheat in many lower-latitude regions, while they have increased in many higher-latitude zones,
during the recent decades [6].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Projections at the global level confirm this trend [7]. On the other hand, literature reports limited
information concerning to the impacts of GW on production in Italy, mainly resulting from analyses
of continental or global scale [7-9]. In any case, the use of accurate climate data is essential, especially
in areas with high pedo-climatic and topographical variability, such as Italy [10].

Recently, in the province of Foggia (Northern Apulia), durum wheat is often grown in rotation
of two or three years with tomato (two years of wheat and one of tomato) and/or with irrigated high-
income crops. Traditional agronomic practices include the use of mould ploughing and additional
tillage operations, such as harrowing. Straw and stubble, after being chopped, are buried in the
ground by ploughing or, alternatively, are burned in early September and then ploughed and
incorporated into the soil [11].

Field experiments aiming at the evaluation of the soil organic matter dynamics and crop yield in
response to tillage are typically expensive and time consuming. A viable solution to overcome this
limitation is the use of properly calibrated and validated process-based models to evaluate the impact
of different soil and crop management practices on crop productivity and water—nutrients dynamics.
Model application helps identify the most suitable management according to the pedo-climatic
conditions [12-15].

In literature, there are studies testing different practices of soil and crop management of
conservation agriculture (CA) on crop growth and yield, and nutrient and water dynamics in the soil-
water-atmosphere system under different agro-environmental conditions [16-17]. However, most of
the simulation models tested in the last years are not capable to depict the long-term effects of
differences between CA practices, such as no-tillage (NT) and minimum tillage (MT), and traditional
cropping managements [18].

Combining process-based crop modeling with climate data and weather projections is critical to
gaining knowledge about the effects of climate change caused by global warming on agricultural
production and identifying the most appropriate crop management strategies. In this way, crop
modelling could provide information on mitigations and adaptations to climate change by
recognizing appropriate CA practices [17, 19-20]. ARMOSA is a process-based cropping system
model suitable for field crops and for simulating different soil-management practices under diverse
environmental conditions [15, 21-22]

The purpose of this work was the definition of a correct crop management aimed at preserving
and/or increasing soil fertility, stabilizing durum wheat yields over time, thanks to the choosing and
the application of appropriate and adequately calibrated models. Therefore, ARMOSA crop
simulation model was calibrated using a dataset collected along a long-term experiment (LTE) of
durum wheat in continuous cropping system, cultivated in Foggia (Southern Italy) since 1977 to date
under several straw practices contemplated for CA. Reliability of ARMOSA was assessed by
validation step on a different LTE dataset used for ARMOSA parametrization, carried out at the same
experimental farm and under two different tillage options (NT and MT).

2. Materials and Methods
2.1. Experimental field

All the field experiments were carried out in Podere 124 (P124) experimental station, located in
Foggia, Apulia region, Southern Italy (latitude, 41°88’7"’N; longitude, 15°83’05”E; altitude, 90 m
a.s.l), in two experimental parcels: P124_P30 used to calibrate the model, and P124_P32 used to
validate it.

The soil, a vertisol of alluvial origin [23], is classified as silty-clay with the following
physicochemical properties: 48.5% clay, 38.7% silt, 12.8% sand, bulk density 1.11 t m-}, organic matter:
2.1%; total N: 0.122%; NaHCOs-extractable P: 41 ppm; NH4sOAc extractable K2O: 1598 ppm; pH: 8.3;
field capacity water content: 0.396 m3 m=, permanent wilting point water content : 0.195 m3 m-;
available water: 202 mm m-.

The climate is classified as “accentuated thermo-mediterranean” [24], characterized by
temperatures below 0 °C in winter and above 40 °C in summer, with an annual average of 550 mm of
rainfall, mostly concentrated in winter months [11]. The daily meteorological data of temperature,
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humidity, rainfall, wind parameters and solar radiation were recorded in the meteorological station
located at P124.

2.2. LTE data-sets

LTE dataset used to parametrize ARMOSA and to check the robustness and reliability of the
model , consisted of winter durum wheat in continuous cropping system since 1977, submitted to
three different straw management and namely: i) chopping and incorporation of crop residue into
soil with ploughing (T2); ii) chopping, supply of 150 kg of mineral nitrogen per hectare on straw and
incorporation of crop residue into soil with ploughing (T5) and; iii) chopping, supply of 150 kg of
mineral nitrogen per hectare and of 500 m3 ha-1 of irrigation water on straw and incorporation of
crop residue into soil (T8).

The experimental design was arranged in a randomized block design with five replications of 8
m x 10 m cropped area and a spacing of 15 cm (between two rows) x 5 cm (on the rows) for each
replication, placed in one experimental plot (area of 3500 m?) here named P_30.

For all experimental treatments, sowing, which took place in the first half of November, was
preceded by fertilization with superphosphate (100 kg P20s ha') plowing (with soil incorporation of
the chopped straw), harrowing with the disc harrow and tilling with the rotary tiller. 100 kg N ha-!
was supplied to the crop as top dressing in the first half of March and the harvest was performed in
the middle two weeks of June.

Before harvesting, plant samples taken over an area of 2 m? was collected to estimate the total
above dry biomass (TDM), placing the sample in a ventilated oven at 78 © C, until a constant weight
was reached.

The harvest wheat took place with the support of a plot combine, which determined, thanks to
a portable module, grain yield for each replication and the related moisture (from which the dry
weight of grain was calculated).

In addition, from 1983 to 2009, the soil organic carbon content (TOC; kg ha!; 0-40 cm depth) was
determined discontinuously on three soil samples of about 500 gr each for each replication.

In P_30 the following cultivars (cvs) succeeded each other over the harvesting years: Valgeraldo
1978-1982, Appulo 1983-1987, Latino 1988-1992, Appio 1993-1996, Simeto 1997-2000 and 2007-2013,
Ofanto 2001-2006, Claudio 2014-2018, Saragolla 2019-2021.

Consistency of ARMOSA was probed on a separate dataset applied on the parameterization
process. Here, figures were gathered on another LTE consisting of the wheat in continuous cropping
system since 2003, cultivated under two CA schemes NT and MT.

The experimental design was planned in the randomized block design with three replications
for each treatment with an area extension of 500 m2 (20 m x 25 m) arranged in one experimental plot
(P_32) with a total surface of 4450 m2.

NT provided for sowing (in the first half of November) with the no-tiller seeder and without
further disturbance of soil.

Under MT, a single field operation before sowing, was performed by the combined farm device
with subsoiler and rotary cultivator disturbing the first layer of soil at 0-0.10 m depth.

For all soil management, straw and stubble were chopped after harvest and spread back.

Mineral nitrogen fertilization was split in two doses, as basal dressing before sowing in the form
of di-ammonium phosphate (36 and 92 kg ha' of N and P20s, respectively) and ammonium nitrate as
top dressing (68 kg ha) in the first half of March. Weed was kept under control by chemicals applied
at pre-sowing and post-emergence.

The experimental design was structured in the randomized block design with three replications
for the two treatments with of an area extension of 500 m2 (20 m x 25 m) arranged in one experimental
plot (P_32) with a total surface of 4450 m?2.

The cvs that followed one another over the years in P_32 was: i) Simeto, from 2003 to 2010; ii)
Claudio, from 2011 to 2018 and iii) Saragolla from 2018 to 2020.
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As for P_30, the plot harvester collected data about grain yield and moisture (dry weight of grain
was calculated accordingly) for each replication, over a period from 10 June to 25 June of the
examined growing seasons.

Even for P_32, TOC (0-30 cm depth) from 2002 to 2020 (not continuously) was determined on
three soil samples of about 500 gr each for each replication.

At emergence, flowering and physiological maturity stage verified in the experimental plots of
P_30 and P_32, were associated the related calendar days (specific for each growing season, but
common to all cvs). Thermal sum (°C) was computed for the specific phenological stage, accordingly.

2.3. The ARMOSA model

ARMOSA is a cropping system model that simulates crop and soil related variables at a daily
time-step as affected by pedoclimatic conditions and agronomic management. The software is written
in Java and structured with a high level of modularity. The model simulates the water balance, the
evapotranspiration, and the N and C cycling in the soil layers, and the crop development and growth.
The soil properties (i.e., texture, bulk density, initial soil organic carbon) are set for each layer of the
profile. The water dynamic is simulated with the bucket approach with travel time [25].

The reference evapotranspiration is estimated using the Penman-Monteith, Priestley-Taylor, or
the Hargreaves equation. Crop evapotranspiration is estimated using the FAO 56 approach [26], and
the actual evapotranspiration is based on the water stress factor [27], which also affects the dry matter
production and partitioning.

The simulation of crop growth and development follows the WOFOST approach [28] with two
substantial differences: (i) the canopy being divided into 5 layers with different light interception and
(ii) the development being described with the BBCH scale. Carbon and nitrogen related processes are
simulated similarly to the SOILN model [29] with some improvements due to the fact that each input
of organic matter is simulated independently according to a specific decomposition rate, C and N
concentration, and soil depth incorporation. Required input data: daily weather data, soil properties
(texture, bulk density, SOC, with the option to enter the measured water retention parameters),
cropping system information (i.e., crop type and rotation, sowing and harvesting dates), data on
fertilizers (i.e., mineral or organic, amount, timing, application depth, carbon to nitrogen ratio,
ammonia and nitrate content), irrigation (i.e., water amount, timing, automatic irrigation as a function
of water depletion threshold), tillage and crop residues management.

The effect of tillage is simulated as a function of tillage type (depth, degree of soil layers mixing
and perturbation) as reported in the WEPP model [30]. As reported in [22] the mixing of two or more
adjacent soil layers causes pools (either inorganic or organic) and state variables (e.g., soil water
content) mixing. The tillage operation determines an increase in the mineralization rate of the organic
carbon pools as it increase the microporosity, in agreement with [31]. Soil hydrological parameters of
the water retention curve are daily computed as a function of the daily values of bulk density and
soil organic carbon. The decomposition of the crop residues is simulated according to the specific
decomposition rate and amount of the biomass that remains into the soil at the harvesting date
(percentage of the simulated biomass of the crop organs, leaves, stem, roots).

2.3. The ARMOSA model

To adapt the predictive algorithms of durum wheat growth implemented in ARMOSA to the
data harvested in LTE, the adjustment of the crop coefficients was assessed according to the "trial and
error” procedure, to reflect reasonable simulations or to approach the model output closer to the
observed data. Calibration of ARMOSA was conducted firstly for nitrogen and carbon cycling and
then for crop growth and development, using the genetic simplex method according to [32].

The selection of parameters to calibrate was performed through the screening method of Morris
modified by [33].

According to this sensitivity analysis, the mineralisation rates of the soil organic matter fractions
(litter and stable pools) and the parameter PCO2 and GDD from emergence to flowering were
calibrated separately for the cvs. Maximization of the Nash-Sutcliffe modelling efficiency NSE [34]
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was chosen as the objective function, where first the NSE for data of simulated and observed SOC
were maximized and second the NSE for observed and simulated yield data, separately for the cvs.
Test bench for calibrating ARMOSA was T2, on which the model was primarily modeled.
Afterward, a fine tuning of crop parameters was further implemented to approach the model outputs
as closely as possible to the collected data in LTE also for T5 and T8, as well as T2.
After calibrating ARMOSA, its reliability in replicating the growth of cvs and TOC dynamic was
assessed by means of appropriate evaluative indices:

RMSE = \/ZZi(XobS.i_ model_i)z
n

where:

RMSE is the Root Mean Square Error or the measure of the difference between values predicted
by a model and the values actually observed from the environment that is being modeled [35];

Xobs,i is the observed value;

Xmodel,i is the forecast value.

where:
GSD is the General Standard Deviation and it can be interpreted as a fraction of the overall range
that is typically resolved by the model [36];

X, is is the average of observation value.
n 2
Z:i(Xobs,i B Xmodel,i)

EF=1-— =
ZZi(Xobs,i - Xobs)

where:
EF is the Nash-Sutcliffe efficiency [37], a normalized statistic that determines the relative
magnitude of the residual variance compared to the measured data variance;

_ Zzi(Xobs,i - Xmodel,i)2
ZZi(|Xmodel,i - Xobs| + |Xobs,i)?obs|)2

where:

d is the Index of agreement [38].

The index of agreement can detect additive and proportional differences in the observed and
simulated means and variances.

CRM =1 — ZZiXmodel,i
Zzixobs,i

where:

CRM is the Coefficient of Residual Mass [39] that can assume positive values indicating an
underestimation of the model outcome, negative values if there is an overestimation of the model
output while values close to zero indicate the absence of trends.

For each evaluation index, a score ranging between -1 (worst) and 1 (best) was assigned, 0.5 for
the middle one.

1if 25 > GSD > 0;
GSD =<0.5if 25 < GSD < 40;
—1if GSD > 40.
1if 1.0 > EF > 0.4;
EF ={05if 0 <EF < 0.4;
—1if EF <0.
1if 1.0 > EF > 0.7;
d=<05if 0.4 <EF <0.7;
{ ~1if d < 0.4.
1if 0.01 > CRM > —0.01;
CRM =<0.5if —0.1 <CRM < 0.1;
{—1 if 01 < CRM < —0.1.
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The comparison by means of these indices was carried out on the specific phenology for date of
emergence, flowering and physiological maturity dry biomass at harvest and grain yield and TOC.

To rank the abovementioned valuation indices, was implemented less stringent criteria than
those reported by others modeling exercises [40, 41]. The authors, indeed, performed comparison
between observed and simulated dataset on a specific growing season and single cvs, which are less
treacherous than calibration on multiple growing years and/or cvs.

The distinct inquiry of the four evaluative indexes implied a struggle in expressing a quick and
easy to read verdict of ARMOSA's performance. Accordingly, a conclusive evaluation based on the
aggregation of the scores related to single indicators (-1, 0.5 and 1), was implemented.

This final score ascribable to the reliability of ARMOSA in replicating the wheat growth and
productivity, assumed the following criteria: i) Very good = total score from 3.5 to 4; Good = total score
from 2.5 to 3; Fair = total score from 1.5 to 2; Bad = total score from 0 to 1

The robustness of the model tested by validation step was assessed investigating the parameters
of the 1: 1 regression model (i.e., R2, angular coefficient (3) and significance of the regression model)
applied on yield and TOC of P_32.

3. Results and discussions
3.1. Calibration

The growth and productivity of wheat showed a high variability both among cvs and across the
growing seasons sown with the same cvs (Figure 1a and Figure 1b).
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Figure 1. Trend of the total dry biomass (a) and grain yield (b) at the harvest of durum wheat
following one another in the growing years for P_30. Va stands for Valgerardo, Ap for Appulo, La for
Latino, Ai for Appio, Si for Simeto, CI fro Claudio and Sa for Saragolla.

Valgerardo and Latino were characterized by a remarkable reduced growth in some years with
negative consequences on productivity. Indeed, for Valgerardo, dry biomass accumulation stopped
at values ranging between 4157 kg ha' (T5) and 5447 kg ha (T8), in 1982. The grain yield behaved
accordingly, with values well below 1000 kg ha™ for all straw treatments.

The following year, a storm that occurred just before harvest caused lodging of the plants
resulting in loss of grain. Thus, data from this year were excluded from the modelling exercise here
reported.

For Latino, dry biomass and productivity at harvest in 1992, remained below 5000 kg ha! and
1000 kg ha", respectively.

A fair stability of growth and productivity over the growing years was achieved by Ofanto and
Appulo, with comparable values in terms of TDM (slightly higher than 10000 kg ha for both) and
grain yield (around 3000 kg ha-1).

Simeto and Claudio were the cvs that showed the greatest yield potential, as evidenced by the
high productivity in some 1 years (with peaks of over 5000 kg ha') when compared to the remaining
cus.

However, even for these two cvs, some growing seasons proved to be critical for the growth and
accumulation of biomass with limited grain yield which for Simeto fell below 2000 kg ha.

Ultimately, Saragolla was the cv that provided some of the highest (4508 kg ha' in 2021; T2) and
lowest yield values (1692 kg ha in 2020; T5) even if for the worst performances, the corresponding
TDM was not so bad (from 11723 kg ha! to 13974 kg ha™).

As for Valgerardo, a storm that occurred shortly before harvesting, heavily compromised the
grain harvesting in 2001 (cv Ofanto) and 2018 (cv Claudio for T2 and T5 treatments); thus, the wheat
data of these growing seasons were not taken into consideration for model parametrization.

The calibrated values achieved by “trial and error” procedure for the coefficient of parameters
underlying the crop growth, concerned: i) the assimilation of COz; ii) conversion into biomass; iii)
separation in the various organs of the plant; iv) development of the canopy and intercepted
radiation; v) root length; vi) senescence (Tables 1 and 2).

Table 1. Calibrated values of crop parameters per cultivar. Only modified values are showed in the

table.
Parameter Defau Cultiva
It s
value
Appi  Appu  Claud Ofan  Saragol ~ Sime  Valgerar
0 lo io Latino to la to do

SPar 12 - 14 - - 14 19 - -
EAlfactor 0.5 - - - - 0.4 - - -
LAITHmin 4 - - - - 3 - - -
MaintenanceLeaves 0.05 - - 0.01 - - 0.02 0.01 -
MaintenanceRoots 0.015 0.05 - 0.01 - - 0.01 0.01 0.03
MaintenanceStem 0.015 0.05 0.005 0.01 - - 0.01 0.01 0.09
MaintenanceStorage  0.01  0.05 0.07  0.003 - - 0.03  0.003 0.01
PARAgeDrai 0.3 008 0.7 - 0.2 0.2 0.2 0.43 -

MaxCO:Net 1200 - 1500 - - - - - 1000
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PCO: 0.0052 - 0.015 0.003  0.001  0.004 0.0099 0.002 0.0009
MaxRootDepth 800 - - 900 1000 1000 - - -
SLA 0.017 - 0.005 - - - - - -
TmaxCO:2 40 36 37 36 36 36 36 33 25
TofCO:2 40 - - - - - - 37 36
DeathAgeingLeaves 60 - - 40 40 - - - -
Acrit 0.053 0.04 0.043 - - - - - -
Aumin 0.022 - - - - 0.012 - -
Amax 0.083 - - - - 0.05 - - -
Ker BBCH 50 1.05 - 1.1 - - - 0.95 - 1.1
Ker BBCH 78 1.05 - 1.1 - - - 0.95 - 1.1
Ker BBCH 97.125 0.9 - 1.85 - - - 0.7 - -

Table 2. Calibrated values of plant partition parameters per cultivar. Only modified values are
showed in the table.

Paramete Defaul Cultivar
r t value s
Appi  Appul  Claudi Ofant  Saragoll ~ Simet  Valgerard

0 0 0 Latino 0 a 0 0
FDMteaves 0.4 0.5 - - - - - - -
FDMeaves 0.4 - - - - - - 0.3 -
FDMteaves 0.4 0.3 - - - - 0.3 - -
FDMeaves 0.1 0 0.3 0.3 - 0 0.2 - 0.2
FDMieaves 0 - 0.2 - - - - - -
FDMstem 1 - 0 - - - - - -
FDMstem 0.6 0.5 - - - - - - 0.5
FDMstem 0.6 - - - - - - 0.7 0.5
FDMstem 0.6 0.4 - - - - - - 0.4
FDMstem 0 - 0.2 0.3 - - 0.6 - -
FDMstem 0 - 0.1 - - - 0.2 - -
FDMstem 0 - - - - - 0.1 - -
FDMstorage 0 - 1 - - - - - -
FDMstorage 0 - - - - - - - 0.1
FDMstorage 0 - - - - - - - 0.1
FDMstorage 0 0.3 - - - - 0.2
FDMstorage 0 1 0.5 0.4 0.9 1 0.1 0.9 0.8
FDMstorage 0.9 1 0.7 1 1 1 0.6 1 1
FDMstorage 0 - - - - - 0.9 - -

FDMsioot 0.5 - 0.3 - - - - - -
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FDMsioot 0.5 - 0.3 - - - - - -
FDMsioot 0.55 - 0.5 - - - - - -
FD M shoot 0.9 - - - - - - 0.85 1

In addition to these parameters, the coefficients of algorithms governing the simulation of
evapotranspiration (Table 2), specific partitions for each phenological phase (Table 2) and degree days
(GDD; Table 3) to achieve the phenological stages were also modified.

Table 3. Calibrated values of phenological stage specific parameters per cultivar. Only modified
values are showed in the table.

Parameter Defaul Cultivar

Appi Appul  Claudi  Latino  Ofant  Saragoll ~ Simet  Valgerard

GDDsum 50 90 - 70 70 70 - 90 60
;;DDsum 400 250 - 250 350 450 300 250 200
—C—;DDsum 350 250 300 300 - - 300 - -
;;DDsum 600 300 220 300 250 200 300 300 350
;base 5 7 7 - - - - - -
;base 5 - 7 - - - - - -
T s - s .o

Thase 8 - 6 - - 6 7 7 -

For the emergence, flowering and maturity stages, an excellent match between the observed and
simulated data was reached, both in terms of similarity of values averaged for all growing seasons
and in the inter-annual variability (Table 4).

Table 4. Comparison between observed and simulated data for the phenological stages recorded for
all cultivars and treatments of P_30. Observed and simulated data of phenology was equal for all
cvs. White, light gray and gray cells indicate the best (1), mid (0.5) and worst (0) scores, respectively.

Parameter Unit Obs Mean Dev.st RMSE GSD  EF d CRM Score
n® Obs Sim Obs Sim (GDD) (%)
Emergence = GDD (°C) 43 352 347 18 20 11 306 070 092 -0.01 Verygood
Flowering GDD (°C) 43 129 131 8 10 9 6.82 021 074 0.01  Verygood
Maturity GDD (°C) 43 158 157 9 8 9 6.01 | -036 0.62 0.00 Good
Very good = total score from 3.5 to 4, Good = total score from 2.5 to 3; Fair = total score from 1.5 to 2; Bad = total score from 0
to 1. The same for the other tables.

Accurate calibration of crop phenology is considered the primary, basic step in the application
of crop simulation models [42]. In our modelling exercise, emergence and flowering stages of wheat
as formalized by ARMOSA, attained the highest scores, the latter being capable to capture both the
averaged GDD to reach these phenological stages and variability across years.
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GDD to reach maturity stage was well formalized by ARMOSA, slightly penalized by the low
score of EF and the middle score of d, but well depicted by GSD and CRM figures.

The better the accuracy of a simulation model in replicating the crop phenology, the greater the
ability of the same framework to capture the genetic variability underlying canopy development and
biomass accumulation [43].

The accumulation of biomass is related to the amount of radiation intercepted by the leaf surface
which in turn is responsible for the conversion of the assimilated CO: into carbohydrate which is a
cultivar specific trait.

In the light of this, the coefficients of some algorithms underlying the development and
senescence of the canopy, the conversion of COz into dry matter, maintenance respiration and water
and temperature stresses for each cultivar were changed to best fit the simulation of biomass
accumulation with that gathered in LTE (see Table 1).

As for phenology, the calibration phase showed the goodness of ARMOSA in faithfully
replicating the total dry biomass at the harvest averaged for all soil treatments (Table 5).

Table 5. Comparison between simulated and observed data of total dry biomass and performance
evaluation indices of the model applied to straw treatments. White, light gray and gray cells
indicate the best (1), mid (0.5) and worst (0) scores, respectively.

Paramete Uni Ob RMS CR Scor
Mean Dev.st GSD EF d
r t S E M e
, , (kg ha-
treatment n° Obs Sim Obs  Sim ) (%)
+
kg 1083 1047 + 269 04 08 Very
T2 36 307 2916 0.03
ha? 5 5 4005 6 1 5 1 good
+
kg 1082 1150 + 265 04 0.8 Goo
T5 36 430 2877 -0.06
ha'? 4 9 3884 3 8 4 6 d
+
kg 1112 1187 +369 238 04 08 Very
T8 37 416 2653 -0.07
ha? 4 3 6 3 5 7 7 good
+
kg 1093 1129 + 257 04 0.8 Very
P_30 109 389 2816 -0.03
ha' 0 1 3829 g 7 5 5 good

Indeed, the highest score was for three out of four evaluation indices, with only a negligible
deviation of GSD from the optimal value (25.77% vs 25%). By assessing the response of ARMOSA for
the cropping systems separately (T2, T5 and T8), the brilliant match between observed TDM and the
model output for T2 and T8 came out, with a narrow deviation from the optimal value of GSD for the
former and a slight overestimation of the model for the latter. Anyway, even the response of
ARMOSA in replicating T5 could be deemed satisfactory with the best performance for EF and d, but
with a slight overestimation and deviation of the simulated data compared to the observed one.

The environment (Mediterranean climate) of the area under investigation is characterized by
erratic pattern rainfall whit prolonged conditions of drought especially during the spring-summer
period during the spring-summer period with high rainfall. Furthermore, for durum wheat cropped
in Mediterranean area, the common agronomic practices do not provide for irrigation. The sum of
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these conditions subjects the crop to extremely variable water supply and water stress among the
years and within the same growing season [44-46].

By examining the ratio between standard deviation and the mean value of TDM, it emerged that
some cvs were more susceptible to climatic erraticism (i.e., Valgerardo, Latino, Appio) than others
(Ofanto and Appulo; Table 6).

Table 6. Comparison between simulated and observed data of total dry biomass and performance
evaluation indices of the model applied to individual cultivars. White, light gray and gray cells
indicate the best (1), mid (0.5) and worst (0) scores, respectively.

Paramete Uni Ob Mean Dev.st RMS GSD EF d CR  Scor
cv N°  Obs Sim Obs Sim (kgha (%)

Appio kg 12 9148 8713 £ +£939 2473 270 | - 03 0.05 Fair
Appulo kg 12 1034 1070 +  £667 1625 151 - 0.3 -0.03 Fair
Claudio kg 13 1591 1470 * * 3368 211 01 0.7 0.08 Goo
Latino kg 15 7393 8953 * 254 2250 304 02 08  -0.21 Fair
Ofanto kg 12 1098 1134 + * 2318 211 - 04 -0.03 Goo
Saragolla kg 9 1551 1703 * * 6427 | 414 = 04 -0.12 Bad
Simeto kg 24 1134 1180 + + 1971 173 05 08 -0.06 Very

Valgerard kg 12 7411 7045 * * 737 994 08 09 005 Very

So, a meticulous calibration of the crop coefficients related to the adaptative mechanisms to
temperature and rainfall pattern and any water / temperature stresses (i.e. WSPar, TmaxCO2,
TOtCO2, KET) was performed for each cv.

On 8 cvs, ARMOSA was able to accurately replicate TDM at the end of growing season for 4 of
them, fairly good for 3 cvs and only for one cv the simulation was not satisfactory.

It should be noted that for Saragolla, we investigated only 3 growing seasons (from 2019 to 2021)
and this led to a reduced number of observations not adequate to optimize ARMOSA's response for
this cv.

Simeto and Valgerardo resulted the cvs for which ARMOSA accurately simulated both the inter-
annual variability and the average TDM observed in the field, with a slight overestimation for Simeto.

For the remaining cvs there was a mixed response; for some of them ARMOSA was efficient in
replicating the biomass accumulation at harvest, returning negligible differences between the
observed and simulated mean data, but less effective in capturing the variability between the various
years (see GSD, EF and d for Appulo, Claudio and Ofanto).

For other cvs, the simulations comprehensively caught the inter-annual variability (i.e., Claudio
and Latino) but overestimated or underestimated the average trend of TDM.

The cropping systems carried out in LTE, were characterized by the release of straw and their
incorporation into the soil, differentiating for the supplement or not of nitrogen and water.

Definitively, by analysing the response of ARMOSA in simulating TDM at harvest, it emerged
as the calibration process correctly trained the cropping system model to effectively replicate the data
observed in the field across LTE under P_30 treatments.

Thus, the correct estimate of TDM by ARMOSA and therefore of biomass incorporated in the
soil was the first key point for an adequate simulation of TOC dynamic.
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In previous studies ARMOSA was calibrated and validated on a wide range of climate and soil
conditions throughout Europe, conventional systems, and CA simulating TOC dynamics with very
good or even excellent results (Valkama et al., 2020).

Thus, the calibration step for the TOC dynamic focused only on two parameters controlling the
evolution of soil organic matter, namely Khumus (1.4*10#) and CMicrobEfficiency (0.4), leaving all
the other parameters unchanged.

ARMOSA replicated the dynamics of TOC quite agreeably, attaining the "Good" score for all the
treatments under investigation (Table 7; Figure 2). This result was reached thanks to the accurate
estimate of mean value of TOC (averaged for all treatments; 64965 vs 64758 kg ha-!, Table 7).

Table 7. Comparison between simulated and observed data of TOC (0-40 cm) for P_30 and
performance evaluation indices of the model applied to each treatment. White, light gray and gray
cells indicate the best (1), mid (0.5) and worst (0) scores, respectively.

Paramete Uni Ob Mean Dev.st RMS GS EF d CR Scor

N°  Obs Sim Obs Sim (kgha (%)

12 kg 8 6634 6454 * + 6371  9.60 = 05 0.03 Goo
T5 kg 13 6431 6506 + + 6071  9.44 - 05 -0.01 Goo
T8 kg 13 6422 6512 4551 * 5780  9.00 = 03 -0.01 Goo
P_30 kg 34 6475 6496 * * 6035 9.32 = 04 000 Goo

Although CRM index indicated a perfect alignment of the simulated values with the measured
ones, it should be noted that ARMOSA tended to slightly underestimate the data collected in the
initial course of LTE and then overestimate the data in the central part of LTE (Figure 2).

It was not possible to measure the robustness of ARMOSA in formalizing TOC dynamics of in
the last part of LTE because of the lack of soil sampling, which instead occurred in the validation
phase (see in the next section).

The high variability of the measured TOC both between consecutive years and within the same
sampling (high standard deviation) is highlighted (Figure 2).

The source of this erraticism could derive from a series of conditions associated to the sampling
time and sampling point. The sampling dates over the years occurred between the beginning of
September and the end of November; in this period straw could still be intact (i.e., early September)
or already partially degraded (i.e., late November), state also related to the moment of their burial
with respect to the soil sampling. This could affect the amount of organic matter and organic carbon
in the shallow layers of soil as well as the sampling point which could be affected by the substantial
content (and dynamic) of crop residues [47].

doi:10.20944/preprints202312.2200.v1
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Figure 2. Comparison between simulated and observed data of TOC (0-40 cm) for P_30. Bars indicate
the standard deviation.

This may explain the reduced matching between the measured and simulated variability of TOC
(low EF and d score), although AROMSA formalized a high variability of this variable between the
beginning and the end of growing period (due to the degradation dynamic of straw).

Contrasting results were obtained in the simulation of the grain yield (Table 8).

Although the total score of yield simulated averaged for all treatments was "Fair", only for T2
was achieved a good result, while for the other two treatments the outcome was not adequate.

Table 8. Comparison between simulated and observed data of grain yield at harvest for P_30 and
performance evaluation indices of the model applied to each treatment. White, light gray and gray
cells indicate the best (1), mid (0.5) and worst (0) scores, respectively.

Paramete Uni Ob Mean Dev.st RMS GSD EF d CRM Score
N° Obs Sim Obs Sim (kgha (%)
T2 kg 40 307 2832 + 1175 3822 0.04 0.78 0.08 Good
T5 kg 40 273 3114 + * 1413 5166 - 0.69 -0.13 | Bad
T8 kg 41 290 3265 @+ + 1411 | 4862 - 066 -0.13 Bad
Total kg 121 290 3072 = + 1338 [46.07 - 071 -0.06 Fair

This pattern was consequently confirmed also for the simulated yield of the several cvs. Out of
8 cus, half did not achieve a satisfactory score, three obtained a fairly good score and only one reached
the maximum score (Table 9).

GSD ranged from a minimum of 24.45% for Latino to a maximum of 66.51 % for Claudio. The
latter had a low fitting in the calibration test with EF (-9.93) and CRM (-0.23), which were the worst
among the simulated varieties. Apart Latino, calibration of Simeto allowed to reach satisfactory
performance in terms of EF (0.1) and d (0.77), followed by Valegerardo (0.18 and 0.83 for EF and 4,
respectively).

The poor result of Saragolla should also be shown, with EF and d far from the optimum values,
even if simulation of the mean yield was aligned with the observed data (CRM of 0.03).
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Table 9. Comparison between simulated and observed data of grain yield and performance
evaluation indices of the model applied to individual cultivars. White, light gray and gray cells
indicate the best (1), mid (0.5) and worst (0) scores, respectively.
Parameter Unit Obs Mean Dev.st RMSE GSD EF d CRM Score
N° Obs Sim Obs Sim (kgha (%)
)
Appio kg 12 2325 2361 * + 1239  53.3 - 0.1 -0.02 Bad
ha 1031 393 0.58
Appulo kg 12 2903 3114 =+ * 1564 1939 | - 023 -0.06 Fair
ha? 306 353 2.72
Claudio kg 13 3754 4618 * * 2497 6651 - 037 -023 Bad
ha? 786 2624 9.93

Latino kg 15 2135 2029 * + 524 2454 071 0.92 | 0.05 Very

ha 1093 912 good

Ofanto kg 15 3092 2641 @+ + 1066 3447 | - 042 0.15 Bad
ha' 437 989 5.38

Saragolla kg 9 3049 2966 @+ * 2095 6871 -  0.06 003 Bad
hat 1293 1091 1.96

Simeto kg 33 3477 3818 + + 1190 3422 01 0.77 -0.10 Fair
ha 1274 1292

Valgerardo kg 12 1600 1973 * * 708 4425 018 0.83 -023 Fair
ha 817 1044

Calibration of ARMOSA was focused on the parameters controlling the partition of the biomass
between the different organs, therefore the grain and the maintenance respiration of the same (Table
2).

The observed data showed that grain yield was not linearly related to the biomass produced at
harvest.

Several authors achieved poor performance when calibrating crop simulation models on wheat
yield across different sites, years and cultivars, especially in hot-arid environments.

Specifically, some authors claimed that the grain production depends on genetic coefficients that
are not only site-specific [48] but also year-specific [49-50].

Our results after the calibration of ARMOSA confirm what was reported by [51] who stated that
it was difficult to accurately predict the production of wheat with low levels and / or in environments
characterized by high temperatures.

The simulation of grain production becomes pernicious when situations of water and / or
thermal stress occur during seed formation [52].

In the climatic condition of the experimental site of LTE, there are frequent situations of low
rainfall and heat waves that have heavily compromised the potential productivity of the crop. Not to
mention short but intense storms and strong gusts of wind that led to the lodging of the crop.

These extreme events which occur during seed filling, which significantly impact the final yield
are hardly formalized by crop growth simulation models [53].
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However, the 1:1 regression line between observed and simulated data (Figure 3) showed the

good aptitude of ARMOSA in capturing the variability of the average grain yield among cvs (Table
8), with R2 of 0.82 and angular coefficient of 1.06.
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Figure 3. Linear regression (thin line) between observed grain yield (Obs_yield) and simulated grain
yield (Sim_yield) of P_30. Empty circles indicate the yield averaged for each cultivar.

3.1. Validation

The good robustness of ARMOSA in the simulation of phenology was also confirmed in the
validation step, with maximum scores reached for the emergence and flowering phases.

Even if formalization of maturity stage did not reach the degree of excellence (EF of -1.05 and
CRM of 0.46), ARMOSA was aligned with the observed mean value (156 days vs 155 days; Table 10).

Table 10. Comparison between observed and simulated data for the phenological stages recorded for
all cultivars and treatments of P_32 in the validation step. Observed and simulated data of phenology
was equal for all cvs. White, light gray and gray cells indicate the best (1), mid (0.5) and worst (0)

scores, respectively.

Parameter Unit Obs Mean Dev.st RMSE GSD EF d CRM  Score

n° Obs Sim Obs Sim (GDD) (%)

Emergence GDD 14 365 368 27 35 Very

13 356 074 095 -0.01 good

Flowering GDD 14 123 128 7 11 10 8.13 - 063 -0.04 Very

1.11 good

Maturity GDD 14 = Good
155 156 6 7 9 5.81 [1.05 0.46 -0.01

Indication on the reliability of ARMOSA in replicating the productivity of the cvs (Simeto,
Claudio and Saragolla) along validation process were drawn from the results of the 1: 1 regression
(Figure 4a; Table 11).
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Figure 4. Linear regression between observed yield (Obs_yield) and simulated yield (Sim_yield)
achieved by NT (gray line), MT (thin black line), P_32 (dashed line) in the validation step (a). TOC (0-
40 cm) dynamics of observed (obs) and simulated (sim) NT and MT verified across experimental years
of LTE (b).
Table 11. Comparison between observed and simulated data of grain yield in the validation step
and main parameters of the related linear regression.
Parameter Unit Obs Mean Dev.st R-squared p-val (fit) p p-val (B)
n° Obs Sim Obs Sim
Simeto kg ha? 8 3267 4416  +£957 +720 0.87 <.001 1.24 <.001
Claudio kg ha' 7 4300 4392 617  £2027 0.86 <.001 1.02 <.001
Saragolla kg ha' 2 3089 2867  +656 +402 0.99 <.001 0.92 <.001
NT kg ha? 17 3703 4202 +953  +£1481 0.86 <.001 1.08 <.001
MT kg ha? 17 3684 4246 +£963  +£1478 0.87 <.001 1.11 <.001
P_32 kg ha'! 34 3676 4224  +944  +£1457 0.87 <.001 1.1 <.001

The average value of grain yield of Claudio was aligned between the model output and the
observed data (4300 kg ha vs 4392 kg ha!). Although the standard deviation was much higher in
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ARMOSA compared to the LTE data, the model reasonably captured the observed variability among
years (see dispersion around the 1:1 regression line). What turned out to be off-scale were the
outcomes related to a single growing season for NT and MT, in which the simulated values (8154 kg
ha, as mean) were much higher than the observed productivity (4565 kg ha™).

For Saragolla, ARMOSA was inclined to slightly underestimate the actual yield ($ = 0.92) but
with an excellent fit between simulated and observed data (R? = 0.99), even if the compared growing
seasons were only two for a total of four yield productivity figures.

For Simeto, the overestimation of grain production by ARMOSA was around 24% (3267 kg ha-!
vs 4416 kg ha'). As for Claudio, a very high inconsistency between the output and the actual grain
yield was observed for one growing season (2349 kg ha' vs 5919 kg ha! as mean), but definitively
Simeto proved to be the trickiest cv for ARMOSA (although not so dramatically) of validation phase.

Evaluating ARMOSA overall for NT and MT treatments, the tendency of the model to slightly
overestimate (+ 10%) the observed grain productivity was highlighted, to which was added a larger
variability generated by the model, as computed by the coefficient of variation (ratio between the
standard deviation and the mean) which was approximately 35% for ARMOSA and 26% for LTE.

Summing up the results obtained during the testing of ARMOSA, it was shown that the model
tends to slightly overestimate the yield, with a broader sensitivity in modulating the crop
performance to different climate patterns (CV = 34%) with respect to the actual plant dynamics (CV =
25%).

Testing the response of ARMOSA in formalizing TOC (Figure 4b), it emerged how the model
responded differently to the two soil treatments (NT and MT) and aligning the outputs with what
was observed during LTE.

Indeed, in LTE, TOC went from about 51000 kg ha at the beginning of the experimental test
(2002) to 63200 kg ha' in NT and 55800 kg ha! in MT, respectively, in 2020.

ARMOSA did not go far from the observed data, returning for 2020 TOC value of 63045 kg ha-!
and 65247 kg ha! for NT and MT, respectively.

This opposes when comparing the simulated and observed data for some of the several
experimental years (i.e.,, 2015 and 2019), in which substantial differences were recorded among
ARMOSA outputs and actual soil TOC content.

This is because TOC determined by laboratory analysis is strongly affected by the organic
substance deriving from the total or partial degradation of crop residues, the content of which can be
extremely variable depending on the sampling point [47].

This also explains the extreme variability of the figures (see standard deviation in Figure 4b)
observed for each sampling, both in NT and MT.

In the light of that, ARMOSA can be considered reliable in the simulation of TOC fluctuation,
particularly if one considers the evolution over a period long enough to capture the correct dynamics
of TOC under different crop systems [54].

4. Conclusions

In this modeling exercise, ARMOSA crop growth simulation model was tested for the reliability
of replicating three growing variables of durum wheat (phenology, dry biomass accumulation and
grain yield) cropped under five different soil and straw options and their impact on TOC dynamics.

After calibrating ARMOSA on eight phenotypes of durum wheat, agreeable results were
achieved on phenology and biomass at harvest in almost all the investigated cvs.

On the other hand, the grain simulation generated discordant results, with some cvs being
replicated sufficiently well, while others scoring unsatisfactory.

The validation step to verify the robustness of ARMOSA showed that, although in some years
the deviation between the simulated data and the observed ones has been high, the model has
adequately captured the grain yield averaged for all the growing seasons.

Accordingly, the application of simulation models to replicate the productivity of durum wheat
across several growing periods rather than single year, in hot-arid environments with low grain yield
has proved challenging, as reported by various modeling investigations.
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For what concerns TOC dynamic, ARMOSA proved to be suitable in replicating the average
trend of soil organic carbon both in the calibration and in the validation processes. Although the
variability among years was not slavishly captured by the model (also due to the extreme spatial
variability of this parameter), TOC progression in the time frame concerned LTE was adequately
copied.

To finalize, ARMOSA showed great potential in formalizing the growth of durum wheat
cropped in Mediterranean environment under a wide range of options concerning tillage and the
impact of such agronomic schemes on TOC dynamics.

Improvements would be desirable regarding the effect of heat waves and / or prolonged drought
on the final grain yield.
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