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Università di Trieste, Dipartimento di Fisica, strada Costiera 11, 34151 Grignano (Trieste), Italy;

riccardo.fantoni@scuola.istruzione.it

Abstract: We prove through path integral Monte Carlo computer experiments that the affine

quantization of the φ4
4 scaled Euclidean covariant relativistic scalar field theory is a valid quantum

field theory with a well defined continuum limit of the one- and two-point-function. Affine

quantization leads to a completely satisfactory quantization of field theories using situations that

involve scaled behavior leading to an unexpected, h̄2/φ2 which arises only in the quantum aspects.

Keywords: field theory; affine quantization; continuum limit; Green function

1. Introduction

It is well known that φ4
4 quantum Euclidean covariant relativistic field theory when quantized

through canonical (Dirac [1]) quantization (CQ) is non-renormalizable since its corresponding

renormalized theory tends to a free theory in the continuum limit [2–6].

Recently J. R. Klauder [7–11] noticed that this difficulty can be overcome by using a different kind

of quantization method, namely affine quantization (AQ).

In a sequel of recent papers [12–22] we proved, through path integral Monte Carlo (PIMC), that

indeed affine quantization is able to make the φ4
4 theory non-trivial. A crucial point left unanswered in

these papers was the validity of the continuum limit at the level of the one- and two-point-functions.

The aim of the present work is to show that as we approach the continuum on the computer, the

one- and two-point-function converge to well defined results. In other words we prove the validity of

the continuum limit for the field theory quantized through affine quantization.

2. Field theory formulation

For a scalar field, φ, with spacial degrees of freedom x = (x1, x2, . . . , xs) and canonical momentum

π(x), the classical affine variables are κ(x) ≡ π(x) φ(x) and φ(x) ̸= 0. The reason we insist that

φ(x) ̸= 0 is because if φ(x) = 0 then κ(x) = 0 whatever is π(x).

We then introduce the classical Hamiltonian expressed in affine variables. This leads us to

H(κ, φ) =
∫

{ 1
2 [κ(x)2 φ(x)−2 + (∇φ(x))2 + m2 φ(x)2] + g φ(x)r} dsx, (1)

where r is a positive, even, integer and g ≥ 0 is the bare coupling constant such that for g → 0 we fall

into the free field theory. With these variables we do not let φ(x) = ∞ otherwise φ(x)−2 = 0 which

is not fair to κ(x) and, as we already observed, we must forbid also φ(x) = 0 which would admit

φ(x)−2 = ∞ giving again an undetermined kinetic term. Therefore the AQ bounds 0 < φ(x) < ∞

forbid any nonrenormalizability [12–22] which is otherwise possible for CQ [2–5].

The quantum affine operators are the scalar field φ̂(x) = φ(x) and the dilation operator κ̂(x) =

[φ̂(x)π̂(x) + π̂(x)φ̂(x)]/2 where the momentum operator is π̂(x) = −ih̄δ/δφ(x). Accordingly for

the self adjoint kinetic term κ̂(x)φ̂(x)−2κ̂(x) = π̂(x)2 + (3/4)h̄δ(0)2s φ(x)−2 (note that the factor 3/4
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that holds for φ > 0 should be replaced by a factor 2 if |φ| > 0 [17]) and one finds for the quantum

Hamiltonian operator

Ĥ(κ̂, φ̂) =
∫

{

1
2 [π̂(x)2 + (∇φ(x))2 + m2 φ(x)2] + g φ(x)r + 3

8 h̄2 δ(0)2s

φ(x)2

}

dsx. (2)

The affine action is found adding time, x0 = ct, where c is the speed of light constant and t is the

Euclidean imaginary time, so that S =
∫ β

0 H dx0, with H the semi-classical Hamiltonian corresponding

to the one of Eq. (2), will then read

S [φ] =
∫ β

0
dx0

∫

Ls
dsx

{

1
2

[

s

∑
µ=0

(

∂φ(x)

∂xµ

)2

+ m2 φ(x)2

]

+ g φ(x)r + 3
8 h̄

δ(0)2s

φ(x)2

}

, (3)

where with an abuse of notation we here use x for (x0, x1, x2, . . . , xs) and β = 1/kBT, with kB the

Boltzmann’s constant and T the absolute temperature. In this work we will set β = L.

The vacuum expectation value of an observable O[φ] will then be given by the following

expression

⟨O⟩ =
∫

O[φ] exp(−S [φ]) Dφ(x)
∫

exp(−S [φ]) Dφ(x)
, (4)

where the functional integrals will be calculated on a lattice using the PIMC method as explained later

on.

The theory considers a real scalar field φ taking the value φ(x) on each site x of a periodic

n-dimensional lattice, with n = s + 1 space-time dimensions, of lattice spacing a, the ultraviolet

cutoff, spacial periodicity L = Na and temporal periodicity β = Na. The field path is a closed loop

on an n-dimensional closed surface of an (n + 1)-dimensional β-periodic cylinder of radius L: an

(n + 1)-dimensional torus. We used a lattice formulation of the AQ field theory of Eq. (3) (also studied

in Eq. (8) of [12]) using additionally the scaling φ → a−s/2 φ and g → as(r−2)/2g which is necessary to

eliminate the Dirac delta factor δ(0) = a−1 divergent in the continuum limit a → 0. The affine action

for the field (in the primitive approximation [23]) is then approximated by

S[φ]

a
= 1

2

{

∑
x,µ

a−2[φ(x)− φ(x + eµ)]
2 + m2 ∑

x

φ(x)2

}

+ ∑
x

[

g φ(x)r + 3
8

h̄2

φ(x)2

]

, (5)

where eµ is a vector of length a in the +µ direction with µ = 0, 1, 2, . . . , s. We will have S ≈ S.

In this work we are interested in reaching the continuum limit by taking Na fixed and letting

N → ∞ at fixed volume Ls.

We performed a PIMC [23–26] calculation for the AQ field theory described by the action of Eq.

(5) in natural Planck units c = h̄ = kB = 1. Specifically we studied the s = 3 and r = 4 case. We

calculated the renormalized coupling constant gR and mass mR defined in Eqs. (11) and (13) of [12]

respectively, measuring them in the PIMC through vacuum expectation values like in Eq. (4). In

particular m2
R = p2

0⟨|φ̃(p0)|2⟩/[⟨φ̃(0)2⟩ − ⟨|φ̃(p0)|2⟩] and gR = [3⟨φ̃(0)2⟩2 − ⟨φ̃(0)4⟩]/⟨φ̃(0)2⟩2, where

φ̃(p) =
∫

dnx eip·x[φ(x)− ⟨φ(x)⟩] is the Fourier transform of the field and we choose the 4-momentum

p0 with one spacial component equal to 2π/Na and all other components equal to zero. We also

calulated the one-, two-point-, and two-point-connected-function, respectively given by

V = ∑
x

⟨φ(x)⟩/Nn, (6)

D(z) = ∑
x

⟨φ(x)φ(x + z)⟩/Nn, (7)

Dc(z) = ∑
x

(⟨φ(x)φ(x + z)⟩ − ⟨φ(x)⟩2)/Nn = D(z)− V2. (8)
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By construction, these are periodic functions, D(z) = D(z + L), of period L. Moreover, since the action

S contains only even powers of the field these functions must be symmetric respect to z = L/2, namely

D(z) = D(L − z).

3. The scaling

As we have seen we decided to work with a scaled field φ′(x), related to the variable φ(x), used

for example in [12], by

φ(x) = a−3/2 φ′(x). (9)

In other words, we are renormalizing the bare field. This can be compared with the standard

renormalization formula

φ(x) = Z1/2 φren(x). (10)

φren(x) is referred to as the renormalized field and Z is called the renormalization constant. In this

language, we are setting Z = a−3.

At the same time, we are rescaling the coupling constant with

g = a3g′. (11)

In the Standard Model, the various coupling constants also need to be renormalized for the continuum

limit to exist, but the renormalization is not simply given by a power of the lattice spacing. Instead, it

needs to carefully be tuned to the cutoff and to the couplings. In perturbation theory of canonical φ4,

the bare coupling constant can be expressed in terms of the renormalized one, order by order. The

result consists of a series that starts with gren:

g = gren + c2(gren)2 + c3(gren)3 + . . . (12)

The standard renormalization procedure is based on the fact that the Fourier transform of the

renormalized two-point-function contains a pole at p2 = M2, where M is the physical mass of the

particle. The renormalization constant Z is chosen such that the residue of this pole is equal to 1. This

ensures, in particular, that φren(x) and φ(x) as well as gren and g have the same dimension. Note that

our rescaling (9) and (11) instead changes the dimension of these objects.

We will soon see, in our first case study below, that the expectation value ⟨φ′(x)⟩ tends to a

constant when N becomes large. This means that the expectation value of the unscaled field, ⟨φ(x)⟩,
tends to infinity in proportion to N3/2 [12,14].

As we are holding g′ constant, the unscaled coupling constant g tends to zero in proportion to

1/N3. This suggests that, for the parameter values we consider, the connected Green’s functions of the

unscaled model tend to those of a free scalar field.

4. Numerical results

Our PIMC simulations use the Metropolis algorithm [24,25] to calculate the ensemble average of

Eq. (4) which is a Nn multidimensional integral. The simulation is started from the initial condition

φ(x) = ϵ > 0 for all lattice points x, with ϵ a small positive number. One PIMC step consisted in a

random displacement of each one of the Nn field values, φ(x), as follows

φ → φ + (2η − 1)δ, (13)

where η is a uniform pseudo random number in [0, 1] and δ is the amplitude of the displacement. Each

one of these Nn moves is accepted if exp(−∆S) > η where ∆S is the change in the action due to the

move (it can be efficiently calculated considering how the kinetic part and the potential part change
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by the displacement of a single φ(x)) and rejected otherwise. The amplitude δ is chosen in such a

way to have acceptance ratios as close as possible to 1/2 and is kept constant during the evolution

of the simulation. One simulation consisted of M PIMC steps. The statistical error on the average

⟨O⟩ will then depend on the correlation time necessary to decorrelate the property O, τO , and will be

determined as
√

τOσ2
O/(MNn), where σ2

O is the intrinsic variance for O.

We used up to a lattice of Nn = 254 = 390625 points (N = 25) and up to M = 2 × 106

corresponding to MNn PIMC displacement moves.

4.1. First case study

In our simulation we first chose the following study case m = g = L = β = 1 and ϵ = 10−10.

Notice that the minima of the two symmetric potential wells in the semi-classical Hamiltonian

density described by the function f (φ) = 1
2 φ2 + φ4 + 3

8 φ−2, are at φ± = ±2−1/2 ≈ ±0.707107. From

our Monte Carlo simulations (see Table ??), it seems that the vacuum expectation value of the field

(one-point-value), V = ∑x⟨φ(x)⟩/Nn, tends to these values in the continuum limit, a = 1/N → 0.

Note that in some of our previous works [16,18,19] where, instead of keeping the bare mass m constant,

we tuned it so to have a constant renormalized mass mR we found V = 0 in all cases. This is due to

the fact that as N increases so does the necessary bare mass which keeps constant mR. So that the two

symmetric potential wells in the semi-classical Hamiltonian density has minima that tends to zero and

one experiences tunneling of the potential barrier at φ = 0.

In Table 2 we show the values for the renormalized mass, mR, and coupling constant gR at

increasing values of N = 1/a. We see that in the continuum limit lima→0 mR = 0 and lima→0 gR = 2,

meaning that lima→0⟨φ̃(0)4⟩/⟨φ̃(0)2⟩2 = 1

Table 1. Renormalized mass mR, renormalized coupling constant gR, and one-point-value (vacuum

expectation value of the field) V = ∑x⟨φ(x)⟩/Nn for n = 3 + 1, m = g = L = β = 1 and N = L/a =

4, 7, 13, 25. In our PIMC simulations we used Eqs. (4) and (5).

N mR gR V

4 0.1421(2) 2.01178(2) 0.7501(4)
7 0.0602(1) 2.001129(4) 0.7339(2)
13 0.0224(2) 1.999894(5) 0.7216(2)
25 0.0084(1) 2.000048(4) 0.7148(3)

In Figure 1 we show D(z) at increasing values of N = 1/a. From the plot of the simulation data

we see that the function is symmetric respect to z = 1/2 as expected, since the action only contains

even powers of the field.
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Figure 1. Two-point-function D(z) = ∑x⟨φ(x)φ(x + z)⟩/Nn for n = 3 + 1, m = g = L = β = 1 and

N = L/a = 4, 7, 13, 25. In our PIMC simulations we used Eqs. (4) and (5).

In Figure 2 we show Dc(z) at increasing values of N = 1/a. From the plot of the simulation data

we see that lima→0 D(1/2) = 0. The width of the spike of Dc(z) at z = 0 seems to be related to the

value of the renormalized mass mR.

−0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.0 0.2 0.4 0.6 0.8 1.0

D
c
(z

)

|z|

N= 4

N= 7

N=13

N=25

Figure 2. Two-point-connected-function Dc(z) = D(z)− V2 for n = 3 + 1, m = g = L = β = 1 and

N = L/a = 4, 7, 13, 25. In our PIMC simulations we used Eqs. (4) and (5).

Alternatively we could have adjusted, at each change of N, the value of the bare mass m so to

have a fixed value for the renormalized mass mR. This would have resulted in a convergence towards

a unique two-point-connected-function in the continuum limit N → ∞. We did not choose did strategy

because it is numerically problematic to tune the bare mass so to have at each N the same value for the

renormalized mass. This was what we did in some of our previous papers [12,13,16–22].

4.2. Second case study

For the parameter values we just used, the box plays a crucial role: the bare Compton wavelength

(1/m) is equal to the size L of the box. In order for the box to be a purely technical device introduced

to regularize the theory, it must be large compared to the correlation length of the model. At the same

time, the lattice spacing must be small compared to it:

1/L ≪ m ≪ 1/a. (14)
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Therefore, next we considered the study case with g = L = β = 1, m =
√

N/L and ϵ = 10−10,

which should be much less affected by the presence of the box than the previous choice m = 1/L.

Table 2. Renormalized mass mR, renormalized coupling constant gR, and one-point-value (vacuum

expectation value of the field) V = ∑x⟨φ(x)⟩/Nn for n = 3 + 1, g = L = β = 1, m =
√

N/L and

N = L/a = 4, 7, 13, 25. In our PIMC simulations we used Eqs. (4) and (5).

N mR gR V

4 0.1461(2) 2.01199(2) 0.6672(4)
7 0.0627(1) 2.001154(4) 0.5992(3)

13 0.02463(5) 1.999844(2) 0.5169(2)
25 0.00867(5) 2.000069(7) 0.4359(3)

Notice that the minima of the two symmetric potential wells in the semi-classical Hamiltonian

density described by the function f (φ) = 1
2 m2 φ2 + φ4 + 3

8 φ−2, φ±(m), are such that

φ±(m) = ±31/4(2m)−1/2 + O(m−7/2) for m ≫ 1. (15)

So with our choice of m =
√

N we will find, in the continuum limit, limN→∞⟨φ⟩ = limN→∞ φ+(
√

N) =

0 in agreement with the results in Refs. [12,13,16,18–22].

From Figure 3 we see the continuum limit N → ∞, of the scaled two-point-connected-function

where, with an abuse of notation, we dropped from Dc, the prime, adopted rigorously in Section 3.

Respect to the work [14] (see Fig. 3 there) which dealt with the unscaled free field case and Dc(0) was

found to increase with increasing N we see how now the scaling has the effect of letting the value of

D′
c(0) decrease with increasing N, as shown in Figure 3, since φ′ = φ/N3/2 and D′

c = Dc/N3. It is

only tuning the bare mass m so to have a constant renormalized mass mR for each N, that we would

find true convergence. Unfortunately this procedure is not easily accomplished numerically since for

each N we would have to make several test runs with different values of m in order to find the value

which keeps mR approximately constant. This procedure was nonetheless carried out in the following

works [12,13,16,18–22].
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Figure 3. Two-point-connected-function Dc(z) = D(z)− V2 for n = 3 + 1, g = L = β = 1, m =
√

N/L

and N = L/a = 4, 7, 13, 25. In our PIMC simulations we used Eqs. (4) and (5).

5. Conclusions

In this paper, we represent π(x) by k(x)/φ(x). To insure proper values for π(x) it is necessary

to restrict 0 < φ(x) < ∞ as well as 0 ≤ |k(x)| < ∞. Indeed such symbol change is able to treat
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Hamiltonian densities with an interaction φ(x)4. This leads to a completely satisfactory quantization

of field theories using situations that involve scaled behavior leading to an unexpected, h̄2/φ(x)2

which arises only in the quantum aspects. Indeed, it is fair to claim that this symbol change leads to

valid field theory quantizations.

Respect to the work [14] which dealt with the free field case we here repeat that analysis but now

for the φ4 interacting case.

We prove through path integral Monte Carlo computer experiments that the affine quantization

of the φ4
4 scaled Euclidean covariant relativistic field theory is a well defined quantum field theory

with a well defined continuum limit of the one- and two-point-function, the Green’s function.

The simple pseudo-potential ∝ h̄2/φ2 stemming from the affine quantization procedure [9] not

only does not disturb the continuum limit, as we proved here, but in addition is able to render

renormalizable the φ4
4 theory which is known [2] to be non-renormalizable when treated with the more

commonly known [1] canonical quantization .
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