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Featured Application: The design and manufacturing of sandwich solutions using FRCM vegetal fabric skins 

improves sustainability because provides solutions with a global lower carbon footprint. 

Abstract: The utilization of vegetal fabric reinforced cementitious matrix (FRCM) represents an innovative 

approach to composite materials, offering distinct sustainable advantages when compared to traditional steel-

reinforced concrete and conventional FRCM composites employing synthetic fibers. This article introduces a 

design for sandwich solutions based on a core of extruded polystyrene and composite skins combining mortar 

as a matrix and diverse vegetal fabrics as fabrics such as hemp and sisal. The structural behavior of the resulting 

sandwich panel is predominantly driven by the interaction between materials (mortar and polyurethane) and 

the influence of shear connectors penetrating the insulation layer. This study encompasses an experimental 

campaign involving double-shear tests, accompanied by heuristic bond-slip models for potential design of 

sandwich solutions. The analysis extends to the examination of various connector types, including hemp, sisal, 

and steel, and their impact on the shear performance of the sandwich specimens. The results obtained 

emphasize the competitiveness of vegetal fabrics in achieving effective composite strength comparable to other 

synthetic fabrics like glass fiber. Nevertheless, the study reveals that the stiffness of steel connectors 

outperforms vegetal connectors, contributing to an enhanced improvement in both stiffness and shear strength 

of the sandwich solutions. 

Keywords: sandwich panels; FRCM; cementitious matrix; vegetal fibres; shear test 

1. Introduction

Sandwich panels crafted with concrete skins and insulating cores are a competitive solution for 

building structural components with energy efficient added value, see a review in Oliveria et al. [1]. 

The concern about climate changes and sustainable solutions drive research towards more green and 

bio-based engineering sandwich technologies according Oliveira et. al. [2]. In the present work a 

solution based on vegetal FRCM and polystyrene core, serve as a lightweight construction solution 

with noteworthy insulating properties for building enclosures. The mechanical properties of these 

panels depend significantly on the composite action between materials. Adequate material 

connection is crucial, as insufficient bonding may result in problematic stress distribution within the 

panel, potentially causing detachment failure or a substantial decrease in mechanical strength. 

In this order, different authors presented previous studies like Cox et al. [3] develop a composite 

shear connectors system of glass fiber reinforced polymer (GFRP) used to transfer interface shear 

forces in a precast concrete sandwich panel. The study developed push-off, pullout, and flexural tests, 

to evaluate the structural performance of the shear connectors, and the effect of bond between 

concrete and insulation with a push-off tests. The results showed satisfactory performance with a 

lower bound of 90% composite action for specimens with 100mm thick insulation wythe and full 

composite action for most panels with 50mm thick insulation. Other study by Portal et al. [4] 

presented experimental and numerical methods to analyzed the structural behaviour related to a 

sandwich panel with a glass fibre reinforced polymer (GFRP) plate connection system, where a 
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double shear tests were conducted on sandwich specimens to characterize the available shear 

capacity provided by the connectors and panel configuration. The authors conclude that for well-

balanced composite action is necessary use least material in the plate connectors, and increased 

bending capacity of the outer panel to avoid a significant drop of the load after the peak load. At the 

same line, Hulin et al. [5] presents an experimental campaign at elevated temperatures for panels 

stiffened by structural ribs, insulation layers, and steel shear connectors. The results highlighted 

insulation shear failure from differential thermal expansion at the interface with concrete, where the 

shear connectors induced to stress concentrations leading to local failure. A study presented by 

Tomlinson et al. [6] carry out push-through tests on precast concrete insulated sandwich panel using 

combined angled and horizontal connectors, where basalt fibre reinforced polymer and steel 

connectors were used. This study evaluated various inclination angles and diameters of connectors, 

orientation of the diagonal connector relative to loading, and panels with or without an active foam 

to concrete bond. The results show that steel connectors failed by yielding in tension and inelastic 

buckling in compression. In the case of the larger-diameter basalt-FRP connectors pulled out under 

tension and crushed in compression, and smaller-diameter basalt-FRP connectors ruptured in tension 

and buckled in compression. Also, it is demonstrated that the strength and stiffness improved with 

the connector angle and diameter.  Lou et al [7] performed 24 double-shear tests on precast concrete 

insulated sandwich panels using stainless-steel plate connectors. Authors analysed parameters like 

connector directions, insulation effect, cavity widths and connector heights. Authors developed a 

consisted campaign with in-plane and out-of-plane shear test and concluded that the cavity size and 

the presence of insulation significantly contributed to shear transfer. Choi et al. [8] analysed some 

precast concrete sandwich panels used for exterior cladding. Specimens were experimentally tested 

with push-out test, with and without corrugated shear connectors. The investigation of the in-plane 

shear performance showed a relevant impact of the core material in the structural response. And 

later, Choi et al. [9] extended the study of the shear flow over type of connectors. There are other 

relevant contributions about the shear performance of sandwich insulation panels using other types 

of test like Sylaj et al [10], Hou at al [11], Meng et al. [12] or Wang et al. [13]. 

To advance towards the utilization of more sustainable materials compared to synthetic fibres 

and steel, the present study concentrates on the creation of sandwich panels comprising vegetal 

FRCM and expanded polystyrene as insulation. Authors have previously presented other 

complementary studies about FRCM vegetal fibres, see Mercedes et al. [14] and [15] and some 

bending test for sandwich FRCM solutions, see Mercedes et al [16]. For the present work the 

innovation lies in the use of vegetal FRCM skins and the introduction of flexible connectors made 

from vegetal fibres. Connection between layers is a must to have the necessary mechanical properties 

to develop composite materials that are competent with those commonly used in the construction 

industry. In this study, sandwich specimens were created using different fabrics (hemp, sisal, and 

glass) and connectors (hemp, sisal, and steel). These specimens underwent a double shear test to 

examine how these fabrics and connectors influence the panel's strength against shear. Additionally, 

simplified connector slip-load model is developed and compared to the experimental results. 

2. Materials and Methods 

The experimental campaign includes the manufacturing of specimens of FRCM bonded to an 

extruded polystyrene core and shear tests. These specimens were produced using next specific 

procedures and materials. 

2.1. Mortar  

To manufacture the FRCM component, a thixotropic commercial mortar was used. This mortar 

is a single-component mixture comprising cement, synthetic resins, and polyamide fibers, with the 

addition of silica fume. The choice of this mortar was based on its proven effectiveness in previous 

studies Mercedes et al. [15]. The average results of the compression and flexion tests using norm 

EN1015-11:2000 [16] has been previously presented in the cited work with values of 39.25 MPa and 

6.56 MPa respectively. 
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2.2. Fabrics 

Two type of vegetal fabrics and another one of synthetic fibres were used to manufacture the 

FRCM part: Hemp, sisal and glass (contrast material).  

Vegetal fabrics were crafted using hemp and sisal yarns (both with diameter of 2.5 mm). This 

arbitrary choice is justified by the notable tension levels achieved by hemp and sisal FRCM specimens 

in a prior study by Mercedes et al. [17]. In that study, the fabrics and yarns were coated with epoxy 

resin. This was done to prevent fibre degradation produced by the environment of cementitious 

matrix composites (high alkalinity and humidity cycles), see Ardanuy et al. [18].  

The size of the free cells in the grids of vegetal fabrics was determined by referencing the 

geometry of a commercial glass fabric (see Figure 1). In the case of vegetal fabrics, it was necessary to 

craft the meshes with greater volume of material to achieve the load capacity of glass fabrics, 

producing thicker meshes than synthetic ones. Two yarns were utilized for each tuft, underscoring 

that tensile strength and effectiveness were comparable to synthetic fiber meshes just by simply 

increasing the volume of vegetal fibers. 

Weft yarns of hemp and sisal fabric were made of hemp yarns of 0.5 mm in order to reduce the 

thickness of the weft and wrap crossing point, and because the load capacity in weft direction is no 

relevant for the shear test setup used in this study. 

 

Figure 1. Design on reinforcing fabrics. 

The fabrics were woven (Figure 2) with the same procedures used in Donnini et al [19] and 

D’Antino et al. [20]. After one day of curing, the meshes were cut into pieces with dimensions of 45 

mm × 35 mm. 
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Figure 2. Vegetal fabrics: (a) hemp and (b) sisal. 

The mechanical properties of the tuft (two yarns in the vegetal fabrics case) are shown in Table 

1. The coated tuft data were obtained experimentally in this study using the tensile test procedure 

using norm EN ISO 13934-1/2 [21]. 

Table 1. Tuft properties. 

Fibres Number of test Af (mm2) 
Ffu      

(N) 

σfu           

(MPa) 

Ef          

(GPa) 

εfpick             

(%) 

Hemp 5 9.81 1701.00 173.35 (3%) 8.59 (11%) 1.45 (16%) 

Sisal 5 9.81 1467.00 137.25 (16%) 4.87 (36%) 2.31 (14%) 

Glass 5 1.05 708.00 668.50 (8%) 61.25 (2%) 1.32 (6%) 

(%) = Coefficient of Variation, Ffu= Maximum load mean, σfu= Tensile Strength mean, Ef= Young’s Modulus mean, 

εfpick= deformation peak mean 

2.3. Connectors 

To assess the impact of connectors on the shear behavior of FRCM bonded to an ex-truded 

polystyrene core, connectors of hemp, sisal and steel were used. Hemp and sisal were selected as they 

are the vegetal fibers used in this study for crafting vegetal fabrics, while steel was chosen as it is the 

most commonly commercial material used for connector in such types of sandwich solution.  

Vegetal fibre connectors were crafted hook-shaped and impregnated with epoxy resin, featuring 

an equivalent area of 29.43 mm2 (6 yarns). Steel connectors were in the shape of a pin or bolt with a 

cross-sectional area of 0.79 mm2, accompanied by a nut at one end to enhance anchoring effect with 

the mortar (see Figure 3). 

 

Figure 3. Connectors: (a) hemp, (b) sisal, (c) steel. 

2.4. Extruded polystyrene  

Rigid Extruded Polystyrene foam boards with a thickness of 40 mm were used as the insulating 

core in the sandwich samples configuration.  

2.5. Specimens 

The experimental program included 40 specimens. The dimensions of the FRCM were of 50×400 

mm and a thickness of 20 mm. These 40 samples included 3 different con-nectors (steel, hemp and 

sisal) and 3 different reinforcement fabrics (hemp, sisal and glass). 

The mold to manufacture the FRCM specimens were prepared with a grid of wooden strips 

defining 50 mm x 400 mm gaps (see Figure 4). These strips had a height of 20 mm. The manufacturing 

procedure was as follows: 

• Prepare the mold base with a demolding agent. 

• Mix the mortar and pour it to a depth of approximately 15 mm. 
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• Place the fabric so that it slightly penetrated the first mortar layer.  

• Cover the fabric with a second layer of mortar to reach the thickness of 20 mm for the bottom 

FRCM layers. 

• Place the extruded polystyrene boards. In the case of specimens with connectors it had a hole in 

the middle. 

• Place other wooden strips mold (without a base) in the same location as the first mold. 

• Add a third layer of mortar to reach the final thickness.  

• Place the second fabric so that it slightly penetrated the first layer of mortar. 

• For panels with connectors, place the connectors so that the top is above the fabric. 

• Cover the second fabric (and connectors) with a fourth layer of mortar to reach the thickness of 

20 mm for the top FRCM layers. 

• Demold and leave samples to cure in laboratory conditions for 28 days. After this period, the 

specimens were ready for testing. 

 

Figure 4. Manufacturing of sandwich panels: (a) mould, (b fabric with steel connector, (c) sandwich 

specimen. 

The nomenclature used to identify the specimens is provided in Table 2. 

Table 2. Nomenclature of sandwich panels. 

Specimen Fibres Connectors Numbers of samples 

SH-N Hemp Without 5 

SH-H Hemp Hemp 5 

SH-S Hemp Sisal 5 

SH-St Hemp Steel 5 

SS-N Sisal Without 5 

SS-S Sisal Sisal 5 

SG-N Glass Without 5 

SG-St Glass Steel 5 
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3. Experimental campaigns 

3.1. Test setup and instrumentation 

The specimens were subjected to a double shear test (see Figure 5). In this test, metal plates 

(similar to those used in tension tests) were bonded to one end of the FRCM on each side of the 

sandwich specimen. This shear test is an adaptation inspired by the tension test with the clevis system 

according AC434-0213-R1 [22]. In this configuration, auxiliary plates of aluminum were attached 

externally on opposite sides of the load application, simply to prevent the turning of the specimens 

during the test. The test rate was 2 mm/min. 

 

Figure 5. Test set up. 

3.2. Type of failures 

In general, all the specimens had a peeling failure because polystyrene is a low strength material. 

Nevertheless, in the case of the samples with connectors, there was also a slip-page of the connectors 

accompanied by the detachment of the mortar in the connector area, in some cases. Consequently, 

specimens with connectors displayed more cracking and ductile failure compared to the sudden and 

brittle failure observed in specimens without connectors (Figure 6). 
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Figure 6. Type of failures: (a) Peeling failures, (b) Peeling failures and connector slipping. 

3.3. Experimental results 

Table 3 shows the experimental results of maximum load and shear stress (Fmax and τmax), the 

elastic stiffness (Ke) and shear modulus (Ge), obtained from the lineal stage in the load-displacement 

diagrams. Also, table present the displacement (δmax) and angular distortion (δmax/te) at the 

maximum load. Where te is the distance (60mm) between the fabric embedded in the FRCM skins. 

To calculate the shear stress and shear modulus was used the shear value from the FRCM skin 

dethatched (50×250mm). 

Table 3. Experimental results. 

Specimen Fmax (N) 
τmax 

(MPa) 
C.V 

Ke 

(N/mm) 
Ge (MPa) C.V 

δmax 

(mm) 

δmax/te 

(%) 
C.V 

SH-N 1409.20 0.11 (12%) 467.94 1.87 (10%) 4.85 9.70 (23%) 

SH-H 1694.60 0.14 (6%) 601.05 2.40 (19%) 5.49 10.98 (21%) 

SH-S 1684.40 0.13 (14%) 537.22 2.15 (15%) 4.50 9.01 (31%) 

SH-St 2151.20 0.17 (8%) 653.73 2.61 (13%) 7.04 14.08 (22%) 

SS-N 1369.75 0.11 (9%) 432.29 1.73 (7%) 4.89 9.79 (19%) 

SS-S 1543.40 0.12 (9%) 479.70 1.92 (12%) 7.21 14.41 (24%) 

SG-N 1340.40 0.11 (10%) 487.95 1.95 (7%) 5.60 11.19 (47%) 

SG-St 1333.25 0.11 (12%) 608.29 2.43 (18%) 4.41 8.81 (40%) 

The results in Table 4 show coefficients of variation ranging between 2 and 14% for maximum 

load and shear strength, indicating good repeatability of the experiments. It is noteworthy that 

specimens without connectors presented similar shear strength. However, for stiffness and 

displacements the variation was higher, ranging between 7 and 47%. This variablity represents the 

expected scattering of data for elements composed of cementitious materials with a high no lineal 

behavior. The results presented in Table 4 are better appreciated in Figures 7 and 8. 

 

Figure 7. Fabrics influences: (a) Maximum load, (b) elastic stiffness. 
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Figure 8. Connectors influences: (a) Maximum load, (b) elastic stiffness. 

Figure 7 shows the impact of the fabric on the maximum load and elastic stiffness of the 

specimens. The performance of different fabric types remains consistent for both maximum load and 

stiffness values, regardless of the presence of connectors. Concerning maximum load, the inclusion 

of connectors significantly enhances capacity for vegetal specimens, ranging from 13% to 53%. 

However, there is no notable change for glass fabric. This suggests that the FRCM skin may not reach 

the cracking strength required to activate the glass fabric, unlike what occurs with vegetal fabrics. 

Nevertheless, connectors play a beneficial role in maintaining cohesion between materials, activating 

vegetal fabrics at the achieved level of strain until significantly produce a higher ultimate load. 

In terms of elastic stiffness, the response of the FRCM sandwich is directly tied to the Young 

modulus of the fabric—stiffer fabric correlates with higher specimen stiffness. Despite glass fabric 

being seven times stiffer than hemp fabric, this stiffness difference is not prominently reflected in the 

specimens. This is due to the initiation of non-linear behavior in the core deformation for low values 

of FRCM strain, minimizing the activation of fabric capacity in the composite and resulting in 

negligible stiffness differences. 

Connectors prove efficient in ensuring strain compatibility among components, leading to an 

increase in stiffness values ranging from 11% to 40%. Although the influence of connectors during 

the elastic phase is minimal compared to the effect over the ultimate load, they play a crucial role in 

maintaining overall specimen compatibility. 

Figure 8 illustrates the impact of the type of connector on the maximum load and on elastic 

stiffness for the hemp fabric specimens. The presence of connectors, independently of their material, 

increases both the maximum load and the elastic stiffness. Steel connector reaches the highest load 

and the highest stiffness. Therefore, the presence of stiff connectors maintains the strain field and the 

compatibility between layers in a more efficient manner than flexible vegetal connectors. The 

difference of stiffness between the fabric and the steel connector seems not to be a handicap, even 

thought that some local damage happens in the mortar because of the concentration effects of steel 

bolt.  

Figure 9 shows the load-displacement plots of the tested panels. It can be seen that specimens 

without connectors exhibit a quasi-brittle failure with limited range of deformation (dashed lines) 

compared to specimens with connectors (continuous line). The presence of connectors enhances the 

activation of vegetal fabrics, effectively tightening the interfaces between materials and contributing 

to an increased strength of the sandwich structure. In the case of glass, the levels of strain are low in 

the FRCM and the fabric is not activated, therefore there is no large difference in the load-

displacement plots. 
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Figure 9. Load-displacement diagrams: (a) Hemp-fabric-with steel connector, (b) Hemp-fabric-with 

hemp connector, (c) Hemp-fabric-with sisal connector, (d) Sisal-fabric-with sisal connector, (e) glass-

fabric-with steel connector. 

4. Connectors interlock-slip simplified model 

According the experimental results, it is worth to build a simple model to easily pre-dimension 

solutions for FRCM sandwich panels. Therefore, it is necessary to estimate the contribution of the 

connectors to the response of the structure. The problem is very complex involving nonlinear 

behavior of FRCM skins, interface interaction among materials and debonding and slipping failure. 

A real model is far from the scope of the contribution. Nevertheless, a rough approach might take 

advantage of the comparison between the response of specimens without connectors and the ones 

with connectors. Therefore, in a simply manner: 

Fmax = Fmax_none_connector + Fmax_connector 

From Table 5 and plots of Figure 9 (a, b and c) it is feasible to estimate the contribution of the 

interface of FRCM and polystyrene. To study the effect of the connector, only hemp FRCM specimens 

(SH) were used because contains all type of samples. 

The connectors collaborate performing a bi-linear behavior. Each one collaborates increasing its 

contribution until the maximum load is reached, while after, they are capable of maintaining it 

without a significant reduction, due its stiffness.  

As stated in Figure 8, steel connectors showed the highest stiffness, followed by hemp and finally 

sisal ones. This property explains the reason why steel connectors are the ones that contribute more 

significantly to the shear strength of the specimen, providing a contribution 165% more than the 

vegetal connectors. Hemp and sisal show a similar contribution, due its similar mechanical properties 

studied in Table 2.  

Therefore, Figure 10 will make an estimation of the connector contribution. 
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Figure 10. Connectors contribution. 

5. Results 

In this work, an experimental and numerical research was conducted to investigate the shear 

performance of sandwich specimen with vegetal-FRCM and polystyrene. According the achieved 

results: 

• All specimens experienced a peeling failure. However, specimens with connectors exhibited 

additional slippage of the connectors, resulting in more cracking and ductile failure compared 

to the fragile failure observed in specimens without connectors. 

• The results shown that there is no significant influence of the kind fabric in the maximum load 

of the specimen without connector. This happens because the FRCM skin do not reach the 

cracking level required for the fabric to be activated and effectively contribute to the strength.  

• In the case of the specimens with connectors the level of maximum loads and elastic stiffness 

were both increased. Vegetal fabrics were effectively activated by the cracking while glass was 

very little activated. Therefore, the comparative performance produced a more ductile response 

in vegetal fabrics. 

• All the type of connectors increased the maximum load and elastic stiffness of the sandwich 

specimens. The steel connector reached the highest maximum load and elastic stiffness. Hence 

stiff connectors produced a tightening effect between the layers of materials and the higher 

stiffness in connectors the higher sandwich response. 

• An interlock-slip model based on experimental evidences shows the potential to design FRCM 

solutions for sandwich applications with connectors. 
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