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Abstract: Bulbophyllum is one of the largest genera and presents some of the most intricate taxonomic
problems in the family Orchidaceae, including species of ornamental and medical importance. The
lack of knowledge regarding the characterization of Bulbophyllum chloroplast (cp) genomes has
imposed current limitations on our study. Here, we reported the complete cp genomes of seven
Bulbophyllum species, including B. ambrosia, B. crassipes, B. farreri, B. hamatum, B. shanicum, B. triste
and B. violaceolabellum, and compared with related taxa to provide a better understanding of their
genomic information on taxonomy and phylogeny. A total of 28 Bulbophyllum cp genomes exhibit
typical quadripartite structures with lengths ranging from 145,092 bp to 165,812 bp and GC content
of 36.60% to 38.04%. Each genome contained 125-132 genes, encompassing 74-86 protein-coding
genes, 38 tRNA genes, and eight rRNA genes. The genome arrangements, gene contents and length
were similar with differences observed in ndh gene composition. A total of 18-49 long repeats and
38-80 simple sequence repeats (SSRs) were detected and the single-nucleotide (A/T) was dominant
in Bulbophyllum cp genomes, with an obvious A/T preference. An analysis of relative synonymous
codon usage (RSCU) revealed Leucine (Leu) was the most frequently used codon, while cysteine
(Cys) was the least used. Six highly variable regions including ndhF-trnLUAG, trnTUGU-trnLUA4,
trnFGAA-ndh], rps15-trnNGUU, rbcL-accD and psbl-trnSSCU were identified based on the ranking of the
Pi values, had the potential to serve as DNA markers for species identification and phylogeny of the
genus Bulbophyllum. Phylogenetic analysis based on the complete cp genome sequences and 68
protein-coding genes strongly supported 28 Bulbophyllum species can be divided into four branches
and sects. Brachyantha, Cirrhopetalum, Leopardinae defined by morphology were non-monophyly.
Our results enriched the genetic resources of Bulbophyllum species, providing valuable information
to illustrate the complicated taxonomy, phylogeny and evolution process of the genus.

Keywords: Bulbophyllum; chloroplast genome; molecular markers; phylogenetics analysis

1. Introduction

Bulbophyllum, comprising approximately 2,200 species, is one of the largest genera of
Orchidaceae and serves as an excellent model system for investigating orchid biodiversity [1-3]. Its
distribution spans pantropical regions, including Africa, Madagascar, the Americas and the Asia-
Pacific region [4]. Members of this genus exhibit epiphytic or lithophytic habits and typically possess
one or two-leaved pseudobulbs with a labellum attaches to the base of the floral column via an elastic
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hinge [4,5]. Bulbophyllum demonstrates remarkable adaptability, flourishing in a variety of
environments including subtropical dry forests and wet montane cloud forests [4,6]. Owing to its
morphologically diverse lateral sepals that vary in size, shape, color and surface ornamentation,
Bulbophyllum has economic importance attributable to ornamental uses [5]. Additionally, the aromatic
compounds found in these orchids are significant for their medical benefits [7,8].

Bulbophyllum has a complex taxonomic history, with numerous proposals for generic
delimitations and infrageneric classifications based on morphological characters since its
establishment by Thouars in 1822 [9-14]. Two mainly perspectives exist on the morphological division
of Bulbophyllum: either dividing the genus into multiple sections or categorizing the broad genus into
several genera. Statistically, more than 50 genera have been merged into Bulbophyllum (e.g.
Cirrhopetalum Lindl., Drymoda Lindl., Monomeria Lindl.,, Trias Lindl, and Sumnipia Lindl.), and
approximately 70-80 sections proposed alone in the Asia-Pacific region [4,15,16].

Phylogenetic analyses of Bulbophyllum using DNA sequence data have made significant progress
recently. Most phylogenetic results supported the monophyly of a broadly defined Bulbophyllum and
its continental taxa, such as Asian, African and Neotropical clades [1,4,17]. Hu et al. reconstructed the
phylogenetic relationship in the Asian Cirrhopetalum alliance of Bulbophyllum based on combining
four DNA sequence data (ntDNA: ITS, Xdh; cp DNA: matK and psbA-trnH, 117 taxa), supported an
ameneded Cirrhopetalum alliance were monophyly [5]. Based on eight DNA sequence data (ntDNA:
ITS, Xdh, OrcPl; cp DNA: atpl-atpH, ycfl, matK, trnD-trnE, psbA-trnH, 179 taxa), Gamisch et al. divided
the Malagasy taxa into four clades [18]. These studies have clarified the phylogenetic relationships of
different region in this group, but nodal support values of the main clades or lineages were moderate
to low or lacking for some relationships. The number of accepted species continues to grow as new
discoveries are reported [19-21], taxonomic work on Bulbophyllum became a major challenge that the
further investigation into the relationships within the genus necessitates more detailed study.

With the continuous reduction in sequencing costs, the chloroplast (cp) genome has become a
pivotal tool for investigating phylogenetic relationships within complex taxa. The cp genome offers
several advantages, including unique mode of inheritance, highly conserved genome structure, and
a moderate evolutionary rate [22,23]. Owing to these unique characteristics, cp genomes are widely
used to explore the phylogenetic relationship among orchid clades. Liu et al. reconstructed the
phylogenetic relationships of the Cleisostoma—Gastrochilus clades in Aeridinae based on the cp
genomes robustly supporting this clade divided into six subclades with higher support rates and
more stable topological structures than before [24]. Additionally, many studies conducted
comprehensively compared differences analysis in orchid cp genomes to understand the structural
characteristics and evolution patterns, such as Pholidota (13 species) and Paraphalaenopsis (3 species)
[25,26]. Yang et al. compared and analysed cp genomes of 18 species from Asian and Netropical
Bulbophyllum. The results show that the cp genome structure of Asian and Neotropical clades is
different due to selection pressures under the condition of geographical isolation [27]. Furthermore,
integrative analysis of multiple cp genomes can help to develop applicable molecular markers for
species identification [28]. Five highly variable regions (ycf1, ndhA, ndhF, trnQ and trnK), the potential
DNA markers, were found in four Liparis cp genomes [29]. Tang et al. analysed the cp genomes of
sect. Macrocaulia in Bulbophyllum and proposed 20 intergenic regions and three coding genes of the
most variable hot spot regions as candidate effective molecular markers [30].

To date, only a few cp genomes of Bulbophyllum have been sequenced and detailed cp genomic
comparisons and phylogenetic analyses are lacking, which hindered our ability to further elucidate
its interspecific relationships. In order to further clarify the phylogenetic relationships among species
of the genus and to obtain useful genetic resource, we sequenced and assembled the cp genomes of
seven Bulbophyllum species (B. ambrosia, B. crassipes, B. farreri, B. hamatum, B. shanicum, B. triste, B.
violaceolabellum) and compared with other Bulbophyllum species published to investigate their
relationships. Our results will provide valuable information for cp genome evolution, phylogenetic
relationships and species identification of Orchidaceae.

2. Results
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2.1. General Characteristics of the Chloroplast Genomes

The seven newly sequenced Bulbophyllum cp genomes were circular with the typical
quadripartite structure, including a large single copy (LSC), a small single copy (SSC) and a pair of
inverted repeats (IRs) (Figure 1). We combined the published cp genomes of 21 Bulbophyllum orchids
with this study’s seven species to compare the basic cp genome features within the genus. The cp
genomes lengths, number of genes, GC content, etc. of the 28 cp genomes are summarized in Table
1. As shown in Table 1, 28 Bulbophyllum cp genomes sizes were ranged from 145,092 bp (B.
kwangtungense) to 165,812 bp (B. crassipes). The cp genomes were variable in LSC and SSC regions,
with 77,088 to 87,177 bp and 11,089 to 18,632 bp, while conserved in IR regions, with sizes ranging
from 25,465 to 26,919 bp. The GC content was relatively consistent, ranging from 36.60% to 38.04%,
and the distribution of GC content across different regions was uneven, with about 43.18%, 34.93%,
and 29.67% for the IR, LSC, and SSC regions, respectively (Table 1).

Bulbophyllum ambrosia
158,026 bp
Bulbophyllum crassipes
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Bulbophyllum farreri
157,339 bp
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Figure 1. Chloroplast genome maps for seven Bulbophyllum species. Genes on the inside of the large
circle are transcribed clockwise, and those on the outside are transcribed counter clockwise. The color-
coding of the genes is determined according to their annotation functions. The GC content of the
chloroplast genomes is represented by the dashed area.

Each cp genome was annotated with a total of 113 unique genes, which included 79 protein-
coding genes, 30 transfer RNAs (tRNAs), and four ribosomal RNAs (rRNAs) (Table 1). Most genes
existed as single copies in either LSC or SSC regions. However, 19 genes were duplicated in IRs,
encompassing seven protein-coding genes (ycf1, pl2, rps7, ndhB, ycf2, rpi23, and rps12), eight tRNAs
(trnNGUU, trnRACG, trnAUGC, tynlGAU, trnVGAC, trnLCAA, trnlCAU, and trnHSUG) and four rRNAs (rrn23,
rrnl6, rrnb, and rrn4.5). Nine protein-coding genes and six tRNA genes contained one intron each,
whereas genes ycf3 and clpP possessed two introns. The length of introns varied among different
genes, with the longest intron found in the trnKUUU gene. Notably, the ndh genes were truncated or
completely lost in more than half the species (Table 1, Supplementary Table S10). The highest degree
of loss was the ndhF gene, which was observed in 11 species. The highest degree of pseudogenization
was ndhD gene, which was pseudogenized in nine species. The species with simultaneous
pseudogenization and loss of ndh gene are B. disciflorum, B. exaltatum, B. granulosum, B. hamatum, B.
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inconspicuum, B. kwangtungense, B. mentosum, B. ningboense, B. pingnanense, B. plumosum and B. tianguii.
All functional genes could be categorized into three groups: those related to self-replication,
photosynthesis, and others (Supplementary Table S1).

Table 1. Features of the complete chloroplast genomes of 28 Bulbophyllum species.

Size (bp) Protein-
; A ) P Number di tRNA  tRNA ndh genes o
Species Specimen  Accession of genes cocing genes  genes loss/pseudo GC%
voucher No. Total L IR . enes . . "
otal LSC SSC (unique) gel (unique) (unique) genization (Total)
(unique)
B. affine - LC556091 148,230 78,178 17,280 26,386 132 (113) 86 (79) 38 (30) 8 (4) -/- 37.86
B. ambrosia * * 158,026 85,821 18,622 26,804 132(113) 86(79) 38 (30)  8(4) /- 36.95
B. andersonii ~ Yang202201 LC703293 148,255 78,074 17,449 26,366 132 (113) 86 (79) 38 (30) 8 (4) -/- 37.83
B. crassipes * * 165,812 85,690 18,293 30,927 132(113) 86 (79) 38 (30) 8 (4) -/- 37.29
B. disciflorum - LC498826 148,554 79,001 16,797 26,378 131 (112) 77 (70) 38 (30) 8 (4) 1/8 37.94
Fiorini 218
B. exaltatum (HBCB) NC_048480 150,410 83,335 15,380 25,847 129 (110) 76 (70) 38 (30) 8 (4) 3/7 36.80
B. farreri * * 157,339 85,560 18,228 26,788 132(113) 86(79)  38(30)  8(4) /- 36.96
Y.L t al.,
B. gedangense ;1;3(; & MW161053 158,524 86,200 18,632 26,846 132(113) 86 (79) 38(30) 8 (4) -/- 36.80
Mancinelli
B. granulosum 1059 (UPCB) NC_048481 151,112 84,492 15,690 25465 128 (110) 76(69) 38 (30) 8 (4) 7/2 36.70
B. hamatum * * 152,654 84,132 16,881 25822 128(113) 80(79) 38(30)  8(4) 42 3695
B. hirtum Yang202105 LC642724 147,382 77,587 17,129 26,333 132 (113) 86 (79) 38 (30) 8(4) -/- 37.96
PDBK2012-
B. inconspicuum 021:? MN200377 149,548 85,760 12,136 25,826 127 (108) 78 (71) 38 (30) 8(4) 5/3 37.00
B. kwangtungense Yang202107 LC642722 145,092 77,192 15,376 26,262 129 (110) 82 (75) 38 (30) 8 (4) 3/1 37.98
B. leopardinum ~ Yang202102 LC642723 147,514 77,762 16996 26378 132(113) 86(79) 38(30) 8 (4) A 38.04
B. lingii Y L;;f; al, MW161052 156,689 84,607 18,244 26,919 132 (113) 86 (79) 38 (30) 8 (4) -/- 36.80
. XY Wang &
B. menghaiense ZF Xu 202,003 MW161050 156,550 84,663 18,105 26,891 131 (112) 85(78)  38(30) 8 (4) -/- 36.70
Fiorini 323
B. mentosum (HBCB) NC_048482 150,217 83,640 13,895 26,341 125(106) 74 (68) 38 (30) 8 (4) 7/5 36.70
B. ningboense - MW683325 151,052 86,020 13,348 25842 128(109) 80 (73) 38(30)  8(4) 42 37.00
B. orientale Yang202104 LC642725 147,388 77,392 17,206 26,395 132 (113) 86 (79) 38 (30) 8 (4) -/- 38.01
B. pectinatum - LC556092 147,169 77,478 17,529 26081 132(113) 86(79) 38(30) 8 (4) A 38.01
Y.L L.
B. pentaneurum ;;’5’? T MW161051 156,182 84,240 18266 26,838 132(113) 86(79) 38(30)  8(4) - 3680
JF.Li
B. pingnanense 1201311121 MW822749 151,224 86,017 13,497 25,855 128 (109) 80 (73) 38 (30) 8(4) 4/2 37.00
Imig 606
B. plumosum (HAC) NC_048479 146,401 83,260 11,089 26,026 125(106) 74 (68) 38 (30) 8(4) 7/5 36.60
B. reptans Yang202106 LC642726 146,928 77,088 17,038 26,401 132 (113) 86 (79)  38(30) 8 (4) -/- 37.98
B. shanicum * * 158,009 85,657 18253 27,062 132(113) 86(79) 38 (30)  8(4) /- 36.99
B. tianguii - MZ7983368 151953 83,780 16,683 25746 127 (108) 77(70) 38 (30) 8(4) 5/4 37.00
B. triste * * 157,429 87,177 18,199 27,039 132(113) 86(79) 38 (30)  8(4) /- 37.04
B. violaceolabellum * * 157,811 85,751 18,445 26,820 132(113) 86 (79) 38 (30) 8 (4) -/- 36.87

2.2. Repeat Sequence Characterization

We identified four types of long repeats: palindromic (P), forward (F), complementary (C), and
reverse (R) elements (Figure 2A, Supplementary Table S2) in 28 Bulbophyllum cp genomes. Among
these, all four categories were observed in 14 species, while 12 species contained three categories of
repeats (C/R, F and P), two species (B. crassipes and B. farreri) exhibited two categories (P and F). The
number of long repeat sequences ranging from 17 (B. kwangtungense) to 49 (B. disciflorum, B.
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gedangense, B. reptans and B. violaceolabellum). Across these 28 cp genomes, P were the most prevalent,
ranging from 5 occurrences in B. hirtum to 25 occurrences in B. inconspicuum and B. pingnanense.
Bulbophyllum cp genomes had fewer R and C repeats, and the highest counts of the two types were
25 Rin B. reptans and 10 C in B. hirtum, respectively. Long repeat sequences in the range of 30—40 bp
were the most frequently observed and ranged from 15 occurrences in B. shanicum to 47 occurrences
in B. disciflorum. B. inconspicuum displayed the highest count of 40-50 bp repeats. The 50-60 bp repeat
sequences were detected in 18 Bulbophyllum species, ranging from 1 to 6 occurrences. The 60-70 bp
repeat sequences were only presented in B. crassipes, B. lingii, B. menghaiense, B. pentaneurum, B.
pingnanense, B. shanicum and B. triste, ranging from 1 to 4 occurrences. The longest repeat sequences
were 77 bp in B. ningboense (Figure 2B, Supplementary Table S3).
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Figure 2. Summary of sequence repeats across the 28 Bulbophyllum cp genomes. (A) Variation in repeat
abundance and type; (B) Number of long repeats by sequence length; (C) Frequency of identified SSR
motifs (mono-, di-, tri-, tetra-, penta- and hexa-); (D) Frequency of classified repeat types (considering
sequence complementary).

A total of 38 (B. leopardinum) to 80 (B. mentosum) SSRs were detected in the cp genome of the 28
Bulbophyllum species, and six categories of SSRs (mono-, di-, tri-, tetra-, penta- and hexanucleotide
repeats) were identified (Figure 2C, 2D and Supplementary Table 54, S5). Mono-nucleotide repeats
(SSR loci A/T) were the most abundant, accounting for 58.3% (B. lingii) to 81.7% (B. ambrosia), with
counts varying from 47 to 58. This was followed by di-nucleotide repeats (6 to 13 occurrences, 8.8.%
to 22.0%), tri-nucleotide repeats (0 to 4 occurrences, 5.9%), tetra-nucleotide repeats (2 to 13
occurrences, 2.6% to 17.6%), penta-nucleotide repeats (0 to 5 occurrences, 6.4%), and hexa-nucleotide,
with the least number of SSRs (0 to 2 occurrences, 4.1%). All mononucleotide SSRs belonged to A or
T type, and the majority of di-, tri-, tetra-, penta-, and hexa-nucleotide SSRs were particularly rich in
A or T (Figure 2D, Supplementary Table S5). In general, the distribution pattern of SSRs was unevenly
across the 28 species. Mono-, di- and tetra- nucleotide repeats categories were observed in all species,
while tri- and penta-nucleotide repeats were absent in 10 different species. Hexa-nucleotide repeats
were only present in B. affine, B. farreri, B. gedangense, B. hamatum, B. ningboense, B. pentaneurum, B.
pingnanense and B. plumosum.
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2.3. Relative Synonymous Codon Usage Analysis

We analysed a total of 68 protein-coding genes among the 28 Bulbophyllum cp genomes, with the
exception of the ndh genes due to incomplete gene loss and pseudogenization. These genes were
encoded by a range of 17,226 codons in B. plumosum to 22,758 codons in B. shanicum (Figure 3,
Supplementary Table S6). The codon usage patterns revealed a highly conserved codon usage bias
(CUB). Leucine (Leu) was one of the most frequently occurring amino acids, appearing a total of
57,130 times across all 28 cp genomes. In contrast, Cysteine (Cys) was the least frequent, occurring
only 6,515 times. Analysis of the relative synonymous codon usage (RSCU) indicated that UUA and
AGA had the highest CUB, with average values of 1.934 and 1.894, respectively, while CGC and CUC
had the lowest CUB, with average values of 0.374 and 0.397, respectively. Among the three stop
codons, the frequency of UAA was the highest, accounting for 39.9%. The results also showed that 30
codons exhibited RSCU values greater than 1, and 32 codons exhibited values less than 1 (Figure 3,
Supplementary Table S6). The RSCU values of AUG encoding for methionine (Met) and UGG
encoding for tryptophan (Trp) were determined to be 1 in all seven species.
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Figure 3. RSCU value of the codons in the 28 Bulbophyllum cp genomes.

2.4. Expansion and Contraction of IRs, Sequence Divergence and Nucleotide Diversity

A comprehensive comparison of the boundaries between the LSC, IRs and SSC regions was
conducted across the 28 Bulbophyllum species (Figure 4). The junctions between the IRs and SC regions
exhibited a high degree of conservation. In the cp genomes of these 28 Bulbophyllum species, several
key genes, namely rpl22, ndhF, ycfl, rps19, and psbA were found at the junction of LSC/ IRb, IRb/SSC,
SSC/IRa, and IRa/LSC borders. The rpl22 gene, spanning from LSC to IRb, was primarily located in
the LSC region ranged from 279-423 bp in length. B. hamatum and B. tianguii comprised 279 bp in the
LSC region and 87 bp in the IRb region were the shortest. Furthermore, the IRb/SSC border of B.
ambrosia, B. crassipes, B. farreri, B. gedangense, B. mentosum was located in the ndhF pseudogene, with
just 70 bp located in the IRb region. The ndhF pseudogene was close to but did not overlap with the
IRb/SSC junction in B. affine, B. andersonii, B. disciflorum, B. hirtum, B. kwangtungense, B. leopardimum,
B. orientale, B. pectinatum, B. reptans. Within the SSC/IRa (JSA) region, the ycfl gene spanned the
SSC/IRa boundary, primarily residing in the SSC region, with lengths ranging from 4,308 bp (B.
crassipes) to 5,469 bp (B. hamatum). In the case of B. hamatum and B. tianguii, the ycfl gene was
positioned to the left side of the JSA line, with a distance of 6 bp and 9 bp, respectively. In the IRa/LSC
(JLA) region, the rps19 gene was situated on the left side of the JLA line, and the distance from the
rps19 to the JLA line ranged from 229 bp (B. crassipes) to 290 bp (B. hamatum). The psbA gene was
located on the right side of the JLA line, with distances ranging from 10 bp (B. kwangtungense, B.
leopardinum and B. pectinatum) to 132 bp (B. ambrosia) (Figure 4).
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Figure 4. Comparison of junctions between the LSC, SSC, and IR regions among 28 Bulbophyllum cp
genomes.

The divergence of sequences in the cp genomes of 28 Bulbophyllum species was plotted using the
mVISTA program with the annotated B. affine (LC556091) sequence as a reference (Figure 5). The
results revealed sequences were significant conservation in Bulbophyllum cp genomes, particularly in
the coding region. The highest variation was observed in the SSC region, followed by the LSC region
and IR regions. Mauve visualization graphs also indicated that no significant gene rearrangement
was detected among these cp genomes (Figure 6).
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Nucleotide diversity value (Pi) for the coding regions and intergenic regions were calculated
using DnaSP to further analyze the mutation hotpots in 28 Bulbophyllum species. The results showed
that the Pi values ranged from 0 to 0.21413 (ndhF-trnLU4%) (Figure 7A, Supplementary Table S7). The
IR regions exhibited the highest conservation with a value of 0.0035. The SSC region displayed the
greatest nucleotide diversity (Pi = 0.0307), followed by the LSC region (0.0141). According to the
ranking of the Pi values, six hypervariable regions were identified, including ndhF-trnLU4¢ (0.21413),
trnTUGU-typUA4 (0.09437), trnFcAA-ndh] (0.09138), rps15-trnNGUU (0.08122), rbeL-accD (0.07534) and psbl-
trnSGCU (0.06529). Additionally, the protein-coding genes displayed higher conservation (Figure 7B,
Supplementary Table S8). Among these genes, ycfl (0.02956), rps12 (0.02643), matK (0.02178), psbK
(0.01599), and rps15 (0.01511) exhibited the highest Pi values.
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Figure 6. Alignment of the 28 Bulbophyllum cp genomes (mauve graphs). Local collinear blocks within
each alignment are represented by blocks of the same color connected with lines.
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Figure 7. The nucleotide diversity (Pi) of 28 Bulbophyllum cp genomes and 68 protein-coding
sequences. (A) For the nucleotide diversity of the complete cp genomes using a sliding window test,
four mutation hotspot regions were annotated. The window size was set to 100 bp and the sliding
windows size was 25 bp. X-axis, the position of the midpoint of a window; Y-axis, Pi values of each
window. (B) The nucleotide diversity of 68 protein-coding sequences. X-axis, gene; Y-axis, Pi values
of each gene.

2.5. Phylogenetic Analysis

The phylogenetic analysis of 28 Bulbophyllum species, based on two datasets comprising
complete cp genomes and 68 protein-coding genes, revealed that the species formed four major clades
(Figure 8, Supplementary Figure S1). The alignment matrix of complete cp genomes was 131,138 bp,
with 12,031 variable sites and 6,201 parsimony informative sites. The matrix of 68 protein-coding
genes was 59,417 bp and included 4,869 variable sites along with 2,404 parsimony informative sites.
The topologies remained largely consistent within the two datasets, demonstrating strong support
based on complete cp genomes (Bootstrap Support, BS > 98, Posterior Probability, PP = 1.00) while
the support was relatively moderate inferred by 68 protein-coding genes (BS = 75, PP > 0.70) (Figure
8, Supplementary Figure S1). Clade 1 (Neotropical clade) consisted of four species from different
sections and clade 2 primarily consisted species from sect. Macrocaulia with robust support. In clade
3, sects Lemniscata (B. shanicum, B. triste and B. hirtum) and Racemosae (including B. crassipes and B.
orientale) were sister groups with generally high support values in one subclade, while another
subclade consisted of species from sects. Leopardinae, Trias, Stenochilus and Repantia. Clade 4 contained
species assigned to sects Cirrhopetalum, Brachyantha, Leopardinae, Ephippium and Desmosanthes. A
single species of sect. Brachyantha (B. farreri) appeared as a sister to two species from sect.
Cirrhopetalum (including B. pingnanense and B. inconspicuum) with strong support (BP=100, PP =1.00).
Additionally, B. ambrosia and B. gedangense formed a separate and strongly supported clade. Notably,
B. hamatum, a newly described species belonging to sect. Cirrhopetalum and recently published by Yan
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et al. [19], appeared as a sister to B. tianguii (sect. Brachyantha). Subsequently, B. violaceolabellum (sect.
Brachyantha) was also a sister to these two species with strong support (BP=100, PP = 1.00).
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Figure 8. Phylogenetic tree obtained by maximum-likelihood analysis based on complete cp genomes.
The numbers near the nodes are bootstrap percentages and Bayesian posterior probabilities (BPmt,
BPwmr, PP). *Node is 100 bootstrap percentage or 1.00 posterior probability. The previous recognized
sections from Pridgeon et al. [4] and Hu et al. [5] are highlighted by the color of branches.

3. Discussion

3.1. The Characteristics of Chloroplast Genomes

Owing to the highly conserved structure, uniparental inheritance and mutation rates were
between those shown in the mitochondrial and nuclear genomes, cp genomes has been widely
employed for investigating phylogenetic relationships [22,23]. Recently, orchids have become a focal
point in phylogenetic studies due to their rich diversity, wide distributions and epiphytic habits. With
the decreasing costs of sequencing, an increasing number of cp genomes evolution in Orchidaceae
has been studied [31,32]. The genus Bulbophyllum, serves as one of the representative groups of orchid
biodiversity [1,2,4], the cp genomes of their diversity patterns and evolutionary adaptations are
attracting much attention [24,30,33].

This study sequenced complete cp genomes of seven orchid species in genus Bulbophyllum and
compared with other 21 Bulbophyllum species in order to broaden the knowledge about the genome
organization and molecular evolution of the Orchidaceae species. The obtained seven cp genomes of
Bulbophyllum species in this study possessed typical quadripartite structure, with the genome sizes
of these cp genomes varying from 145,092 bp (B. kwangtungense) to 165,812 bp (B. crassipes), and the
GC content ranging from 36.60% (B. plumosum) to 38.04% (B. leopardinum), all of which fell within the
normal range of cp genomes reported in previous studies [34,35]. The gene order and content were
not different from those of its closely related Bulbophyllum species [27,30,33,36,37].

Although the general structure of Bulbophyllum cp genomes is conserved, differences in ndh gene
composition were detected. The ndh genes encode the thylakoid NADH complex [38], which is
frequently pseudogenized or lost in Orchidaceae [39,40]. Recently, studies of the orchid cp genomes
have revealed that rampant independent loss of the ndh genes occurred in different orchid clades.
The cp genome of E. pusilla contains truncated versions of ndhJ, C, D, B, G, and H, and lacks sequences
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for ndhK, F, E, A, and [ [41], and the pseudogenization of ndh genes in the Cleisostoma-Gastrochilus
clades is widespread [24]. In this study, all of the cp genomes showed evidence of gene
pseudogenization or loss except B. affine, B. andersonii, B. crassipes, B. farreri, B. gedangense, B. hirtum,
B. leopardinum, B. lingii, B. menghaiense, B. orientale, B. pectinatum, B. pentaneurum, B. shanicum, B. triste
and B. violaceolabellum (Table 1, Supplementary Table S10). Some studies have suggested that
inactivation of ndh genes may be associated with epiphytic habitats [42] and connected to the extreme
water availability and use of CAM (Crassulacean acid metabolism) photosynthesis [24,43], such as
the ndh genes were extensively pseudogenized in Cymbidium mannii, an epiphyte with constitutive
CAM [44]. Although Bulbophyllum is primarily an epiphytic group and utilizes the CAM pathway
[18,45], more research is needed to understand the relationship between the evolution of the CAM
pathway or growth form and the cp genomes.

3.2. Repeat Sequence Analysis

As the inheritance variation, long repeat sequences with length greater than 30 bp are universal
in angiosperms and considered to play an important role in genome stability and structural variation
[46]. There were abundant long repeat sequences in the cp genomes of Bulbophyllum species in
previous studies [33], and a total of 18-49 long repeats were detected in our study (Figure 3B). The
palindromic (P) and forward (F) repeats were the most common long repeat sequences in our study
(Figure 3A). Slight variation in the number of repeat units and their proportions occurred in different
species. Additionally, the GC content of IR regions was much higher than compared to the LSC and
SSC regions (Table 1), and these characteristics were also revealed in other plant species, primarily
because of the presence of rRNA (rrn4.5, rrn5, rrn16, and rrn23) genes in this region [47].

Simple sequence repeats (SSRs) are highly abundant and randomly distributed throughout the
genome, making them valuable genetic molecular markers for population genetic relationships and
phylogenetic studies [48]. A number of SSR markers were discovered in several orchid genus such as
Vanda [49] and Dendrobium [50]. The most abundant SSR type was the mononucleotide repeat, and
the majority of SSRs in Bulbophyllum species was composed of A/T SSRs [27,30,33]. In this study, a
total of 38-80 SSRs and six types of SSRs (mono-, di-, tri-, tetra-, penta-, and hexanucleotide repeats)
were detected (Figure 3C, 3D). A/T SSRs were found to be more abundant than G/C SSRs (G/C was
only detected in B. triste) and may be due to a bias towards A/T in cp genomes [51. Of di- to hexa-
nucleotide SSRs among Bulbophyllum species, most of SSRs were specific to each species (Figure 3D).
These SSRs were distributed widely and randomly throughout the chloroplast genomes, and were
usually located in the intergenic spacer (IGS) region, which is consistent with angiosperm cp genomes
[30]. Most of the previous studies revealed that the richness of SSR types is various in different
species, which may contribute to the genetic variations differently among species [52]. Notably, some
of the SSRs repeats were highly specific, such as AC/GT and AAATCC/ATTTGG SSRs was only
detected in the cp genomes of B. farreri, AGATAT/ATATCT SSRs was only detected in B. gedangense
and ATCCCC/ATGGGG was only detected in B. hamatum, respectively. Furthermore, B. crassipes and
B. orientale (the members of sect. Racemosae) possessed ACT/AGT SSRs, B. hirtum, B. shanicum, B. triste
(the members of sect. Lemniscata) possessed AATCT/AGATT SSRs, which consistent with some
results of phylogenetic analysis (Figure 3C, Figure 8). Thus, these SSRs have the potential to be
specific molecular markers for establishing molecular evolutionary history and demographic
diversity of Bulbophyllum species. These results are significant for identifying and analyzing genetic
diversity in Bulbophyllum.

3.3. Codon Usage Analysis

Codons are involved in protein translation, vital for the genetic information transfer process of
an organism. Codon usage bias is a significant factor in cp genomes evolution, influencing gene
functions expression. Organisms with close genetic relationships exhibit similar codon usage bias
[53]. These studies can help to clarify evolutionary relationships and improve the efficiency of gene
expression in research utilizing genetic transformation [54]. More recently, a variety of orchids cp
genomes have been sequenced, allowing for the comprehensive analysis of codon preferences [55,56].
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The codon usage bias in Bulbophyllum cp genomes showed similar patterns, as indicated by the
comparative analysis of RSCU values (Figure 4, Supplementary Table S6). According to the RSCU
analysis, it was found that the most of the frequently used codons (RSCU > 1) ended in A or U, while
the less frequently used codons (RSCU < 1) ended in C or G. Among all codons, leucine (Leu) had the
highest occurrence, while cysteine (Cys) had the lowest frequency. This trend is consistent with
observations in most angiosperm cp genomes [57] and further demonstrates the high conservation in
28 Bulbophyllum species.

3.4. Expansion and Contraction of IRs, Sequence Divergence and Nucleotide Diversity

Boundary shifts between the IRs and SC regions are a common occurrence in the evolution of
angiosperms and are the main factors contributing to the differences in the length and gene content
of cp genomes [55]. For instance, the IR region of the cp genome of Pelargonium x hortorum was
expanded extensively, its length was increased to 76 kb [58]. In general, the gene arrangement of the
IR/SC boundary was highly conserved (Figure 5), with some differences in the IR/SSC junction were
detected. In B. hamatum and B. tianguii, the ycfl gene was completely located within the SSC region,
while in the other species, the ycfl gene crossed over JSA. At the junction between JSB, some species
lost the ndhF gene. This result indicated that there was no significant expansion or contraction in the
IR regions of Bulbophyllum. This may be one of the primary factors contributing to the high
conservation of the cp genome structure.

The divergent regions as molecular markers could provide abundant valuable information for
DNA barcoding and phylogenetic studies, and numerous phylogenetic reconstructions researches
using divergent hotspots [59]. Recently, various plastid markers have been proposed for Orchidaceae.
Dong et al. suggested that eleven mutational hotspot regions could be used as potential DNA
barcodes, including five non-coding regions (ndhB intron, ccsA-ndhD, rpl33-rps18, ndhE-ndhG, and
ndhF-rpl32) and six coding regions (rps16, ndhC, rpl32, ndhl, ndhK, and ndhF) [60]. We identified
several prominent divergent regions in this study, including ndhF-trnLUAG, trnTUGU-tynLUAA, trnFGAA-
ndh], rps15-trnNCUY, rbcL-accD and psbl-trnS¢CU (Figure 7A). These regions exhibited a nucleotide
diversity greater than 0.065. The psbl-trnS, ndhF-trnL, trnF-ndh] and trnT-trnL regions have been
identified or utilized in previous studies of Bulbophyllum [27,30,61,62], further supports previous
results. Although four protein-coding genes (ycf1, matK, psbK and rps12) also showed high Pi values,
they are still highly conserved, with nucleotide exceeding 0.015 (Figure 7B). Futhermore, IR regions
were highly conserved and had more mutation sites compared to the coding region, which is
consistent with previous studies in Orchidaceae [40,55] (Figure 5). Our results suggest that intergenic
regions may be more suitable for DNA barcode investigation in Bulbophyllum.

3.5. Phylogenetic Analysis

Complete cp genomes are valuable resources for analyzing phylogenetic relationships, they
have been extensively used for phylogenetic analysis across different plant groups [24,32]. Our
phylogenetic analysis of Bulbophyllum, based on complete cp genome and 68 CDS (Figure 8,
Supplementary Figure S1), provided strong support for the monophyly of Neotropical clade, sects.
Lemniscata, Racemosae and Macrostylida (BS = 98, PP =1.00), in agreement with previous studies
[5,27,30,33]. The branch topology and node support rates compared to the phylogenetic relationships
constructed using traditional molecular markers also improved [4,5] (Figure 8, Supplementary Figure
S1). In addition, B. ambrosia, previously assigned to sect. Leopardinae, was distantly related to other
two species (B. leopardimum and B. pectinatum) [5], a result corroborated here. It was noteworthy that
B. hamatum, being a member of sect. Cirrhopetalum was closely related to B. omerandrum based on
morphological comparison [19], was close to two species from sect. Brachyantha (B. tianguii and B.
violaceolabellum) with high support (Figure 8, Supplementary Figure S1). Two species, ie. B.
ningboense and B. gedangense, were identified as unplaced along the spine of Bulbophyllum by Lin et
al. and Luo et al. [63,64]. B. ningboense, a species similar to B. chrondriophorum morphologically, was
sister to B. pingnanense and B. inconspicuum (Figure 8), with lateral sepals connated partly and sub-
umbellate raceme [19], basically in accordance with the characteristics of sect. Cirrhopetalum. The
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phylogenetic analysis further strongly supported that B. ningboense is closely related to B. pingnanense
within the sect. Cirrhopetalum. B. gedangense, morphologically similar to B. psychoon and B. levinei, was
close to the single species B. ambrosia. It appears that more sampling and more evidence are required
to understand the evolutionary history of B. gedangense. Our results generally indicated that there
was an overlap of species from different sections, especially sects. Brachyantha, Cirrhopetalum and
Leopardinae. The conclusions of previous studies that the boundaries between these sections should
be reevaluated [5,27,65]. However, our phylogenetic analysis showed that species from sect.
Ephippium and sect. Desmosanthes, sect. Stenochilus and sect. Reptantia respectively were sister groups,
might due to sampling limited. Therefore, additional cp genomes from Bulbophyllum individuals are
necessary to further investigate phylogeny, especially at lower taxonomic levels.

4. Materials and Methods

4.1. Taxon Sampling and DNA Sequencing

In this study, we sequenced seven Bulbophyllum species (B. ambrosia, B. crassipes, B. farreri, B.
hamatum, B. shanicum, B. triste and B. violaceolabellum), and their voucher specimens were stored at the
herbarium of the College of Forestry, Fujian Agriculture and Forestry University (FJFC). Total
genome DNA was extracted using a modified cetyltrimethylammonium bromide (CTAB) method
[66]. Sequencing was carried out at Berry Genomics (Beijing, China) using the Illumina HiSeq 2500
platform, with a read length of 150 bp. Approximately 10 Gb of raw data were obtained for each
species. In addition to our newly sequenced data, we downloaded available chloroplast genomes of
21 other Bulbophyllum species from GenBank (Table 1).

4.2. Chloroplast Genome Assembly and Annotation

We employed the GetOrganelle pipeline v1.7.5 for de novo cp genome assembly with the default
parameters [67]. Subsequently, the “fastg” file was manually examined, and lower-quality fragments
were removed using Bandage v.0.8.1 to obtain circular cp genomes [68]. Gene annotation was carried
using PGA (Plastid Genome Annotator) software [69] with Bulbophyllum lingii (MW161052) as the
reference genome. Manual checking and adjustments of the annotation results, including the
determination of initiation and termination codon positions and identification of gene
pseudogenization or loss were performed using the Dual Organellar GenoMe Annotator (DOGMA)
[70] and Geneious v11.0.11 [71]. Further, the circular genome map was generated online using
OGDRAW (https://chlorobox.mpimp-golm.mpg.de/OGDraw, accessed on 1 November, 2023) [72].
The annotated cp genome sequences have been submitted to NCBI (Table 1). All cp genomes obtained
from NCBI underwent reannotation using PGA tool. Geneious v11.0.11 was employed to analyze the
length and guanine-cytosine (GC) content of the entire chloroplast genome, including the Large
Single Copy (LSC), Small Single Copy (SSC), and Inverted Repeat (IR) regions. Additionally, we
examined the number of genes and categories.

4.3. Repeat sequence Characterization

We identified four types of long repeats within the chloroplast genomes of 28 Bulbophyllum
species using the REPuter program (https://bibiserv.cebitec.uni-bielefeld.de/reputer, accessed on 1
November, 2023) [73]. The parameters for repeat identification were set as follows: (1) hamming
distance = 3; (2) minimum repeat size>30 bp; and (3) maximum computed repeats of 50 bp. To
determine the positions and types of microsatellites (SSRs), we employed the microsatellite
identification tool MISA, available online at https://webblast.ipk-gatersleben.de/misa/ [74]. We used
the following thresholds: 10, 5, 4, 3, 3, and 3 for mono-, di-, tri-, tetra-, penta-, and hexa-nucleotides,
respectively [30]. The characteristics of repeat sequences were visualized using the R package ggplot2
[75].

4.4. Relative Synonymous Codon Usage Analysis
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Codon usage and relative synonymous codon usage (RSCU) values were estimated using Codon
W, accessible at http://codonw.sourceforge.net/ (accessed on 1 November, 2023) [76]. To minimize
sampling errors, we excluded repeat sequences and protein-coding regions (CDSs) shorter than 300
bp from the codon usage calculations. This step was necessary since short CDS can lead to estimation
errors in codon usage. TBtools v1.1047 was employed to create the heat map for the RSCU analysis
[77].

4.5. Genome Structure Comparisons and Sequence Divergence Analysis

To investigate variations in the boundaries of the LSC/IR/SSC regions in 28 Bulbophyllum
chloroplast genomes, we conducted the SC/IR boundary analyses using Perl script CPJSdraw.pl
(https://github.com/xul962464/CP]Sdraw, accessed on 1 November, 2023). For visualizing identity
across the 28 cp genomes, we employed the shuffle-LAGAN mode of the mVISTA program, with B.
affine (LC556091) as the reference genome (http://genome.lbl. gov/vista/mvista/submit.shtml,
accessed on 1 November, 2023) [78]. Mauve was utilized to perform analyses of cp genome
rearrangement using default “seed families” and default values. In all sequences, one of the IR
regions was consistently removed [79]. Nucleotide variability (Pi) for the 28 Bulbophyllum cp genomes
and the 68 protein-coding genes was calculated using DnaSP v6.0 with a window length of 100 bp
and a step size of 25 bp [80].

4.6. Phylogenetic Analysis

In accordance with previous molecular systematic studies [27,33,37], we selected a total of 33
chloroplast genomes from 33 species for this study. The selection includes 28 species from
Bulbophyllum and five species from Dendrobium (D. chrysanthum, D. findlayanum, D. hercoglossum, D.
longicornu and D. moschatum) serve as the outgroups (Supplementary Table 59). A total of 68 protein-
coding genes (excluding ndh genes due to their widespread loss or truncation in Bulbophyllum) were
extracted using PhyloSuite v1.2.2 [81] and aligned them using MAFFT v.7 [82]. The complete
chloroplast genomes were aligned by MAFFT and trimmed using TrimAl v1.2 to remove poorly
aligned positions [83]. For phylogenetic analysis, we utilized the CIPRES Science Gateway,
specifically RaxML-HPC2 on XSEDE 8.2.12, PAUP on XSEDE 4.a168 and MrBayes on XSEDE 3.2.7,
applying three methods including maximum likelihood (ML), maximum parsimony (MP) and
Bayesian inference (BI) [84]. In ML analysis, we specified the GTRGAMMA model for all datasets
and calculated bootstrap values on 1000 bootstrap replicates using heuristic searches [85,86]. In MP
analysis, we conducted a heuristic search involving 1000 random addition sequence repeats,
employing TBR branch switching. All characters were treated as equally weighted and unordered.
In BI analysis, we utilized the GTR + I + I substitution model with MrBayes v. 3.2.7 [87]. The Markov
chain Monte Carlo (MCMC) algorithm was run for 10,000,000 generations, with one tree sampled
every 100 generations. We discarded the first 25% of trees as burn-in to construct majority-rule
consensus trees and estimate posterior probabilities (PP).

5. Conclusions

In this study, we obtained the cp genomes of seven Bulbophyllum species (B. ambrosia, B. crassipes,
B. farreri, B. hamatum, B. shanicum, B. triste, and B. violaceolabellum) and compared them with 21 related
species to investigate cp genome differences. We found that these cp genomes exhibited high
similarity in terms of the genome size, gene content, gene order and differences observed in ndh gene
composition. Additionally, long repeat sequences in the cp genomes of Bulbophyllum species were
abundant with an obvious A/T preference. A number of exclusive SSRs presented in some species are
useful molecular markers for species identification and detecting genetic diversity. RSCU analysis
revealed that the codon usage bias in Bulbophyllum cp genomes showed similar patterns. Six highly
variable regions (ndhF-trnLUAG, trnTUCU-trnLUAA, trnFCGAA-ndh], rps15-trnNGUY, rbcL-accD and psbl-
trnSGCU) were identified as potential specific DNA barcodes, serving as mutational hotspots for
further phylogenetic studies. Based on cp genomes sequences, 28 Bulbophyllum species can be divided
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into four clades and sects. Brachyantha, Cirrhopetalum, Leopardinae defined by morphology were non-
monophyly. This study further supports the significance of cp genomes in elucidating the phylogeny
of Bulbophyllum.

Supplementary Materials: The following supporting information can be downloaded at: Preprints.org.
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