
Article

Not peer-reviewed version

Software Platform for Comprehensive

Testing of Transmission Protocols

Developed in GNU Radio

Mihai Petru Stef and Zsolt Alfred Polgar

*

Posted Date: 27 December 2023

doi: 10.20944/preprints202312.1974.v1

Keywords: software testing; GNU Radio; software defined radio; communication protocols; networking

environment; monitoring messaging; protocol buffer; performance evaluation

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2565642

Article

Software Platform for Comprehensive Testing of
Transmission Protocols Developed in GNU Radio

Mihai Petru Stef 1 and Zsolt Alfred Polgar 2,*

1 Independent Researcher; Mihai.Stef@com.utcluj.ro
2 Communications Department, Technical University of Cluj Napoca, 400114, Cluj Napoca, Romania;

Zsolt.Polgar@com.utcluj.ro

* Correspondence: Zsolt.Polgar@com.utcluj.ro; Tel.: +40-264401226 (Z.P.)

Abstract: With the constant growth of Software Defined Radio (SDR) technologies in wireless communications

related fields the need for efficient ways to test and evaluate the Physical Layer (PHY) protocols developed for

these technologies in real life traffic scenarios become more critical. This paper proposes a software testbed that

enhances the creation of network environments that allow feeding GNU Radio applications with test traffic in

a simple way and through an interoperable interface. This makes possible the use of any traffic generator,

existent one or custom built to evaluate the GNU Radio application. In addition, the paper proposes an efficient

way to collect PHY layer specific monitoring data that improves the performance of the critical components of

the message delivery path by employing the Protocol Buffers library. The paper considers the entire testing

and evaluation ecosystem and demonstrates how PHY layer specific monitoring information is collected,

handled, stored, and processed as time series allowing complex visualization and real time monitoring.

Keywords: software testing; GNU Radio; software defined radio; communication protocols;

networking environment; monitoring messaging; protocol buffer; performance evaluation

1. Introduction

Software testing is an important component of the software development process, and it is a

significant part of software engineering. It has the role to ensure that the software product fulfills the

functional requirements, is free from defects and errors and is of good quality [1,2]. The quality of a

software product relies on several parameters such as response time, performance, reliability,

maintainability, correctness, testability, usability, and reusability, just to mention a few. Software

testing is time consuming and even 40-50% of the project’s budget (in some cases even 80% [3]) can

be spent on this operation according to [1,2,4]. The authors of [2,4] show that software testing is a not

a “silver bullet” that can guarantee high quality of the software product, complete testing, i.e.,

discovering and fixing all errors is practically impossible, because the testing process cannot be

exhaustive. The number of tests which can be performed is limited by several factors such as a too

large input domain, too many possible paths, specifications difficult to test [2], etc. Being an

important activity in software development, the testing process should be carried out smoothly [5]

and the testing process should start in the early phase of the project to avoid the cost related to failed

software afterwards [3,6].

A fundamental issue related to testing is the generation of good test cases [6], which can find

with high probability the errors and faults in a minimum amount of time and with minimum effort.

The data obtained by testing is an indicator of the software reliability and quality, but the total

absence of defects cannot be guaranteed. Both from the point of view of software development and

testing the use of appropriate environments is also very important [7]. These environments could be

very different due to different operating systems, databases, network servers, application services,

etc. An integrated management tool that allows the development of test scenarios and assignment of

test cases, like the tool proposed in [7], could be helpful for performing testing operations. In [8] the

authors underline the importance of frameworks for test execution that have improved the quality of

software testing. Frameworks allow repeatable tests and make automated testing easier. Frameworks

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2023 doi:10.20944/preprints202312.1974.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202312.1974.v1
http://creativecommons.org/licenses/by/4.0/

 2

could also allow a standard way to perform the main parts of the testing process: setting the initial

state, invoking the functionality under test, checking the results of the test, and performing any

necessary cleanup.

Many of the testing techniques are focusing on testing the functional correctness, (debug testing),

but performance issues are also very important in software testing, especially in some cases like web

services, real time hardware systems or industrial systems and processes [8]. In [9] the authors discuss

various issues related to software testing fundamentals and show that software testing is much more

than error detection or debugging. In [10] the authors show that after release of software products

the main problems are related to performance degradation or providing the required throughput and

system crashes and incorrect system response are usually secondary issues, the software being

extensively tested before release from functional point of view. Performance testing involves issues

like resource usage, throughput, stimulus response time, queue length, bandwidth requirements,

CPU cycles, database access. Issues like scalability and capability to handle heavy workloads should

also be considered.

Testing communication protocols and software components used by communication equipment

raises several critical issues such as real-time processing constraints, timing and synchronization

between intercommunicating modules and processes, strong interaction between the software and

hardware components, the need of hardware platforms for testing complex protocols and signal

processing, remote access to the platform where the tested software is running, the need to process a

large amount of test generated data, just to mention a few. Testing of communication protocols used

in specific applications requires specific test suites due to the complexity and requirements imposed

to these protocols. Such an example is represented by testing of communication protocols used in

wireless communications, which is one of the most challenging testing operations. In [11] the authors

present some conclusions obtained by testing in real life conditions transmission protocols used by

mobile military networks. The main problems encountered during test operations were the timing

constraints, test controllability, inconsistency detection and conflicting timers, just to mention a few.

Real life testing of communication protocols in general and transmission techniques in particular

in wireless communication scenarios requires the use of dedicated hardware platforms adapted to

the specific test scenarios. In [12] the authors present a hardware platform including DSPs, FPGAs

and SDR radio interfaces for prototyping and testing of complex radio transceivers, like OFDM

transceivers. In [13] the authors propose a mobile platform based on Universal Software Radio

Peripheral (USRP) SDR devices for testing algorithms for radio transmitters and receivers and in [14]

the authors present the signal processing algorithms, and the design and testing methodologies

related to the implementation of radio transceivers using the concept of SDR.

Developing communication protocols for radio transmission systems is not a trivial task. SDR

technology and open-source development libraries like GNU Radio [15] come in hand with several

tools that ease the development of the wireless transmission systems PHY and MAC layer protocols.

GNU Radio offers an extended library of signal processing modules necessary to develop, test, and

evaluate especially PHY and MAC layer communication protocols, but support is provided also for

network and transport layer protocols.

Testing, evaluating, and troubleshooting the PHY and MAC layer protocols in real life

conditions is a very challenging task. With these in mind and because most of the traffic in real life

scenarios is TCP/IP the paper proposes the architecture and implementation of a testing platform

(testbed) that allows easy integration of the GNU Radio applications in TCP/IP stack and to perform

end-to-end testing and troubleshooting. The developed testbed allows the execution of

comprehensive dynamic testing of the communication protocols both in simulated and in real life

conditions, when SDR interfaces are used for communication. The integration in the testing

environment of the communication protocols under test is through Linux virtual network devices for

which GNU Radio provides support. In addition, it makes the testing platform interoperable with

other traffic generators and network analysis tools, which is very convenient for generating various

types of user data flows.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2023 doi:10.20944/preprints202312.1974.v1

https://doi.org/10.20944/preprints202312.1974.v1

 3

The testing platform provides a mechanism to collect, store and analyze monitoring data that is

optimized for handling of large amounts of real time data, situation characteristic to testing of

physical layer protocols. The platform allows the execution of various testing operations, like

functional testing, conformance testing and quality evaluation testing. The entire testbed setup and

management is implemented in Python, making it suitable for integration in an automation testing

framework. It also allows dynamic reconfiguration of the application under test through JSON

objects, if the application implementation supports it.

2. Related work

The software testing process can be categorized in many ways. In [2] the authors have identified

the three main testing techniques:

• Black Box Testing – it is based on the requirements specifications and there is no need to examine

the code of the program. The tester knows only the set of inputs and predictable outputs.

• White Box Testing – it mainly focuses on internal logic and structure of the code of the program.

The tester has full knowledge of the program structure and with this technique it is possible to

test every branch and decision in the program.

• Grey Box Testing – it attempts, and generally succeeds, to combine the benefits of both black box

and white box testing.

A more extended categorization of the software process can be found in [3]. The testing process

is a complex one with many phases and goals and due to these a relatively wide range of testing

categories can be identified, as follows:

• Acceptance Testing: it is performed to determine the acceptability of the system or software.

• Ad-Hoc Testing: it is performed without planning or documentation and the goal is to find errors

that were not detected by other types of testing.

• Alpha and Beta Testing: Alpha testing is the testing done at development site after the

acceptance testing while Beta testing is carried out in real test environment.

• Automated Testing: automated tools are used to write and execute test cases.

• Integration Testing: in this case the testing of the individual units is grouped as one and the

interface between these units is tested.

• Regression Testing: the test cases from the existing test suites are rerun to demonstrate that

software changes have no unintended side-effects.

• Stress Testing: this testing determines the robustness of software; the functioning of the software

modules being forced beyond the limits of normal operation.

• User Acceptance Testing: it is performed by the end users of the software. This testing happens

in the final phase of the testing process.

• Security Testing: it checks the ability of the software to prevent unauthorized access to the

resources and data.

The categorization of the testing techniques is considered in many other studies. In [16] besides

the testing techniques categories mentioned above random testing, functional testing, control flow

testing, data flow testing and mutation testing techniques are identified. In [17] the authors introduce

the terms of static and dynamic testing and analyze the use of the testing terminology in the case of

several testing techniques.

The problem of generating good test suites is considered in many studies. In [18] the authors

show that a good test suite is the one that detects real faults. In [7] the authors show that only a small

number of representative use cases can be selected from a larger category of use cases. It is also shown

that many errors occur at the boundaries of the input and output ranges and so test cases should

focus on boundary conditions.

Testing specific software, systems or networks raises some specific issues originating from the

specific requirements or functioning modes of these software or systems. In [19] the authors consider

testing the software for systems based on SOA (Service Oriented Architectures). The SOA based

software could have system distribution, controllability and observability problems which makes

testing more challenging. In [20] the authors consider the case of testing the software of PLC

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2023 doi:10.20944/preprints202312.1974.v1

https://doi.org/10.20944/preprints202312.1974.v1

 4

(Programable Logic Controllers) in industrial environments. The paper proposes an approach to

generate tests for error handling routines which ensures the reliability of the industrial process. In

[21] the authors consider the testing of large and complex network topologies with limited resources,

and it is proposed an emulator which could run on a single virtual machine. The system was defined

especially for research related to Software Defined Networks (SDN) and OpenFlow. The issues

related to the topic of cloud testing are considered in [22]. The authors present a systematic literature

review related to the testing of cloud-based systems and the use of cloud technologies for testing

purposes, topics which generated o lot of interest with the development of cloud technologies. In [23]

the authors consider the testing of software in systems with stringent reliability requirements. More

exactly it is considered the testing of the digital control system software integrated in a nuclear plant

safety software. To perform the testing operations in discussion the authors propose the building of

a real platform, and a specific testing strategy is proposed. In [24] the authors present a literature

survey concerning the issues of testing embedded software. In embedded systems proper software

testing is necessary especially in safety critical domains, like automotive or aviation. The testing

should pay attention to issues such as limited memory, CPU usage, energy consumption, real-time

processing, and the strong interaction between hardware and software. In [25] the authors show that

testing of embedded systems is difficult and challenging due to the need to ensure accuracy and

timing in synchronous inter-process communications. The paper proposes a framework which allows

the use of test suites that detect synchronization faults.

The importance of testing the communication protocols and the research issues raised by this

process are considered in many papers [11,26,27,28,29]. In [26] it is shown that protocol testing can

be designed based on the formal specifications which usually uses an extended finite state machine

model, but both the control and the data flow of the protocol should be considered to detect the

syntactic and semantic errors and to validate the protocol design. In [27] the authors consider the

testing of communication protocols designed according to the OSI (Open Systems Interconnection)

model. The paper shows that successful testing should include efficient test case generation

algorithms. In [28] the authors show the importance of conformance testing in the context of rapid

development of communication protocols which generate many implementations which might not

be compatible. The authors show that the automation of the testing process is of interest, but complete

automation is possible for simple models while in the case of complex models the automation is not

straightforward and easy to do. In [29] the authors present a survey concerning the testing of

communication protocols. The paper underlines the importance of conformance testing, as

implementations derived from the same protocol standard can be very different. An important

problem remains the generation of good test suites and test sequences, especially in real life testing.

The paper also shows that the number of states of a complex protocol implementation could be very

large which makes exhaustive testing practically impossible. Due to these reasons several testing

environments/frameworks have been implemented and reported in many studies. These

environments/frameworks allow a more efficient, reliable, and flexible testing and evaluation of the

communication protocols. The issues of test case generation in communication protocols testing are

also considered in [30]. Several testing methods are analyzed and experimented to evaluate some of

the quality indicators, such as fault detection capability, applicability, complexity, testing time, etc.

In [31] the authors present a survey concerning the testing of control and data flows and of the time

aspects of communication systems. The issue of generation of test suites which can detect the

maximum number of errors at minimum cost is also considered.

Testing of more specific communication protocols is considered in [32,33,34]. In [32] the authors

discuss the testing of communication protocols used between charging equipment and the battery

management system of an electrical car. In this case the main issue is the consistency of

communication between the two above-mentioned equipment. In [33] is presented the testing of LIN

protocol used to interconnect electronic systems of vehicles. The paper considers the issues related to

the conformance testing of the LIN protocol, some of the conclusions being applicable also to other

link layer protocol testing. In [34] the authors consider the testing of industrial communication

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2023 doi:10.20944/preprints202312.1974.v1

https://doi.org/10.20944/preprints202312.1974.v1

 5

protocols, and the paper presents the evaluation of some of the most used industrial communication

protocols from the software perspective.

Testing of communication protocols in challenging wireless communication systems was

considered in several papers. In [35] the authors consider the testing of military systems and

applications in different communication scenarios which include both changing network conditions

and data flow parameters. The paper proposes a test platform which allows automated testing of

military systems and applications over real military radio equipment using reproducible test

methodologies. In [36] the authors propose a software testing method to evaluate the applicability,

reliability and durability of various communication equipment used in maritime satellite

communications.

In the context of testing communication protocols used in wireless communication networks the

authors of [37] present an open-access wireless testing platform which includes a large grid of ceiling

mounted antennas connected to programable SDR devices working at frequencies lower than 6GHz.

The system has computational power and hardware support for testing complex communication

systems and protocols such as MIMO communication systems, cognitive radio, 5G cellular networks,

IoT, etc. A multiple antenna evaluation and testing platform is also proposed in [38]. To provide the

required processing power and flexibility the platform includes FPGAs, DSPs, and control

processors. The platform interfaces require high throughput since the evaluation of multiple

antennas generates a high amount of real time data.

2. Platform for Real Life Testing of Communication Protocols

2.1. Testbed Environment

One of the main goals of the developed testing platform is to make possible the testing and

evaluation of communication protocols implemented in GNU Radio in real traffic conditions. Testing

in such conditions is important in verification, validation, and acceptance testing but also in dynamic

white box testing performed for assessment of the quality indicators of the implemented protocols.

To run and evaluate GNU Radio applications in real traffic scenarios it was built an environment

that allows sending network traffic through the GNU Radio application under test. The environment

is isolated using Linux network namespaces that simplifies the management of several such

environments on the same machine or distributed on multiple machines. This could be important

when several SDR based applications are running on a remote server, like in the situation of the test

platforms described in [37,38]. The block diagram of the environment is presented in Fig.1. Tun/Tap

interfaces [39] are used to channelize the data traffic to or from the application under test and the

framework supports two types of environments: one that allows to run and test the developed GNU

Radio applications in the condition of simulated transmissions (i.e., the communication channel is

simulated and there are no SDR boards connected in the transmission chain) and one that allows

testing of the developed GNU Radio applications when SDR boards are connected in the transmission

chain. In simulated conditions both transceivers run in the same environment, while in a real

transmission scenario involving real channels they run in separate environments and possibly on

separate machines. For example, in a scenario involving a simplex simulated transmission the

transmitter application reads the data from one interface and the receiver application writes the

output data on the other interface. In a duplex scenario both the transmitter and the receiver read

and writes data to its interface.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2023 doi:10.20944/preprints202312.1974.v1

https://doi.org/10.20944/preprints202312.1974.v1

 6

Figure 1. The schematic of the environment encapsulating the application under test.

To allow applications that are executed in the environment to access the Internet all the

environments are connected to the host through a network bridge (i.e., dtl-br). The network bridge

[40] is set on the host machine and for each environment it is set a pair of virtual interfaces (i.e., *-

weth and *-wpeer), one that is attached to the environment and the other attached to the bridge. Since

Layer 2 connectivity is in place between the environments and the host it is only necessary to perform

Network Address Translation (NAT) of all packets that are originating from the environments, as

presented in Fig. 2.

Figure 2. Applying netfilter rules for NAT at the gateway.

To validate that the traffic goes through the bridge to the host and further to the Internet a

traceroute command is run in our environment (see Fig. 3) to a public IP address outside our

network (i.e., 8.8.8.8).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2023 doi:10.20944/preprints202312.1974.v1

https://doi.org/10.20944/preprints202312.1974.v1

 7

Figure 3. Executing the traceroute command in the environment to a public IP address.

To pass the test traffic through the application under test the routing rules are manipulated as

follows:

1. Make sure that the outgoing (egress) traffic through the environment tun/tap interfaces is not

considered local and routed through loopback interface because the application is

reading/writing from/to environment interfaces. To achieve this the default local routes that

were created with the interfaces should be removed.

2. Because the local routing table is also used on the incoming (ingress) traffic by the kernel to

decide if a packet is addressed to the local host, it is necessary to create an alternative routing

rule that is only used for ingress traffic. To achieve this distinct routing decisions on input and

output path should be used and it is created a routing rule that match only for ingress traffic,

packets with “input interface” attribute (i.e., iif) and perform the route lookup in a custom

“local” routing table – see Fig. 4.

Figure 4. Custom “local” routing table for ingress traffic.

3. To pass traffic through the GNU Radio application under test two entries are created in the main

routing table that route the traffic destinated to the far end of the “tunnel” (e.g., output interface)

through the near end interface. In this way sending a packet with the destination the far end of

the tunnel (e.g., 3.3.3.3) is routed through the near end interface (e.g., tap0) from where the

application reads – see Fig. 5.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2023 doi:10.20944/preprints202312.1974.v1

https://doi.org/10.20944/preprints202312.1974.v1

 8

Figure 5. Main routing table of the environment.

4. In the case of tap interfaces, which are Layer 2 interfaces, static ARP entries are set to eliminate

ARP specific traffic through the application under test (see Fig. 6).

Figure 6. Static ARP entries.

With this setup can be used any traffic generator with the destination set the far end of the tunnel

to pass traffic through the application. Because the local routes were removed the traffic is passed

according to the main routing table through the near end interface. On the far end interface, because

of the incoming traffic local rules, the traffic is passed to the host, so any application that is listening

for that traffic will get it. For example, in Fig. 7 the ping utility is used to send probes having as

destination the far end of the tunnel with the record route (-R) option. As expected, the packets are

routed through the near end interface (with IP address 2.2.2.2).

Figure 7. Probe packets sent with the ping utility to the far end of the tunnel.

As mentioned before, in the case of applications using SDR boards, i.e., testing in real radio

channel conditions, the Tx and Rx applications running in separate environments and the channel is

replaced by SDR’s IO components (i.e., source/sink GNU Radio blocks). There is only one tun/tap

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2023 doi:10.20944/preprints202312.1974.v1

https://doi.org/10.20944/preprints202312.1974.v1

 9

interface in each environment (see Fig. 1) and the environment can be hosted by the same machine

or different machines. If the environments are on different machines, they need to be synchronized.

The routes are set in the way presented in Fig. 4, Fig. 5, and Fig. 6.

Environments setup and management is performed programmatically using Python and

libraries like pyroute2 [41] and python-iptables [42] that allows a simple integration in automated

testing frameworks. The implementation of the testing environment setup is available in [43].

2.2. Testbed Architecture

The architecture of the developed testing platform for GNU Radio applications is depicted in

Fig. 8. In the figure is presented the situation when the transmission chain under test is simulated,

the two transceiver modules of the system under test being connected through a simulated channel.

In the situation depicted in Fig. 8 the system under test implements a full duplex transmission. The

framework includes two main parts: the Application Process and the Support Processes/Services. The

Application Process includes the Network IO blocks and GNU Radio Simulator block. The Support

Processes/Services includes the Traffic Generator, Traffic Sniffer, Broker, Database and Data

Visualization processes.

Figure 8. The architecture of the testbed for GNU Radio applications evaluated by simulations.

If the GNU Radio application under test is evaluated in real channel conditions and SDR boards

are used, the architecture of the testbed is modified as presented in Fig. 9. As mentioned in Section

2.1 the environment only contains a single Net IO block when the applications are tested with SDR

boards. Traffic is read or written from/to that Net IO depending on what part of the application runs

in the environment, transmitter, or receiver. The channel in this case is accessed through SDR IOs

(i.e., source/sink blocks). The support services are the same as for the situation when the GNU Radio

applications are tested by simulation. If the GNU Radio application pair is run on different machines,

they must be synchronized to time align the monitoring data.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2023 doi:10.20944/preprints202312.1974.v1

https://doi.org/10.20944/preprints202312.1974.v1

 10

Figure 9. The architecture of the developed testing framework for GNU Radio applications evaluated

in real channel conditions.

2.2.1. Testbed Net IO

One of the most important blocks of the testbed architecture are the Net IO blocks that connect

the application under test to the network stack of the environment and allow to feed the GNU Radio

application under test with test traffic through the environment’s network interfaces. As mentioned

in Section 2.1, the test traffic is injected in the application via the environment’s tun/tap interfaces. In

the current implementation the GNU Radio built-in tun/tap blocks are used to read/write data

from/to the interfaces. These blocks pass the PDUs (Protocol Data Units) through the messaging

passing API (Application Program Interface) and because the GNU Radio application that was

evaluated as part of this research works with tagged streams it is necessary to convert the input data

flow in tagged streams, operations performed by the PDU to TS blocks.

The transfer of data from the PDUs to the data frames of the tested communication protocols,

for example the frames of the PHY layer of the GNU Radio transmission system, requires size

matching operation. Because the PHY layer frame size can be smaller than the upper layer PDU size

and can change during transmission, in the case of adaptive transceivers, it is impossible the direct

use the MTU (Maximum Transport Unit) parameter to control the upper layer PDU size. Due to this

it is necessary to add a PDU reconstruction/defragmentation block to the Net IO block on the

receiving path (the Flow Defragmentation block in Fig. 8). This block reconstructs the upper layer

PDUs before passing them further to other blocks. Should be mentioned that the fragmentation is

done when the PDUs are loaded into the PHY frames. The issue occurs when the upper layer passes

a PDU that doesn’t fit into a single PHY frame. Because our environment supports both tun and tap

interfaces the defragmentation operations are implemented for both Layer 3 and Layer 2 PDUs.

The defragmentation mechanism in discussion assumes that the upper layer PDUs start is in

synchronism with the PHY layer frame and tries to identify the beginning of the upper layer PDU to

start buffering the PHY layer frames until the PDU length is met or a new PDU is detected. The

detection of the beginning of the PDU depends on the upper layer protocol and in this case, it is

assumed TCP/IP stack-based networking. In the case of the tun interface setup (Layer 3) the algorithm

identifies the beginning of the PDU using the IP header checksum and in the case of tap interface

setup (Layer 2) the algorithm uses the destination MAC address in the ethernet header (which is

known at the receiver) to identify the start of the PDU.

2.2.2. Testbed Support Services

Support services are the processes that are launched together with the GNU Radio application

under test to generate traffic and analyze the traffic passing through the application and to collect,

store and visualize the monitoring data from the application. To send traffic to the tested application

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2023 doi:10.20944/preprints202312.1974.v1

https://doi.org/10.20944/preprints202312.1974.v1

 11

one can easily use any network tool like ping, iperf3 or others, or can easily develop custom traffic

generators/analyzers using Python and Scapy library [44], which is a very powerful packet

manipulation library.

In the case of simplex transmission or when it is necessary to analyze one-way performance,

traffic can be captured and analyzed in a separate process. The Scapy library provides a very

convenient API to send and sniff packets on both L2 and L3 but can introduce significant delays

because of the overhead that it adds to each packet. For example, L3 send API selects the interface

according to L3 header for each packet which is not needed in the testbed since the traffic is injected

in the GNU Radio through a single interface. This can be overcome by selecting the interface only

once and using the socket API.

Another important support service is the database service which stores the monitoring data that

is collected during the test for further analysis. In the current implementation MongoDB [45] is used

for storage mainly because of its versatility that suits better the purpose of the testbed, but there are

papers that state that MongoDB outperforms structured database i.e., MySQL [46]. Being schemeless

it is not necessary to do any preparation for different monitoring data structures. In the testbed

environment, the database service is deployed on-premises.

The Broker process is responsible for collecting monitoring data, parsing it, and writing it to the

database. Because the broker is highly coupled to the messaging system, it will be presented in the

next section.

Another support service is the data visualization one. It helps to visualize the data collected from

the GNU Radio application under test and monitor the application in almost real-time. In the current

implementation it is used Grafana [47] to query and visualize the MongoDB database. As the

database service, Grafana service was deployed on-premises.

2.3. Monitor Mesagaging

Because most of the time when developing GNU Radio applications, the source of the

monitoring messages is a GNU Radio block the construction of the message is performed in the

block’s work thread. This motivates the investigation of efficient ways to build monitoring messages.

In addition, because the broker aggregates messages from multiple sources, improvement of

deserialization is important as well. In Fig. 10 there are illustrated the major components involved in

the transfer of the monitoring messages:

• Message generators, that are responsible for building the messages. They are executed in the

same thread as the GNU Radio blocks work.

• Monitor probes, that aggregate multiple generators in the GNU Radio application and pass the

messages to the broker.

• Broker, that collects the messages from multiple probes and processes them further.

Figure 10. The architecture of the messaging system.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2023 doi:10.20944/preprints202312.1974.v1

https://doi.org/10.20944/preprints202312.1974.v1

 12

From the origin to a collector (the broker in this case) a message must pass through two separate

channels:

• Message passing, which is the GNU Radio messaging system between blocks. Because message

passing API uses PMT (Polymorphic Types) [48], different types of PMT objects will be used as

inter-block carrier messages.

• Transport channel, that passes the message from the GNU Radio application to the message

collector (i.e., broker).

To reduce the size of the messages and the time spent in building and parsing the monitoring

messages the paper proposes to use the Protocol Buffers library [49] which is a language-neutral,

platform-neutral extensible mechanism for serializing structured data. It’s like JSON (JavaScript

Object Notation) [50], except it’s smaller and faster because of its structured nature. Both application

side components (i.e., message generators and probes) need to have the ability to add information to

the monitoring messages. Most of the monitoring data come from the origin (the GNU Radio block

that does the work), but the probe has information that should be tracked as well (i.e., messages sent

over the transport channel, message passing queue size).

2.3.1. Monitoring Message Content

Since data transmission chains are highly periodical the monitoring data can be seen as time

series and all messages must contain a timestamp. Each message is time stamped when it is built. In

addition, two optional fields are added that allows gathering information about the probe. These two

fields are filled before the message is sent on the transport channel. Because the broker must know

what parser to use for each message it receives, the payload type (payload ID) is added to the proto

carrier message. The monitoring message content is summarized in Table 1.

Table 1. Structure of the monitoring messages.

Fields Mandatory Filled by Description

Timestamp Yes GNU Radio block
Timestamp when the message was

built.

Probe queue size No Monitor probe
GNU Radio message passing API

queue size.

Probe message

counter
No Monitor probe

Number of messages sent.

Payload Yes GNU Radio block Monitoring data.

Payload ID Yes GNU Radio block
Indicates the payload type for the

parser.

2.3.2. Monitoring Messaging Methods

Several messaging approaches were explored in the implemented framework. Two of the

methods are based on the Protocol Buffer library [49] and a third one is a baseline implementation

that uses only PMT (the messages are sent as pmt::dict – see Fig. 11). The two proto-based methods

differ in the way they pass the message between the generator of the monitoring message and the

probe and how they set the probe specific fields in the message:

• The first one serializes the proto message immediately after it builds the message in the GNU

Radio block working thread and passes the serialized data to the probe as pmt::blob. This

method will be referred to as PROTO-BLOB.

• The second one passes the proto message object as pmt::any (i.e., boost::any) and this method

will be referred to as PROTO-ANY.

Fig. 11 illustrates the message flow for all 3 messaging methods split over the three components

of the messaging system (see Fig. 10) and the two programming languages used to implement the

flow.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2023 doi:10.20944/preprints202312.1974.v1

https://doi.org/10.20944/preprints202312.1974.v1

 13

Figure 11. The generation and transfer of monitoring messages in the messaging system for the

implemented messaging methods.

2.3.3. The PMT Based Messaging Method

For the baseline implementation of the monitoring system only PMT data structures are used,

which is very convenient because this type of data structure is built in GNU Radio. The method has

the advantage of being very versatile, as the name suggests. The PMT type doesn’t require any

structure (schema) being like JSON. PMT messages are self-contained, and the Payload ID field is not

required for this method.

The major drawback of using the PMT type is the overhead that is added to the message size

and the performance of serialization/deserialization of the messages. The message size overhead

comes from the fact that it must send all the message field names and for each value needs additional

information to indicate the value type. The traversal of the data structure is performed recursively

penalizing the performance for highly nested messages.

In the current implementation of the testing platform a flat dictionary is used (i.e., pmt::dict) and

this contains both header information and payload data. The timestamp and payload are added when

the message is built, and the probe-related fields are easily inserted in the dictionary before

serialization at the probe (see Fig. 11). For convenience it was implemented a syntactic sugared

message builder API as a variadic function that can take any number of (field, value) pairs as

parameters, as in the example presented in Fig. 12.

Figure 12. Building a PMT monitoring message.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2023 doi:10.20944/preprints202312.1974.v1

https://doi.org/10.20944/preprints202312.1974.v1

 14

2.3.4. The PROTO Based Messaging Method

The Protocol Buffer [49] is used with structured data and the structure (schema) is defined in a

language neutral form that must be compiled to get the structure in the language the application is

built (e.g., C++). This requires an additional step in building the pipeline of the application before the

application compilation. But because it has good support for CMake, integration in a GNU Radio

OOT (Out Of Tree) [51] build-pipeline is not difficult.

All proto messages have a fixed part that contains the timestamp, payload, payload ID and probe

related information. Probe related information is optional because only one of proposed proto-based

methods uses those fields. The fixed part of the message is defined as a separate proto message, and

it will be referred to as the main proto message. Each payload is defined as an independent proto

message and is aggregated into the main proto message through a proto::any field. This allows

having a single definition for the main proto message. The implementation of the PROTO messaging

is depicted in Fig. 13.

The implementation of the PROTO messaging system is done in C++ to allow integration in GNU

Radio application at lower level. At the heart it has the Message template that is specialized for each

payload message together with the payload ID that is used by the message receiver to choose the

parser. The reason that the protocol ID was used instead of proto::any’s type_url field is because it

need to be known at the compile time and to be able to use it as template parameter (i.e., type_url

field is string). The Message Registry variadic template is specialized with all messages as a parameter

pack and register the parse methods in the parser dictionary. The messaging system is built as a

shared library that il used by both the GNU Radio application under test and the messaging broker.

Figure 13. The UML diagram of the PROTO messaging.

To keep a similar message building API as for the baseline method and especially to be able to

refer to the message fields by their names dynamically at runtime it was necessary to build a

dictionary that maps the field objects to their names. To do this, it was used the Protocol Buffer

reflection feature to set the fields dictionary when the message builder is constructed. With this it was

obtained a similar API as for the PMT only method. An example of building a PROTO message is

presented in Fig. 14.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2023 doi:10.20944/preprints202312.1974.v1

https://doi.org/10.20944/preprints202312.1974.v1

 15

Figure 14. Building a PROTO monitoring message using an API like that of the PMT method.

Because now the payload information is carried by a PROTO message it is necessary to use the

payload ID field to inform the broker which parser to use.

The PROTO-BLOB method doesn’t use the optional probe related fields in the main PROTO

message and only sets the timestamp, payload, and payload ID when the message is generated. After

that the PROTO message is serialized and passed to the probe as pmt::blob. The probe builds a PMT

cons-list that contains the queue size, the sender counter, and the received blob message. After that

it serializes the new message and sends it to the transport channel. Using cons-list allows to add

together fields of different types without having field names (like tuples). It still adds a bit of

overhead when the structure is traversed for serialization and deserialization but because the number

of elements in the cons-list is small (3 elements) the overhead is negligible.

With PROTO-ANY method the PROTO messages between GNU Radio blocks are carried as

pmt::any and the method casts the main PROTO message at the probe. In this way it is possible to

use the optional probe related fields of the main PROTO message. Once these fields are set the

PROTO message is serialized and sent over the transport channel. Because in this case the PROTO

message is not encapsulated in a PMT message it is necessary to signal to the parser that the message

was not serialized with PMT. For this it is exploited the tagging mechanism that PMT uses to indicate

the field type and add a custom tag that is not used by PMT. In this way all three methods are

consistent; the first byte indicates the type of the outermost element of the message. So, the parser

only must look at the first byte in the message to identify which method was used.

The implementation of the monitoring mechanism is available in [52].

2.3.6. The Transport of the Monitoring Messages

For transporting the monitoring messages between the probes and the broker the ZMQ [53]

library is used, which is a highly efficient messaging library. GNU Radio already has a ZMQ module

that implements the most used messaging patterns supported by the ZMQ library. Since some of the

monitoring and serialization logic used in the platform is part of the monitor probe, a custom ZMQ

block is implemented. The Pub/Sub (Publish/Subscribe) [54] messaging pattern is used, the monitor

probe implementing the publisher of the message. In most scenarios the broker runs on the same

machine with the GNU Radio application under test and to have multiple monitor probes in the GNU

Radio process flow the ZMQ subscriber socket (on the broker side) is binded and the publish sockets

(in the GNU Radio process flow) are connecting to the subscriber. In this way the same port can be

used on the message transport channel.

2.3.7. The Message Broker

The message broker is built in Python to get the benefits of better support for database access.

The proto message parsing is implemented at library level (i.e., C++) to avoid compiling the PROTO

files in Python. In this way the message structure is kept internal to the library that exposes only the

parser. As Fig. 11 shows the ZMQ subscriber is implemented in Python and passes the raw messages

that it receives to the parser through Python’s buffer protocol (as pybind11 py:buffer argument) [55].

The parser result is returned as parse_result structure that contains the message payload type (PMT

or PROTO) and the payload. If PMT payload type is used the message is set in the parse result

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2023 doi:10.20944/preprints202312.1974.v1

https://doi.org/10.20944/preprints202312.1974.v1

 16

structure to be parsed in Python using pmt::to_python implementation. A PMT message is nothing

else than a shared pointer to the PMT structure, so the amount of data copied between C++ and

Python is low. If PROTO payload type is used then the data is parsed by the registered parser and a

dictionary (i.e., std::unordered_map) with the result is set in the parsed result structure. To avoid

copying the dictionary it is used pybind11 opaque types [56]. The parse result object is returned to

Python as unique_ptr to transfer the ownership and release it by the garbage collector once the

Python object is collected. As mentioned, the parser implementation is part of the monitoring library

[52] and the broker implementation is available in [43].

3. Results and Discussions

Two main issues are considered in this section, the performance of the monitoring messaging

methods implemented in the developed testing platform and the evaluation of a complex

transmission system implemented in GNU Radio. As presented in the previous sections the testing

and evaluation of PHY layer communication protocols generates a large amount of monitoring

messages that must be handled in real time. The size of the monitoring messages and the generation

and handling of these messages are very important and will be evaluated in the developed platform.

The testing of an example transmission system has as goal to show the capabilities of the proposed

platform.

3.1. Evaluation of the Monitoring Messaging Methods

3.1.1. The Message Size

One expected outcome from using PROTO instead of PMT for monitoring messaging is the

reduced size of the serialized message because it is not necessary to send the message fields names

and the fields value types. It is analyzed the size of the messages for all three implementations of the

messaging methods considered in section 2.3 for different numbers of fields in a message. The

obtained results are presented in Fig. 15 and show the significant difference between the size of the

messages generated with the PMT and PROTO methods, difference which increases with the number

of fields of the message. The PROTO-ANY and the PROTO-BLOB generate messages with similar

size no matter the number of fields of the message.

Figure 15. Monitoring message size obtained in specific conditions using the implemented messaging

methods.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2023 doi:10.20944/preprints202312.1974.v1

https://doi.org/10.20944/preprints202312.1974.v1

 17

3.1.2. The Message Build and Parsing Times

To compare the messaging methods considered from the point of view of time necessary to build

and parse the monitoring messages, it was measured the time necessary to perform the above-

mentioned operations for 1000000 messages with different numbers of fields (NF). For both operation

Python bindings were used. The machine used in testing was equipped with an AMD Ryzen 7 PRO

4750U processor and 16GB of RAM and was running Ubuntu 22.04 in WSL2. The results presented

in Fig. 16 show that both the time necessary for building and serializing the messages, at GNU Radio

application side and for parsing the messages, at broker side, are significantly smaller in the case of

the PROTO methods for all message sizes (number of fields). The magnitude of the time difference

between the PROTO and PMT methods decreases with the number of fields of the message. The

PROTO-ANY and the PROTO-BLOB methods exhibit similar message building and parsing times,

the PROTO-ANY method requiring smaller times in both cases.

Figure 16. The time necessary to generate and process the monitoring messages in specific conditions

using the implemented messaging methods.

3.1.3. End-to-End Testing of the Messaging Methods

For end-to-end testing of the monitoring messaging methods, it was created a custom GNU

Radio block that only generates messages with different sizes and at different rates (P) using the

messaging methods described in Section 2.3. By using this dedicated message generator, it was built

a small GNU Radio process flow that contains S message generators and a single probe as shown in

Fig. 17. The GNU Radio application was run in the networking environment presented in Section 2.1

in different scenarios and the CPU usage was measured. The results obtained are presented in Fig.

18 and show that PROTO based messaging outperforms the pure PMT one, especially on the broker’s

side, which is very important because the broker collects data from all probes. The gain in CPU usage

at the GNU Radio application (process flow) is not as spectacular as the computing time gains showed

before because the network operations are only slightly improved by the smaller size of the PROTO

message.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2023 doi:10.20944/preprints202312.1974.v1

https://doi.org/10.20944/preprints202312.1974.v1

 18

Figure 17. GNU Radio process flow for evaluation of the messaging methods.

Figure 18. The CPU usage of the GNU Radio process flow and of the broker in specific conditions

using the implemented messaging methods.

3.2. System Under Test

To check the functioning of the developed testing platform and to demonstrate its utility in

testing complex communication protocols, it is used an OFDM transmission system, the transceivers

of the system having adaptive modulation and coding capabilities. Such an OFDM system is complex

enough [12] to fully demonstrate the capabilities of the test platform. More exactly two OFDM

systems were tested, one of them implements a simplex transmission and a revers channel is used to

convey the channel state information from the receiver to the transmitter, while the second one is a

full duplex transmission system, the channel state information acquired by each receiver being

multiplexed with the data flows to be sent to the corresponding transmitter. A simplified schematic

of the simplex OFDM transmission system is given in Fig. 19. More details about the architecture of

this system with adaptive modulations, but without adaptive coding, can be found in [57] and the

implementation of the OFDM modem under test is available in [52].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2023 doi:10.20944/preprints202312.1974.v1

https://doi.org/10.20944/preprints202312.1974.v1

 19

Figure 19. The simplified architecture of the OFDM transmission system tested using the developed

testing platform.

The tested/evaluated OFDM transmission system includes several complex signal processing

blocks, such as the OFDM clock and carrier synchronization block, the channel transfer function

estimator, the OFDM equalizer, the FEC encoder and decoder (the FEC codes used are LDPC codes),

the SNR estimation block, the transmission control block, the framing block. To perform a

comprehensive dynamic white box testing of these signal processing blocks a large amount of data is

necessary to be acquired and analyzed. This requires a fast and effective monitoring system capable

of coping with a large amount of data and with real-time signal acquisition and handling. The

necessity to acquire in real time a large amount of monitoring data is a characteristic of any platform

used for testing and evaluation of complex PHY layer algorithms [38].

3.2.1. Evaluation of the System Under Test

In the panels of Fig. 20 is presented the evolution in time of some of the important parameters

of the OFDM transmission system under test. More exactly in Fig. 20 is presented the evolution time

of the following parameters: number of iterations of the LDPC decoder, transport block/frame error

rate, application CPU usage, estimated SNR, bits/symbol of the used modulation (i.e., the used

modulation scheme), one-way travel time of the IP packets loaded in the transport blocks. Should be

mentioned that the goal of this paper is not to perform a detailed testing and evaluation of an OFDM

transmission system with adaptive coded modulation and the transmission system depicted in Fig.

20 is used only to show the capabilities of the developed testing platform. The parameters presented

in Fig. 20 are evaluated frame by frame or packet by packet, but other parameters like the equalization

coefficients and the decision error of the QAM symbols composing the OFDM symbol, just to mention

a few parameters, should be evaluated at each OFDM symbol, which will generate a larger amount

of monitoring data. The traces representing the variation in time of the considered parameters were

generated using the Grafana utility, which was also used to query the database storing the values of

the considered parameters together with time stamps.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2023 doi:10.20944/preprints202312.1974.v1

https://doi.org/10.20944/preprints202312.1974.v1

 20

Figure 20. Evolution in time of some parameters of the tested adaptive OFDM transmission system

developed in GNU Radio.

5. Conclusions

The goal of the current paper was to develop a software testbed for evaluating PHY and MAC

layer communication protocols developed with GNU Radio that is easy to use, interoperable with

any traffic generator and allows collection and analysis of PHY layer monitoring data. To achieve this

the paper describes how to set up a network environment that can be used in End-to-End tests of

both, simulation, and real channel applications. The network environments are isolated, making their

management simpler and allowing multiple environments on the same machine – which is important

when multiple tests are executed at the same time on powerful servers. The setup and management

are implemented in Python to ease the integration in testing automation. It uses the Linux kernel’s

virtual network devices (i.e., tun/tap) to feed test traffic in the applications (i.e., transmission chain

for SDR) to make it compatible with any network traffic generator.

To collect monitoring data from the physical layer the paper proposes and analyzes several

methods: one that uses only GNU Radio built in Polymorphic Types (PMT) and two that employs

Protocol Buffer library to enhance the performance of the message’s generation, serialization, and

parsing processes. The PMT method has the advantage of being very versatile and easy to use, being

built-in GNU Radio runtime and not requiring any schema definition.
Since testing of communication protocols generates a large amount of monitoring data which

should be acquired in real time, efficient and fast messaging methods are needed. The performance

of the proposed Protocol Buffers based methods was analyzed in terms of computation time of the

main components, CPU usage in End-To-End tests and message size. It was shown that in all

scenarios considered the Protocol Buffers based methods outperform the PMT method.
The paper considers the entire evaluation ecosystem, from the PHY layer monitoring to data

storage and visualization and demonstrates how to use it for white box testing of wireless

transmission protocols developed with GNU Radio. To show the capabilities of the developed testbed

was used a complex OFDM duplex transmission system with adaptive coded modulations.
The issue of automation of the testing process is not explicitly considered by the paper, but the

proposed framework has the potential to allow a relatively easy integration of such functionality.

Custom traffic generators can be built in accordance with the test suite and the environments and

testbed management is implemented in Python making it easy to expose to automation testing

frameworks.

Author Contributions: Conceptualization, M.S. and Z.P.; methodology, M.S.; software, M.S.; validation, Z.P.,

and M.S.; formal analysis, Z.P.; investigation, M.S.; resources, Z.P.; data curation, Z.P.; writing—original draft

preparation, M.S.; writing—review and editing, Z.P.; visualization, M.S.; supervision, Z.P.; project

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2023 doi:10.20944/preprints202312.1974.v1

https://doi.org/10.20944/preprints202312.1974.v1

 21

administration, M.S.; funding acquisition, Z.P. All authors have read and agreed to the published version of the

manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Okenzie, F.; Odun-Ayo, I.; Bogle, S. A Critical Analysis of Software Testing Tools. J. Phys.: Conf. Ser. 2019,

1378, 042030. [CrossRef]

2. Bansal, A. A Comparative Study of Software Testing Techniques. Int. J. of Computer Science and Mobile

Computing 2014, 3, 579-584. [Crossref]

3. Khan, M.E.; Khan F. Importance of Software Testing in Software Development Life Cycle. Int. J. of Computer

Science Issues 2014, 11, 120-123. [CrossRef]

4. Hanna, M.; El-Haggar, N.; Sami, M.A. Review of Scripting Techniques Used in Automated Software

Testing. Int. J. of Adv. Computer Science and Applic. 2014, 5,194-202. [CrossRef]

5. Kannan, S.; Pushparaj T. A Study on Variations of Bottlenecks in Software Testing. Int. J. of Computer

Sciences and Engineering 2014, 2, 8-14. [CrossRef]

6. Chauhan, R.K.; Singh, I. Latest Research and Development on Software Testing Techniques and Tools. Int.

J. of Current Eng. and Techn. 2014, 4, 2368-2372. [CrossRef]

7. Zhang, H. Research on Software Development and Test Environment Automation based on Android

Platform. In Proceedings of the 3rd International Conference on Mechatronics Engineering and Information

Technology (ICMEIT 2019), Dalian, China, 29-30 March 2019; pp. 749-753. [CrossRef]

8. Orso, A.; Rothermel, G. Software testing: A research travelogue (2000-2014). In Proceedings of the Future

of Software Engineering (FOSE 2014), Hyderabad, India, 31 May-7 June 2014; pp. 117-132. [CrossRef]

9. Goyat, J.; Dhingra, S.; Goyal V.; Malik V. Software Testing Fundamentals: A Study. Int. J. of Latest Trends in

Eng. And Techn. 2014, 3, 386-390. [CrossRef]

10. Weyuker, E.J.; Vokolos, F.I. Experience with Performance Testing of Software Systems: Issues, an

Approach, and Case Study. IEEE Trans. on Software Eng. 2000, 26, 1147-1156. [CrossRef]

11. Uyar, M.U.; Fecko, M.A.; Duale, A.Y.; Amer, P.D.; Sethi, A.S. Experience in Developing and Testing

Network Protocol Software Using FDTs. Inf. and Soft. Tech. 2003, 45, 815-835. [CrossRef]

12. Jamieson, C.; Melvin, S.; Ilow, J. Rapid Prototyping Hardware Platforms for the Development and Testing

of OFDM Based Communication Systems. In Proceedings of the 3rd Annual Communication Networks

and Services Research Conference (CNSR'05), Halifax, NS, Canada, 16-18 May 2005; pp. 57-62. [CrossRef]

13. Popescu, O.; Abraham, S.; El-Tawab, S. A Mobile Platform Using Software Defined Radios for Wireless

Communication Systems Experimentation. In Proceedings of the 2017 ASEE Annual Conference &

Exposition, Columbus, Ohio, USA, 24-28 June 2017; 18113. [CrossRef]

14. Serkin, F.B.; Vazhenin, N.A. USRP Platform for Communication Systems Research. In Proceedings of the

15th International Conference on Transparent Optical Networks (ICTON 2013), Cartagena, Spain, 23-27

June 2013; pp. 1-4. [CrossRef]

15. GNURadio The Free & Open Software Radio Ecosystem. Available online: https://www.gnuradio.org

(accessed on 20 Nov. 2023).

16. Kaur, M.; Singh, R. A Review of Software Testing Techniques. Int. J. of Electronic and Electrical Eng. 2014, 7,

463-474. [CrossRef]

17. Roggio, R.F.; Gordon J.S.; Comer, J.R.; Khan F. Taxonomy of Common Software Testing Terminology:

Framework for Key Software Engineering Testing Concepts. J. of Inf. Systems Applied Research 2014, 7, 4-12.

[CrossRef]

18. Just, R.; Jalali, D.; Inozemtseva, L.; Ernst M.D.; Holmes R.; Fraser, G. Are Mutants a Valid Substitute for

Real Faults in Software Testing? In Proceedings of the 22nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering (FSE 2014), Hong Kong, China, 16-21 Nov. 2014; pp. 654–665.

[CrossRef]

19. Li, W. Design and Implementation of Software Testing Platform for SOA-Based System. In Proceedings of

the 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS), Chengdu,

China, 23-26 April 2021; pp. 1094-1098. [CrossRef]

20. Rosch, S.; Tikhonov, D.; Schutz, D.; Vogel-Heuser, B. Model-Based Testing of PLC Software: Test of Plants'

Reliability by Using Fault Injection on Component Level. IFAC Proc. Vol. 2014, 47, 3509-3515. [CrossRef]

21. Kaur, K.; Singh, J.; Ghumman, N.S. Mininet as Software Defined Networking Testing Platform. In

Proceedings of the International Conference on Communication, Computing & Systems (ICCCS 2014),

Ferozepur, Punjab, India, 8-9 Aug. 2014; pp. 139–142. [CrossRef]

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2023 doi:10.20944/preprints202312.1974.v1

https://doi.org/10.20944/preprints202312.1974.v1

 22

22. Bertolini, A.; De Angelis, G.; Gallego, M.; Garcia, B.; Gortazar, F.; Lonetti, F.; Marchetti, E. A Systematic

Review on Cloud Testing. ACM Computing Surveys 2019, 52, 1-42. [CrossRef]

23. Xi, W.; Liu, W.; Bai T.; Ye W-p.; Shi J. An Automation Test Strategy Based on Real Platform for Digital

Control System Software in Nuclear Power Plant. Energy Reports 2020, 6, 580-587. [CrossRef]

24. Garousi, V.; Felderer, M.; Karapicak, C.M.; Yilmaz, U. Testing Embedded Software: A Survey of the

Literature. Information and Software Technology 2018, 104, 14-45. [Crossref]

25. Masood, S.; Khan, S.A.; Hassan, A.; Fatima, U. A Novel Framework for Testing High-Speed Serial Interfaces

in Multiprocessor Based Real-Time Embedded System. Appl. Sci. 2021, 11, 7465. [Crossref]

26. Sarikaya, B.; Bochmann, G.V.; Cerny, E. A Test Design Methodology for Protocol Testing. IEEE Trans. On

Soft. Eng. 1987, SE-13, 518-531. [CrossRef]

27. Wang, B.; Hutchison, D. Protocol Testing Techniques. Computer Communications 1987, 10, 79-87. [Crossref]

28. Dssouli, R.; Saleh, K.; Aboulhamid, E.; Bediaga, A.; En-Nouaary, A; Bourhfir, C. Test Development for

Communication Protocols: Towards Automation. Computer Networks 1999, 31, 1835-1872. [CrossRef]

29. Lai, R. A Survey of Communication Protocol Testing. J. of Syst. and Soft. 2002, 62, 21-46. [CrossRef]

30. Dorofeeva, R.; El-Fakih, K.; Maag, S.; Cavalli, A.R.; Yevtushenko, N. FSM-Based Conformance Testing

Methods: A Survey Annotated with Experimental Evaluation. Inf. and Soft. Tech. 2010, 52, 1286-1297.

[CrossRef]

31. Dssouli, R.; Khoumsi, A.; Elqortobi, M.; Bentahar, J. Chapter Three-Testing the Control-Flow, Data-Flow,

and Time Aspects of Communication Systems: A Survey. Advances in Computers 2017, 107, 95-155.

[CrossRef]

32. Bai, Y.; Tang, P.; Zhang, J.; Zhang, J. Test Method of Communication Protocol of Standard Group

Components of Electric Vehicle Charging Equipment. J. Phys.: Conf. Ser. 2021, 2066, 012032. [CrossRef]

33. Lawrenz, W. Communication Protocol Conformance Testing - Example LIN. In Proceedings of the 2006

IEEE International Conference on Vehicular Electronics and Safety, Shanghai, China, 13-15 Dec. 2006; pp.

155-162. [Crossref]

34. Tapia, E.; Sastoque-Pinilla, L.; Lopez-Novoa, U.; Bediaga, I.; López de Lacalle, N. Assessing Industrial

Communication Protocols to Bridge the Gap between Machine Tools and Software Monitoring. Sensors

2023, 23, 5694. [CrossRef]

35. Rettore, P.H.L.; Loevenich, J.; Lopes, R.R.F. TNT: A Tactical Network Test Platform to Evaluate Military

Systems Over Ever-Changing Scenarios. IEEE Access 2022, 10, 100939-100954. [CrossRef]

36. Zhu, L.; Zhao, Y.; Gao, L. Software Testing Method Based Mobile Communication Equipment of Maritime

Satellite. IOP Conference Series: Earth and Environmental Science 2019, 234, 012059. [CrossRef]

37. Bertizzolo, L.; Bonati, L.; Demirors, E.; Al-shawabka, A.; D’Oro, A.; Restuccia, F; Melodia, T. Arena: A 64-

Antenna SDR-Based Ceiling Grid Testing Platform for sub-6 GHz 5G-and-Beyond Radio Spectrum

Research. Computer Networks 2020, 181, 107436. [CrossRef]

38. Li, Y.; Zhu, X.; Hu, L. General Multiple Antenna Evaluation Platform. In Proceedings of the 2005 2nd Asia

Pacific Conference on Mobile Technology, Applications and Systems, Guangzhou, China, 15-17 Nov. 2005;

pp. 57-62. [CrossRef]

39. Tun/Tap interface tutorial. Available online: https://backreference.org/2010/03/26/tuntap-interface-

tutorial/index.html (accessed on 22 Nov. 2023).

40. Introduction to Linux interfaces for virtual networking. Available online:

https://developers.redhat.com/blog/2018/10/22/introduction-to-linux-interfaces-for-virtual-networking#

(accessed on 24 Nov. 2023).

41. Pyroute2 netlink library. Available online: https://docs.pyroute2.org/ (accessed on 30 Nov. 2023).

42. Python-iptables. Available online: https://python-iptables.readthedocs.io/en/latest/intro.html (accessed on

30 Nov. 2023).

43. Testbed for GNU Radio applications. Available online: https://github.com/mihaipstef/dtl-testbed (accessed

on 12 Dec. 2023).

44. Scapy. Available online: https://scapy.net/ (accessed on 24 Nov. 2023)

45. MongoDB Documentation. Available online: https://www.mongodb.com/docs/ (accessed on 24 Nov. 2023).

46. Eyada, M.M.; Saber, W.; El Genigy, M.M.; Amer, F. Performance Evaluation of IoT Data Management Using

MongoDB Versus MySQL Databases in Different Cloud Environments. IEEE Access 2020, 8, 110656-110668.

[CrossRef]

47. Grafana documentation. Available online: https://grafana.com/docs/grafana/latest/ (accessed on 24 Nov.

2023).

48. Polymorphic Types (PMTs). Available online:

https://wiki.gnuradio.org/index.php/Polymorphic_Types_(PMTs) accessed (on 27 Nov. 2023).

49. Protocol Buffers Documentation. Available online: https://protobuf.dev/overview/ (accessed on 27 Nov.

2023).

50. Introducing JSON. Available online: https://www.json.org/json-en.html (accessed on 27 Nov. 2023).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2023 doi:10.20944/preprints202312.1974.v1

https://doi.org/10.20944/preprints202312.1974.v1

 23

51. OutOfTreeModules. Available online: https://wiki.gnuradio.org/index.php/OutOfTreeModules (accessed

28 Nov. 2023).

52. Adaptive OFDM modem and monitoring library in GNU Radio. Available online:

https://github.com/mihaipstef/gr-dtl (accessed on 12 Dec. 2023).

53. ZeroMQ. An open-source universal messaging library. Available online: https://zeromq.org/ (accessed on

28 Nov. 2023).

54. What is Pub/Sub? Available online: https://cloud.google.com/pubsub/docs/overview (accessed on 28 Nov.

2023).

55. Buffer Protocol. Available online: https://docs.python.org/3/c-api/buffer.html (accessed on 29 Nov. 2023).

56. STL containers. Available online: https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html

(accessed on 29 Nov. 2023).

57. Polgar, Z.A.; Stef, M. OFDM Transceiver with Adaptive Modulation Implemented in GNU Radio. In

Proceedings of the 2023 46th International Conference on Telecommunications and Signal Processing

(TSP), Prague, Czech Republic, 12-14 July 2023; pp. 37-42. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2023 doi:10.20944/preprints202312.1974.v1

https://doi.org/10.20944/preprints202312.1974.v1

