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Abstract: Considering the spectrum shortage problem of IoT devices, we introduce a collaborative 

spectrum sensing (CSS) framework in this paper to identify available spectrum resources, so that 

IoT devices can access it and meanwhile avoid causing harmful interference to the normal 

communication of the primary user (PU). However, in the process of the PU’s signal detection in 

IoT devices, the issue about the stopping time and decision cost arises. To this end, we propose a 

distributed cognitive IoT model, which includes two IoT devices independently using sequential 

decision rules to detect the PU. On this basis, we define the stopping time and cost function for IoT 

devices, and formulate an average cost optimization problem in CSS. To solve this problem, we 

further regard the optimal stopping time problem as a finite horizon problem, and solve the 

threshold of the optimal decision rule by dynamic programming. At last, numerical simulation 

results demonstrate the correctness of our proposal in terms of the global false alarm and miss 

detection probability, and it always achieves minimal average cost under various cost of each 

observation taken and thresholds. 

Keywords: internet of thing; cooperative spectrum sensing; sequential detection rule; stopping time; 

cost function 

 

1. Introduction 

As wireless communication technology rapidly develops, spectrum resources cannot meet the 

growing number of internet of thing (IoT) devices and their applications. However, the frequency 

spectrum by primary users (PUs) still lies in insufficient state in the time or space domain. To address 

this concern, cognitive radio (CR) is regarded as a prospective technology to identify available 

spectrum resources and allow IoT devices to opportunistically access it [1,2], without causing harmful 

interference to PUs [3]. But spectrum sensing behaviors of the single IoT device is susceptible to 

inherent factors of wireless propagations. Consequently, cooperative spectrum sensing (CSS) 

paradigm is formulated to exploit spatial diversity and then improve the sensing accuracy of the PU 

signal through the observations of spatially positioning IoT devices. However, IoT architectures 

differ from traditional network architectures, which imply a high degree of reconfigurability, 

adaptability, mobility, and heterogeneity, and present some insurmountable challenges to spectrum 

sensing. Traditional spectrum sensing techniques must be carefully redesigned for use in complex 

and scalable IoT systems [4]. 

In the past, there are some researchers to investigate spectrum sensing for IoT systems. An 

energy-efficient reliable decision transmission in Zhu et al. to was proposed to decrease packet error 

and packet loss in industrial IoT [5]. At a low signal-to-noise ratio (SNR) environment, to minimize 

the energy consumption and sensing time, Ansere et al. proposed a dynamic spectrum sensing 
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algorithm [6]. Wan et al. proposed an energy-efficient CSS scheme to reduce the negative impact of 

spatial correlation [7]. Since the previous energy detector is usually limited by the noise-uncertain, 

Miah et al. also proposed an energy efficient CSS in based CR-enabled IoTs network under the 

interference constraint [8]. Considering that battery-limited IoT devices are densely interconnected, 

Dao et al. optimized the sensing efficiency to leverage a lightweight but effective adaptive medium 

learning method [9]. Long et al. developed a harvesting-sensing-transmission tradeoff problem based 

cognitive IoT to take the diversity of energy harvesting efficiency, spectrum sensing performance and 

quality-of-service (QoS) of data transmission into consideration [10]. In order to enhance spectrum 

utilization in a 5G-based IoT, Abbas et al. proposed a hybrid mode of underlay and interweave 

enabled scheme [11]. Gharib et al. proposed a heterogeneous multi-band multi-user CSS scheme to 

realize secondary users’ scheduling to sense a subset of channel in heterogeneous distributed CR 

networks [12]. Ejaz et al. presented multiband CSS and resource allocation framework in a CR-

enabled IoT 5G network to minimize the energy consumption under the performance requirement 

[13]. To maximize the effective throughput, Zhang et al. jointly optimized the sensing time and packet 

error rate in cognitive IoT [14]. Miah et al. presented a CSS technique in a noise-uncertain 

environment to comprise the use of the Kullback-Leibler divergence in CR-based IoT [15]. To 

encourage the spectrum sharing among unlicensed IoT devises, Lu et al. integrated the incentive 

mechanism into orthogonal frequency division multiplexing (OFDM)-based cognitive IoT network 

with multiple unlicensed IoT devises in the context of incomplete information [16]. In the CSS of high 

real-time scene of IoTs, Gao et al. considered an improved CSS scheme to decrease the latency and 

increase low throughput, where each cognitive node performs truncated sequential probability ratio 

test (SPRT) over each observation vector [17]. Wu et al. achieved CSS between micro-sensing slots in 

cognitive unmanned aerial vehicle networks and approximated the error probability and the 

stopping time [18]. 

Most of these efforts are focused on CR-enabled IoT, considering issues such as the achievable 

throughput, energy efficiency, frequency efficiency, or joint optimization with spectrum resource 

allocation algorithm. These issues are also common in traditional CR networks. However, they did 

not take into account the cost issues in cognitive IoT, such as the sensing/stopping time cost, the cost 

of incorrect decisions, especially when considering CSS among multiple IoT devices. Because only by 

achieving low-cost detection of the PU while ensuring spectrum sensing performance) can efficient 

spectrum sensing and resource allocation be achieved. Therefore, this article considers the optimal 

decision rule in cognitive IoT from the perspective of cost. To this end, a distributed cognitive IoT 

model is first established, including a pair of IoT devices for CSS and sequential detection, on the 

basis of which the stopping time and decision cost are defined, and the joint optimization problem 

between them is proposed. The optimal stopping time and threshold are analyzed by dynamic 

programming to obtain the optimal decision rule. 

The remainder of this article is organized as follows. The local spectrum sensing model and 

sequential detection for CSS in a cognitive IoT are presented in Section 2. The optimal stopping time 

and decision rule based on distributed sequential detection is proposed and analyzed in Section 3. 

Comprehensive simulation result analyses and discussions are discussed in Section 4, and Section 5 

draws a conclusion about this article. 

2. Materials and Methods 

2.1. Spectrum Sensing Model 

In a cognitive IoT without a centralized fusion center (FC), there is a PU and a pair of IoT devices 

participating in CSS, as shown in Figure 1. To protect the PU’s normal operation from detrimental 

interference, each of IoT devices 𝑆ଵ and 𝑆ଶ individually exploits spectrum sensing technology to 

sense the PU at the sensing slot, and then derives a final local decision about the PU’s presence 

through a predetermined combination rule through observations of the PU activity information at 

each multiple micro-sensing slot. According to the global decisions of IoT devices, a distributed CSS 

algorithm is adopted to derive a global decision after the sensing slot to decide whether to allow IoT 
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devices to access the channel. At last, a pair of IoT devices are allowed to utilize the free spectrum 

band via a predetermined spectrum resources algorithm during the transmitting slot if the PU is 

declared as absence. 
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Figure 1. The periodic spectrum sensing frame structure of a cognitive IoT. 

The energy detection is usually utilised as a local sensing technology because it is easy to 

implemented and compatible to the PU network. In an energy detector, suppose that the hypothesis ℋ଴ and ℋଵ represent the PU’s absence and presence, respectively, then the attenuated received PU 

signal at the 𝑘-th micro-sensing slot of a IoT device is expressed as [19]  𝑦௞(𝑚) = ൜𝑛௞(𝑚),                      ℋ଴ℎ௞𝑠௞(𝑚) + 𝑛௞(𝑚), ℋଵ, (1)

where 𝑚 is the PU signal sampling, 𝑛௞(𝑚) is the circularly symmetric complex Gaussian (CSCG) 

noise, 𝑠௞(𝑚) is the complex-valued phase shift keying (PSK) signal at the PU, 𝑛௞(𝑚) and 𝑠௞(𝑚) are 

independent each other, ℎ௞  is the channel gain. Then, the test static 𝐸௞  of energy detector is 

expressed by 𝐸௞ = ଵெ ∑ |𝑦௞(𝑚)|ଶெ௠ୀଵ , (2)

where 𝑀 is the sampling number of the received PU signal. 

Following (2), we evaluate the local performance via a pre-determined detection threshold 𝜆௞. 

Under the hypothesis ℋ଴, the probability density function (PDF) 𝑝଴(𝑙) of the test static 𝐸௞ follows 

Chi-square distribution, the local false alarm probability is obtained by 𝑃௙,௞ = 𝑃(𝑟௞ = 1|ℋ଴) = 𝑃(𝐸௞ > 𝜆௞|ℋ଴) = ׬ 𝑝଴(𝑙)𝑑𝑙ஶఒೖ , (3)

where 𝑟௞ is the sensing sample.  

Suppose 𝑀 is large enough, PDF of 𝐸௞ is approximated as a Gaussian distribution where the 

mean 𝜇଴ = 𝜎௡ଶ, the variance 𝜎଴ଶ = ሾ𝑬|𝑛௞(𝑚)|ସ − 𝜎௡ସሿ 𝑀⁄ . Because 𝑛௞(𝑚) is CSCG, 𝑬|𝑛௞(𝑚)|ସ = 2𝜎௡ସ, 

thus 𝜎଴ଶ = 𝜎௡ସ 𝑀⁄ . The sampling frequency is 𝑓௦, the duration time for the 𝑘-th micro-sensing slot is 𝜏௞, 
for simplicity of denotation, 𝑀 = 𝜏௞𝑓௦. Therefore, the local false alarm probability is given by 𝑃௙,௞ = 𝑄 ቆቀఒೖఙ೙మ − 1ቁ ඥ𝜏௞𝑓௦ቇ, (4)

where  𝑄(𝑙) = ଵ√ଶగ ׬ 𝑒𝑥𝑝 ቀ− ௧మଶ ቁ 𝑑𝑙ஶఒೖ . (5)

Under the hypothesis ℋଵ, PDF of 𝐸௞ is denoted by 𝑝ଵ(𝑙), the local detection probability can be 

expressed by 𝑃ௗ,௞ = 𝑃(𝑟௞ = 1|ℋଵ) = 𝑃(𝐸௞ > 𝜆௞|ℋଵ)  = න 𝑝ଵ(𝑙)𝑑𝑙ஶ
ఒೖ . (6)
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Since PDF of 𝐸௞ is also regarded as a Gaussian distribution where the mean 𝜇ଵ = (1 + 𝜆௞)𝜎௡ଶ, 

the variance 𝜎ଵଶ = ሾ𝑬|ℎ௞𝑠௞(𝑚)|ସ + 𝑬|𝑛௞(𝑚)|ସ − (ℎ௞ଶ𝑠௞ଶ(𝑚) − 𝜎௡ଶ)ଶሿ 𝑀⁄ = ሾ(1 + 𝛾௞)𝜎௡ସሿ 𝑀⁄ , where 𝛾௞  is 

the received SNR at the 𝑘-th micro-sensing slot, the local detection probability can be given by 𝑃ௗ,௞ = 𝑄 ቆቀఒೖఙ೙మ − 𝛾௞ − 1ቁ ට ఛೖ௙ೞଵାଶఊೖቇ. (7)

2.2. Sequential Detection 

Building on the above spectrum sensing model in a cognitive IoT, we further present a sequential 

detection framework for CSS and make the following assumptions and descriptions. The IoT device 𝑆௜ receives a sequence of observations ൛𝑍௞௜ ൟ, and ൛𝑍௞௜ ൟ is i.i.d. and are independent of one another at 

a hypothesis, 𝑖 = 1, 2. Under hypothesis ℋ௝ , the observations from the 𝑖-th IoT device follows a 

marginal probability density function 𝑞௝(௜)
. In addition, the probability of hypotheses ℋ଴ and ℋଵ 

are 1 − 𝜌 and 𝜌, respectively, a probability space is assumed to be (Ω, ℱ) = (ℝஶ × ℝஶ, ℬஶ × ℬஶ) 

equipped with the probability measure 𝑃 = 𝜌𝑃ଵ + (1 − 𝜌)𝑃଴, where 𝑃ଵ = 𝑃ଵ(ଵ)𝑃ଵ(ଶ)
 and 𝑃଴ = 𝑃଴(ଵ)𝑃଴(ଶ)

, 𝑃௝(ଵ)
 and 𝑃௝(ଶ)

 denote the restrictions of 𝑃௝  to the corresponding filtrations ቄℱ௞(௜)ቅ  with ℱ௞(௜) =𝜎ቄ𝑍ଵ(௜), … , 𝑍௞(௜)ቅ . Each IoT devices 𝑆௜  devises a sequential decision rule [20], 𝑇(௜)  is the time of 

stopping sampling, and 𝜃(௜)  takes the value 0 or 1 to declare whether one of two hypotheses is 

accepted. 

3. Disributed Sequential Detection 

According to the above model, we delve into the distributed sequential detection for a cognitive 

IoT in this section, including the optimal stopping time and the optimal sequential detection. 

3.1. Problem Formulation 

To study the cost problem of a distributed sequential detection, we define a cost function Δ൫𝜃(ଵ), 𝜃(ଶ); ℋ൯ indicates the cost of error decision in any one or both of the decisions made by a pair 

of IoT devices. To be specific, Δ൫0, 𝜃(ଶ); ℋଵ൯ ≥ Δ൫1, 𝜃(ଶ); ℋଵ൯ , Δ൫1, 𝜃(ଶ); ℋ଴൯ ≥ Δ൫1, 𝜃(ଶ); ℋଵ൯ , Δ൫1, 𝜃(ଶ); ℋ଴൯ ≥ Δ൫0, 𝜃(ଶ); ℋ଴൯, and Δ൫0, 𝜃(ଶ); ℋଵ൯ ≥ Δ൫0, 𝜃(ଶ); ℋ଴൯. Similarly, the inequalities apply to 𝜃(ଵ) . From these inequalities, each additional sample of an IoT device also incurs a cost of 𝑐 . 

Combining the time of stopping sampling and the cost function, there is a following decision problem, 

such as, inf൛൫்(೔),ఏ(೔)൯ൟ 𝑬൛𝑐𝑇(ଵ) + 𝑐𝑇(ଶ) + Δ൫𝜃(ଵ), 𝜃(ଶ); ℋ൯ൟ. (8)

3.2. Preliminary Analysis 

Since a positive cost 𝑐 correlates with each additional time step taken by IoT devices in (8), the 

person-by-person optimization (PBPO) approach is applied to distributed sequential detection to 

address the problem of (8) [21]. Fixing ൫𝑇(ଶ), 𝜃(ଶ)൯, a stochastic optimization problem is described as 𝐽(𝜌) = inf൛൫்(భ),ఋ(భ)൯ൟ 𝑬൛𝑐𝑇(ଵ) + 𝑐𝑇(ଶ) + Δ൫𝜃(ଵ), 𝜃(ଶ); ℋ൯ൟ. (9)

In (9), there is a special case, i.e., Δ൫𝜃(ଵ), 𝜃(ଶ); ℋ൯ = Δ൫𝜃(ଵ), ℋ൯ + Δ൫𝜃(ଶ), ℋ൯, which is a classical 

sequential detection problem. Additionally, the cost function may be coupled between the two IoT 

devices. 

Before solving (9), a sufficient statistic is preset as 𝜌௞(ଵ) = 𝑃൫ℋ = ℋଵหℱ௞(ଶ)൯, (10)

and the recursion result from Bayes’ formula can be expressed as 
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𝜌௞ାଵ(ଵ) = ఘೖ(భ)௤భ(భ)(௫)ఘೖ(భ)௤భ(భ)(௫)ାቀଵିఘೖ(భ)ቁ௤బ(భ)(௫) 𝑃൫ℋ = ℋଵหℱ௞(ଶ)൯, (11)

with 𝜌଴(ଵ) = 𝜌. Obviously, ቄ𝜌௞(ଵ)ቅ forms a Markov process about the filtration ቄℱ௞(ଵ)ቅ. 

Considering the finite horizon problem, IoT device 𝑆ଵ  discontinues sampling and derives a 

decision not later than time 𝜏. Let 𝐽௞ఛ denote the minimal expected cost at the 𝑘-th micro-sensing slot, 

a dynamic programming equation 

(1) When ൛𝑇(ଵ) = 𝜏ൟ, we have 𝐽்(భ)ఛ ቀ𝜌்(భ)(ଵ) ቁ = inf ൜𝑬 ቄΔ൫0, 𝜃(ଶ); ℋ൯ቚℱ்(భ)(ଵ) ቅ , 𝑬 ቄΔ൫1, 𝜃(ଶ); ℋ൯ቚℱ்(భ)(ଵ) ቅൠ. (12)

(2) When ൛𝑇(ଵ) = 𝑘ൟ, 𝑘 = 1, … , 𝜏 − 1, we have 𝐽்(భ)ఛ ቀ𝜌்(భ)(ଵ) ቁ = inf ቄ𝑬 ቄΔ൫0, 𝜃(ଶ); ℋ൯ቚℱ்(భ)(ଵ) ቅ , 𝑬 ቄΔ൫1, 𝜃(ଶ); ℋ൯ቚℱ்(భ)(ଵ) ቅ , 𝑐 + Δ௞ఛ ൫𝜌௞(ଵ)൯ቅ, (13)

where Δ௞ఛ ൫𝜌௞(ଵ)൯ = 𝑬ቄ𝐽௞ାଵఛ ൫𝜌௞ାଵ(ଵ) ൯หℱ௞(ଵ)ቅ.  

Since 𝐽଴ఛ is the minimal expected cost of the finite horizon problem, (12) and (13) provide the 

dependence of the minimal expected cost on the sufficient statistic 𝜌௞(ଵ)
. It can be clearly seen from 

the right-hand side of unfolding (12), according to 𝑬 ቄΔ൫0, 𝜃(ଶ); ℋ൯ቚℱ்(భ)(ଵ) ቅ = ∑ ∑ 𝑃௝൫𝜃(ଶ) =ଵ௝ୀ଴ଵௗୀ଴𝑑൯Δ൫0, 𝑑; ℋ௝൯ × 𝑃 ቀℋ = ℋ௝ቚℱ்(భ)(ଵ) ቁ , 𝑬 ቄΔ൫1, 𝜃(ଶ); ℋ൯ቚℱ்(భ)(ଵ) ቅ = ∑ ∑ 𝑃௝൫𝜃(ଶ) = 𝑑൯Δ൫1, 𝑑; ℋ௝൯ ×ଵ௝ୀ଴ଵௗୀ଴𝑃 ቀℋ = ℋ௝ቚℱ்(భ)(ଵ) ቁ, and using (8). The same holds true for (13), then we have 𝑬ቄ𝐽௞ାଵఛ ൫𝜌௞ାଵ(ଵ) ൯หℱ௞(ଵ)ቅ ׬= 𝐽௞ାଵఛ ൫𝜌௞ାଵ(ଵ) ൯ൣ𝜌௞(ଵ)𝑞ଵ(ଵ)(𝑥) + ൫1 − 𝜌௞(ଵ)൯𝑞଴(ଵ)(𝑥)൧d𝑥. 

In addition, we define a function with respect to 𝜌௞(ଵ)
 as 𝑓൫𝜌௞(ଵ)൯ =min ൜𝑬 ቄΔ൫0, 𝜃(ଶ); ℋ൯ቚℱ்(భ)(ଵ) ቅ , 𝑬 ቄΔ൫1, 𝜃(ଶ); ℋ൯ቚℱ்(భ)(ଵ) ቅൠ , for all 𝑘 = 0, … 𝜏 , there are inequalities about 𝑓(0) and 𝑓(1) which follow their respective definitions, i.e., 𝑓(0) < 𝑐 + Δ௞ఛ (0), (14)

and 𝑓(1) < 𝑐 + Δ௞ఛ (0). (15)

Moreover, the monotonicity results of 𝐽௞ఛ(𝜌) can be given by 𝐽௞ఛ(𝜌) ≤ 𝐽௞ାଵఛ (𝜌), 0 ≤ 𝜋 ≤ 1, (16)

and 𝐽௞ఛ(𝜌) ≤ Δ௞ାଵఛ (𝜌), 0 ≤ 𝜋 ≤ 1, (17)

since each of the left-hand quantities is a hypo-mundum, on a larger set of stopping times than the 

corresponding right-hand quantity. 

3.3. Optimal Stopping Time 

To solve problem (9), we consider the limit 𝜏 → ∞ , the pointwise limit of 𝐽௞ఛ  exists and is 

independent of 𝑘. More specifically, we have 𝐽(𝜌) = limఛ→ஶ 𝐽௞ఛ(𝜌) = limఛ→ஶ 𝐽௞ఛ(𝜌) , 0 ≤ 𝜌 ≤ 1. (18)

Theorem 1. The minimal expected cost on J(ρ) satisfies the Bellman equation 

𝐽(𝜌) = min൛𝑬൛Δ൫0, 𝜃(ଶ); ℋ൯ൟ, 𝑬൛Δ൫1, 𝜃(ଶ); ℋ൯ൟ, 𝑐 + Δ௃(𝜌)ൟ, 0 ≤ 𝜌 ≤ 1, (19)

where Δ௃(𝜌) = 𝑬ሼ𝐽(𝜌ଵ)ሽ, 0 ≤ 𝜌 ≤ 1. 

The optimal stopping time is 
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𝑇௢௣௧ = infቄ𝑘ห𝜌௞(ଵ) ∉ ൫𝜉௅(ଵ), 𝜉௎(ଵ)൯ቅ, (20)

where a pair of thresholds ൫𝜉௅(ଵ), 𝜉௎(ଵ)൯ are described as 𝜉௅(ଵ) = sup ൜0 ≤ 𝜌 ≤ ଵଶ ฬ𝑐 + Δ௃(𝜌) = 𝑬൛Δ൫0, 𝜃(ଶ); ℋ൯ൟൠ, (21)

and 𝜉௎(ଵ) = inf ቄ1/2 ≤ 𝜌 ≤ 1ቚ𝑐 + Δ௃(𝜌) = 𝑬൛Δ൫1, 𝜃(ଶ); ℋ൯ൟቅ, (22)

Proof of Theorem 1. Taking the limit of (13) and using (18), (19) follows. The concavity of 𝐽 derives 

from the limit of concave functions. Inequalities like (14) and (15) also hold. Utilizing these 

inequalities, the concavity of Δ௃, and 𝐽(𝜌), the optimal stopping time is the threshold type, as shown 

in (20), where the threshold is determined by □ 

𝑐 + Δ௃൫𝜉௅(ଵ)൯ = 𝑬൛Δ൫0, 𝜃(ଶ); ℋ൯ൟ|ቄఘୀఘಽ(భ)ቅ, (23)

and 𝑐 + Δ௃൫𝜉௎(ଵ)൯ = 𝑬൛Δ൫1, 𝜃(ଶ); ℋ൯ൟ|ቄఘୀఘ(ೆభ)ቅ. (24)

This establishes the proposition. 

3.4. Optimal Decision Rule 

Similar to an argument used in the proof of Proposition 7.4 [20], the uniqueness of the limit value 

function for (9) follows. Moreover, since the optimal thresholds 𝜉௅(ଵ)
 and 𝜉௎(ଵ)

 are coupled from (14) 

and (15), two simultaneous dynamic programming equations should be solved. 

Given a value of Δ൫𝑇(ଶ), 𝜃(ଶ)൯, the optimal local decision rule of the IoT device 𝑆ଵ is derived, vice 

versa. That is to say, when two IoT devices achieve their respective optimal decisions for each other’s 

optimal decision rule. As a result, the global optimal decision rules can be iteratively implemented 

by continuously fixing the threshold of one IoT device and optimizing the threshold of the other by 

Theorem 1. 

Finally, there are following process at the optimal decision rule of the IoT devices 𝑆௜, 𝑖 = 1, 2, 

such as, (1) if 𝜌௞(௜) ≤ 𝜉௅(௜)
, the decision rule accepts ℋ଴; (2) if 𝜌௞(௜) ≥ 𝜉௎(௜)

, the decision rule accepts accept ℋଵ; (3) if 𝜉௅(௜) ≤ 𝜌௞(௜) ≤ 𝜉௎(௜)
, the decision rule continues sampling, where a pair of thresholds ൫𝜉௅(௜), 𝜉௎(௜)൯ 

at the per-IoT device are obtained by 𝜉௅(௜) = ௉ത೘(೔)ଵି௉ത೑(೔), (25)

and 𝜉௎(௜) = ଵି௉ത೘(೔)௉ത೑(೔) , (26)

where 𝑃ത௠(௜)
 and 𝑃ത௙(௜)

 are the tolerable miss detection probability and the tolerable false alarm 

probability, respectively. 

A similar method can be utilised for the quickest detection problem. In such a problem, each of 

the IoT devices 𝑆௝  sequentially receives observations ቄ𝑍௞(௝)ቅ , then there exists a change point 𝑡 

following a geometric distribution with a mass at 0, and correspondingly there is a known marginal 

density 𝑞଴(௝)
 for 𝑘 = 1, … , 𝑡 − 1  and 𝑞ଵ(௝)

 for 𝑘 = 𝑡, … . Given the change point, IoT device 

observations are assumed to be conditionally independent and it is valid within IoT devices and 

across IoT devices. Now, in order to quickly detect the change point and control the false alarm 

probability, each IoT device needs to optimally select stopping times 𝑇(௜) (each measurable with 
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respect to their own filtrations ℱ(௜) ) with aim of minimizing 𝐸൛Δ൫𝑇(ଵ), 𝑇(ଶ);  𝑡൯ൟ , where Δ൫𝑇(ଵ), 𝑇(ଶ);  𝑡൯ = 𝟏൛்(భ)ழ௧ൟ𝟏൛்(మ)ழ௧ൟ + 𝑐ଵ൫𝑇(ଵ) − 𝑡൯𝟏൛்(భ)ஹ௧ൟ + +𝑐ଶ൫𝑇(ଶ) − 𝑡൯𝟏൛்(మ)ஹ௧ൟ . Therefore, the 

optimal solution can be given by 𝑇(ଵ) = infቄ𝑘ห𝑃൫𝑡 ≤ 𝑘หℱ௞(ଵ)൯ ≥ 𝜉ଵ∗ቅ, (27)

and 𝑇(ଶ) = infቄ𝑘ห𝑃൫𝑡 ≤ 𝑘หℱ௞(ଶ)൯ ≥ 𝜉ଶ∗ቅ, (28)

where a pair of optimal thresholds 𝜉ଵ∗  and 𝜉ଶ∗  are coupled via a system of two dynamic 

programming equations. The term 𝟏൛்(భ)ழ௧ൟ𝟏൛்(మ)ழ௧ൟ  appears in the cost function that couples the 

solution. 

4. Simulation results 

In this section, simulation results are introduced to corroborate the correctness and effectiveness 

of our proposal with respect to the global performance and the average cost from a IoT device. To 

this end, in 106 spectrum sensing frames, unless otherwise specified, some parameter settings are 

considered as follows: the number of micro-sensing slots is 20, the probability 𝜌 of the hypothesis ℋଵ is 0.5, the local detection probability and the local false alarm probability are set to be 0.6 and 0.4, 

respectively. Both of the tolerable false alarm probability and the tolerable false alarm probability 

varies from 0.01 to 0.3 within an interval of 0.01. 

Figure 2 illustrates the relationship of the global false alarm probability 𝑄௙ and the tolerable 

false alarm probability 𝑃ത௙ under various tolerable miss detection probabilities. First of all, it can be 

seen that as the tolerable false alarm probability becomes more relaxed, the global false alarm 

probability shows a stepwise increase, and the larger the tolerable false alarm probability, the larger 

the gradient of the step. This is because for a fixed probability, an increase in the tolerable false alarm 

probability leads to a decrease in the upper threshold 𝜉௎, and the sequential detection rule is easier 

to accept ℋଵ, which in turn results in an increase in the global false alarm probability. Meanwhile, it 

is worth noting that on the steps before the global false alarm probability jumps, although the 

tolerable false alarm probability continues to increase, the global false alarm probability remains 

unchanged. At this point, an increase in the initial stopping time does not bring about a change in the 

global false alarm probability, that is, an increase in observation does not bring about a change in the 

global false alarm probability, and the initial stopping time is the optimal stopping time. 

Moreover, the impact of the tolerable miss detection probability on the global false alarm 

probability can be neglectable at the beginning. That is to say, the thresholds (𝜉௅, 𝜉௎) of the sequential 

detection rule is still not satisfied. But as the tolerable false alarm probability increases, the impact of 

the tolerable miss detection probability is becoming more and more obvious. To be specific, the larger 

the tolerable miss detection probability, the faster the global false alarm probability jumps. 

Apparently, the large the tolerable miss detection probability, the larger the upper threshold 𝜉௎ , 

resulting in a more acceptable ℋଵ. 

Under various tolerable miss detection probabilities, the relationship of the global miss detection 

probability 𝑄௠  and the tolerable false alarm probability 𝑃ത௙  is shown in Figure 3. In contrast to 

Figure 2, the tolerable false alarm probability has a greater effect on the global miss detection 

probability than the global false alarm probability and the effect is positive. In details, when the 

tolerable false alarm probability increases from 0.01 to 0.3, correspondingly, the global miss detection 

probability basically goes down from 0.95 to 0.22. Since the lower threshold 𝜉௅  increases as the 

tolerable false alarm probability increases according to (25), the sequential detection rule is prone to 

accept ℋ଴, resulting in a decrease of the global miss detection probability. Furthermore, in such an 

environment, the global miss detection probability of a large tolerable miss detection probability 

decreases first because it increases the lower threshold 𝜉௅, i.e., 𝑃ത௠ = 0.2. 
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Figure 2. The global false alarm probability vs the tolerable false alarm probability. 

 

Figure 3. The global miss detection probability vs the tolerable false alarm probability. 
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In addition, similar to Figure 2, the steps before the global miss detection probability jumps, 

although the tolerable false alarm probability continues to increase, the global false alarm probability 

remains unchanged. At this point, an increase in the initial stopping time does not bring about a 

change in the global miss detection probability, that is, an increase in observation does not bring 

about a change in the global miss detection probability, and the initial stopping time is the optimal 

stopping time. 

Next, we further take the impact of the tolerable miss detection probability on the global 

performance given a fixed tolerable false alarm probability into consideration. As displayed in Figure 

4, regardless of the tolerable miss detection probability, it is obvious that a large tolerable false alarm 

probability leads to a low upper threshold 𝜉௎, therefore being prone to accept ℋଵ. However, it also 

should be noted that as the tolerable miss detection probability increases, the global false alarm 

probability under different tolerable false alarm has jitter at different positions, such as jitter up at 𝑃ത௙ = 0.05, 0.1, 02 and jitter down when 𝑃ത௙ = 0.2. This is not surprise, and is a direct of that a pair of 

tolerable probabilities simultaneously change, and the decision condition is reached within a certain 

stopping time. 

 

Figure 4. The global false alarm probability vs the tolerable miss detection probability. 

Similar to the global miss detection probability of Figure 4, given the tolerable false alarm 

probability, the positive impact of the tolerable miss detection probability is illustrated in Figure 5. 

In particular, the trend of the global miss detection probability is exactly the opposite to that of the 

global false alarm probability and the change interval is larger. There is no doubt that, the tolerable 

miss detection probability makes the lower threshold 𝜉௅ smaller so that ℋଵ is easier to accept. 

Following the joint impact of the tolerable performance metrics on the global performance, we 

further simulate the optimal cost of the tolerable performance under various costs of each observation 

taken, where the cost of each observation taken 𝑐 is set to be 0.1 and 1. As shown in Figure 6, for a 

pair of fixed tolerable performance, the larger cost of each observation taken 𝑐, the larger the average 

cost. Moreover, as the tolerable false alarm probability increases, the average cost decreases. This is 

to say, an increasing tolerable false alarm probability makes the lower/upper threshold 
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larger/smaller, resulting in that the global decision is difficult to be made. Consequently, the stopping 

time increases. However, the increasing tolerable false alarm probability also makes the global miss 

detection probability decrease, as shown in Figure 3. As a result, the global miss detection probability 

dominates the average cost because the cost about the miss detection decreases. 

 

Figure 5. The global miss detection probability vs the tolerable miss detection probability. 

 

0 0.05 0.1 0.15 0.2 0.25 0.3
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 0.05 0.1 0.15 0.2 0.25 0.3
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 December 2023                   doi:10.20944/preprints202312.1965.v1

https://doi.org/10.20944/preprints202312.1965.v1


 11 

 

Figure 6. The average cost vs the tolerable false alarm probability under various costs of each 

observation taken. 

As with Figure 6, the larger cost of each observation taken results in a lager average cost in Figure 

7. Following the global miss detection probability in Figure 5, the average cost follows it. The 

simulation result also confirms once again that the global miss detection dominates the average cost. 

In summary, following PBPO methodology, the optimal sequential detection rule can be reached as 

the sensing environments to minimize the cost at a IoT device. 

 

Figure 7. The average cost vs the tolerable miss detection probability under various costs of each 

observation taken. 

5. Conclusions 

In this article, we delved into the distributed sequential detection rule for CSS in a cognitive IoT. 

Consequently, we first establish a spectrum sensing model in the periodic spectrum sensing frame 

structure and propose a sequential detection framework. On basis of this, we further define the 

stopping time and cost function for a IoT device and propose an optimization problem about the 

average cost. Moreover, PBPO methodology is applied to solve such a finite horizon problem, thereby 

analysing the stopping time for the optimal sequential detection. Finally, a series of numerical 

simulation results show that correctness and effectiveness of our proposed sequential detection rule 

in terms of the stopping time and thresholds. 
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