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Abstract: Considering the spectrum shortage problem of IoT devices, we introduce a collaborative
spectrum sensing (CSS) framework in this paper to identify available spectrum resources, so that
IoT devices can access it and meanwhile avoid causing harmful interference to the normal
communication of the primary user (PU). However, in the process of the PU’s signal detection in
IoT devices, the issue about the stopping time and decision cost arises. To this end, we propose a
distributed cognitive IoT model, which includes two IoT devices independently using sequential
decision rules to detect the PU. On this basis, we define the stopping time and cost function for IoT
devices, and formulate an average cost optimization problem in CSS. To solve this problem, we
further regard the optimal stopping time problem as a finite horizon problem, and solve the
threshold of the optimal decision rule by dynamic programming. At last, numerical simulation
results demonstrate the correctness of our proposal in terms of the global false alarm and miss
detection probability, and it always achieves minimal average cost under various cost of each
observation taken and thresholds.

Keywords: internet of thing; cooperative spectrum sensing; sequential detection rule; stopping time;
cost function

1. Introduction

As wireless communication technology rapidly develops, spectrum resources cannot meet the
growing number of internet of thing (IoT) devices and their applications. However, the frequency
spectrum by primary users (PUs) still lies in insufficient state in the time or space domain. To address
this concern, cognitive radio (CR) is regarded as a prospective technology to identify available
spectrum resources and allow IoT devices to opportunistically access it [1,2], without causing harmful
interference to PUs [3]. But spectrum sensing behaviors of the single IoT device is susceptible to
inherent factors of wireless propagations. Consequently, cooperative spectrum sensing (CSS)
paradigm is formulated to exploit spatial diversity and then improve the sensing accuracy of the PU
signal through the observations of spatially positioning IoT devices. However, IoT architectures
differ from traditional network architectures, which imply a high degree of reconfigurability,
adaptability, mobility, and heterogeneity, and present some insurmountable challenges to spectrum
sensing. Traditional spectrum sensing techniques must be carefully redesigned for use in complex
and scalable IoT systems [4].

In the past, there are some researchers to investigate spectrum sensing for IoT systems. An
energy-efficient reliable decision transmission in Zhu et al. to was proposed to decrease packet error
and packet loss in industrial IoT [5]. At a low signal-to-noise ratio (SNR) environment, to minimize
the energy consumption and sensing time, Ansere et al. proposed a dynamic spectrum sensing
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algorithm [6]. Wan et al. proposed an energy-efficient CSS scheme to reduce the negative impact of
spatial correlation [7]. Since the previous energy detector is usually limited by the noise-uncertain,
Miah et al. also proposed an energy efficient CSS in based CR-enabled IoTs network under the
interference constraint [8]. Considering that battery-limited IoT devices are densely interconnected,
Dao et al. optimized the sensing efficiency to leverage a lightweight but effective adaptive medium
learning method [9]. Long et al. developed a harvesting-sensing-transmission tradeoff problem based
cognitive IoT to take the diversity of energy harvesting efficiency, spectrum sensing performance and
quality-of-service (QoS) of data transmission into consideration [10]. In order to enhance spectrum
utilization in a 5G-based IoT, Abbas et al. proposed a hybrid mode of underlay and interweave
enabled scheme [11]. Gharib et al. proposed a heterogeneous multi-band multi-user CSS scheme to
realize secondary users’ scheduling to sense a subset of channel in heterogeneous distributed CR
networks [12]. Ejaz et al. presented multiband CSS and resource allocation framework in a CR-
enabled IoT 5G network to minimize the energy consumption under the performance requirement
[13]. To maximize the effective throughput, Zhang et al. jointly optimized the sensing time and packet
error rate in cognitive IoT [14]. Miah et al. presented a CSS technique in a noise-uncertain
environment to comprise the use of the Kullback-Leibler divergence in CR-based IoT [15]. To
encourage the spectrum sharing among unlicensed IoT devises, Lu et al. integrated the incentive
mechanism into orthogonal frequency division multiplexing (OFDM)-based cognitive IoT network
with multiple unlicensed IoT devises in the context of incomplete information [16]. In the CSS of high
real-time scene of IoTs, Gao et al. considered an improved CSS scheme to decrease the latency and
increase low throughput, where each cognitive node performs truncated sequential probability ratio
test (SPRT) over each observation vector [17]. Wu et al. achieved CSS between micro-sensing slots in
cognitive unmanned aerial vehicle networks and approximated the error probability and the
stopping time [18].

Most of these efforts are focused on CR-enabled IoT, considering issues such as the achievable
throughput, energy efficiency, frequency efficiency, or joint optimization with spectrum resource
allocation algorithm. These issues are also common in traditional CR networks. However, they did
not take into account the cost issues in cognitive IoT, such as the sensing/stopping time cost, the cost
of incorrect decisions, especially when considering CSS among multiple IoT devices. Because only by
achieving low-cost detection of the PU while ensuring spectrum sensing performance) can efficient
spectrum sensing and resource allocation be achieved. Therefore, this article considers the optimal
decision rule in cognitive IoT from the perspective of cost. To this end, a distributed cognitive IoT
model is first established, including a pair of IoT devices for CSS and sequential detection, on the
basis of which the stopping time and decision cost are defined, and the joint optimization problem
between them is proposed. The optimal stopping time and threshold are analyzed by dynamic
programming to obtain the optimal decision rule.

The remainder of this article is organized as follows. The local spectrum sensing model and
sequential detection for CSS in a cognitive IoT are presented in Section 2. The optimal stopping time
and decision rule based on distributed sequential detection is proposed and analyzed in Section 3.
Comprehensive simulation result analyses and discussions are discussed in Section 4, and Section 5
draws a conclusion about this article.

2. Materials and Methods

2.1. Spectrum Sensing Model

In a cognitive IoT without a centralized fusion center (FC), there is a PU and a pair of IoT devices
participating in CSS, as shown in Figure 1. To protect the PU’s normal operation from detrimental
interference, each of IoT devices S; and S, individually exploits spectrum sensing technology to
sense the PU at the sensing slot, and then derives a final local decision about the PU’s presence
through a predetermined combination rule through observations of the PU activity information at
each multiple micro-sensing slot. According to the global decisions of IoT devices, a distributed CSS
algorithm is adopted to derive a global decision after the sensing slot to decide whether to allow IoT


https://doi.org/10.20944/preprints202312.1965.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 December 2023 doi:10.20944/preprints202312.1965.v1

devices to access the channel. At last, a pair of IoT devices are allowed to utilize the free spectrum
band via a predetermined spectrum resources algorithm during the transmitting slot if the PU is
declared as absence.

stopping time
sensing slot transmitting slot

ﬁnultiple micro-sensing slh/ \

data transmission
S2 ] 2 cee

\sequential detection rule %

A fixed frame

Figure 1. The periodic spectrum sensing frame structure of a cognitive IoT.

The energy detection is usually utilised as a local sensing technology because it is easy to
implemented and compatible to the PU network. In an energy detector, suppose that the hypothesis
Hy and H; represent the PU’s absence and presence, respectively, then the attenuated received PU
signal at the k-th micro-sensing slot of a IoT device is expressed as [19]

_ (i (m), H,
Yie(m) = {h:sk () + e (m), 36, @

where m is the PU signal sampling, n,(m) is the circularly symmetric complex Gaussian (CSCG)
noise, sx(m) is the complex-valued phase shift keying (PSK) signal at the PU, n;,(m) and s,(m) are
independent each other, hj is the channel gain. Then, the test static Ej, of energy detector is
expressed by

By = 5 Inoalyem)l?, )

where M is the sampling number of the received PU signal.

Following (2), we evaluate the local performance via a pre-determined detection threshold 4,.
Under the hypothesis H,, the probability density function (PDF) p,(l) of the test static E; follows
Chi-square distribution, the local false alarm probability is obtained by

Pri = P(ni = 113) = P(Ey > LlHo) = [, po(Ddll, 3)

where 1} is the sensing sample.

Suppose M is large enough, PDF of Ej is approximated as a Gaussian distribution where the
mean p, = 02, the variance ¢ = [E|n,(m)|* — 6,¥]/M. Because n,(m) is CSCG, E|n,(m)|* = 20},
thus ¢ = o,t/M. The sampling frequency is f;, the duration time for the k-th micro-sensing slot is 7y,
for simplicity of denotation, M = 7 f;. Therefore, the local false alarm probability is given by

Pric=Q ((i—g 1) Jﬁ) )

where
1 (oo t?
Q) = 7= [ exp (= 5) )
Under the hypothesis H;, PDF of Ej, is denoted by p; (1), the local detection probability can be
expressed by
Pase = P = 1196) = P(E > 24d6) = | py(at ©

Ak
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Since PDF of Ej, is also regarded as a Gaussian distribution where the mean p; = (1 + 1;)d?,
the variance o2 = [E|hys,(m)|* + E|n,(m)|* — (hZsZ(m) — 62)?]/M = [(1 + y)ot]/M, where y,, is
the received SNR at the k-th micro-sensing slot, the local detection probability can be given by

Par =0Q ((2_:;1 —Vk— 1) /%) )

2.2. Sequential Detection

Building on the above spectrum sensing model in a cognitive IoT, we further present a sequential
detection framework for CSS and make the following assumptions and descriptions. The IoT device
S; receives a sequence of observations {Z}}, and {Z}} isii.d. and are independent of one another at
a hypothesis, i = 1,2. Under hypothesis 7, the observations from the i-th IoT device follows a
marginal probability density function qJ(.i). In addition, the probability of hypotheses H, and H;
are 1 —p and p, respectively, a probability space is assumed to be (Q,F) = (R* x R®, B* x B*)
equipped with the probability measure P = pP; + (1 — p)P,, where P; = Pl(l) Pl(z) and Py, = Po(l)PO(z),
Pj(l) and P;.(Z) denote the restrictions of P; to the corresponding filtrations {Tk(i)} with Tk(i) =

U{ZF), ...,Z,({i)}. Each IoT devices S; devises a sequential decision rule [20], T® is the time of

stopping sampling, and 6 takes the value 0 or 1 to declare whether one of two hypotheses is
accepted.

3. Disributed Sequential Detection

According to the above model, we delve into the distributed sequential detection for a cognitive
IoT in this section, including the optimal stopping time and the optimal sequential detection.

3.1. Problem Formulation

To study the cost problem of a distributed sequential detection, we define a cost function
A(OM,0@;3() indicates the cost of error decision in any one or both of the decisions made by a pair
of IoT devices. To be specificc A(0,0®;%;) > A(1,0®;H,), A(L60@P;3,) = A(1,0P;4,) ,
A(1,0@;7,) = A(0,0P;3,), and A(0,0@;7,) = A(0,0@; ;). Similarly, the inequalities apply to
6@ . From these inequalities, each additional sample of an IoT device also incurs a cost of c.
Combining the time of stopping sampling and the cost function, there is a following decision problem,
such as,

i M 4 (T@ W @,
{(T(}{lg(i))}E{cT +cT@ +A(6W,0@; 7))}, ®)

3.2. Preliminary Analysis

Since a positive cost ¢ correlates with each additional time step taken by IoT devices in (8), the
person-by-person optimization (PBPO) approach is applied to distributed sequential detection to
address the problem of (8) [21]. Fixing (T®,0®), a stochastic optimization problem is described as

J(p) = { E{cT® +cT® + A(6W, 0®; 7)) )

5y
In (9), there is a special case, i.e., A(6®,0@;3) = A(6W,H) + A(6P, 7), which is a classical
sequential detection problem. Additionally, the cost function may be coupled between the two IoT
devices.
Before solving (9), a sufficient statistic is preset as

p = P(7 =36 |F?), (10)

and the recursion result from Bayes” formula can be expressed as
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k+1 p(l)qgl)(x)+(1 p(l))q(l)(_x)

P(7 = 34,|FP), (11)

with p(l) = p. Obviously, { } forms a Markov process about the filtration {}"(1)}

Considering the finite horizon problem, IoT device S; discontinues sampling and derives a
decision not later than time 7. Let J; denote the minimal expected cost at the k-th micro-sensing slot,
a dynamic programming equation
(1) When {T® =1}, we have

Jiw (0$0) = inf{ {a(0,6@;30)|7()} E{a(1,6®; 7-[)|}"((1)}} 12)
(2) When {T® =k}, k=1,..,7— 1, we have
Jiw (080, = inf{E{8(0,6®;30)|F L0} E{a(1,0®;30)|F 0} ¢ + i (o)}, (13)

where 87 (p(") = E{Jf.1 (o))"}

Since Jj is the minimal expected cost of the finite horizon problem, (12) and (13) provide the
dependence of the minimal expected cost on the sufficient statistic p, M Tt can be clearly seen from
the right-hand side of unfolding (12), according to E{A(O 6@; 7-[)|1F'((1)} YizoXj=o P(6@ =
Da(0.d:36) x P (1 =2|72) ., B{a(LODIO|FD} = Tho B0 (0 = )A(1,4;96) x
P (}[ = j—[j|1}—“(2)) and using (8). The same holds true for (13), then we have E{],Eﬂ(p,&)l)p’k(l)} =

f]lg+1(p;£1+)1 [P}El)%l) (x) + (1 - p,(cl))q(gl) (x)]dx‘
In addition, we define a function with respect to p,El) as f (p,gl)) =

min {E {A(O,B(z);}[)|T;H)} {A(l 0@, 7—[)|T((1)}}, for all k =0,...7, there are inequalities about
f(0) and f(1) which follow their respective definitions, i.e.,

f(0) < c+4,(0), (14)
and
fQ) < c+ 4E(0). (15)
Moreover, the monotonicity results of J;(p) can be given by
Ji() < Jjwa(p),0sm <1, (16)
and
Ji(p) < 871 (p),0<m <1, 17)

since each of the left-hand quantities is a hypo-mundum, on a larger set of stopping times than the
corresponding right-hand quantity.

3.3. Optimal Stopping Time

To solve problem (9), we consider the limit T — oo, the pointwise limit of Ji exists and is
independent of k. More specifically, we have

J(p) = lim Ji(p) = lim Ji(p),0 < p < 1. (18)
Theorem 1. The minimal expected cost on J(p) satisfies the Bellman equation

J(p) = min{E{A(0,0@; 7))}, E{A(1,6@; #)},c +A;(p)},0<p <1, (19)

where A;(p) = E{J(p1)},0<p < 1.
The optimal stopping time is
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Tope = inf{k|p{” & (£, €57)}, (20)
where a pair of thresholds (§{”,{") are described as
M = sup {0 <p< §|c +4,(p) = E{A(O,H(Z);}[)}}, 1)
and
) =nf{1/2 < p < 1c + 4,(p) = E(8(1,6®;31)}}, (22)

Proof of Theorem 1. Taking the limit of (13) and using (18), (19) follows. The concavity of J derives
from the limit of concave functions. Inequalities like (14) and (15) also hold. Utilizing these
inequalities, the concavity of A;, and J(p), the optimal stopping time is the threshold type, as shown
in (20), where the threshold is determined by o

e+ 8,(65) = E[3(0,63 300}y @)
and
e+ 8y (68") = E(B(1L63 30}y @

This establishes the proposition.

3.4. Optimal Decision Rule

Similar to an argument used in the proof of Proposition 7.4 [20], the uniqueness of the limit value
function for (9) follows. Moreover, since the optimal thresholds ¢ L(l) and ¢ 1(11) are coupled from (14)
and (15), two simultaneous dynamic programming equations should be solved.

Given a value of A(T(z), 0(2)), the optimal local decision rule of the IoT device S; is derived, vice
versa. That is to say, when two IoT devices achieve their respective optimal decisions for each other’s
optimal decision rule. As a result, the global optimal decision rules can be iteratively implemented
by continuously fixing the threshold of one IoT device and optimizing the threshold of the other by
Theorem 1.

Finally, there are following process at the optimal decision rule of the IoT devices S;, i = 1,2,
such as, (1) if p,gi) <¢ L(i), the decision rule accepts H; (2) if p,(ci) >¢ l(,i), the decision rule accepts accept
Hy; (3)if € fi) < p,({i) <¢ l(,i), the decision rule continues sampling, where a pair of thresholds (& O ¢ [(,i)
at the per-IoT device are obtained by

. 5
W _ PR
¢ . ﬁ;l)’ (25)

and

. 5()
(i) _ 1-P
O =t 26)
f

where ES) and I3f(i) are the tolerable miss detection probability and the tolerable false alarm
probability, respectively.

A similar method can be utilised for the quickest detection problem. In such a problem, each of
the IoT devices S; sequentially receives observations {Z,Ej)}, then there exists a change point t
following a geometric distribution with a mass at 0, and correspondingly there is a known marginal
density q(()j) for k=1,..,t—1 and qij ) for k=t ... Given the change point, IoT device
observations are assumed to be conditionally independent and it is valid within IoT devices and
across IoT devices. Now, in order to quickly detect the change point and control the false alarm
probability, each IoT device needs to optimally select stopping times T® (each measurable with

doi:10.20944/preprints202312.1965.v1
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respect to their own filtrations F® ) with aim of minimizing E{A(T®,T®; t)}, where
ATO, T®; ) = Lrweglpoe + o (T® —t) Lirmsg ++e (T® — t)l{T(z)zt} . Therefore, the
optimal solution can be given by

7O = inf{k|P(¢ < k|F®) = &), (27)
and
7@ = inf{k|P(t < k|F?) 2 &), 28)

where a pair of optimal thresholds ¢; and ¢, are coupled via a system of two dynamic
programming equations. The term 1ameylyp@o) appears in the cost function that couples the

solution.

4. Simulation results

In this section, simulation results are introduced to corroborate the correctness and effectiveness
of our proposal with respect to the global performance and the average cost from a IoT device. To
this end, in 10° spectrum sensing frames, unless otherwise specified, some parameter settings are
considered as follows: the number of micro-sensing slots is 20, the probability p of the hypothesis
H; is 0.5, the local detection probability and the local false alarm probability are set to be 0.6 and 0.4,
respectively. Both of the tolerable false alarm probability and the tolerable false alarm probability
varies from 0.01 to 0.3 within an interval of 0.01.

Figure 2 illustrates the relationship of the global false alarm probability Q; and the tolerable
false alarm probability P; under various tolerable miss detection probabilities. First of all, it can be
seen that as the tolerable false alarm probability becomes more relaxed, the global false alarm
probability shows a stepwise increase, and the larger the tolerable false alarm probability, the larger
the gradient of the step. This is because for a fixed probability, an increase in the tolerable false alarm
probability leads to a decrease in the upper threshold &, and the sequential detection rule is easier
to accept H;, which in turn results in an increase in the global false alarm probability. Meanwhile, it
is worth noting that on the steps before the global false alarm probability jumps, although the
tolerable false alarm probability continues to increase, the global false alarm probability remains
unchanged. At this point, an increase in the initial stopping time does not bring about a change in the
global false alarm probability, that is, an increase in observation does not bring about a change in the
global false alarm probability, and the initial stopping time is the optimal stopping time.

Moreover, the impact of the tolerable miss detection probability on the global false alarm
probability can be neglectable at the beginning. That is to say, the thresholds (£, ¢y,) of the sequential
detection rule is still not satisfied. But as the tolerable false alarm probability increases, the impact of
the tolerable miss detection probability is becoming more and more obvious. To be specific, the larger
the tolerable miss detection probability, the faster the global false alarm probability jumps.
Apparently, the large the tolerable miss detection probability, the larger the upper threshold ¢,
resulting in a more acceptable Hj.

Under various tolerable miss detection probabilities, the relationship of the global miss detection
probability @Q,, and the tolerable false alarm probability P; is shown in Figure 3. In contrast to
Figure 2, the tolerable false alarm probability has a greater effect on the global miss detection
probability than the global false alarm probability and the effect is positive. In details, when the
tolerable false alarm probability increases from 0.01 to 0.3, correspondingly, the global miss detection
probability basically goes down from 0.95 to 0.22. Since the lower threshold ¢, increases as the
tolerable false alarm probability increases according to (25), the sequential detection rule is prone to
accept H,, resulting in a decrease of the global miss detection probability. Furthermore, in such an
environment, the global miss detection probability of a large tolerable miss detection probability
decreases first because it increases the lower threshold &, i.e., P, = 0.2.

doi:10.20944/preprints202312.1965.v1


https://doi.org/10.20944/preprints202312.1965.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 December 2023 doi:10.20944/preprints202312.1965.v1

0.25r
S
< o2t
i)
3
=
2
S
g
= L
o —6— P, = 0.05
= 01F —5— P, =0.10
e —%— P, =0.15
£ —— P, =020
S
B0
2 005
=
g’l e
0 e S | 1 1 1 1 |
0 0.05 0.1 0.15 0.2 0.25 0.3

The tolerable false alarm probability, Pf

Figure 2. The global false alarm probability vs the tolerable false alarm probability.

1 —
—6— P, =0.05
3 _E_Pm, = 0.10
Qg 0.9 —%—P,=0.15
- —— P, =0.20
= 08¢
e
<
e
o
207F
=
S
S 06f
15
o
205}
g
=
= 04F
o0
[}
=
= 03Ff
0.2 ' '
0 0.05 0.1 0.15 0.2 0.25 0.3

The tolerable false alarm probability, Pf

Figure 3. The global miss detection probability vs the tolerable false alarm probability.


https://doi.org/10.20944/preprints202312.1965.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 December 2023 doi:10.20944/preprints202312.1965.v1

In addition, similar to Figure 2, the steps before the global miss detection probability jumps,
although the tolerable false alarm probability continues to increase, the global false alarm probability
remains unchanged. At this point, an increase in the initial stopping time does not bring about a
change in the global miss detection probability, that is, an increase in observation does not bring
about a change in the global miss detection probability, and the initial stopping time is the optimal
stopping time.

Next, we further take the impact of the tolerable miss detection probability on the global
performance given a fixed tolerable false alarm probability into consideration. As displayed in Figure
4, regardless of the tolerable miss detection probability, it is obvious that a large tolerable false alarm
probability leads to a low upper threshold ¢, therefore being prone to accept H;. However, it also
should be noted that as the tolerable miss detection probability increases, the global false alarm
probability under different tolerable false alarm has jitter at different positions, such as jitter up at
Pr =0.05,0.1,02 and jitter down when P; = 0.2. This is not surprise, and is a direct of that a pair of
tolerable probabilities simultaneously change, and the decision condition is reached within a certain

stopping time.
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Figure 4. The global false alarm probability vs the tolerable miss detection probability.

Similar to the global miss detection probability of Figure 4, given the tolerable false alarm
probability, the positive impact of the tolerable miss detection probability is illustrated in Figure 5.
In particular, the trend of the global miss detection probability is exactly the opposite to that of the
global false alarm probability and the change interval is larger. There is no doubt that, the tolerable
miss detection probability makes the lower threshold ¢; smaller so that H; is easier to accept.

Following the joint impact of the tolerable performance metrics on the global performance, we
further simulate the optimal cost of the tolerable performance under various costs of each observation
taken, where the cost of each observation taken c is set to be 0.1 and 1. As shown in Figure 6, for a
pair of fixed tolerable performance, the larger cost of each observation taken c, the larger the average
cost. Moreover, as the tolerable false alarm probability increases, the average cost decreases. This is
to say, an increasing tolerable false alarm probability makes the lower/upper threshold
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larger/smaller, resulting in that the global decision is difficult to be made. Consequently, the stopping
time increases. However, the increasing tolerable false alarm probability also makes the global miss
detection probability decrease, as shown in Figure 3. As a result, the global miss detection probability
dominates the average cost because the cost about the miss detection decreases.
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Figure 6. The average cost vs the tolerable false alarm probability under various costs of each
observation taken.

As with Figure 6, the larger cost of each observation taken results in a lager average cost in Figure
7. Following the global miss detection probability in Figure 5, the average cost follows it. The
simulation result also confirms once again that the global miss detection dominates the average cost.
In summary, following PBPO methodology, the optimal sequential detection rule can be reached as
the sensing environments to minimize the cost at a IoT device.
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Figure 7. The average cost vs the tolerable miss detection probability under various costs of each
observation taken.

5. Conclusions

In this article, we delved into the distributed sequential detection rule for CSS in a cognitive IoT.
Consequently, we first establish a spectrum sensing model in the periodic spectrum sensing frame
structure and propose a sequential detection framework. On basis of this, we further define the
stopping time and cost function for a IoT device and propose an optimization problem about the
average cost. Moreover, PBPO methodology is applied to solve such a finite horizon problem, thereby
analysing the stopping time for the optimal sequential detection. Finally, a series of numerical
simulation results show that correctness and effectiveness of our proposed sequential detection rule
in terms of the stopping time and thresholds.
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