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Abstract: Near-infrared spectroscopy (NIRS) has become a key modality in medical imaging, finding
application in both brain and breast imaging. This paper discusses the current trends in NIRS for
brain and breast imaging, exploring advances in multi-modal integration with modalities such as
functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). Challenges related
to spatial resolution, depth sensitivity, and the impact of extracerebral tissues on signal specificity
are examined. In addition, ongoing efforts to enhance hemodynamic measurements’ quantitative
accuracy. Challenges, including limited spatial resolution and tissue heterogeneity, are discussed. The
discussion extends to diffuse optical tomography and ongoing instrumentation development, clinical
trials and studies validating NIRS diagnostic efficacy in breast imaging. The paper emphasizes the
need for standardization, integration into routine clinical practice, and motivates for future work.
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1. Introduction to NIRS Imaging

Near-infrared spectroscopy (NIRS) has become a powerful tool in diverse biomedical imaging
applications, offering valuable insights into biological tissues and processes [1]. One of its primary
applications lies in functional brain imaging, where NIRS enables non-invasive monitoring of cerebral
oxygenation and hemodynamics. By measuring changes in NIR light absorption, it provides real-time
information about brain activity, making it particularly useful for studying cognitive functions
and neurovascular coupling. Additionally, NIRS plays a pivotal role in cardiovascular imaging,
allowing for the assessment of tissue oxygenation in the heart and peripheral vascular regions. The
technique also proves valuable in detecting ischemic conditions and monitoring cardiac surgery
interventions. Moreover, NIRS-based diffuse optical tomography is used in oncology, contributing to
tumor early detection and characterization. By exploiting the distinct absorption spectra of various
chromophores as shown in Figure 1, NIRS facilitates the assessment of tissue composition and
vascularity. This assists in tumor localization and differentiation. Furthermore, NIRS exhibits promise
in musculoskeletal imaging, providing insights into oxygenation levels in skeletal muscles during
exercise and rehabilitation. As a non-ionizing and portable imaging modality, NIRS offers advantages
in point-of-care settings and continuous monitoring [2—4].

Over the past century, optical medical imaging progress has significantly facilitated high-density
data acquisition in modern medicine. This advancement offers increased precision, reduced
susceptibility to errors, and a more extensive array of source-detector combinations and wavelengths
than earlier methods. The term “light” encompasses wavelengths spanning the infrared, visible, and
ultraviolet ranges. Since Maxwell’s elucidation of light as electromagnetic wave propagation in the
1800s, the scientific community has explored, measured, and documented a diverse array of physical
processes and properties within the human body using optical imaging techniques.

NIRS diffuse optical tomography (NIRS-DOT) uses spectroscopy and tomographic method.
NIRS-DOT key strength lies in its ability to non-invasively probe biological tissues with depth and
detail [5,6]. By leveraging near-infrared light, NIRS-DOT enables the assessment of internal tissue
composition and functional characteristics, offering a comprehensive view of anatomical structures
and physiological processes. This imaging modality is highly effective in the investigation of diseases
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such as breast cancer [7], where its capacity to discern optical properties within tissues aids in tumor
early detection and characterization. The combination of multiple light sources and detectors, coupled
with sophisticated image reconstruction algorithms [8], allows NIRS-DOT to provide 3D images
quickly. Noteworthy advancements include circular probes for continuous spectroscopic imaging.
In addition, GPUs for accelerated image reconstruction facilitate real-time imaging capabilities. The
ongoing efforts to enhance NIRS-DOT instruments by reducing costs through the integration of LEDs
and photodetectors, and the development of specialized instruments for high-speed tissue imaging,
underscore its potential as a versatile and impactful tool in medical diagnostics.
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Figure 1. Absorption spectra of oxy and deoxyhemoglobin.
2. NIRS in Brain Imaging

Simple imaging methods based on NIRS include functional near-infrared spectroscopy (fNIRS).
In fNIRS channel-wise measurements instead of fully tomographic image reconstruction occur [9,10].
The inherent transparency of biological tissues to NIR light allows for penetration into the brain,
enabling real-time assessment of cerebral oxygenation levels and hemodynamic changes. The technique
leverages spectroscopy principles, utilizing multiple wavelengths of light to quantify the concentration
of chromophores in the tissue. In NIRS, light sources emitting near-infrared wavelengths are directed
onto the scalp, and the resulting transmitted or reflected light is detected by optoelectronic sensors
strategically placed over the head. Recorded signals undergo sophisticated signal processing to
extract relevant physiological information. Method such as the Modified Beer-Lambert Law, are
employed for estimation of hemoglobin concentrations changes and, consequently, oxygen saturation
levels in cerebral tissue. Researchers are actively refining NIRS methodologies to improve spatial
resolution, depth sensitivity, and specificity in detecting changes in regional cerebral oxygenation.
Recent studies have explored multi-modal approaches, integrating NIRS with other neuroimaging
techniques like functional magnetic resonance imaging (fMRI) [11] and electroencephalography (EEG)
[9] to provide a more comprehensive understanding of brain function. NIRS’ technical nuances
make it a valuable tool in neuroimaging, offering real-time insights into cerebral hemodynamics and
oxygenation, with implications for research in neuroscience, cognitive science, and clinical applications
such as brain-computer interfaces and monitoring cerebral auto-regulation in critically ill patients.

fNIRS is widely used for brain imaging, for example, to measure mental workload [12-15],
measure mental stress [16], and neurofeedback [17]. It’s relatively simpler to design an fNIRS system
[18-20] than DOT. A patch for brain imaging was also shown [18,20]. However, signal quality depends
on the design of the light sources and detectors, known as optodes [21]. There is also a considerable
amount of research into portable fNIRS systems [2,22]. An fNIRS system was also developed using
Internet-of-Things technology [23,23,24]. Furthermore, machine learning can be applied to {NIRS in
real-time to enable the automatic classification of brain function [14,25-27].
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2.1. NIRS Time-series Signal Processing

Due to the complexity of {NIRS data, advanced signal processing techniques to extract meaningful
information about brain function are required [28]. Preprocessing steps involve addressing various
sources of noise, such as motion artifacts and physiological interferences. These sources can
significantly impact fNIRS signal quality. Signal quality is further enhanced through spatial filtering
methods, such as adaptive filtering and principal component analysis. This is to mitigate contamination
from superficial tissues and improve the specificity of recorded signals for cortical regions. The raw
fNIRS data, comprising changes in oxyhemoglobin (HbO) and deoxyhemoglobin (Hb) concentrations,
undergo statistical analyses to identify task-related activations. General linear models (GLMs) and
machine learning algorithms are commonly employed for this purpose [29]. GLMs allow for the
modeling of the relationship between the observed fNIRS signals and the experimental paradigm. This
enables the identification of brain regions involved in specific tasks. Machine learning approaches,
including support vector machines and neural networks, leverage the high-dimensional nature of
fNIRS data to classify different cognitive states or tasks.

Temporal and spectral analyses play a crucial role in characterizing brain function dynamics
using fNIRS. Temporal analyses involve the assessment of hemodynamic response functions, allowing
researchers to investigate neural activations’ timing and duration. Spectral analyses, such as wavelet
transform and Fourier analysis, provide insights into the frequency domain of fNIRS signals. This
facilitates the identification of oscillatory brain activity associated with different cognitive processes.
Moreover, connectivity analyses in fNIRS signal processing focus on exploring functional connectivity
patterns between different brain regions [30]. Methods such as seed-based correlation analysis and
graph theory are applied to elucidate the underlying networks involved in specific cognitive tasks or
resting-state conditions. These approaches provide a comprehensive understanding of how different
brain regions interact and contribute to cognitive processes. Research in fNIRS signal processing
continually evolves, with a focus on addressing challenges such as data fusion from multiple channels,
artifact removal, and real-time processing for applications like brain-computer interfaces. As fNIRS
continues to gain traction in neuroscience and clinical research, advancements in signal processing
techniques will undoubtedly play a pivotal role in unlocking the full potential of this versatile
neuroimaging modality.

3. NIRS in Breast Cancer Imaging

In 2019, the United States witnessed a staggering toll of over 45,000 female deaths caused by
breast cancer alone. This underscores its status as one of the most common cancers among women
[31,32]. Across urban populations, breast cancer emerges as the foremost cancer diagnosis among
women, constituting 20% of all recorded cancer cases in women’s cancer registers. While the majority
of breast cancer occurrences manifest in women aged 50 and above, a noteworthy 32% of diagnoses
pertain to those under 50. While invasive cases predominantly arise after the age of 50, a rising trend
is discernible among women below this age threshold.

Remarkably, about 10% of newly diagnosed breast cancer cases in the U.S. target women younger
than 45 years old. Various factors contribute to an elevated risk of breast cancer. These factors
include early menarche, late onset of menopause, first full pregnancy after 31, familial history of
premenopausal breast cancer, and personal experiences with breast cancer or benign proliferative
breast disease. These nuanced risk factors emphasize the complexity and multifaceted nature of breast
cancer etiology. They urge heightened awareness, early detection, and proactive health measures for
women across diverse age groups [33].

Diffuse optical tomography (DOT) imaging relies on the interaction of near-infrared light with
biological tissues, providing valuable information on the distribution of optical properties for example
absorption and scattering as shown in Figure 2 [34,35]. Current research in DOT is focused on
enhancing its spatial resolution, depth penetration, and quantitative accuracy to make it a more robust
tool for clinical applications. Advanced reconstruction algorithms and computational models are being
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developed to address the inherent challenges associated with light scattering in biological tissues,
aiming to improve the reconstruction of three-dimensional images with higher fidelity.
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Figure 2. Conceptual diagram of DOT system. System uses NIR light to probe optical property of
biological tissue.

Moreover, the integration of DOT with other imaging modalities, such as magnetic resonance
imaging (MRI) and computed tomography (CT), is a key area of investigation. This multimodal
approach can synergistically combine the strengths of each imaging technique, providing
complementary structural and functional information. Additionally, efforts are being made to optimize
hardware components, including light sources and detectors, to enhance DOT systems’ sensitivity and
specificity.

Researchers are conducting clinical studies, such as breast cancer detection, brain imaging, and
functional monitoring of vital organs. Clinical trials are underway to validate the effectiveness of DOT
in real-world scenarios and establish its reliability for routine medical use. Noteworthy studies in
this field include the work of Gibson et al., who have contributed significantly to the development
of advanced reconstruction algorithms for DOT . Additionally, the research conducted by Zhang et
al. has explored the integration of DOT with other imaging modalities for improved breast cancer
detection.

3.1. NIRS Image Reconstruction

Diffuse optical tomography (DOT) image reconstruction is a fundamental aspect of the
imaging pipeline that involves the conversion of acquired data into meaningful three-dimensional
representations of biological tissues’ internal optical properties. Given the inherent complexity of light
propagation through tissues and the diffuse nature of the measurements, sophisticated algorithms
are imperative for accurate reconstruction. The primary challenge lies in the ill-posed nature of the
image reconstruction inverse problem, where multiple potential distributions of optical parameters
can lead to the same set of measurements. Various mathematical frameworks, including iterative and
analytical methods, are employed to tackle this problem. Iterative reconstruction algorithms, such as
the popular gradient-based optimization techniques, aim to minimize the discrepancy between the
measured and predicted data iteratively. Regularization techniques, such as Tikhonov regularization,
are often incorporated to ensure stability and prevent overfitting in the presence of noise. Additionally,
Bayesian methods, utilizing prior knowledge about the expected distributions of optical properties,
play a crucial role in enhancing the robustness and accuracy of the reconstruction process.

The incorporation of anatomical information into DOT image reconstruction is a key area of
research. Hybrid imaging approaches that integrate structural information from other modalities,
such as X-ray computed tomography (CT) or magnetic resonance imaging (MRI), aid in refining the
spatial localization and boundary definition of the optical targets. This multimodal fusion enhances
the overall accuracy of the reconstructed images and addresses DOT limitations in resolving structural
details. Advancements in regularization techniques also contribute significantly to improving the
spatial resolution of reconstructed DOT images. Nonlinear regularization methods, such as total
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variation regularization, are increasingly employed to preserve edges and enhance image quality.
Moreover, the integration of advanced forward models that incorporate anatomical and physiological
priors, along with spatially varying optical properties, adds complexity to the reconstruction process
but yields more accurate and anatomically faithful results.

Researchers are actively exploring innovative strategies, such as machine learning-based
approaches, to enhance the efficiency and accuracy of DOT image reconstruction. Convolutional
neural networks and deep learning architectures are being applied to learn complex mappings
between measured data and underlying optical property distributions, bypassing the need for
explicit mathematical models. DOT image reconstruction emphasizes the continuous refinement
of algorithms and methodologies to unlock the full potential of this non-invasive imaging modality for
biomedical applications. As research in DOT progresses, the synergy of computational techniques and
experimental advancements holds the key to overcoming challenges and furthering the clinical utility
of diffuse optical tomography in medical imaging.

4. NIRS in Breast Cancer Imaging

Diffuse optical tomography (DOT) is an optical imaging approach applicable to the examination of
soft tissues such as breast tissues. Employing near-infrared (NIR) light, DOT facilitates the visualization
of internal anatomical structures and provides functional insights into tissue. The fundamental
mechanism of DOT involves the measurement of NIR light transmission or reflection from tissues,
enabling the determination of their optical characteristics within the tissue. This system incorporates
a model-based image reconstruction methodology, allowing for the computation of concentrations
of hemoglobin, water, and lipids within the tissues. Given the deployment of multiple light sources
and detectors in DOT instrumentation, the implementation of multiplexing techniques is imperative
[36]. These techniques are essential for rapid alternation of light and detectors, ensuring high-speed
performance, and for system calibration to rectify potential measurement inaccuracies [37]. The
intricate interplay of these components underscores the sophistication of DOT technology, emphasizing
the need for meticulous calibration and technological precision in order to extract accurate and
meaningful information from optical imaging of breast tissues. Certain DOT instruments enable the
utilization of circular probes to conduct uninterrupted spectroscopic imaging, as documented in [6].

5. Challenges and Future Scope

The application of diffuse optical tomography (DOT) presents a significant challenge in estimating
the internal optical properties of tissue based on measurements acquired at the tissue boundary.
This challenge arises from the highly scattered nature of near-infrared (NIR) light within the tissue,
rendering the estimation problem, also known as the inverse problem, which is nonlinear, ill-posed, and
occasionally underdetermined [34]. Despite these complexities, there exist algorithms designed for the
rapid reconstruction of 3D DOT images [38]. Recent efforts focused on leveraging Graphics Processing
Units (GPUs) to enhance the speed of image reconstruction [39]. Real-time imaging capabilities of
DOT have been demonstrated using GPUs [40], and innovations such as a specialized instrument for
high-speed tissue imaging of specific regions have been put forward [41,42].

Despite the considerable size of DOT instruments and the slow data collection process, ongoing
research work aims to lower instrument costs by incorporating Light-Emitting Diodes (LEDs) and
photodetectors [43-45]. Furthermore, DOT is being explored as a point-of-care imaging system [46],
with educational applications to teach students about optical medical imaging systems [47]. Addressing
challenges during data collection, a practical method has been proposed, involving the measurement
and subtraction of superficial noise from the signal of interest, proving effective in enhancing data
accuracy [48]. Notably, current research in this field is rapidly expanding, revealing the potential of
NIR light in medical imaging for early-stage breast cancer detection and brain function imaging.
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6. Discussion and Conclusion

In conclusion, the technical landscape of Near-Infrared Spectroscopy (NIRS) for medical
imaging, with a specific focus on brain and breast applications, reflects a dynamic interplay
between advancements, challenges, and future prospects. The ongoing trend of integrating
NIRS with complementary modalities like functional magnetic resonance imaging (fMRI) and
electroencephalography (EEG) enhances the depth and specificity of information obtained. However,
challenges related to spatial resolution and the impact of extracerebral tissues underscore the need
for continued refinement, with promising avenues in signal processing techniques and multi-modal
fusion.

In breast imaging, NIRS showcases potential as a non-invasive method for early breast cancer
detection. Current trends highlight advancements in spectral tomography and synergistic integration
with established imaging techniques like mammography. Limited spatial resolution and tissue
heterogeneity require innovative solutions, including multi-wavelength and frequency-domain NIRS.
Ongoing clinical trials are crucial for validating NIRS as a diagnostic tool in breast imaging.

The paper concludes by outlining the future scope of NIRS in medical imaging. In brain imaging,
the integration of advanced signal processing techniques, such as machine learning algorithms, holds
promise for improving spatial localization and decoding cognitive states. For breast imaging, the
exploration of molecular-specific contrast agents and advancements in hardware technology aim
to overcome existing limitations and facilitate early-stage tumor detection. As NIRS continues to
evolve, addressing technical challenges and leveraging synergies with other imaging modalities,
its integration into routine clinical workflows for brain and breast imaging appears increasingly
viable. This paper contributes to the ongoing discourse, providing a technical overview of the current
landscape, challenges, and future prospects of Near-Infrared Spectroscopy in the dynamic field of
medical imaging.
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