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Abstract: Non-coding RNAs, specifically microRNAs (miRNAs), exhibit altered expression and 13
contribute significantly to the pathological processes observed in numerous diseases, encompassing 14
various types of human cancers. Recent discoveries regarding miRNAs underscore their crucial 15
roles in tumor pathogenesis and their responses to diverse therapeutic interventions. miRNAs are 16
a subset of non-coding RNAs that regulate the expression of a multitude of genes post-transcrip- 17
tionally and thus are potential diagnostic, prognostic, and predictive biomarkers and have also 18
emerged as potential therapeutics. Because miRNAs are involved in the post-transcriptional regu- 19
lation of their target mRNAs via repressing gene expression, defects in the miRNA biogenesis path- 20
way and miRNA expression perturb the expression of a multitude of oncogenic or tumor-suppres- 21
sive target genes that are involved in the pathogenesis of various cancers. As such, numerous miR- 22
NAs have been identified to be downregulated or upregulated in many types of cancers functioning 23
as either oncomiRs or oncosuppressor miRs. Moreover, dysregulation of miRNA biogenesis path- 24
ways can also change miRNA expression and function in cancer. Profiling deregulated miRNAs in 25
many cancer types has been shown to correlate with disease diagnosis, indicate optimal treatment 26
options, and predict response to a specific therapy. Specific miRNA signatures can track all stages 27
of disease including many cancer types and hold potential as biomarkers and therapeutic targetsas 28
well as therapeutics as miRNA mimics and inhibitors (antagomirs). As such, identifying specific = 29
miRNAs and mRNAs they regulate in many types of cancer along with downstream pathways can 30
be used as potential therapeutic targets. Because a single miRNA can regulate a pool of targets in- 31
volved in similar cellular processes and pathways, thereby amplifying the cellular response, this 32
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issues, there is a need to reduce the immunogenic reactions and determine the minimal dosing to 36
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Accepted: date application. In addition, there are many challenges concerning the delivery, sensitivity, specificity, 40
Published: date toxicity, and applicability of the potential utility of miRNAs as therapeutic targets or therapeutics. 41
® Thus, future work will warrant if miRNAs can be used as cancer biomarkers as well as therapeutics 42
for clinical application. 43
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1. Introduction 47

Although the majority of oncology research is still focused on the dynamic variations 48
of proteins and protein coding RNAs (their corresponding coding sequences only account 49
for ~2% of the genome), the role of non-coding RNAs (ncRNAs) transcribed from the re- 50
maining 98% of the genome including microRNAs (miRNAs) plays key roles in a multi- 51
tude of biological processes in normal physiological states but also the development of 52
various types of diseases including cancer underscoring the importance of miRNAs and 53
other ncRNAs in tumor initiation and progression. While most of the research in oncology 54
predominantly centers around the ever-changing aspects of proteins and the RNA mole- 55
cules responsible for coding those proteins, it's important to note that these coding se- 56
quences account for only about 2% of the genome (https://www.genomicseduca- 57
tion.hee.nhs.uk/genotes/knowledge-hub/non-coding-dna/) [1-3]. However, the remaining 58
98% of the genome, which includes non-coding RNAs (ncRNAs) such as miRNAs, plays 59
pivotal roles in numerous biological processes during typical physiological conditions, as 60
well as in the onset and advancement of different diseases, including cancer [4]. This em- 61
phasizes the significance of miRNAs and other non-coding RNAs in the initiation and 62
progression of tumors. 63
In addition, miRNAs play key roles in the regulation of gene expression at the tran- 64
scriptional [5-7] and post-transcriptional [8-11] levels, and exhibit tissue-specific [12,13] 65
and developmental expression patterns [14-16] and play key functional roles in a broad 66
range of biological processes within cells and organisms. Altered expression of miRNAs 67
has emerged as an additional molecular mechanism implicated in the pathogenesis of nu- 68
merous diseases [17-19], spanning innate immunity [20], autoimmunity and autoimmune 69
diseases [21], viral infections [22-25], acute hepatitis [26], depression [27], anxiety [28], 70
Alzheimer’s disease [29], Huntington’s disease [30], metabolic and cardiovascular dis- 71
eases [31-34], diabetes [8, 33-38] and a many types of cancers [12, 39-69]. Consequently, 72
these miRNAs can serve as indicators for the presence of a pathological condition, as well 73
as provide insights into its stage, progression, or genetic associations. 74
More recently, there is an emerging evidence suggesting that diet-derived exogenous 75
miRNAs (or “xenomiRs”) can enter the circulatory system and tissues, potentially influ- 76
encing gene expression and biological functions [70-75]. Uptake of miRNAs by gastricand 77
intestinal cells as well as their potential effects on the gut microbiota by orally delivered 78
miRNAs and their potential immunomodulatory properties indicate the possibility of 79
cross-species or cross-kingdom communication through miRNAs [75]. Because of these 80
observations, one potential method of administering miRNAs is orally. MiRNAs are often 81
associated with extracellular vesicles (EVs), RNA-binding proteins, lipoproteins, or lipid 82
derivatives, along with nanoparticles. These protective elements shield miRNAs from the 83
adverse gastrointestinal environment, including salivary and pancreatic RNases, the 84
stomach's low pH, digestive enzymes, peristaltic activity, and microbial enzymes. Such 85
protection likely facilitates the absorption of miRNAs from the digestive tract [75]. How- 86
ever, there is ongoing debate surrounding the absorption, stability, and physiological im- 87
pact of these food-derived miRNAs and there are contrary findings regarding the bioa- 88
vailability and the in-human functionality of miRNAs contained in plant food [76, 77]. 89
Ongoing research continues to unravel new insights into the molecular mechanisms 90
underpinning the dysregulation of miRNA biogenesis and expression in cancer. For ex- 91
ample, it is widely acknowledged that genetic deletions or amplifications, epigenetic 92
methylation of miRNA genomic loci, and modifications influencing the regulation of pri- 93
mary miRNAs (pri-miRNA) by transcription factors, as well as components involved in 94
the miRNA biogenesis pathway frequently alter miRNA expression and function in many 95
cancers [56, 78, 79]. Furthermore, additional factors, such as oncogenic drivers like muta- 96
tions in the KRAS gene, can also affect global miRNA biogenesis and effector function, 97
contributing to the broader dysregulation of miRNAs [80]. Consequently, miRNAs and 98
their dysregulation have garnered significant interest from both academia and industry = 99
as a focal area of research for both understanding of disease biology and explore their 100
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applications as potential diagnostic, prognostic, and predictive biomarkers [68] as well as 101
well as their roles as drug targets or therapeutic agents [81]. 102

It is well-established that miRNAs are powerful genetic regulators of diverse biolog- 103
ical and developmental processes, in addition to playing a pivotal role in the pathogenesis 104
of various diseases. This is due to the ability of a single miRNA to regulate entire cellular 105
pathways by interacting with numerous target genes [77]. Because of this, miRNAs have 106
emerged as a novel class of therapeutic agents with the potential to restore disrupted cel- 107
lular functions, particularly in various malignancies, including cancer. However, the very = 108
potency of miRNAs can be a double-edged sword. Their far-reaching effects, while bene- 109
ficial, can also lead to off-target effects in non-targeted tissues, a concern documented in 110
recent clinical trials [82-84]. Managing these off-target effects represents a significant chal- 111
lenge to be addressed. Take, for instance, MRX34, a miR-34a mimic encapsulated within 112
a liposome-formulated nanoparticle (NOV40) was evaluated in a first-in-human, Phase 1 113
study in patients with advanced solid tumors, including melanoma NSCLC, hepatocellu- 114
lar carcinoma, renal carcinoma. 115

Although MRX34 exhibited significant efficacy, with three patients achieving pro- 116
longed confirmed partial responses and 14 patients maintaining stable disease (median 117
duration, 136 days) [85]; however, the clinical trial was terminated due to the occurrence 118
of serious immune-mediated adverse events which resulted in the deaths of four patients 119
(NCT01829971) [82-84]. Despite the setback, dose-dependent modulation of pertinent tar- 120
get genes provides proof-of-concept for miRNA-based cancer therapy. 121

This review discusses the dysregulation of miRNA expression in cancer and their 122
potential as therapeutics and further discusses the main challenges and strategies to ad- 123
dress the problems that must be overcome to fully harness the therapeutic potential of 124
miRNAs. 125

2. miRNAs 126

Following the discovery of lin-4, the first miRNA in 1993 in Caenorhabditis elegans 127
[86, 87] [79,80], it became evident that miRNAs are widespread in the animal and plant 128
kingdoms, some of which exhibit high levels of conservation across species [88-90]. 129

MiRNAs, which are short non-coding RNA molecules typically composed of approx- 130
imately 22 nucleotides, are naturally encoded in the genomes of various species [88-91] 131
and play vital roles in regulating gene expression at both transcriptional [5-7] and post- 132
transcriptional [8-11, 92] levels of their target mRNAs [8, 10] by and via the modulation of 133
the stability and translation of mRNA [93] in a broad range of biological processes [94], 134
impacting activities such as cell differentiation, proliferation, angiogenesis, and apoptosis. 135
Furthermore, miRNAs display specific patterns of expression in different tissues [12, 13] 136
and during various stages of development [14-16]. 137

There are currently estimated to be more than 2588 mature human miRNAs present 138
in human cells [95], each with a unique temporal and tissue-dependent expression pat- 139
tern. These miRNAs are estimated to control over 60% of human gene expression, show- 140
casing their significant regulatory roles in diverse physiological processes. Because a sin- 141
gle microRNA can regulate multiple genes, many miRNAs can contribute to the develop- 142
ment of many human diseases when they become dysfunctional [2, 8, 18, 20-26, 28, 30-35, 143
37, 66, 96-98] including many types of cancer [39, 41-44, 47, 50, 51, 53, 55-67, 69, 99-104]. 144

However, determining the precise relevance of individual miRNAs has been chal- 145
lenging, despite their evident significance as regulatory molecules [105]. Studies investi- 146
gating miRNA functions by either overexpressing or silencing specific miRNAs have gen- 147
erated data that sometimes conflict with findings from loss-of-function models [105]. For = 148
example, studies in Caenorhabditis elegans involving systematic miRNA deletions sug- 149
gest that fewer than 10% of the miRNAs are individually essential for normal develop- 150
ment or viability [106] and this trend appears consistent in mice as well [97]. 151

As illustrated in Figure 1 and discussed in detail in the literature, miRNAs are pri- 152
marily transcribed from DNA sequences into primary miRNAs (pri-miRNAs), which 153
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undergo initial processing by DROSHA in the nucleus to generate precursor miRNAs 154
(pre-miRNAs) [8, 68, 107]. It's worth noting that as many as 40% of miRNA genes may be 155
located within the introns or exons of other genes [108]. Pre-miRNAs are subsequently 156
transported from the nucleus to the cytoplasm by exportin 5 (XPO5), where they are fur- 157
ther processed by DICER, resulting in small RNA duplexes with specific 3' overhangs of 158
2 nucleotides. These double-stranded RNA duplexes are loaded onto the Argonaute 159
(AGO) protein, which retains one mature miRNA strand while discarding the other [10]. 160
The AGO-miRNA complex, along with co-factors like GW182 (TNRC6A), forms the RNA- 161
induced silencing complex (RISC) [92], responsible for mRNA transcript degradation and 162
translational inhibition through interaction with complementary mRNA target sequences, 163
typically located within the 3'-untranslated region (3'-UTR) of mRNAs (Figure 1) [109- 164
112]. The interaction between miRNA and target mRNA typically takes place at the 5 end 165
of the miRNA, known as the 'seed' region. Yet, recent evidence points to a unique group 166
of target mRNAs that bind the miRNA not just through the seed but also via a comple- 167
mentary region at the 3" end of miRNAs. This extended complementarity displaces the 168
miRNA from Ago2, rendering it vulnerable to enzymatic degradation. This process is re- 169
ferred to as the target-directed miRNA degradation mechanism (TDMD) [113, 114]. 170
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Figure 1. Illustration of miRNA biogenesis, processing, and target RNA translational
suppression or degradation via various mechanisms. Created with BioRender.com. miR-
NAs are a class of small, single-stranded non-coding RNAs that function as a guide mol-
ecule in RNA silencing and hence modulate the expression of most mRNAs. The
miRNA:target mRNA interaction usually occurs at the 5 end of the miRNA (i.e., ‘seed’
region). However, recent evidence suggests that there is a special class of target mRNAs
which bind the miRNA not only through the ‘seed’ region, but also through a second re-
gion of complementarity at the 3’ end of the miRNA. The extended complementarity
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forces the miRNA out of Ago2, where it becomes accessible to enzymatic degradation. 180
This phenomenon is referred to as target-directed miRNA degradation mechanism 181
(TDMD) [113, 114]. 182

miRNAs are regarded as master regulators of the genome due to their ability to bind 183
to and alter the expression of many protein-coding RNAs [115]. Because of this, a single 184
miRNA can potentially regulate distinct mRNAs (anywhere from 10 to 100 protein-coding 185
RNAs) due to their ability to bind to target mRNAs even when the pairing is not perfect 186
[55, 116]. As a result, a single miRNA can regulate a pool of targets involved in similar 187
cellular processes and pathways, thereby amplifying the cellular response and potentially 188
making miRNAs powerful therapeutics to restore cell functions that are altered as part of 189
a disease phenotype. Conversely, a specific messenger RNA can become the target of 190
many miRNAs, whether concurrently or in a context-dependent manner [117], leading to 191
a collaborative repression effect [118, 119]. Bioinformatic analyses indicate that a single 192
miRNA can potentially bind to as many as 200 distinct gene targets with various func- 193
tions, such as transcription factors, receptors, and more 194
(https://bitesizebio.com/24926/mysterious-mirna-identifying-mirnas-and-their-targets/). 195

3. miRNAs role in cancer 196

Cancer is a complex and heterogeneous disease characterized by a series of genetic 197
and genomic aberrations that promote tumorigenesis [120]. These changes within the ge- 198
nome, which affect gene function, often arise from genomic aberrations like chromosomal 199
translocations, insertions, deletions, amplifications, single-nucleotide mutations, or in the 200
epigenome. These genetic and epigenetic aberrations frequently lead to the activation of 201
oncogenes and the suppression of tumor suppressor genes [121]. In addition, miRNAs 202
have been identified as additional genomic regulators that also play a crucial role in var- 203
ious aspects of organismal development, normal physiological processes, and the devel- 204
opment of disease, including many types of cancers [68]. It has been demonstrated that 205
miRNAs play a pivotal role in all the known processes involved in cancer including pro- 206
liferation, survival, metastasis, and apoptosis [115]. Data suggest that dysregulation of 207
miRNA function, either through its loss or gain, contributes to cancer development by 208
either upregulating or silencing specific target genes. As a consequence, utilizing miRNAs 209
either as miRNA mimics or antagomirs could present a potent therapeutic strategy to in- 210
terfere with key molecular pathways associated with cancer as such miRNAs have the 211
capacity to regulate all the recognized hallmarks of cancer, either acting as tumor sup- 212
pressors or promoting oncogenic processes. Several of these cancer hallmarks influenced 213
by miRNAs are discussed in detail in literature [65, 66]. 214

It is generally acknowledged that various changes in miRNA genes and their expres- 215
sion, such as genetic deletions or amplifications, epigenetic methylation of miRNA gene 216
locations, and modifications that influence the regulation of primary miRNA (pri- 217
miRNA) through transcription factors, as well as factors involved in miRNA biogenesis 218
process frequently alter miRNA expression and function in a wide range of cancer types 219
[66]. 220

In addition, changes in the miRNA biogenesis process can also impact the availability 221
of target mRNAs, including those associated with the development of cancer (Figure 3) 222
[122]. When miRNAs or the machinery involved in miRNA processing are altered or 223
dysregulated this often leads to the loss of normal homeostatic state, leading to malignant 224
transformation, including various types of cancer [51, 52, 56, 65-67, 123]. 225
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Figure 3. Schematic illustration of different inhibition mechanisms of miRNA specific small mole-
cule inhibitors. Created with BioRender.com.

Because of miRNAs key role in controlling the expression of numerous genes that are
involved in cellular responses to environmental stressors such as DNA damage, hypoxia,
oxidative stress, and nutrient deprivation, they can function either as oncogenes (on-
comiRs), or as tumor suppressors (onco-suppressor miRs). This is supported by recent
findings that have identified miRNAs with oncogenic and tumor-suppressing roles in a
range of neoplastic malignancies, and the dysregulation of miRNA expression is closely
linked to the initiation, progression, and metastasis of cancer [43, 45, 104].

Furthermore, dysregulated circulating miRNAs have been shown to be associated
with the origin, progression, treatment response, and the survival of patients with the
disease [124, 125]. For instance, the unique tissue-specificity of miRNAs [13], which is es-
sential for maintaining normal cells and tissues [40], renders them promising candidates
as potential biomarkers for diagnosing cancers of unknown primary [126, 127]. Further-
more, given the frequent genetic and epigenetic alterations observed in specific miRNAs
and components of the miRNA biogenesis process in different cancer types, the oncogenic
and tumor suppressor miRNAs have now emerged as promising candidates for miRNA-
based therapeutics and diagnostic applications.

4. RNA therapeutics

As discussed in detail in literature, in the recent years, more than 50 siRNA-based
drugs have entered clinical trials (phase I, II, and III) [128, 129]. Among those, approxi-
mately 15 phase I-, II-, and IlI-programs based on siRNA therapeutics are being explored
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for the treatment of various cancer types [129]. Two siRNA-based drugs Patisiran and 249
Givosiran (Alnylam Pharmaceuticals) were approved by the Food and Drug Administra- 250
tion (FDA) in 2018 and 2019 for hereditary transthyretin-mediated amyloidosis and acute 251
hepatic porphyria, respectively [130, 131]. The first example of an FDA approved RNA- 252
based drug, a siRNA-based therapy developed by Alnylam Pharmaceuticals is Patisiran, 253
sold under the brand name Onpattro™ for the treatment of polyneuropathy of hereditary = 254
transthyretin-mediated amyloidosis in adults. Based on the completion of a successful 255
Phase III APOLLO trial, Onpattro™ was approved by the US FDA in August 2018. On- 256
pattro™ contains patisaran, which comprises a siRNA targeting transthyretin (TTR) 257
mRNA conjugated with a lipid complex which leads to decrease in TTR protein levelsin 258
the liver thus resulting in a reduction in amyloid deposits. Patisiran specifically targets 259
and binds to a genetically conserved sequence in the 3' untranslated region (3'UTR) of 260
mutant and wild-type TTR mRNA [132]. Findings from the APOLLO trial, a placebo (77 261
patients) controlled Phase III trial which enrolled 225 patients showed that 51% of patients 262
receiving Onpattro™ (148 patients, once every three weeks (0.3 mg/ kg body weight)) ex- 263
hibited an improved quality of life (measured using the Norfolk Quality of Life Diabetic 264
Neuropathy (QoL-DN)), as compared to only 10% in the control arm of the patients that 265
received a placebo drug [132, 133]. 266

With the onset of the COVID-19 pandemic, mRNA technology emerged as a pivotal 267
force, serving as the cornerstone for remarkably effective mRNA-based vaccines thathave 268
played a crucial role in mitigating the spread of severe acute respiratory syndrome coro- 269
navirus 2 (SARS-CoV-2). The groundbreaking science behind mRNA vaccines earned Kat- 270
alin Karik6 and Drew Weissman the prestigious 2023 Nobel Prize in Physiology or Med- 271
icine for their pioneering work on nucleoside base modifications, enabling the develop- 272
ment of these impactful COVID-19 vaccines. 273

The evolution of cap analogs has vastly improved mRNA translation, while advance- 274
ments in purification, packaging, and delivery methods have revolutionized medicine. 275
Visionaries like Katalin Karik6, Drew Weissman, Edward Darzynkiewicz, Robert Rhodes, 276
Ugur Sahin, and Ozlem Tureci made pivotal early contributions to mRNA research, de- 277
serving recognition for their pioneering efforts. This mRNA narrative charts a remarkable 278
journey of breakthroughs in a field holding immense promise for the future of medicine. 279

The success of mRNA vaccines has paved the way for mRNA-based technology in 280
personalized neoantigen vaccines, seamlessly integrating them into standard oncological 281
workflow [134, 135]. These mRNA-based vaccines can be tailored and manufactured as 282
individualized vaccines with multiple neoantigens [136], and can effectively stimulate an- 283
tigen-presenting cells [137-140] and be delivered using clinical-stage delivery formula- 284
tions [141]. The studies and insights from the mRNA-based COVID-19 vaccines highlight 285
the promise of RNA therapeutics as an innovative class of treatments. 286

However, the effectiveness of miRNA and other nucleic acid-based therapies hinges 287
on a reliable delivery method with minimal adverse events and drug or treatment related 288
toxicity. Delivering miRNA treatments into cells presents challenges due to the need for 289
precise targeting of diseased cells while avoiding healthy ones. Unlike mRNA COVID-19 290
vaccines, which are taken up by scavenging immune cells, miRNA therapeutics must 291
evade immune recognition to reach their target cells without triggering an immune re- 292
sponse. 293

5. miRNA therapeutics 294

The discovery of the link between miRNAs and human diseases in 2002 sparked a 295
strong interest in their potential as a new class of therapies. Consequently, interdiscipli- 296
nary fields encompassing biology, chemistry, and medical science have made significant 297
investments in the development of miRNA-based therapies. 298

As illustrated in Figure 2 and Table 3, and discussed in literature in detail [77, 122, 299
128], there are only a few miRNA therapeutics that have entered clinical trials with none 300
of them entering Phase III or being approved by the FDA and several of them were 301
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terminated due to toxicity. Despite the significant progress made in preclinical research, 302
the progress in the field of miRNA-based diagnostic [68] and therapeutic applications re- 303
main at an early stage and only a few of these miRNA-based therapies have advanced to 304
clinical development. Given this situation, several efforts in the biotechnology and phar- 305
maceutical industry have integrated miRNAs into their development pipelines focusing 306
on the development of two categories of miRNA drugs, miRNA mimics and inhibitors 307
(antagomirs or antimirs) (Figure 2, Table 2 and 3) [77, 142]. As a consequence, several of 308
miRNA-based therapeutics that are being tested in clinical trials are continuously growing 309
for the treatments of a variety of genetic, metabolic, and oncological conditions [143-145]. 310
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Figure 2. Schematic overview of miRNA therapeutic strategies to regulate the function of oncogenic ~ 312
and tumor suppressor miRNAs involved in cancer. Top panel: The strategy of miRNA therapeutics 313
is based on the strategy of restoring the balance of oncogenic miRNAs and tumor suppressor miR- 314
NAs by downregulation of oncomiRNAs or the restoring of tumor suppressor miRNAs. Bottom 315
panel: Therapeutic miRNA manipulations can target the expression or function of pathologically 316
relevant miRNAs via miRNA inhibitors (anti-miRs) mediating degradation or functional blocking 317
of endogenous miRNAs, synthetic miRNA mimics imitating endogenous miRNA double-strands, 318
viral vector expressed miRNAs, small molecules inhibitors interfering with miRNA biogenesis, or ~ 319
miRNA sponges causing functional inhibition by diverting endogenous miRNAs from their mRNA 320
targets. In addition, combining miRNAs with chemotherapies, immunotherapies and other conven- 321
tional drugs or siRNAs is another strategy to overcome drug resistance. Created with BioRen- 322
der.com. 323
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Table 2. Major miRNA based therapeutics in various stages of the preclinical development phase 324

for human malignancies. 325
Therapeutic Target . Biopharmaceuti- Stage of de-
) Disease
molecule miRNA cal company velopment
Regulus therapeu-
i ith th - Preclinical
RG-012 miRNA-21 Alport nephropathy thS. (WIt, the st%‘a recinica
tegic alliance with stage
Genzyme)
iRNA-1 iR h - Preclinical
MGN-1374 m N > Post-myocardial infarction m agen.t crapet recinica
and miR-195 tics stage
MGN-2677 miR-143/145 Vascular disease miRagen therapeu- Preclinical
tics stage
iR h - Preclinical
MGN-4220 miR-29 Cardiac fibrosis m agen.t crapet recinica
tics stage
For the treatment of disor- R th Preclinical
MGN-4893 miR-451 ders like abnormal red m agezcs crapet resctaneca
blood cell production ' 8
MGN-5804 miR-378 Cardiometabolic disease mlRagen' therapeu- Preclinical
tics stage
iR th - Preclinical
MGN-6114 miR-92 Peripheral arterial disease fiiagen tetapet recinica
tics stage
MGN-9103 miR-208 Chronic heart failure miRagen therapeu- Preclinical
tics stage
. . Completed
MRG-107 MiR-155 Amyotrop.hlc lateral scle- mlRagen' therapeu- preclinical
rosis (ALS) tics
stage

326
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Table 3. Clinical trials with miRNA therapeutics in various diseases. NCT numbered trials are registered at ClinicalTrials.gov; EudraCT numbered trials are
registered at EU Clinical Trials Register (clinicaltrialsregister.eu).

miRNA Ta?'geted Study Title Mode of action Disease/condition =~ Mode of delivery = Phase Status Clinical trial * Refer-
drugname miRNA number(s) ences
Astrocytoma
Oligodendroglioma
Oligoastrocytoma
Anaplastic Astrocy-
Evaluating the Expres- m13-10b a8 d1z.1g- tf)ma .
sion Levels of Mi nostic and in vitro  Anaplastic Oligoden- Obser
miR-10b miR-10b . . testing of anti- droglioma . Recruiting  NCT01849952
croRNA-10b in Patients mir-10b as thera Anaplastic Ol vational
With Gliomas ! . prastt 89
peutic astrocytoma
Glioblastoma
Brain Tumors
Brain Cancer
First-in-Human Study of
miR-193a-
INT-1B3 in Patients Advanced solid tu-
1 . . .
INT-1B3 C:’)p' With Advanced Solid miRNA mimic mors Phasel Recruiting NCT04675996 NA
mimic
Tumors
fety and Proof-of-
(?c?nece};??P Oé;)(;tlf dy Stereotaxic infu- [195-
e . ) . . 1
aMT130 ATl AMT-130 in Adults 2 TIRNACXPIES pington disease 507 Viral transfer - Phasel Lo NeTostooses P
miRNA ) . sion (adeno-associated
With Early Manifest
] . vector) [23-25]
Huntington's Disease
RG- A St.udy of BG-OlZ in Al‘ltl.-mlR-zl S'ub‘cutaneous. in- Com- (209,
. Subjects With Alport Lademirsen—also jection/chemical
012/lademir . e Phase II pleted 222,
miR-21 Syndrome known as RG-012, Alport syndrome modification NCT03373786
sen/SAR339 . 253,
375 RG456070 or (phosphorothio- 254]
(SAR339375) ate)
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Anti-miR-21 Subcutaneous in-
RG- : . . . [209,
012/lademir Study of Lademirsen Lademirsen—also jection/chemical Termi 0
miR-21 (SAR339375) in Patients ~ known as RG-012, Alport syndrome modification Phase II NCT02855268 ’
sen/SAR339 ) . nated 253,
375 With Alport Syndrome RG456070 or (phosphorothio- 254]
(SAR339375) ate)
A Study of
RGLS4326 in Pa- Autosomal dom Administered
RGLS4 miR- tients With Autoso- .. . 059 © . via subcuta- Pha Com-
. Anti-miR-17 inant polycystic .. NCT04536688
326 17 mal Dominant Poly- ) g neous injec- se | pleted
e . kidney disease .
cystic Kidney Dis- tion
ease
A Study to Assess the Subeutaneous in
RG- f Tolerabili Acti
© miR- 5 ety.and olerability .. Non-alcoholic Steato-  jection/biomole- ctive, NCT02612662,  [207-
125/AZD40 of Single Doses of Anti-miR . . . Phase I not re-
103/107 . hepatitis (NASH) cule conjugation . NCT02826525 209]
76 AZDA4076 in Healthy (GalNAC) cruiting
Male Subjects
RG AZDA4076 in Type 2 Dia- Subcutaneous in-
miR- betic Subjects With Non- .. . jection/biomole- Com- [207-
125/AZD40 Anti-miR T2DM With NAFLD Phase I
/ i 103/107  Alcoholic Fatty Liver S ! cule conjugation ase pleted  NCT02826525  209]
Disease (GalNAc)
Safety, Tolerability,
Pharmacokinetics, and Skin injec-
. Pharmacodynamics of Lo tion/chemical Com- [159,
11 - -
MRG-110 miR-92a MRG-110 Following In- Anti-miR Healthy Volunteer modification Phase I pleted NCT03603431 255]
tradermal Injection in (LNA)
Healthy Volunteers
MesomiR 1: A Phase [ Malignant pleural ~ ntravenously/ve- NCT02369198  [162,
. . Study of TargomiRs as . . . hicle transfer Com-
MesomiR 1 miR-16 - miRNA mimic mesothelioma, non— L. Phase | 200,
2nd or 3rd Line Treat- (nonliving bacte- pleted

small cell lung cancer 256]

ment for Patients With rial nanocells



https://classic.clinicaltrials.gov/ct2/show/NCT02369198?term=microRNA&recrs=e&type=Intr&cond=Cancer&draw=2&rank=15
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Recurrent MPM and (EDVs or Targo-
NSCLC miRs)
Intrave-
Clinical Study to Assess nous? ;:}Yezemical Com- 257
CDR132L miR-132 Safety, PK and PD Pa- Anti-miR Heart failure y L. Phase I NCT04045405 !
ramoters of CDR132L modification pleted 258]
(LNA)
Efficacy, Safety, and Tol-
Rem- ?ﬁgclzlt;oif) I;zﬁji:n Skin injection/bio- Com [160,
larsen/MRG ~ miR-29 rowing miRNA mimic Keloid disorder molecule conjuga- Phase I NCT03601052 259,
201 Intradermal Injection in tion (cholesterol) pleted 260]
Subjects With a History
of Keloids
Com-
Long-T E i
ong-term txtension pleted  NCT02508090
Study of Miravirsen
A Participant Phase II Com-
&iﬁg(;;:oltmp:ri > Subcutaneous in-  Phase Il pleted NCT02508090, [152
Miravirsen/ ) . Y}? . . Chronic hepatitis C jection/chemical ~ Phase Il Com- NCT02452814, g
miR-122 Chronic Hepatitis C Anti-miR . e 261-
SPC3649 (CHC) Who Have Not virus modification Phase II pleted NCT01200420, 264]
Responded to (LNA) Phase I Unknown NCT01872936,
Pe late(I; Interferon Al Phasel Unknown NCT01727934,
& e Com-  NCTO1646489
pha Plus Ribavirin
pleted
Long Term Extension
Study is Designed to
Monitor Long-Term Effi-
cacy and Safety of Subcutaneous in- Com- [152
Miravirsen/ . Miravirsen Sodium in .. Chronic hepatitis C jection/chemical NCT02452814 ’
miR-122 .. . Anti-miR . o Phase II pleted 261-
SPC3649 Combination With virus modification 264]
Telaprevir and Ribavirin (LNA)

in Subjects With Chronic
Hepatitis C Virus Geno-
type 1 Infection



https://classic.clinicaltrials.gov/ct2/show/NCT02369198?term=microRNA&recrs=e&type=Intr&cond=Cancer&draw=2&rank=15
https://classic.clinicaltrials.gov/ct2/show/NCT02369198?term=microRNA&recrs=e&type=Intr&cond=Cancer&draw=2&rank=15
https://classic.clinicaltrials.gov/ct2/show/NCT02452814?term=NCT02452814&draw=2&rank=1
https://classic.clinicaltrials.gov/ct2/show/NCT02452814?term=NCT02452814&draw=2&rank=1
https://classic.clinicaltrials.gov/ct2/show/NCT02452814?term=NCT02452814&draw=2&rank=1
https://classic.clinicaltrials.gov/ct2/show/NCT02452814?term=NCT02452814&draw=2&rank=1
https://classic.clinicaltrials.gov/ct2/show/NCT02452814?term=NCT02452814&draw=2&rank=1
https://classic.clinicaltrials.gov/ct2/show/NCT02452814?term=NCT02452814&draw=2&rank=1
https://classic.clinicaltrials.gov/ct2/show/NCT02452814?term=NCT02452814&draw=2&rank=1
https://classic.clinicaltrials.gov/ct2/show/NCT02452814?term=NCT02452814&draw=2&rank=1
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Multiple Ascending Subcutaneous in-  Phase II Com-

Miravi / Dose Study of Chronic hepatitis C ction/chemical Phase II pleted [152,
TAVITSET miR-122 Miravirsen in Treat- Anti-miR romic nepatitis Jection/ehernica ase Unknown NCT01200420 261-
SPC3649 .. . virus modification Phase 11

ment-Naive Chronic Unknown 264]
. . (LNA) Phase 1
Hepeatitis C Subjects Com-
pleted
Miravirsen in Combina-
tion With Telaprevir and
Ribavirin in Null Re- Subcutaneous in-

Miravirsen/ der to Pegylated-I Chronic hepatitis C  jection/chemical L2 Uy 152,
iravirsen/ .o ., sponder to Pegylate 'n Anti-miR romc. epatitis jec 1on. c er‘mca Phase II nknown 1o eng36 261-
SPC3649 terferon Alpha Plus Rib- virus modification Phase I 264]
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Chronic Hepatitis C Vi-
rus Infection
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Drug Interaction Study
to Assess the Effect of Subcutaneous in-
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miR-122 o Anti-miR . P ] e Phase II NCTO01646489 261-
SPC3649 Miravirsen and virus modification Phase I pleted 264]
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A Randomized, Multi- EudraCT num-
Center, Phase 2 Study to Subcutaneous in- bers 2015- [156
RG-101 MiR-122 Evaluate Safety and Effi- Anti-miR Chronic .hepatltls C ]ectlon/b'lomqle— Phase II 001535-21, 200,
cacy of Subcutaneous In- virus cule conjugation 210]
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MiRNA therapeutics are a type of RNAi-based therapeutic that targets and modu- 1
lates the activity of specific endogenous miRNAs in the body. Because miRNAs play a 2
crucial role in regulating gene expression in normal health and disease states, by targeting 3
and manipulating specific miRNAs, miRNA therapeutics aim to treat various diseases by 4
restoring (miRNA mimics) or correcting miRNA expression patterns (antagomir). 5
MiRNA-based therapeutic programs for cancer are predominantly conducted by a few 6
biopharmaceutical companies, including Santaris Pharma, Roche Pharmaceuticals, Regu- 7
lus therapeutics (San Diego, CA, USA), Mirna Therapeutics Inc. (Carlsbad, CA, USA), mi- 8
Ragen Therapeutics (Boulder, CO, USA), and EnGenelC (Sydney, Australia). 9

Immune evasion and chemotherapy resistance is a challenge in cancer therapy and 10
this resistance can be mediated by various factors including miRNAs induced by tumor 11
microenvironment stimuli, like hypoxia or cell-cell communication [146]. 12

Hypoxia has been shown to influence microRNA expression in cancer and stromal 13
cells in the tumor microenvironment (TME) via downregulation of factors involved in 14
miRNA biogenesis machinery or regulation of transcription factors that control miRNA 15
expression. Accordingly, many hypoxia-regulated miRNAs and their role in tumor pro- 16
gression have been reported. These hypoxia-regulated miRNAs including miR-26a, miR- 17
181b, miR-210, miR301-a, miR-424, and miR-519¢ have also been associated with chemo- 18
or radiotherapy response in different cancers [147-150]. Therefore, therapeutic targeting 19
of these miRNAs could be a strategy to re-sensitize hypoxic tumors to chemo and other 20
therapies. For example, in the hypoxic pancreatic cancer microenvironment, HIF-1at in- 21
duces gemcitabine resistance. A recent study showed that delivery of miR-519¢c, whichis 22
downregulated in pancreatic cancer, could inhibit HIF1-a in gemcitabine-resistant pan- 23
creatic cancer cells under hypoxia [151]. Furthermore, a redox-sensitive nanoplatform 24
used to co-deliver miR-159¢c and gemcitabine was demonstrated to inhibit the expression 25
of HIF-1ax and genes responsible for glucose uptake and cancer cell metabolism, thus in- 26
hibiting orthotopic desmoplastic pancreatic cancer growth in NSG mice and reversing hy- 27
poxia-induced chemotherapy resistance [151]. Similarly, tumor suppressor miR-34a has 28
been shown to downregulate the expression of more than 30 oncogenes across multiple 29
oncogenic pathways, as well as genes implicated in tumor immune evasion, but is lost or 30
under-expressed in many malignancies [82]. However, if miRNAs are to be used for the 31
treatment of a cancer, miRNAs must be delivered to the target tissue, not trigger an im- 32
mune response and be economically feasible so that wide-spread adoption of these nano 33
therapies can be realized. Although there has been some success in clinical development, 34
several clinical trials have been terminated mostly due to various serious adverse events, 35
indicating that there are still several challenges to overcome before the clinical application 36
of RNAi-based therapies becomes widespread. 37
5.1. Examples of miRNA therapeutics in clinical trials 38

As illustrated in Figure 2, and Table 2 and Table 3, and discussed in detail in the 39
literature [85, 145], there are several miRNA-based therapeutics being tested both in pre- 40
clinical studies (Table 2) or in human clinical trials (Table 3). 41

Miravirsen: The first miRNA-based therapeutic entering clinical trials was 42
Miravirsen (SPC3649), a miR-122  15-mer LNA-PS-modified modified ASO antagomir of 43
miR-122, as a therapy against Hepatitis C Virus (HCV) infections developed by Santaris 44
Pharma, Roche Pharmaceuticals. miR-122 was shown to play a role in HCV replica- 45
tion.[152]. Phase II clinical trials were conducted to evaluate the safety and antiviral effi- 46
cacy of Miravirsen in patients with chronic HCV infection. Miravirsen showed strong ef- 47
ficacy by reducing viremia in patients with HCV [155,156,157] and underwent multiple 48
phase II clinical trials (NCT01200420, NCT01872936, NCT02031133, NCT02508090). 49
However, due to severe side effects the trial was halted [145, 153]. 50

RG-012: RG012 is an anti-miR-21 therapy developed by Regulus Therapeutics for the 51
management of Alport syndrome. miR-21 has been shown to be up-regulated in fibrotic =~ 52
kidney disease. Preclinical studies have shown that treatment with an anti-miR-21 53


https://www.mdpi.com/2072-6694/13/11/2680#B155-cancers-13-02680
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significantly reduced kidney failure by reducing the rate of progression of renal fibrosis. 54
RG-012 has been granted orphan drug status in the US and Europe. However, some se- 55
quence-independent side effects have been reported in context with phosphorothioate- 56
modified oligonucleotides [[154]. 57
RG-101: RG-101, an antagomir of miR-122 developed by Regulus Therapeutics is an 58
N-acetyl-d-galactosamine(GalNAc)-conjugated synthetic RNA oligonucleotide that tar- 59
gets and inhibits miR-122, which is involved in HCV replication for patients with HCV. 60
in addjition to its essential role for HCV replication, miR-122, a liver-specific miRNA, has 61
relevant functions in liver metabolism [155] [20]. This miRNA is also an essential host 62
factor for HCV. 63
Clinical trials were conducted to evaluate RG-101's safety and efficacy as a potential 64
treatment for chronic HCV infection. Although RG-101 showed considerable efficacy and 65
showed a significant reduction in viral loads in chronic HCV subjects [156]; however, the 66
trial was terminated due to some serious adverse events of severe hyperbilirubinemia 67
[156]. 68
MRG-201: MRG-201 is a synthetic RNA oligonucleotide that targets and activates 69
miR-29, which has been shown to inhibit fibrosis. Clinical trials were conducted to assess 70
MRG-201's safety and efficacy in treating fibrotic disorders such as hypertrophic scarsand 71
idiopathic pulmonary fibrosis. 72
MRX34: MRX34, developed by miRNA Therapeutics Inc. is a synthetic miRNA 73
mimic designed to mimic the activity of a tumor suppressor miR-34a encapsulated intoa 74
liposome-formulated nanoparticle (NOV40) for the treatment of advanced solid tumors 75
including melanoma, NSCLC, hepatocellular carcinoma, and renal carcinoma. miR-34ais 76
a naturally occurring tumor-suppressor miRNA expressed at reduced levels in many 77
tumor types. MRX34, is considered to be a first-in-class miRNA mimic for the treatment 78
of many cancers, such as non-small cell lung cancer, hepatocellular carcinoma, colon can- 79
cer, ovarian cancer, cervical cancer, and others. The formulation was tested in a phase I 80
clinical trial [82]. 81
Although MRX34 displayed strong activity, at the end of the trial, only three patients 82
achieved prolonged confirmed partial responses, and 14 patients presented with stable 83
disease (median duration- 136 days) [85]. However, the trial was terminated due to seri- 84
ous immune-mediated adverse events that resulted in four patient deaths (NCT01829971) 85
[82-84]. After this, MiRNA Therapeutics ceased operations in 2017 and agreed to merge 86
with Synlogic Inc. 87
Cobomarsen (MRG-106): MRG-106 (Cobomarsen), an LNA-based antagomir of miR- 88
155 was developed by Miragen Therapeutics (Viridian Therapeutics Inc) that aimed to 89
inhibit the activity of miR-155 [157, 158] in several lymphoma subtypes, as well as in dif- 90
fuse large B-cell lymphoma [102] [83] where miR-155 is up-regulated. Phase II clinical tri- 91
als are being conducted to assess its effectiveness in treating certain cancers and immune 92
disorders including cutaneous T-cell lymphoma (CTCL), chronic lymphocytic leukemia, 93
diffuse large B-cell lymphoma, and mycosis fungoides (NCT03837457), and adult T-cell 94
leukemia/lymphoma (NCT02580552, NCT03713320). While Phase I trial was completed, 95
two of the Phase II studies were terminated. The study was terminated early for business 96
reasons, and not due to concerns regarding safety or lack of efficacy. (https://classic.clini- 97
caltrials.gov/ct2/show/NCT03713320). 98
MRG-107: MRG-107 an antagomir of miR-155 was developed by Miragen Therapeu- 99
tics (Viridian Therapeutics Inc) that aimed to inhibit the activity of miR-155. miR-155 plays 100
relevant functions in the immune mechanisms and inflammation processes in amyo- 101
trophic lateral sclerosis (ALS) and miR-155 is elevated in the spinal cords of ALS patients. 102
In preclinical models of ALS, inhibition of miR-155 has reduced the ALS symptoms and 103
extended survival [145]. 104
MRG-110: MRG-110 is a synthetic antagomir of miRNA-92a developed by MiRagen 105
Therapeutics in collaboration with Servier to treat ischemic conditions such as heart fail- 106
ure [159]. MRG-110 is developed to promote the growth of new blood vessels by inhibiting 107
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miR-92a. MRG-110 is being studied to determine if it can accelerate healing of wounds by 108
improving blood flow into the wound area. A phase I clinical trial that tested safety, 109
tolerability, pharmacokinetics, and pharmacodynamics of MRG-110 following intrader- 110
mal Injection in healthy Volunteers was recently completed (NCT03603431). 111

Remlarsen (MRG-201): Remlarsen (MRG-201) is an LNA RNA mimic of miR-29 de- 112
veloped by MiRagen Therapeutics for keloid disorder and decreases the expression of 113
collagen and other proteins that are involved in scar formation and has been shown to 114
inhibit fibrosis [160]. miR-29 family members are typically downregulated in fibrotic dis- 115
eases [161]. Clinical trials is being conducted to assess Remlarsen’s safety and efficacy in 116
treating fibrotic disorders such as hypertrophic scars and idiopathic pulmonary fibrosis 117
when administered by intradermal injection at the site of an excisional wound [160] 90]. 118
The phase II clinical trial is currently underway to determine if it can limit the formation 119
of fibrous scar tissue in certain diseases (NCT03601052). 120

TargomiRs: The MesomiR 1 trial (NCT02369198) tested the safety and efficacy of 121
miR-15/16 encapsulated in bacterial minicells (TangomiRs) in patients with recurrent ma- 122
lignant pleural mesothelioma (MPM. TangomiRs developed by EnGenelC to deliver 123
miR16 mimics encapsulated in TargomiRs composed of nonliving bacterial nanocells with 124
anti-EGFR bispecific antibody to target EGFR-expressing cancer cells were tested as 2nd 125
or 3rd Line Treatment for patients with recurrent malignant pleural mesothelioma (MPM) 126
and non-small cell lung cancer (NSCLC) (NCT02369198) [162]. More specifically, mir-16 127
mimic was encapsulated in EnGenelC's bacterially-derived EDV™ (EDV)TM nanocells (a 128
400 nm particle of bacterial origin able to carry a drug cargo) and targeted with EGFR 129
antibodies (TargomiRs). miR-15/16 are implicated as tumor suppressors in MPM. Alt- 130
hough variable response rates were observed with 5% of the patients showing partial re- 131
sponse, 68% showing stable disease and 27% showing progressive disease after low dose 132
systemic administration of TargomiRs; however, dose-dependent toxicities were ob- 133
served (i.e., anaphylaxis, inflammation as well as cardiac events)[128, 162]. 134

MGN-1374: MGN-1374, an 8-mer LNA ASO developed by miRAgen Therapeutics, 135
is designed to specifically target the seed region of the miR-15 family and is currently in 136
the preclinical phase for the control of postmyocardial infarction remodeling. 137

RGLS4326: RGLS4326 is a single-stranded, chemically modified, 9-mer ASO with full 138
complementarity to the seed sequence of miR-17. RGLS4326 is designed to inhibit the 139
pathologic functions of the miR-17 family in Polycystic kidney disease (ADPKD) [163] 140
[87], an autosomal dominant disease, one of the most frequent monogenic disorders, 141
caused by mutations in the PKD1 or PKD2 gene and therapeutic options for the treatment 142
of ADPKD are limited. A phase I clinical trial of RGLS4326 was recently completed 143
(NCT04536688). 144

Additionally, Table 2 highlights several miRNA-based drugs currently under pre- 145
clinical investigation, targeting various diseases such as Peripheral Arterial Disease, 146
Chronic Heart Failure, Amyotrophic Lateral Sclerosis (ALS), among others. 147

Moreover, miRNA therapeutics in combination with chemotherapeutic agents have 148
also been explored to overcome cancer therapy resistance [142]. Studies indicate that 149
combining therapeutic miRNAs with chemotherapy can decrease the required drug doses 150
for cancer treatment [164, 165]. For example, miR-3622b-5p, when paired with cisplatin, 151
not only enhances apoptosis but also sensitizes ovarian tumor organoids to cisplatin [166], 152
suggesting the potential of miRNAs in combination with chemotherapy to address cancer 153
treatment and counteract drug resistance. 154

5.2. Small molecule modulators of miRNA expression 155

Because altered levels of miRNA expression is associated with many cancers, restor- 156
ing the function of tumor suppressor miRNAs by overexpressing or introducing of 157
miRNA mimics to restore to their relatively normal physiological levels or function or by 158
inhibiting overexpressed oncogenic miRNAs by miRNA inhibitors (antagomirs), or 159
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miRNA sponges in cancer represents two major strategies for miRNA therapeutics in can-
cer [122, 167] (Figure 3).

The function of repressed miRNAs can also be restored to their relatively normal
physiological levels and function by using some small molecules that can transcriptionally
activate the expression of miRNA genes leading to expression of endogenous miRNAs
and restoring the expression of tumor suppressive miRNAs. Conversely, overexpressed
oncogenic miRNAs can also be suppressed by small-molecule inhibitors.

As illustrated in Figure 3 and Table 1 and discussed in literature [122], because nu-
cleic acid-based therapeutics have poor cell-permeability for drug delivery, in recent years
small-molecule drugs in the regulation of miRNA expression have been explored since
they can cross the cell membrane by free diffusion and can modulate the expression of
miRNAs and also traditional drug development can be applied for the development of
novel miRNA inhibitors (or activators) [168] (Wu, 2020b).

Table 1. Representative examples of small-molecule miRNA inhibitors.

Small molecule inhibitors
of miRNAs
Trypaflavine

Streptomycin

ACIMMYR2

Diazobenzene
Azobenzene
Estradiol

Polylysine

4-benzoylamino-N-(prop-2-
yn- 1-yl)benzamides
Arylamide derivatives

Kanamycin A

2-DOS Compound 1
2-DOS Compound 2
2-DOS Compound 3
2-DOS Compound 4
2-DOS Compound 5
2-DOS Compound 6
2-DOS Compound 7
2-DOS Compound 8

2-DOS Compound 9

NSC 158959
NSC 5476
Benzimidazole
2-methoxy-1,4-naphtha-
lenequin
Arsenic trioxide
Neomycin

Target

miRNAs Mechanism of action References
miR-21 Blocking the assembly of miR-21 with Ago2 [175]

miR-21/ , . .

MiR-27a Blocking the cleavage of pre-miR-21 by Dicer [242]
MiR91 Blocking the cleavage of p}‘e-mlR-Zl to produce mature [243]
miR-21
miR-21 Inhibition the transcription of miR-21 gene [244]
miR-21 Inhibition the transcription of miR-21 gene [244]
miR-21 Inhibition the transcription of miR-21 gene [245]
miR-21 Blocking the forma’aor.l (.>f. mature .of pre-miR-21 by the in- [175]
hibition of Dicer
miR-21 Up-regulation of PDCD4, the function target of miR-21 [246]
miR-21 Blocking the mature of pre-miR-21 [247]

Let-7/ . . . .

MiR-27a Binding to pre-let-7 and blocking the function of Dicer [176]
Let-7 Binding to pre-let-7 and blocking the function of Dicer [176]
Let-7 Binding to pre-let-7 and blocking the function of Dicer [176]
Let-7 Binding to pre-let-7 and blocking the function of Dicer [176]
Let-7 Binding to pre-let-7 and blocking the function of Dicer [176]
Let-7 Binding to pre-let-7 and blocking the function of Dicer [176]
Let-7 Binding to pre-let-7 and blocking the function of Dicer [176]

Bantam  Binding to pre-bantam and blocking the function of Dicer [176]

miR-142  Binding to pre-miR-142 and blocking the function of Dicer [176]

MiR-19b-2 Binding to pre-miR-19b-2 z'md blocking the function of [176]

Dicer

miR-122 Inhibition of the transcription of miR-122 [177]
miR-122 Inhibition of the transcription of miR-122 [177])
miR-96 Up-regulation of FOXO1, the function target of miR-21 [248]
miR-1 Down-regulation the expression level of miR-1 [183]
miR-27a Down-regulation the expression level of miR-27a [249]
miR-27a  Blocking the mature of miR-27a by the inhibition of Dicer [250]
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Amikacin miR-27a  Blocking the mature of miR-27a by the inhibition of Dicer [250]
Tobramycin miR-27a  Blocking the mature of miR-27a by the inhibition of Dicer [250]

5"-azido-neomycin B

N-substituted oligoglycines

MiR-525 Binding to the processing site of Drosha to block the gen- [251]

eration of pre- miR-525
miR-21 A specific ligand binding with pri-miR-21. [252]

Various small molecule inhibitors of various miRNAs with various chemical struc-
tures and different mechanisms of action (Table 1) have been described with different
target sites of inhibition and interference across the whole process of miRNA biogenesis
such as processing, maturation, and function (Figure X) [122].

For example, as discussed in literature [122], reduced expression of tumor suppressor
miRNAs can be reactivated to their normal physiological levels by some small molecule
compounds, such as hypomethylating agents [169].

Decitabine or 5-azacytidine are two drugs for the treatment of myelodysplastic syn-
drome and were shown to upregulate the expression of several miRNAs [106].

Similarly, enoxacin was shown to activate the expression of several miRNAs in vitro
[170] and to suppress tumor growth by upregulating the expression of 24 miRNAs in vivo
in mice xenograft models [170] suggesting that small molecule compounds can potentially
restore miRNA expression and function to a more physiological setting.

For example, miR-21 is one of the tumor-associated miRNAs (oncomiR) has been
shown to be upregulated in a variety of tumor cells, including breast cancer, ovarian can-
cer, colon cancer, pancreatic cancer, thyroid cancer, and others and its high expression in
cancer which is closely associated with tumorigenesis [171-174].

Trypaflavine (TPF), a small molecule inhibitor of miR-21 was shown to suppress the
expression of miR-21 [175].

Trypaflavine was shown to inhibit the formation of RISC by blocking the assembly
of miR-21 and AGO2 protein, leading to the suppression of the expression level of miR-
21.

Similarly, Kanamycin A was shown to inhibit the expression of let-7 by binding to
pre-let-7 and interfering with Dicer [176].

Furthermore, small-molecule inhibitors of miR-122, NSC 158959 and NSC 5476 [177]
which may be involved in the modulation of transcription of miR-122 gene to pri-miR-
122.

Importantly, mir-122 is a liver specific miRNA, accounting for about 72% of the total
miRNA in the adult liver and is one of the earliest miRNAs with tissue-specific and high
abundance expression [178].

miR-122 plays a key role in the regulation of cholesterol and fatty-acid metabolism
in the adult liver suggesting that miR-122 may be an attractive therapeutic target for met-
abolic disease [179].

Moreover, it was also shown that miR-122 also plays a key role in the development
of various types of liver diseases including acute and chronic liver injury,, liver tumor and
hepatitis C virus (HCV) infection, liver cirrhosis, and alcoholic hepatitis [180].

miR-1 which is abundantly expressed in skeletal muscle cells plays a role in the reg-
ulation of the formation of skeletal muscle cells and the development of muscle and is
closely associated with the development of the heart [181, 182].

Various small molecular Inhibitors of miR-1 have been identified from photocycload-
ducts of acetylenes with 2-methoxy-1,4-naphthalenequinone as the basic skeleton by pho-
tocyclization reaction [183]. For example, the small molecule 2-methoxy-1,4-naphtha-
lenequinone was demonstrated to exert specific inhibitory effects on miR-1 and was
shown to significantly inhibit the expression of mature miR-1 in cells. However, the spe-
cific mechanism of action of 2-methoxy-1,4-naphthalenequin for its inhibitory function on
miR-21 remains to be elucidated.

6. Advances in delivery of miRNA therapeutics
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Although a few phase 1 and 2 clinical trials involving miRNA-targeting or miRNA- 221
based therapeutics, there are no miRNA-based therapeutics in phase III trials so far. This = 222
is partly due to the challenge of targeted delivery of miRNAs to specific cell types, tissues, 223
and organs. Although targeting of miRNAs to a cell of interest by using various methods 224
(e.g. antibodies, nanoparticles, or ligands) have been reported to improve the efficacy of 225
miRNAs and reduce off-target effects (e.g., immunotoxicity [184], there are still limitations 226
and challenges for miRNA therapeutics warranting more research in this field.= 227

As illustrated in Figure 4 and discussed in detail in the literature in detail [77, 84, 185, 228
186], there are various strategies being explored as a mechanism to deliver miRNA thera- 229
peutics (mimics and antagomirs) to the indented tissue and to improve the pharmacoki- 230
netic mechanisms, and avoid off-target effects. These include vector-based and non-vec- 231
tor-based methods including lipid-based nanoparticles, polymeric vectors/dendrimer- 232
based vectors, cell-derived membrane vesicles, 3D scaffold-based delivery systems, and 233
other nanoparticles derived from polymers and metals that are biodegradable and bio- 234

compatible. 235
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Figure 4. Examples of miRNA delivery systems. MiRNA therapeutics can be administered orally = 237
or intranasally or through venous (intravenously) or muscle (intramuscularly) or skin (subcutane- 238
ously) injections, or via cell-/tissue-directed approaches, or adoptive cell transfer, or the implanta- 239
tion of 3D matrices that release miRNA therapeutics, or other extracorporeal miRNA delivery strat- 240
egies [77]. Other modes of delivery of miRNA therapeutics include vector based and non-vector- 241
based delivery systems including adeno-associated virus. (A), lentivirus (B), bacterial nanocells (C), 242
bacteriophages (D) liposomes, including monovalent and multivalent lipids such as cationic lipid- 243
based ligand-targeted nanoparticles (E), natural polymer-based nanoparticles (F), polymer based 244
nanoparticles (natural, green and synthetic, blue) conjugated with polyethylene glycol (PEG) (G), 245
extracellular vesicles or exosomes (H), gold nanoparticles [268] (I) carbon nanotubes (J), quantum 246
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dot nanoparticles (K), core-shell magnetic nanoparticles (L), and others such as polymeric micelles, 247
and mesoporous silica nanoparticles are the examples of nanocarriers as drug-delivery systems 248
[145]. Moreover, there have been efforts to improve the serum stability, pharmacokinetics, and tis- 249
sue specificity by targeted delivery of miRNA mimics, miRNA inhibitors and other nucleic acid 250
therapeutics by incorporation of various chemical modifications and/or conjugation of these RNA 251
and nucleic acid therapeutics to biomolecules to facilitate receptor-mediated uptake such as N- 252
acetylgalactosamine (GalNAc), 2’-O-methyl nucleotide, phosphorothioate, cholesterol, locked nu- 253
cleic acid (LNA), and aptamer moieties are also shown as examples [77, 84, 186, 208, 269]. Created 254
with BioRender.com. 255

As such, there is a need for an efficient delivery system for developing miRNA-based 256
therapeutics. 257

As discussed in detail in literature [187], several different strategies have been ex- 258
plored to efficiently deliver RNA-based therapeutics (Figure 4) including vector-based = 259
and non-vector-based delivery systems including adeno-associated virus, lentivirus, bac- 260
terial nanocells [188], bacteriophages, cationic lipid-based liposomes, including monova- 261
lent and multivalent lipids, natural polymer-based nanoparticles, polymer based nano- 262
particles conjugated with polyethylene glycol (PEG), extracellular vesicles (EVs) or exo- 263
somes, nanocomplex-forming functionalized metals such as gold nanoparticles, and car- 264
bon nanotubes and many others that are engineered to contain biomolecule conjugates for 265
improved stability and pharmacokinetics and target delivery to the intended cell or tissue 266
type [84, 186, 187, 189, 190]. A recent report demonstrated enhanced antitumor potency of 267
STING agonists after covalent conjugation of cyclic dinucleotides (CDN) to polymer na- 268
noparticles (poly(f3-amino ester) formulation for the intravenous delivery [191]. 269

Non pathogenic recombinant viral vectors including retroviruses and lentiviruses 270
(which bears a risk for genomic integration), adenovirus, and adeno-associated viruses 271
(only remains transiently stable in a episomal form in the host cell’s nucleus [192, 193] 272
encoding the intended RNA are also being explored for intracellular delivery of miRNA- 273
based therapeutics and hence become a major focus of attention [194]. A Phase Il trial is 274
currently testing an adeno-associated viral vector for the delivery of the miRNA drug 275
AMT-130 for the treatment of Huntington's disease (ClinicalTrials.gov identifier 276
NCT04120493) [195-197]. Despite their potential for the delivery and expression of miR- 277
NAs, there are various side effects with the use of viral vectors such as immunogenicity 278
and transgene-related immune responses [198]. 279

Packaging of the negatively charged nucleic acids in liposome nanoparticles mask 280
their negative charge and also protects against serum nuclease degradation [190, 199]. De- 281
livery of miRNAs using liposome nanoparticles has already been applied in several clini- 282
cal studies, such as MRX34 (NCT01829971, NCT02862145) [82, 83]. 283

Similarly, miRNA-loaded bacterial minicells were used for the delivery of miR-16 284
mimics in a phase 1 trial in patients with recurrent malignant pleural mesothelioma 285
(MesomiR 1, NCT02369198) [162, 200]. However, the study also reported several side ef- 286
fects including dose-limiting toxicities, decreased lymphocyte counts, or cardiac events 287
[162]. 288

Extracellular vesicles (and exosomes) that can be loaded with a desired cargo to per- 289
mit in-body cellular transfer are also being explored as drug delivery systems [201]. EVs 290
derived from mesenchymal stromal cells from human adipose tissue were engineered to 291
package miR-125b which consequently was shown to inhibit the proliferation of human 292
hepatocarcinoma cells [202]. 293

In addition, different modalities of drug delivery systems have been explored for the 294
delivery of miRNA-based drugs such as core-shell magnetic nanoparticles, quantum dot 295
nanocrystals, polymeric micelles, and mesoporous silica nanoparticles are among the 29
other examples of nanocarriers as drug-delivery systems to improve the therapeutic ef- 297
fectiveness and specificity, and tissue targeting of miRNA and other nucleic acid thera- 298
peutics [145]. 299
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For example, covalent conjugation of miRNAs and other nucleic acid-based drugs 300
and biomolecules to lipids, peptides, or sugars that work via receptor-mediated endocy- 301
tosis mechanisms is another promising strategy [190]. 302

Similarly, lipophilic cholesterol conjugate was used for a cell type-independent de- 303
livery of miR-29-based mimic (remlarsen/MRG-201) to human skin fibroblasts by skin 304
injection in a Phase II trial on keloid disorder to repress extracellular matrix expression 305
and fibroplasia in the skin ( NCT02603224, NCT03601052) [160]. 306

Aptamer conjugates coupled to corresponding miRNA therapeutics by simple sticky- 307
end annealing [203] is yet another strategy for the delivery of miRNAs to intended cell 308
type. Aptamers are single-stranded nucleic acids that are developed as high-affinity lig- 309
ands specific to a cell surface receptors to facilitate the delivery of therapeutic cargo in- 310
cluding miRNAs through receptor-mediated transport [190, 203]. Aptamer-conjugated 311
miRNAs, including the Aptamer-miR-34c conjugate (GL21.T-miR-34c) are currently being 312
explored in preclinical studies in non-small-cell lung cancer cells [204]. 313

Other biomolecule conjugates including N-acetylgalactosamine (GalNAc) which en- 314
ables a targeted delivery of nucleic acid therapeutics via endocytosis by the stimulation of 315
the liver cell-specific asialoglycoprotein receptors have also been explored in clinical trials 316
[205, 206]. GalNAc conjugated to a miR-122 inhibitor (RG-101) and to an miR-103/107 in- 317
hibitor (RG-125/AZD4076) were explored in clinical trials for chronic HCV [EU Clinical 318
Trials Register (clinicaltrialsregister.eu) EudraCT numbers 2015-001535-21, 2015-004702- 319
42, 2016-002069-77] and steatohepatitis (NCT02612662, NCT02826525), respectively [206- 320
208]. However, because of some side effects (i.e., jaundice cases), the RG-101 clinical trial 321
was halted and the cause of which is still under investigation [156, 209, 210]. 322

Other examples of the use of GalNAc-Conjugated LNA, anti-miR-122 antisense oli- 323
gonucleotides, or nano-carrier vehicles in combination with cell type-specific biomolecule 324
conjugates or miR-155 inhibitors by gold nanoparticles functionalized with antagomirand 325
AS1411 aptamer have been explored in recent preclinical studies [211, 212]. 326

In addition, the 3D matrices for delivering nucleic acid—based therapeutics and con- 327
ventional drugs are currently undergoing optimization with diverse design features. This 328
encompasses various application routes, such as edible or injectable carriers [77, 213-215]. 329
One potential method of administering miRNAs is orally [75]. MiRNAs are often associ- 330
ated with extracellular vesicles (EVs), RNA-binding proteins, lipoproteins, or lipid deriv- 331
atives, along with nanoparticles which shield miRNAs from the adverse gastrointestinal 332
environment, including salivary and pancreatic RNases, the stomach's low pH, digestive 333
enzymes, peristaltic activity, and microbial enzymes. Such protection likely facilitates the =~ 334
absorption of miRNAs from the digestive tract [75]. However, there is ongoing debate 335
surrounding the absorption, stability, and physiological impact of these food-derived 336

miRNAs. 337
7. Progress in chemical modifications of miRNAs for improved stability and cellular 338
uptake 339

As illustrated in Figure 4 and discussed in the literature [77], a combination of chem- 340
ical modifications, biomolecule conjugation, or the use of carriers improves site-directed 341
and efficient cell targeting of miRNA and other nucleic acid therapeutics. In addition, var- 342
ious types of chemical modifications of nucleobases, ribose sugar, or the phosphate back- 343
bone can mask the negative charge of the miRNAs and other nucleic acids and increase = 344
their adhesion to the cell surface, thereby facilitating cellular uptake [190, 216] and also 345
improving their stability. 346

Among the commonly used nucleic acid modifications, locked nucleic acid (LNA) 347
bases [216] are characterized by the introduction of methylene bridges which reduce the 348
flexibility of the ribose ring, resulting in a locked conformation of the modified nucleo- 349
tides [217, 218]. 350

LNA-modified RNA-based therapeutics are more resistant to ribonucleases and ex- 351
hibit improved cellular uptake, primarily through an endocytosis mechanism that 352
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remains not fully understood [219]. The locked conformation enhances the capability of 353
RNA-based therapeutics to establish stable duplexes by binding to and inhibiting the 354
function of the target miRNA. 355

Consequently, LNA-modified RNAs are frequently employed in single-stranded an- 356
tagomirs, such as antisense oligonucleotides (ASOs) and this locked conformation en- 357
hances the capability of ASOs to establish stable duplexes by binding to and inhibiting the 358
function of the target miRNA [216, 219]. Due to these benefits, LNA-modified oligonu- 359
cleotides have emerged as one of the primary approaches for inhibitory therapeutics 360
targeting both miRNA and mRNA. 361

Phosphorothioate modifications, involving the introduction of a sulfur atom into the 362
oligonucleotide's phosphodiester backbone, have emerged as a promising method for im- 363
proving oligonucleotide stability and promoting endosomal uptake, particularly through 364
stabilin receptors found on cell surfaces (e.g., in kidney cells) [220, 221]. The latter ap- 365
proach has been utilized for the targeted renal delivery of synthetic miR-21-anti-miR (RG- 366
012/lademirsen/SAR339375) in a clinical investigation involving Alport syndrome (Clini- 367
calTrials.gov identifiers NCT03373786, NCT02855268) [222]. However, certain sequence- 368
independent effects have been documented in association with phosphorothioate-modi- 369
fied oligonucleotides [154]. A recent investigation has described a fully modified form of 370
miR-34a (FM-miR-34a) that effectively addresses issues related to miR-34a stability, non- 371
specific delivery, and delivery-related toxicity [69]. FM-miR-34a demonstrated a potent 372
inhibition of proliferation and invasion, leading to sustained suppression of its target 373
genes for over 120 hours following the in vivo delivery of FM-miR-34a conjugated to folate = 374
(FM-FolamiR-34a). This treatment resulted in the inhibition of tumor growth, leading to 375
complete cures in some mice [69]. No significant changes observed in the body weight of 376
mice throughout the study indicating the safety of FM-FolamiR-34. These results have the 377
ability to revitalize miR-34a as an anti-cancer agent, providing a strong rationale for clin- 378
ical testing. 379

8. Progress in predicting and validating miRNA targets 380

As discussed in the literature [85] the mechanistic functions of candidate miRNAs 381
can be evaluated through bioinformatic analysis and/or in vitro experiments before pro- 382
gressing to testing in preclinical animal models. In addition. multiple databases and algo- 383
rithms have been developed and are available for predicting their targets associated with 384
each miRNA [109, 223]. To enhance predictive accuracy of miRNA target prediction, itis 385
a common practice to employ multiple distinct algorithms simultaneously to predict 386
miRNA binding sites in protein-coding genes and relevant biological pathways and net- 387
works. An example algorithms is TargetScan [109], which predicts miRNA targets based 388
on seed regions that are essential for mRNA binding. TargetScan encompasses nearly all 389
miRNA sequences documented in miRBase to date. 390

Likewise, advances in high-throughput screens and bioinformatic tools for target 391
predictions have significantly facilitated the study of miRNAs and prediction of their pu- 392
tative targets and biological pathways. For example, bioinformatics tools such as KEGG 393
and Ingenuity Pathway Analysis not only predict potential biological pathways but, in 394
some instances, also identify disease states that may be influenced by miRNAs. 395

Furthermore, various computational tools can be used for calculating the free energy 396
between the RNA sequences of interest [224]. For example, a lower free energy, typically 397
around -20 or less, is indicative of a more robust binding [224]. Consequently, the integra- 398
tion of clinical research databases with miRNA bioinformatics platforms could further 399
improve the identification and assessing potential therapeutic candidates. 400

As for the preclinical models, various human cell lines and induced-pluripotent stem 401
(IPS) cells have been used to investigate the mechanisms, toxicity, and potential therapeu- 402
tic efficacy of miRNA candidates as well as epigenetic manipulation of target transcripts 403
[85]. For example, use of IPS cells enable modulation of biological pathways along distinct 404
stem cell lineages from readily available skin tissue source [225, 226]. Furthermore, the 405
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availability of various animal models through academic laboratories or commercially fa- 406
cilitated efficient validation of findings from in vitro miRNA studies. Other animal mod- 407
els including nonhuman primate models have also been successfully used for the preclin- 408
ical safety and toxicology testing of miRNA therapeutics supporting the initiation of sev- 409
eral human miRNA therapeutic clinical trials. 410

Like other drug classes, the development of miRNA-based drugs must go througha 411
sequence of developmental stages, spanning from discovery to preclinical studies, toxi- 412
cology assessment, pre-IND, and multiple phases of human clinical trials prior to ap- 413
proval by regulatory agencies before market entry (Figure 5) [142]. 414

miRNA-Based Drug Discovery & Development Process

*W
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Figure 5. Illustration of the miRNA drugs discovery and development process beginning from the 416
target identification and miRNA discovery to FDA approved miRNA therapeutics in the market. In 417
the traditional drug development process, the timeline from target, drug discovery to phase 1-3 418
human clinical trials and, ultimately, FDA approval, followed by Phase 4 studies can go on for sev- 419
eral years. Conversely, RNA-based and more specifically, miRNA-based drug development can ac- 420
celerate miRNA-based drug discovery and development, potentially mitigating attrition rates, time =~ 421
constraints, and costs. Created with BioRender.com. 422

In the traditional drug development process, the timeline from identifying a drug 423
target to drug discovery and lead development through preclinical and phase 1-3 hu- 424
man clinical trials, FDA approval, and subsequent Phase 4 studies often spans several 425
years. However, the escalating costs and time required in this process have become un- 426
sustainable, urging the imperative to hasten drug discovery and development while curb- 427
ing associated expenses and timeframes. 428

Conversely, leveraging RNA-based methodologies, particularly miRNA-based ap- 429
proaches, holds promise in expediting both the discovery and development of drugs, po- 430
tentially mitigating attrition rates, reducing time constraints, and cutting costs. 431
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9. Progress in preclinical validation of miRNA therapeutics 432

As discussed in the literature [77, 85], single miRNAs not only can regulate an entire 433
pathway and multitude of mRNA targets but also each mRNA may also be targeted by 434
multiple miRNAs [227]. It has been suggested that miRNAs can regulate a diverse range 435
of RNAs stems from their ability to bind to target mRNAs even when the pairing is not 436
perfect. As a result, a single miRNA can regulate a pool of targets involved in similar 437
cellular processes, thereby amplifying the cellular response Although a single miRNA can 438
inhibit hundreds of genes, the effect on each gene is generally mild [116] and multiple 439
miRNAs can regulate the same gene [117, 227] thereby amplifying the cellular response. 440

Because a single miRNA has the potential to bind to as many as 200 target mRNAs, 441
each with diverse functions, including transcription factors, receptors and many others, 442
consequently, entire signaling pathways can be regulated by individual miRNAs [117] or 443
miRNA clusters [228]. 444

The pivotal role of miRNAs in the regulation of multiple genes and their far-reaching 445
effects within regulatory networks presents significant challenges for miRNA therapeu- 446
tics [229][85]. Therefore, the successful development of miRNA-based therapeutics re- 447
quires a comprehensive functional characterization and validation of the molecular effects 448
of each miRNA prior to their application as therapeutics [77, 85]. Toward the functional 449
characterization of each miRNA, many steps must be undertaken, ranging from the con- 450
firmation of the authenticity of an miRNA as a true miRNA, the enhancement of miRNA 451
target prediction algorithms, and the experimental validation of their functional effecton 452
their intended targets in relevant preclinical models [77]. 453

10. Off-target effects of miRNA therapeutics 454

Among the challenges inherent in miRNA-based therapeutics, off-target effects and 455
associated toxicities emerge due to the capacity of each miRNA to regulate the expression 456
of multiple genes and are one of the main challenges associated with miRNA therapeutics. 457
Thus, further research is essential for the development of miRNAs as effective cancer ther- 458
apeutics. Additionally, numerous miRNAs are dysregulated not only in cancer cells but 459
also in other cells within the tumor microenvironment (TME), where they might have op- 460
posing functions. 461

Furthermore, depending on the route of administration and the way to enable an 462
intracellular delivery, the miRNA therapeutics are not necessarily restricted to the in- 463
tended tissue or cells but can also lead to systemic side effects [77]. For example, MRX34, 464
a synthetic miR-34a mimic as a tumor suppressor [230] systemically administered by a 465
liposomal amphoteric (i.e.,, pH-dependent) delivery, which takes advantage of the low- 466
pH environment of tumorous tissues [231] used for the treatment of various solid tumors 467
and hematologic malignancies (NCT01829971) was terminated prematurely because of 468
severe immune-related side effects leading to the death of four patients [82, 83]. Previous 469
animal studies, however, demonstrated that a miR-34a mimic was not only taken up by 470
tumor tissue but also by bone marrow and spleen [232, 233] which are involved in the 471
generation and preservation of immune cells. Supporting these preclinical observations, 472
the clinical testing of miR-34a mimic demonstrated a dose-dependent change in several 473
target genes in white blood cells [83]. Consequently, miR-34a mimic not only functions as 474
a tumor suppressor but also impacts the immune cells by modulating calcium or chemo- 475
kine signaling such as CXCL10/CXCL11/CXCR3-axis in CD4+, CD8+ T cells, and M1 mac- 476
rophages [234, 235]. 477

Despite the lack of the direct causative link between the patient death, the miR-34a 478
function in immune cells has not been yet established. However, the serious and deadly 479
adverse effects of miR-34a mimic MRX34 underscores the need for a priori risk assessment 480
of miRNA therapeutics, specifically their potential off-target effects in other unintended 481
tissues highlighting the need for the development of more precise tissue target delivery 482
systems. 483
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11. Challenges and future perspectives 484

In addition to their potential utility as biomarkers [68], miRNA mimics, and inhibi- 485
tors provide a significant potential as therapeutics as many miRNAs function as oncomirs 486
or tumor suppressors, and restoring deregulated miRNA levels to that of healthy tissue 487
levels could potentially help in maintaining the endogenous anti-tumor regulatory mech- 488
anisms. While many new immunotherapeutic such as antibodies, recombinant proteins, 489
cell therapies, and small molecules have shown their success in the treatment of various 490
types of cancers [236], because of the global success of mRNA vaccines as modulators of 491
immune stimulation for tackling COVID-19 pandemic, there has been a resurgence of 492
RNA-based cancer immunotherapies [187]. Moreover, further improvements in RNA 493
chemistry and delivery are opening new opportunities for RNA-based immunotherapy. 494
Although, drug development, including RNA-based drugs, often requires many years 495
and substantial costs before approval by the FDA or other regulatory agencies (Figure 5), 496
the global threat of the COVID-19 pandemic has catalyzed the extremely rapid develop- 497
ment of a new class of mRNA-based vaccines. These mRNA vaccines whether developed = 498
by BioNtech in partnership with Pfizer or Moderna have shown to deliver on their prom- 499
ise i.e., they can be developed extremely fast, can be manufactured under GMP-compliant 500
manufacturing processes, and can be scaled for rapid availability of large numbers of 501
doses, were safe and active at a relatively low dose range [141, 187, 237, 238]. Because of 502
this, many companies are now leveraging the experience gained from the COVID-19 vac- 503
cine development to develop RNA-based cancer therapies and potentially for other dis- 504
eases. This of course have reignited the potential of miRNA as both diagnostics and ther- 505
apeutics. The approval of several antisense, small interfering RNA (siRNA), and mRNA- 506
based drugs and vaccines have validated their potential and opened the door for expan- 507
sion into new indications. Research surrounding RNA-based therapies comprises a broad 508
ecosystem, ranging from RNA engineering, and RNA chemistry including various modi- 509
fications to improve pharmacokinetics and reduce non-specific undesirable side effects to 510
delivery technologies. Furthermore, novel RNA constructs including those self-amplify- 511
ing RNA, circular RNA, siRNA, as well as gene editing (Cas9 mRNA, single guide RNA 512
[sgRNA]) all hold promise for next-generation cancer immunotherapy. 513

However, despite this potential over many years, there are several challenges includ- 514
ing sensitivity, specificity, toxicity immunogenicity, delivery among many others which 515
are a significant barrier to exploiting the full potential of miRNAs as therapeutics. 516

In addition, the development of novel targeted delivery systems would be vital for 517
the delivery of miRNAs. The delivery method must be target-specific, and be able to de- 518
liver the miRNA drugs to the targeted cells or tissues [142]. As illustrated in Figure 3, the 519
future lies in the targeted delivery vehicles, including lipid and polymer nanoparticles, 520
cell or extracellular vesicle-based packaging, and hybrid systems, as well as viral vectors 521
that will likely increase the therapeutic potency of various RNA-based therapies while 522
decreasing side effects. 523

In addition, there are other challenges that need to be addressed with regard to the 524
sensitivity, specificity, toxicity, and applicability of potential utility of miRNAs as thera- 525
peutics and therapeutic targets. Because each miRNA regulates more than one gene, 526
sometimes a single miRNA can regulate entire cellular pathways via interacting with mul- 527
tiple target genes. Likewise, each mRNA is regulated by more than one miRNA [77]. This 528
phenomenon is referred to as “too many targets for miRNA effect” (TMTME) [129]. Alt- 529
hough this characteristics of miRNAs make them a powerful new class of therapeutic, it 530
also represents a major challenge in terms of controlling adverse effects that have been 531
observed in clinical trials [77]. Because of this, Zhang et al. [129] proposed that adverse 532
events observed in terminated clinical trials involving miRNA therapeutics could be at- 533
tributed to the broad-ranging effects of miRNAs. 534

In addition, the type of miRNAs might change during the course and stage of cancer 535
which further complicates the target prediction, however, can also be beneficial for as- 536
signing a specific miRNA or several miRNAs to a specific stage of cancer. Therefore, more 537
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innovative approaches for predicting miRNA targets might be required to validate the
predicted targets.

Additional issues that need to be resolved include immunogenic reactions. Although
viral delivery systems undoubtedly enhance cellular uptake and expression of miRNAs,
they are associated with various side effects, including immunogenicity [198]. To address
this issue, there needs to be a better understanding on the prevalence of immunogenic
reactions resulting from viral transfer systems.

In addition, further research is needed to investigate whether severe immunogenic
reactions are also possible due to modifications in miRNAs, such as LNA miRNAs and
artificial miRNAs (amiRNAs), or through miRNA interfering molecules like small cell-
permeable molecules, application systems including biodegradable 3D matrices, carriers
like functionalized metals, viral transfer systems, or biomolecule conjugates such as ap-
tamers? Additionally, is it feasible to diminish immunogenic reactions by concealing or
masking reactive components?

Additionally, as detailed, as summarized in Table 4 and discussed in literature, [77]
there are many other key outstanding issues that must be overcome before miRNA ther-
apeutics can become widely adopted as novel therapeutics in the clinic.

Table 4. Key questions to address before miRNA therapeutics become clinically impactful.

10

11
12

What methods can be used to effectively guide therapeutic miRNAs/miRNA inhibitors to their intended target
tissue and cells in vivo?

How can the design of miRNA/miRNA-based drugs and delivery vehicles be optimized to reduce or, ideally,

eliminate unintended impacts on non-targeted cells?

What other strategies can be used to improve more accurate targeting for miRNA/miRNA inhibitor therapeu-

tics?
Is there a risk of incompatibilities when using diverse carrier materials for advanced miRNA/miRNA inhibitor-
based drug delivery, which may lead to undesired interactions between the materials and miRNA therapeutics?
Is there a risk of incompatibilities when using miRNA/miRNA inhibitor therapeutics in combination with tradi-
tional drugs pose the risk of incompatibilities?

Do modifications of miRNA/miRNA inhibitors such as LNA miRNA/miRNA inhibitors and other synthetic
miRNAs, as well as agents such cell-permeable molecules, delivery methods such as biodegradable 3D matrices,
carriers like functionalized metals, viral transfer systems, or biomolecule combinations such as aptamers invoke
immunogenic responses? If so, can the activation of immunogenic responses be ameliorated through the mask-

ing of reactive components or moieties?
What is the level of risk associated with genomic integrations of viral transduction constructs that carry miRNA
or miRNA inhibitors?

What is the impact of the expression of endogenous miRNAs and mRNAs on exogenously delivered therapeu-
tic miRNAs and miRNA inhibitors which may be also affected by factors like cell type, cell cycle, and the cellu-
lar environment?

What is the necessary dosage for particular administration techniques for miRNA/miRNA inhibitors, such as
skin injection, infusion, or inhalation, and for carrier-based methods like biodegradable 3D matrices?
How can the administration of miRNA/miRNA inhibitor therapeutic doses be regulated along intricate in vivo
delivery pathways?

Is it possible to achieve consistent and sustainable rates of cellular uptake of miRNA/miRNA inhibitor thera-
peutics under varying in vivo conditions?

In what ways can dosing of miRNA mimics and inhibitors support the desired gene targeting outcome?

These findings emphasize the need for further investigation in developing miRNAs
as both novel therapeutics and therapeutic targets for cancer.

12. Conclusions
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Because many miRNAs is abnormally expressed or mutated in many cancers acting 559
as oncogenes or a tumor suppressors [99, 239-241], they have emerged as potential bi- 560
omarkers [68], therapeutic targets, and therapeutics [81]. However, there are many out- 561
standing issues and challenges with respect to specificity and associated off-targeting ef- 562
fects of miRNA-based therapeutics since each miRNA appears to regulate more than tar- 563
get and each target is regulated more than one miRNA leading to undesired toxicity hence 564
limiting their use as therapeutics. 565

Currently, most of the miRNA therapeutics are still in early phases of human clinical =~ 566
trials; as such, it is awaited to see how other miRNA therapeutics perform in human clin- 567
ical trials in terms of toxicity or side effects. Notably, a few recent clinical trials using 568
miRNA therapeutics have reported some serious adverse events. For example, MRX34, a 569
microRNA liposomal injection developed by Mirna Therapeutics, Inc. evaluated in a 570
Phase 1 clinical trial for its efficacy against melanoma was withdrawn (NCT02862145) or 571
terminated (NCT01829971) [82-84] due to serious adverse events. As a result, numerous 572
challenges must be addressed to bring therapeutic miRNAs into clinical practice. These 573
include establishing miRNA specificity to their intended targets, reducing immunogenic 574
reactions and adverse events, determining optimal dosing for the desired therapeutic ef- 575
fect while minimizing side effects [77], and developing improved methods for targeted 576
delivery. 577

Despite these significant challenges, the potential of miRNAs as a therapeutic ap- 578
proach for various diseases is clear. Further research will be necessary to establish whether 579
miRNAs can effectively serve as therapeutics or therapeutic targets for clinical applica- 580

tions. 581
Abbreviations and acronyms: 582
AGO Argonaute
AGO2 Argonaute RISC Catalytic Component 2
ALS Amyotrophic lateral sclerosis
ASO Antisense oligonucleotides
CLL Chronic Lymphocytic Leukemia
CTCL Cutaneous T-cell Lymphoma
ATLL Adult T-Cell Leukemia/Lymphoma
COVID-19 coronavirus disease 2019
DICER1 Dicer 1, Ribonuclease III
DLBCL Diffuse Large B-Cell Lymphoma
EGFR Epidermal growth factor receptor
DGCRS8 DiGeorge Syndrome Critical Region 8
DROSHA Drosha Ribonuclease 11
EVs Extracellular vesicles
GalNAc N-acetylgalactosamine
HCV Hepatitis C virus
KEGG Kyoto Encyclopedia of Genes and Genomes
LNA Locked nucleic acid (LNA)
MF Mycosis fungoides
mRNA messenger RNA
miRNA microRNA
ncRNAs non-coding RNAs
P-bodies Processing bodies
pre-miRNA precursor microRNA
pri-miRNA primary microRNA
RNA Pol II RNA polymerase II
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SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
sgRNA Single guide RNA
siRNA Small interfering RNA
TDMD Target-directed miRNA degradation mechanism
TME Tumor microenvironment
TRBP The TAR RNA-binding protein
TTR Transthyretin
UTR Untranslated region
XenomiRs Exogenous miRNAs
XPO5 Exportin 5
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