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Abstract: Non-coding RNAs, specifically microRNAs (miRNAs), exhibit altered expression and 13 
contribute significantly to the pathological processes observed in numerous diseases, encompassing 14 
various types of human cancers. Recent discoveries regarding miRNAs underscore their crucial 15 
roles in tumor pathogenesis and their responses to diverse therapeutic interventions. miRNAs are 16 
a subset of non-coding RNAs that regulate the expression of a multitude of genes post-transcrip- 17 
tionally and thus are potential diagnostic, prognostic, and predictive biomarkers and have also 18 
emerged as potential therapeutics. Because miRNAs are involved in the post-transcriptional regu- 19 
lation of their target mRNAs via repressing gene expression, defects in the miRNA biogenesis path- 20 
way and miRNA expression perturb the expression of a multitude of oncogenic or tumor-suppres- 21 
sive target genes that are involved in the pathogenesis of various cancers. As such, numerous miR- 22 
NAs have been identified to be downregulated or upregulated in many types of cancers functioning 23 
as either oncomiRs or oncosuppressor miRs. Moreover, dysregulation of miRNA biogenesis path- 24 
ways can also change miRNA expression and function in cancer. Profiling deregulated miRNAs in 25 
many cancer types has been shown to correlate with disease diagnosis, indicate optimal treatment 26 
options, and predict response to a specific therapy.  Specific miRNA signatures can track all stages 27 
of disease including many cancer types and hold potential as biomarkers and therapeutic targets as 28 
well as therapeutics as miRNA mimics and inhibitors (antagomirs). As such, identifying specific 29 
miRNAs and mRNAs they regulate in many types of cancer along with downstream pathways can 30 
be used as potential therapeutic targets. Because a single miRNA can regulate a pool of targets in- 31 
volved in similar cellular processes and pathways, thereby amplifying the cellular response, this 32 
potentially makes miRNAs powerful therapeutics to restore cell functions that are altered as part of 33 
a disease phenotype. However, because a single miRNA regulates multiple gene expressions their 34 
cellular effects are numerous leading to potential off-target effects. Besides their intended targeting 35 
issues, there is a need to reduce the immunogenic reactions and determine the minimal dosing to 36 
achieve the desired effect while minimizing side effects. As such, a careful risk evaluation of miRNA 37 
therapeutics is needed to minimize off-target effects and to avoid overdosing of miRNA drugs. Fur- 38 
thermore, a limited understanding and validation of the specific roles of miRNAs limits their clinical 39 
application. In addition, there are many challenges concerning the delivery, sensitivity, specificity, 40 
toxicity, and applicability of the potential utility of miRNAs as therapeutic targets or therapeutics. 41 
Thus, future work will warrant if miRNAs can be used as cancer biomarkers as well as therapeutics 42 
for clinical application. 43 
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1. Introduction 47 

Although the majority of oncology research is still focused on the dynamic variations 48 
of proteins and protein coding RNAs (their corresponding coding sequences only account 49 
for ∼2% of the genome), the role of non-coding RNAs (ncRNAs) transcribed from the re- 50 
maining 98% of the genome including microRNAs (miRNAs) plays key roles in a multi- 51 
tude of biological processes in normal physiological states but also the development of 52 
various types of diseases including cancer underscoring the importance of miRNAs and 53 
other ncRNAs in tumor initiation and progression. While most of the research in oncology 54 
predominantly centers around the ever-changing aspects of proteins and the RNA mole- 55 
cules responsible for coding those proteins, it's important to note that these coding se- 56 
quences account for only about 2% of the genome (https://www.genomicseduca- 57 
tion.hee.nhs.uk/genotes/knowledge-hub/non-coding-dna/) [1-3]. However, the remaining 58 
98% of the genome, which includes non-coding RNAs (ncRNAs) such as miRNAs, plays 59 
pivotal roles in numerous biological processes during typical physiological conditions, as 60 
well as in the onset and advancement of different diseases, including cancer [4]. This em- 61 
phasizes the significance of miRNAs and other non-coding RNAs in the initiation and 62 
progression of tumors. 63 

In addition, miRNAs play key roles in the regulation of gene expression at the tran- 64 
scriptional [5-7] and post-transcriptional [8-11] levels, and exhibit tissue-specific  [12, 13] 65 
and developmental expression patterns [14-16] and play key functional roles in a broad 66 
range of biological processes within cells and organisms. Altered expression of miRNAs 67 
has emerged as an additional molecular mechanism implicated in the pathogenesis of nu- 68 
merous diseases [17-19], spanning innate immunity [20], autoimmunity and autoimmune 69 
diseases [21], viral infections [22-25], acute hepatitis [26], depression [27], anxiety [28], 70 
Alzheimer’s disease [29], Huntington’s disease [30], metabolic and cardiovascular dis- 71 
eases [31-34], diabetes [8, 33-38] and a many types of cancers [12, 39-69]. Consequently, 72 
these miRNAs can serve as indicators for the presence of a pathological condition, as well 73 
as provide insights into its stage, progression, or genetic associations. 74 

More recently, there is an emerging evidence suggesting that diet-derived exogenous 75 
miRNAs (or “xenomiRs”) can enter the circulatory system and tissues, potentially influ- 76 
encing gene expression and biological functions [70-75]. Uptake of miRNAs by gastric and 77 
intestinal cells as well as their potential effects on the gut microbiota by orally delivered 78 
miRNAs and their potential immunomodulatory properties indicate the possibility of 79 
cross-species or cross-kingdom communication through miRNAs [75]. Because of these 80 
observations, one potential method of administering miRNAs is orally. MiRNAs are often 81 
associated with extracellular vesicles (EVs), RNA-binding proteins, lipoproteins, or lipid 82 
derivatives, along with nanoparticles. These protective elements shield miRNAs from the 83 
adverse gastrointestinal environment, including salivary and pancreatic RNases, the 84 
stomach's low pH, digestive enzymes, peristaltic activity, and microbial enzymes. Such 85 
protection likely facilitates the absorption of miRNAs from the digestive tract [75]. How- 86 
ever, there is ongoing debate surrounding the absorption, stability, and physiological im- 87 
pact of these food-derived miRNAs and there are contrary findings regarding the bioa- 88 
vailability and the in-human functionality of miRNAs contained in plant food [76, 77]. 89 

Ongoing research continues to unravel new insights into the molecular mechanisms 90 
underpinning the dysregulation of miRNA biogenesis and expression in cancer. For ex- 91 
ample, it is widely acknowledged that genetic deletions or amplifications, epigenetic 92 
methylation of miRNA genomic loci, and modifications influencing the regulation of pri- 93 
mary miRNAs (pri-miRNA) by transcription factors, as well as components involved in 94 
the miRNA biogenesis pathway frequently alter miRNA expression and function in many 95 
cancers [56, 78, 79]. Furthermore, additional factors, such as oncogenic drivers like muta- 96 
tions in the KRAS gene, can also affect global miRNA biogenesis and effector function, 97 
contributing to the broader dysregulation of miRNAs [80]. Consequently, miRNAs and 98 
their dysregulation have garnered significant interest from both academia and industry 99 
as a focal area of research for both understanding of disease biology and explore their 100 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 December 2023                   doi:10.20944/preprints202312.1888.v1

https://www.genomicseducation.hee.nhs.uk/genotes/knowledge-hub/non-coding-dna/
https://www.genomicseducation.hee.nhs.uk/genotes/knowledge-hub/non-coding-dna/
https://doi.org/10.20944/preprints202312.1888.v1


Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 42 
 

 

applications as potential diagnostic, prognostic, and predictive biomarkers [68] as well as 101 
well as their roles as drug targets or therapeutic agents [81]. 102 

It is well-established that miRNAs are powerful genetic regulators of diverse biolog- 103 
ical and developmental processes, in addition to playing a pivotal role in the pathogenesis 104 
of various diseases. This is due to the ability of a single miRNA to regulate entire cellular 105 
pathways by interacting with numerous target genes [77]. Because of this, miRNAs have 106 
emerged as a novel class of therapeutic agents with the potential to restore disrupted cel- 107 
lular functions, particularly in various malignancies, including cancer. However, the very 108 
potency of miRNAs can be a double-edged sword. Their far-reaching effects, while bene- 109 
ficial, can also lead to off-target effects in non-targeted tissues, a concern documented in 110 
recent clinical trials [82-84]. Managing these off-target effects represents a significant chal- 111 
lenge to be addressed. Take, for instance, MRX34, a miR-34a mimic encapsulated within 112 
a liposome-formulated nanoparticle (NOV40) was evaluated in a first-in-human, Phase 1 113 
study in patients with advanced solid tumors, including melanoma NSCLC, hepatocellu- 114 
lar carcinoma, renal carcinoma. 115 

Although MRX34 exhibited significant efficacy, with three patients achieving pro- 116 
longed confirmed partial responses and 14 patients maintaining stable disease (median 117 
duration, 136 days) [85]; however, the clinical trial was terminated due to the occurrence 118 
of serious immune-mediated adverse events which resulted in the deaths of four patients 119 
(NCT01829971) [82-84]. Despite the setback, dose-dependent modulation of pertinent tar- 120 
get genes provides proof-of-concept for miRNA-based cancer therapy. 121 

This review discusses the dysregulation of miRNA expression in cancer and their 122 
potential as therapeutics and further discusses the main challenges and strategies to ad- 123 
dress the problems that must be overcome to fully harness the therapeutic potential of 124 
miRNAs. 125 

2. miRNAs 126 

Following the discovery of lin-4, the first miRNA in 1993 in Caenorhabditis elegans 127 
[86, 87] [79,80], it became evident that miRNAs are widespread in the animal and plant 128 
kingdoms, some of which exhibit high levels of conservation across species [88-90].  129 

MiRNAs, which are short non-coding RNA molecules typically composed of approx- 130 
imately 22 nucleotides, are naturally encoded in the genomes of various species [88-91] 131 
and play vital roles in regulating gene expression at both transcriptional [5-7] and post- 132 
transcriptional [8-11, 92] levels of their target mRNAs [8, 10] by and via the modulation of 133 
the stability and translation of mRNA [93] in a broad range of biological processes [94], 134 
impacting activities such as cell differentiation, proliferation, angiogenesis, and apoptosis. 135 
Furthermore, miRNAs display specific patterns of expression in different tissues [12, 13] 136 
and during various stages of development [14-16]. 137 

There are currently estimated to be more than 2588 mature human miRNAs present 138 
in human cells [95], each with a unique temporal and tissue-dependent expression pat- 139 
tern. These miRNAs are estimated to control over 60% of human gene expression, show- 140 
casing their significant regulatory roles in diverse physiological processes. Because a sin- 141 
gle microRNA can regulate multiple genes, many miRNAs can contribute to the develop- 142 
ment of many human diseases when they become dysfunctional [2, 8, 18, 20-26, 28, 30-35, 143 
37, 66, 96-98] including many types of cancer [39, 41-44, 47, 50, 51, 53, 55-67, 69, 99-104]. 144 

However, determining the precise relevance of individual miRNAs has been chal- 145 
lenging, despite their evident significance as regulatory molecules [105]. Studies investi- 146 
gating miRNA functions by either overexpressing or silencing specific miRNAs have gen- 147 
erated data that sometimes conflict with findings from loss-of-function models [105]. For 148 
example, studies in Caenorhabditis elegans involving systematic miRNA deletions sug- 149 
gest that fewer than 10% of the miRNAs are individually essential for normal develop- 150 
ment or viability [106] and this trend appears consistent in mice as well [97]. 151 

As illustrated in Figure 1 and discussed in detail in the literature, miRNAs are pri- 152 
marily transcribed from DNA sequences into primary miRNAs (pri-miRNAs), which 153 
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undergo initial processing by DROSHA in the nucleus to generate precursor miRNAs 154 
(pre-miRNAs) [8, 68, 107]. It's worth noting that as many as 40% of miRNA genes may be 155 
located within the introns or exons of other genes [108]. Pre-miRNAs are subsequently 156 
transported from the nucleus to the cytoplasm by exportin 5 (XPO5), where they are fur- 157 
ther processed by DICER, resulting in small RNA duplexes with specific 3' overhangs of 158 
2 nucleotides. These double-stranded RNA duplexes are loaded onto the Argonaute 159 
(AGO) protein, which retains one mature miRNA strand while discarding the other [10]. 160 
The AGO-miRNA complex, along with co-factors like GW182 (TNRC6A), forms the RNA- 161 
induced silencing complex (RISC) [92], responsible for mRNA transcript degradation and 162 
translational inhibition through interaction with complementary mRNA target sequences, 163 
typically located within the 3'-untranslated region (3'-UTR) of mRNAs (Figure 1) [109- 164 
112]. The interaction between miRNA and target mRNA typically takes place at the 5’ end 165 
of the miRNA, known as the 'seed' region. Yet, recent evidence points to a unique group 166 
of target mRNAs that bind the miRNA not just through the seed but also via a comple- 167 
mentary region at the 3’ end of miRNAs. This extended complementarity displaces the 168 
miRNA from Ago2, rendering it vulnerable to enzymatic degradation. This process is re- 169 
ferred to as the target-directed miRNA degradation mechanism (TDMD) [113, 114].  170 
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 171 

Figure 1. Illustration of miRNA biogenesis, processing, and target RNA translational 172 
suppression or degradation via various mechanisms. Created with BioRender.com. miR- 173 
NAs are a class of small, single–stranded non-coding RNAs that function as a guide mol- 174 
ecule in RNA silencing and hence modulate the expression of most mRNAs. The 175 
miRNA:target mRNA interaction usually occurs at the 5’ end of the miRNA (i.e., ‘seed’ 176 
region). However, recent evidence suggests that there is a special class of target mRNAs 177 
which bind the miRNA not only through the ‘seed’ region, but also through a second re- 178 
gion of complementarity at the 3’ end of the miRNA. The extended complementarity 179 
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forces the miRNA out of Ago2, where it becomes accessible to enzymatic degradation. 180 
This phenomenon is referred to as target-directed miRNA degradation mechanism 181 
(TDMD) [113, 114]. 182 

miRNAs are regarded as master regulators of the genome due to their ability to bind 183 
to and alter the expression of many protein-coding RNAs [115]. Because of this, a single 184 
miRNA can potentially regulate distinct mRNAs (anywhere from 10 to 100 protein-coding 185 
RNAs) due to their ability to bind to target mRNAs even when the pairing is not perfect 186 
[55, 116]. As a result, a single miRNA can regulate a pool of targets involved in similar 187 
cellular processes and pathways, thereby amplifying the cellular response and potentially 188 
making miRNAs powerful therapeutics to restore cell functions that are altered as part of 189 
a disease phenotype. Conversely, a specific messenger RNA can become the target of 190 
many miRNAs, whether concurrently or in a context-dependent manner [117], leading to 191 
a collaborative repression effect [118, 119]. Bioinformatic analyses indicate that a single 192 
miRNA can potentially bind to as many as 200 distinct gene targets with various func- 193 
tions, such as transcription factors, receptors, and more 194 
(https://bitesizebio.com/24926/mysterious-mirna-identifying-mirnas-and-their-targets/). 195 

3. miRNAs role in cancer 196 

Cancer is a complex and heterogeneous disease characterized by a series of genetic 197 
and genomic aberrations that promote tumorigenesis [120]. These changes within the ge- 198 
nome, which affect gene function, often arise from genomic aberrations like chromosomal 199 
translocations, insertions, deletions, amplifications, single-nucleotide mutations, or in the 200 
epigenome. These genetic and epigenetic aberrations frequently lead to the activation of 201 
oncogenes and the suppression of tumor suppressor genes [121]. In addition, miRNAs 202 
have been identified as additional genomic regulators that also  play a crucial role in var- 203 
ious aspects of organismal development, normal physiological processes, and the devel- 204 
opment of disease, including many types of cancers [68]. It has been demonstrated that 205 
miRNAs play a pivotal role in all the known processes involved in cancer including pro- 206 
liferation, survival, metastasis, and apoptosis  [115]. Data suggest that dysregulation of 207 
miRNA function, either through its loss or gain, contributes to cancer development by 208 
either upregulating or silencing specific target genes. As a consequence, utilizing miRNAs 209 
either as miRNA mimics or antagomirs could present a potent therapeutic strategy to in- 210 
terfere with key molecular pathways associated with cancer as such miRNAs have the 211 
capacity to regulate all the recognized hallmarks of cancer, either acting as tumor sup- 212 
pressors or promoting oncogenic processes. Several of these cancer hallmarks influenced 213 
by miRNAs are discussed in detail in literature [65, 66]. 214 

It is generally acknowledged that various changes in miRNA genes and their expres- 215 
sion, such as genetic deletions or amplifications, epigenetic methylation of miRNA gene 216 
locations, and modifications that influence the regulation of primary miRNA (pri- 217 
miRNA) through transcription factors, as well as factors involved in miRNA biogenesis 218 
process frequently alter miRNA expression and function in a wide range of cancer types 219 
[66]. 220 

In addition, changes in the miRNA biogenesis process can also impact the availability 221 
of target mRNAs, including those associated with the development of cancer (Figure 3) 222 
[122]. When miRNAs or the machinery involved in miRNA processing are altered or 223 
dysregulated this often leads to the loss of normal homeostatic state, leading to malignant 224 
transformation, including various types of cancer [51, 52, 56, 65-67, 123]. 225 
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 226 
Figure 3. Schematic illustration of different inhibition mechanisms of miRNA specific small mole- 227 
cule inhibitors. Created with BioRender.com. 228 

Because of miRNAs key role in controlling the expression of numerous genes that are 229 
involved in cellular responses to environmental stressors such as DNA damage, hypoxia, 230 
oxidative stress, and nutrient deprivation, they can function either as oncogenes (on- 231 
comiRs), or as tumor suppressors (onco-suppressor miRs). This is supported by recent 232 
findings that have identified miRNAs with oncogenic and tumor-suppressing roles in a 233 
range of neoplastic malignancies, and the dysregulation of miRNA expression is closely 234 
linked to the initiation, progression, and metastasis of cancer [43, 45, 104]. 235 

Furthermore, dysregulated circulating miRNAs have been shown to be associated 236 
with the origin, progression, treatment response, and the survival of patients with the 237 
disease [124, 125]. For instance, the unique tissue-specificity of miRNAs [13], which is es- 238 
sential for maintaining normal cells and tissues [40], renders them promising candidates 239 
as potential biomarkers for diagnosing cancers of unknown primary [126, 127]. Further- 240 
more, given the frequent genetic and epigenetic alterations observed in specific miRNAs 241 
and components of the miRNA biogenesis process in different cancer types, the oncogenic 242 
and tumor suppressor miRNAs have now emerged as promising candidates for miRNA- 243 
based therapeutics and diagnostic applications. 244 

4. RNA therapeutics 245 

As discussed in detail in literature, in the recent years, more than 50 siRNA-based 246 
drugs have entered clinical trials (phase I, II, and III) [128, 129].  Among those, approxi- 247 
mately 15 phase I-, II-, and III-programs based on siRNA therapeutics are being explored 248 
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for the treatment of various cancer types [129]. Two siRNA-based drugs Patisiran and 249 
Givosiran (Alnylam Pharmaceuticals) were approved by the Food and Drug Administra- 250 
tion (FDA) in 2018 and 2019 for hereditary transthyretin-mediated amyloidosis and acute 251 
hepatic porphyria, respectively [130, 131]. The first example of an FDA approved RNA- 252 
based drug, a siRNA-based therapy developed by Alnylam Pharmaceuticals is Patisiran, 253 
sold under the brand name Onpattro™ for the treatment of polyneuropathy of hereditary 254 
transthyretin-mediated amyloidosis in adults. Based on the completion of a successful 255 
Phase III APOLLO trial, Onpattro™  was approved by the US FDA in August 2018. On- 256 
pattro™ contains patisaran, which comprises a siRNA targeting transthyretin (TTR) 257 
mRNA conjugated with a lipid complex which leads to decrease in TTR protein levels in 258 
the liver thus resulting in a reduction in amyloid deposits. Patisiran specifically targets 259 
and binds to a genetically conserved sequence in the 3' untranslated region (3'UTR) of 260 
mutant and wild-type TTR mRNA [132]. Findings from the APOLLO trial, a placebo (77 261 
patients) controlled Phase III trial which enrolled 225 patients showed that 51% of patients 262 
receiving Onpattro™ (148 patients, once every three weeks (0.3 mg/ kg body weight)) ex- 263 
hibited an improved quality of life (measured using the Norfolk Quality of Life Diabetic 264 
Neuropathy (QoL-DN)), as compared to  only 10% in the control arm of the patients that 265 
received a placebo drug [132, 133]. 266 

With the onset of the COVID-19 pandemic, mRNA technology emerged as a pivotal 267 
force, serving as the cornerstone for remarkably effective mRNA-based vaccines that have 268 
played a crucial role in mitigating the spread of severe acute respiratory syndrome coro- 269 
navirus 2 (SARS-CoV-2). The groundbreaking science behind mRNA vaccines earned Kat- 270 
alin Karikó and Drew Weissman the prestigious 2023 Nobel Prize in Physiology or Med- 271 
icine for their pioneering work on nucleoside base modifications, enabling the develop- 272 
ment of these impactful COVID-19 vaccines. 273 

The evolution of cap analogs has vastly improved mRNA translation, while advance- 274 
ments in purification, packaging, and delivery methods have revolutionized medicine. 275 
Visionaries like Katalin Karikó, Drew Weissman, Edward Darzynkiewicz, Robert Rhodes, 276 
Ugur Sahin, and Ozlem Tureci made pivotal early contributions to mRNA research, de- 277 
serving recognition for their pioneering efforts. This mRNA narrative charts a remarkable 278 
journey of breakthroughs in a field holding immense promise for the future of medicine. 279 

The success of mRNA vaccines has paved the way for mRNA-based technology in 280 
personalized neoantigen vaccines, seamlessly integrating them into standard oncological 281 
workflow [134, 135]. These mRNA-based vaccines can be  tailored and manufactured as 282 
individualized vaccines with multiple neoantigens [136], and can effectively stimulate an- 283 
tigen-presenting cells [137-140] and be delivered using clinical-stage delivery formula- 284 
tions [141]. The studies and insights from the mRNA-based COVID-19 vaccines highlight 285 
the promise of RNA therapeutics as an innovative class of treatments. 286 

However, the effectiveness of miRNA and other nucleic acid-based therapies hinges 287 
on a reliable delivery method with minimal adverse events and drug or treatment related 288 
toxicity. Delivering miRNA treatments into cells presents challenges due to the need for 289 
precise targeting of diseased cells while avoiding healthy ones. Unlike mRNA COVID-19 290 
vaccines, which are taken up by scavenging immune cells, miRNA therapeutics must 291 
evade immune recognition to reach their target cells without triggering an immune re- 292 
sponse. 293 

5. miRNA therapeutics 294 

The discovery of the link between miRNAs and human diseases in 2002 sparked a 295 
strong interest in their potential as a new class of therapies. Consequently, interdiscipli- 296 
nary fields encompassing biology, chemistry, and medical science have made significant 297 
investments in the development of miRNA-based therapies. 298 

As illustrated in Figure 2 and Table 3, and discussed in literature in detail [77, 122, 299 
128], there are only a few miRNA therapeutics that have entered clinical trials with none 300 
of them entering Phase III or being approved by the FDA and several of them were 301 
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terminated due to toxicity. Despite the significant progress made in preclinical research, 302 
the progress in the field of miRNA-based diagnostic [68] and therapeutic applications re- 303 
main at an early stage and only a few of these miRNA-based therapies have advanced to 304 
clinical development. Given this situation, several efforts in the biotechnology and phar- 305 
maceutical industry have integrated miRNAs into their development pipelines focusing 306 
on the development of two categories of miRNA drugs, miRNA mimics and inhibitors 307 
(antagomirs or antimirs) (Figure 2, Table 2 and 3) [77, 142]. As a consequence, several  of 308 
miRNA-based therapeutics that are being tested in clinical trials are continuously growing 309 
for the treatments of a variety of genetic, metabolic, and oncological conditions [143-145]. 310 

 311 
Figure 2. Schematic overview of miRNA therapeutic strategies to regulate the function of oncogenic 312 
and tumor suppressor miRNAs involved in cancer. Top panel: The strategy of miRNA therapeutics 313 
is based on the strategy of restoring the balance of oncogenic miRNAs and tumor suppressor miR- 314 
NAs by downregulation of oncomiRNAs or the restoring of tumor suppressor miRNAs. Bottom 315 
panel: Therapeutic miRNA manipulations can target the expression or function of pathologically 316 
relevant miRNAs via miRNA inhibitors (anti-miRs) mediating degradation or functional blocking 317 
of endogenous miRNAs, synthetic miRNA mimics imitating endogenous miRNA double-strands, 318 
viral vector expressed miRNAs, small molecules inhibitors interfering with miRNA biogenesis, or 319 
miRNA sponges causing functional inhibition by diverting endogenous miRNAs from their mRNA 320 
targets. In addition, combining miRNAs with chemotherapies, immunotherapies and other conven- 321 
tional drugs or siRNAs is another strategy to overcome drug resistance. Created with BioRen- 322 
der.com. 323 
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Table 2. Major miRNA based therapeutics in various stages of the preclinical development phase 324 
for human malignancies. 325 

Therapeutic 

molecule 

Target 

miRNA 
Disease 

Biopharmaceuti-

cal company 

Stage of de-

velopment 

RG-012 miRNA-21 Alport nephropathy 

Regulus therapeu-
tics (with the stra-
tegic alliance with 

Genzyme) 

Preclinical 
stage 

MGN-1374 
miRNA-15 

and miR-195 
Post-myocardial infarction 

miRagen therapeu-
tics 

Preclinical 
stage 

MGN-2677 miR-143/145 Vascular disease 
miRagen therapeu-

tics 
Preclinical 

stage 

MGN-4220 miR-29 Cardiac fibrosis 
miRagen therapeu-

tics 
Preclinical 

stage 

MGN-4893 miR-451 
For the treatment of disor-

ders like abnormal red 
blood cell production 

miRagen therapeu-
tics. 

Preclinical 
stage 

MGN-5804 miR-378 Cardiometabolic disease 
miRagen therapeu-

tics 
Preclinical 

stage 

MGN-6114 miR-92 Peripheral arterial disease 
miRagen therapeu-

tics 
Preclinical 

stage 

MGN-9103 miR-208 Chronic heart failure 
miRagen therapeu-

tics 
Preclinical 

stage 

MRG-107 miR-155 
Amyotrophic lateral scle-

rosis (ALS) 
miRagen therapeu-

tics 

Completed 
preclinical 

stage 

326 
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Table 3. Clinical trials with miRNA therapeutics in various diseases. NCT numbered trials are registered at ClinicalTrials.gov; EudraCT numbered trials are 
registered at EU Clinical Trials Register (clinicaltrialsregister.eu). 

miRNA 

drug name 

Targeted 

miRNA 
Study Title Mode of action Disease/condition Mode of delivery Phase Status 

Clinical trial 

number(s) 

Refer-

ences 

          

miR-10b  miR-10b  

Evaluating the Expres-
sion Levels of Mi-

croRNA-10b in Patients 
With Gliomas 

miR-10b as diag-
nostic and in vitro 
testing of  anti-
mir-10b as thera-

peutic 

Astrocytoma 
Oligodendroglioma 
Oligoastrocytoma 

Anaplastic Astrocy-
toma 

Anaplastic Oligoden-
droglioma 

Anaplastic Oligo-
astrocytoma 
Glioblastoma 
Brain Tumors 
Brain Cancer 

 

 
Obser-

vational 
Recruiting NCT01849952  

INT-1B3 
miR-193a-

3p  
mimic  

First-in-Human Study of 
INT-1B3 in Patients 

With Advanced Solid 
Tumors 

miRNA mimic 
Advanced solid tu-

mors 
 Phase I Recruiting NCT04675996 NA 

AMT-130 
Artificial 
miRNA 

Safety and Proof-of-
Concept (POC) Study 

With AMT-130 in Adults 
With Early Manifest 

Huntington's Disease 

A miRNA expres-
sion 

Huntington disease 

Stereotaxic infu-
sion/viral transfer 
(adeno-associated 

vector) 

Phase I  
 

Ongoing NCT04120493 

[195-
197] 

 
[23–25] 

RG-
012/lademir
sen/SAR339

375 

miR-21 

A Study of RG-012 in 
Subjects With Alport 

Syndrome 

 
 

Anti-miR-21 
Lademirsen—also 
known as RG-012, 

RG456070 or 
(SAR339375) 

Alport syndrome 

Subcutaneous in-
jection/chemical 

modification 
(phosphorothio-

ate) 

Phase II  
 

Com-
pleted 

 
 

NCT03373786 

[209, 
222, 
253, 
254] 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 December 2023                   doi:10.20944/preprints202312.1888.v1

https://doi.org/10.20944/preprints202312.1888.v1


Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 12 of 42 
 

 

RG-
012/lademir
sen/SAR339

375 

miR-21 
Study of Lademirsen 

(SAR339375) in Patients 
With Alport Syndrome 

Anti-miR-21 
Lademirsen—also 
known as RG-012, 

RG456070 or 
(SAR339375) 

Alport syndrome 

Subcutaneous in-
jection/chemical 

modification 
(phosphorothio-

ate) 

Phase II 
Termi-
nated 

NCT02855268 

[209, 
222, 
253, 
254] 

RGLS4
326 

miR-
17 

A Study of 
RGLS4326 in Pa-

tients With Autoso-
mal Dominant Poly-
cystic Kidney Dis-

ease 

Anti-miR-17 
Autosomal dom-
inant polycystic 
kidney disease 

Administered 
via subcuta-
neous injec-

tion 

Pha
se I 

Com-
pleted 

  
NCT04536688 

 
 

RG-
125/AZD40

76 

miR-
103/107 

A Study to Assess the 
Safety and Tolerability 

of Single Doses of 
AZD4076 in Healthy 

Male Subjects 

Anti-miR 
Non-alcoholic Steato-

hepatitis (NASH) 

Subcutaneous in-
jection/biomole-
cule conjugation 

(GalNAc) 

Phase I  
Active, 
not re-

cruiting 

NCT02612662, 
NCT02826525 

[207-
209] 

RG-
125/AZD40

76 

miR-
103/107 

AZD4076 in Type 2 Dia-
betic Subjects With Non-

Alcoholic Fatty Liver 
Disease 

Anti-miR T2DM With NAFLD 

Subcutaneous in-
jection/biomole-
cule conjugation 

(GalNAc) 

Phase I  
Com-
pleted 

 
NCT02826525 

[207-
209] 

MRG-110 miR-92a 

Safety, Tolerability, 
Pharmacokinetics, and 
Pharmacodynamics of 

MRG-110 Following In-
tradermal Injection in 
Healthy Volunteers 

Anti-miR Healthy Volunteer 

Skin injec-
tion/chemical 
modification 

(LNA) 

Phase I  
Com-
pleted 

NCT03603431 
[159, 
255] 

MesomiR 1 miR-16 

MesomiR 1: A Phase I 
Study of TargomiRs as 
2nd or 3rd Line Treat-
ment for Patients With 

miRNA mimic 
Malignant pleural 

mesothelioma, non–
small cell lung cancer 

Intravenously/ve-
hicle transfer 

(nonliving bacte-
rial nanocells 

Phase I  
Com-
pleted 

NCT02369198 
 
 

[162, 
200, 
256] 
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Recurrent MPM and 
NSCLC 

(EDVs or Targo-
miRs)  

CDR132L miR-132 
Clinical Study to Assess 
Safety, PK and PD Pa-
rameters of CDR132L 

Anti-miR Heart failure 

Intrave-
nously/chemical 

modification 
(LNA) 

Phase I  
Com-
pleted 

NCT04045405 
[257, 
258] 

Rem-
larsen/MRG

-201 

miR-29 

Efficacy, Safety, and Tol-
erability of Remlarsen 
(MRG-201) Following 

Intradermal Injection in 
Subjects With a History 

of Keloids 

miRNA mimic Keloid disorder 
Skin injection/bio-
molecule conjuga-
tion (cholesterol) 

Phase II 
Com-
pleted 

NCT03601052 
[160, 
259, 
260] 

Miravirsen/
SPC3649 

miR-122 

Long-Term Extension 
Study of Miravirsen 
Among Participants 

With Genotype 1 
Chronic Hepatitis C 

(CHC) Who Have Not 
Responded to 

Pegylated-Interferon Al-
pha Plus Ribavirin 

Anti-miR 
Chronic hepatitis C 

virus 

Subcutaneous in-
jection/chemical 

modification 
(LNA) 

Phase II 
Phase II 
Phase II 
Phase II 
Phase II 
Phase I 

Com-
pleted 
Com-
pleted 
Com-
pleted 

Unknown 
Unknown 

Com-
pleted 

NCT02508090 
 

NCT02508090, 
NCT02452814, 
NCT01200420, 
NCT01872936, 
NCT01727934, 
NCT01646489 

[152, 
261-
264] 

Miravirsen/
SPC3649 

miR-122 

Long Term Extension 
Study is Designed to 

Monitor Long-Term Effi-
cacy and Safety of 

Miravirsen Sodium in 
Combination With 

Telaprevir and Ribavirin 
in Subjects With Chronic 
Hepatitis C Virus Geno-

type 1 Infection 

Anti-miR 
Chronic hepatitis C 

virus 

Subcutaneous in-
jection/chemical 

modification 
(LNA) 

Phase II 
Com-
pleted 

 

 
NCT02452814 

 
 

[152, 
261-
264] 
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Miravirsen/
SPC3649 

miR-122 

Multiple Ascending 
Dose Study of 

Miravirsen in Treat-
ment-Naïve Chronic 
Hepatitis C Subjects 

Anti-miR 
Chronic hepatitis C 

virus 

Subcutaneous in-
jection/chemical 

modification 
(LNA) 

Phase II 
Phase II 
Phase II 
Phase I 

 
Com-
pleted 

Unknown 
Unknown 

Com-
pleted 

NCT01200420 

[152, 
261-
264] 

Miravirsen/
SPC3649 

miR-122 

Miravirsen in Combina-
tion With Telaprevir and 

Ribavirin in Null Re-
sponder to Pegylated-In-
terferon Alpha Plus Rib-

avirin Subjects With 
Chronic Hepatitis C Vi-

rus Infection 

Anti-miR 
Chronic hepatitis C 

virus 

Subcutaneous in-
jection/chemical 

modification 
(LNA) 

Phase II 
Phase II 
Phase I 

Unknown 
 

NCT01872936 
[152, 
261-
264] 

Miravirsen/
SPC3649 

miR-122 

Miravirsen Study in 
Null Responder to 

Pegylated Interferon Al-
pha Plus Ribavirin Sub-
jects With Chronic Hep-

atitis C 

Anti-miR 
Chronic hepatitis C 

virus 

Subcutaneous in-
jection/chemical 

modification 
(LNA) 

Phase II 
Phase II 
Phase I 

Unknown NCT01727934 
[152, 
261-
264] 

Miravirsen/
SPC3649 

miR-122 

Drug Interaction Study 
to Assess the Effect of 

Co-Administered 
Miravirsen and 

Telaprevir in Healthy 
Subjects 

Anti-miR 
Chronic hepatitis C 

virus 

Subcutaneous in-
jection/chemical 

modification 
(LNA) 

Phase II 
Phase II 
Phase I 

Com-
pleted 

NCT01646489 
[152, 
261-
264] 

RG-101 miR-122 

A Randomized, Multi-
Center, Phase 2 Study to 
Evaluate Safety and Effi-
cacy of Subcutaneous In-

jections of RG-101 in 
Combination with Oral 

Anti-miR 
Chronic hepatitis C 

virus 

Subcutaneous in-
jection/biomole-
cule conjugation 

(GalNAc) 

Phase II  

EudraCT num-
bers 2015-

001535-21,  

 

2015-004702-

42,  

[156, 
209, 
210] 
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Agents in Treatment Na-
ïve, Genotype 1 and 4, 

Chronic Hepatitis. 

 

2016-002069-77 

RG-101 miR-122 

A Multi-Center, Parallel 
Group, Open-Label, 

Phase 2 Study to Evalu-
ate the Efficacy and 

Safety of a Single Subcu-
taneous Injection of RG-
101 Combined with Oral 

GSK2878175 

Anti-miR 
Chronic hepatitis C 

virus 

Subcutaneous in-
jection/biomole-
cule conjugation 

(GalNAc) 

Phase II  

EudraCT 

numbers  

 

2015-004702-42 

[156, 
209, 
210] 

RG-101 miR-122 

An Observational Long-
Term Safety and Efficacy 
Follow-Up Study of Sub-

jects Who Have Previ-
ously Received RG-101 

Anti-miR 
Chronic hepatitis C 

virus 

Subcutaneous in-
jection/biomole-
cule conjugation 

(GalNAc) 

Obser-
vational 

Unknown 

EudraCT 

numbers  

 

2016-002069-77 

[156, 
209, 
210] 

MRX34 miR-34a 

A Multicenter Phase I 
Study of MRX34, Mi-

croRNA miR-RX34 Lip-
osomal Injection 

miRNA mimic 

Primary Liver Cancer 
SCLC 

Lymphoma 
Melanoma 

Multiple Myeloma 
Renal Cell Carci-

noma 
NSCLC 

Intravenously/ve-
hicle transfer (lip-

osomal) 
Phase I 

Termi-
nated (5 
immune 

related se-
rious ad-

verse 
events) 

NCT01829971 

[29,32,
133] 

 
[65, 82, 

83] 

MRX34 miR-34a 

Pharmacodynamics 
Study of MRX34, Mi-

croRNA Liposomal In-
jection in Melanoma Pa-
tients With Biopsy Ac-

cessible Lesions 

miRNA mimic 

Solid tumors (e.g., 
hepatocellular carci-

noma, melanoma, 
SCLC, NSCLC, lym-
phoma, multiple my-
eloma, renal cell car-

cinoma 

Intravenously/ve-
hicle transfer (lip-

osomal) 

Phase I 
Phase II 

 

With-
drawn (5 
immune 

related se-
rious ad-

verse 
events in 
Phase I)  

NCT02862145 

[29,32,
133] 

 
[65, 82, 

83] 
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Cobomarse
n/MRG-106 

miR-155  Anti-miR 

Mycosis fungoides 
(MF) 

 
Cutaneous T-cell 

Lymphoma (CTCL) 
Chronic Lympho-

cytic Leukemia (CLL) 
Diffuse Large B-Cell 

Lymphoma 
(DLBCL), ABC Sub-

type 
Adult T-Cell Leuke-

mia/Lymphoma 
(ATLL) 

Intrave-
nously/chemical 

modification 
(LNA) 

Phase I 
Phase II 
Phase II 

Com-
pleted 
Termi-
nated 
Termi-
nated 

NCT02580552, 
NCT03713320, 
NCT03837457 

[157, 
265, 
266] 

Serum Mi-
croRNA-25 

miR-25  
Serum miR-25 as 

diagnostic 
Pancreatic cancer Serum miR-25 

Obser-
vational 

Not yet 
recruiting 

NCT03432624  

Patisiran 
(ALN-

TTR02), 
 
 

  RNAi therapeutic 
Transthyretin (TTR)-
Mediated Amyloido-

sis 

ALN-TTR02 ad-
ministered by in-
travenous infu-

sion 
 

Phase  
III 

Com-
pleted 

NCT01960348 [267] 

miR-10 miR-10 

Evaluating the Expres-
sion Levels of Mi-

croRNA-10b in Patients 
With Gliomas 

anti-miR-10 Glioma 

Evaluating the ex-
pression levels of 
microRNA-10b in 
patients with glio-

mas 

Obser-
vational 

Recruiting NCT01849952  
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MiRNA therapeutics are a type of RNAi-based therapeutic that targets and modu- 1 
lates the activity of specific endogenous miRNAs in the body. Because miRNAs play a 2 
crucial role in regulating gene expression in normal health and disease states, by targeting 3 
and manipulating specific miRNAs, miRNA therapeutics aim to treat various diseases by 4 
restoring (miRNA mimics) or correcting miRNA expression patterns (antagomir). 5 
MiRNA-based therapeutic programs for cancer are predominantly conducted by a few 6 
biopharmaceutical companies, including Santaris Pharma, Roche Pharmaceuticals, Regu- 7 
lus therapeutics (San Diego, CA, USA), Mirna Therapeutics Inc. (Carlsbad, CA, USA), mi- 8 
Ragen Therapeutics (Boulder, CO, USA), and EnGeneIC (Sydney, Australia). 9 

Immune evasion and chemotherapy resistance is a challenge in cancer therapy and 10 
this resistance can be mediated by various factors including miRNAs induced by tumor 11 
microenvironment stimuli, like hypoxia or cell–cell communication [146]. 12 

Hypoxia has been shown to influence microRNA expression in cancer and stromal 13 
cells in the tumor microenvironment (TME) via downregulation of factors involved in 14 
miRNA biogenesis machinery or regulation of transcription factors that control miRNA 15 
expression. Accordingly, many hypoxia-regulated miRNAs and their role in tumor pro- 16 
gression have been reported. These hypoxia-regulated miRNAs including miR-26a, miR- 17 
181b, miR-210, miR301-a, miR-424, and miR-519c have also been associated with chemo- 18 
or radiotherapy response in different cancers [147-150]. Therefore, therapeutic targeting 19 
of these miRNAs could be a strategy to re-sensitize hypoxic tumors to chemo and other 20 
therapies. For example, in the hypoxic pancreatic cancer microenvironment, HIF-1α in- 21 
duces gemcitabine resistance. A recent study showed that delivery of miR-519c, which is 22 
downregulated in pancreatic cancer, could inhibit HIF1-α in gemcitabine-resistant pan- 23 
creatic cancer cells under hypoxia [151]. Furthermore, a redox-sensitive nanoplatform 24 
used to co-deliver miR-159c and gemcitabine was demonstrated to inhibit the expression 25 
of HIF-1α and genes responsible for glucose uptake and cancer cell metabolism, thus in- 26 
hibiting orthotopic desmoplastic pancreatic cancer growth in NSG mice and reversing hy- 27 
poxia-induced chemotherapy resistance [151]. Similarly, tumor suppressor miR-34a has 28 
been shown to downregulate the expression of more than 30 oncogenes across multiple 29 
oncogenic pathways, as well as genes implicated in tumor immune evasion, but is lost or 30 
under-expressed in many malignancies [82]. However, if miRNAs are to be used for the 31 
treatment of a cancer, miRNAs must be delivered to the target tissue, not trigger an im- 32 
mune response and be economically feasible so that wide-spread adoption of these nano 33 
therapies can be realized. Although there has been some success in clinical development, 34 
several clinical trials have been terminated mostly due to various serious adverse events, 35 
indicating that there are still several challenges to overcome before the clinical application 36 
of RNAi-based therapies becomes widespread. 37 

5.1. Examples of miRNA therapeutics in clinical trials 38 

As illustrated in Figure 2, and Table 2 and Table 3, and discussed in detail in the 39 
literature [85, 145], there are several miRNA-based therapeutics being tested both in pre- 40 
clinical studies (Table 2) or in human clinical trials (Table 3).  41 

Miravirsen: The first miRNA-based therapeutic entering clinical trials was 42 
Miravirsen (SPC3649), a miR-122  15-mer LNA-PS-modified modified ASO antagomir of 43 
miR-122, as a therapy against Hepatitis C Virus (HCV) infections developed by Santaris 44 
Pharma, Roche Pharmaceuticals. miR-122 was shown to play a role in HCV replica- 45 
tion.[152]. Phase II clinical trials were conducted to evaluate the safety and antiviral effi- 46 
cacy of Miravirsen in patients with chronic HCV infection. Miravirsen showed strong ef- 47 
ficacy by reducing viremia in patients with HCV [155,156,157] and underwent multiple 48 
phase II clinical trials (NCT01200420, NCT01872936, NCT02031133, NCT02508090).  49 
However, due to severe side effects the trial was halted [145, 153]. 50 

RG-012: RG012 is an anti-miR-21 therapy developed by Regulus Therapeutics for the 51 
management of Alport syndrome. miR-21 has been shown to be up-regulated in fibrotic 52 
kidney disease.  Preclinical studies have shown that treatment with an anti-miR-21 53 
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significantly reduced kidney failure by reducing the rate of progression of renal fibrosis. 54 
RG-012 has been granted orphan drug status in the US and Europe. However, some se- 55 
quence-independent side effects have been reported in context with phosphorothioate- 56 
modified oligonucleotides [[154]. 57 

RG-101: RG-101, an antagomir of miR-122 developed by Regulus Therapeutics is an 58 
N-acetyl-d-galactosamine(GalNAc)-conjugated synthetic RNA oligonucleotide that tar- 59 
gets and inhibits miR-122, which is involved in HCV replication for patients with HCV. 60 
in addition to its essential role for HCV replication, miR-122, a liver-specific miRNA, has 61 
relevant functions in liver metabolism [155] [20]. This miRNA is also an essential host 62 
factor for HCV. 63 

Clinical trials were conducted to evaluate RG-101's safety and efficacy as a potential 64 
treatment for chronic HCV infection. Although RG-101 showed considerable efficacy and 65 
showed a significant reduction in viral loads in chronic HCV subjects [156]; however, the 66 
trial was terminated due to some serious adverse events of severe hyperbilirubinemia 67 
[156]. 68 

MRG-201: MRG-201 is a synthetic RNA oligonucleotide that targets and activates 69 
miR-29, which has been shown to inhibit fibrosis. Clinical trials were conducted to assess 70 
MRG-201's safety and efficacy in treating fibrotic disorders such as hypertrophic scars and 71 
idiopathic pulmonary fibrosis. 72 

MRX34: MRX34, developed by miRNA Therapeutics Inc. is a synthetic miRNA 73 
mimic designed to mimic the activity of a tumor suppressor miR-34a encapsulated into a 74 
liposome-formulated nanoparticle (NOV40) for the treatment of advanced solid tumors 75 
including melanoma, NSCLC, hepatocellular carcinoma, and renal carcinoma. miR-34a is 76 
a naturally occurring  tumor-suppressor miRNA expressed at reduced levels in many 77 
tumor types. MRX34, is considered to be a first-in-class miRNA mimic for the treatment 78 
of many cancers, such as non-small cell lung cancer, hepatocellular carcinoma, colon can- 79 
cer, ovarian cancer, cervical cancer, and others. The formulation was tested in a phase I 80 
clinical trial [82]. 81 

Although MRX34 displayed strong activity, at the end of the trial, only three patients 82 
achieved prolonged confirmed partial responses, and 14 patients presented with stable 83 
disease (median duration- 136 days) [85]. However, the trial was terminated due to seri- 84 
ous immune-mediated adverse events that resulted in four patient deaths (NCT01829971) 85 
[82-84]. After this, MiRNA Therapeutics ceased operations in 2017 and agreed to merge 86 
with Synlogic Inc. 87 

Cobomarsen (MRG-106): MRG-106 (Cobomarsen), an LNA-based antagomir of miR- 88 
155 was developed by Miragen Therapeutics (Viridian Therapeutics Inc) that aimed to 89 
inhibit the activity of miR-155 [157, 158] in several lymphoma subtypes, as well as in dif- 90 
fuse large B-cell lymphoma [102] [83] where miR-155 is up-regulated. Phase II clinical tri- 91 
als are being conducted to assess its effectiveness in treating certain cancers and immune 92 
disorders including cutaneous T-cell lymphoma (CTCL), chronic lymphocytic leukemia, 93 
diffuse large B-cell lymphoma, and mycosis fungoides (NCT03837457), and adult T-cell 94 
leukemia/lymphoma (NCT02580552, NCT03713320). While Phase I trial was completed, 95 
two of the Phase II studies were terminated.  The study was terminated early for business 96 
reasons, and not due to concerns regarding safety or lack of efficacy. (https://classic.clini- 97 
caltrials.gov/ct2/show/NCT03713320). 98 

MRG-107: MRG-107 an antagomir of miR-155 was developed by Miragen Therapeu- 99 
tics (Viridian Therapeutics Inc) that aimed to inhibit the activity of miR-155. miR-155 plays 100 
relevant functions in the immune mechanisms and inflammation processes in amyo- 101 
trophic lateral sclerosis (ALS) and miR-155 is elevated in the spinal cords of ALS patients. 102 
In preclinical models of ALS, inhibition of miR-155 has reduced the ALS symptoms and 103 
extended survival [145]. 104 

MRG-110: MRG-110 is a synthetic antagomir of miRNA-92a developed by MiRagen 105 
Therapeutics in collaboration with Servier to treat ischemic conditions such as heart fail- 106 
ure [159]. MRG-110 is developed to promote the growth of new blood vessels by inhibiting 107 
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miR-92a. MRG-110 is being studied to determine if it can accelerate healing of wounds by 108 
improving blood flow into the wound area.  A phase I clinical trial that tested safety, 109 
tolerability, pharmacokinetics, and pharmacodynamics of MRG-110 following intrader- 110 
mal Injection in healthy Volunteers was recently completed (NCT03603431). 111 

Remlarsen (MRG-201): Remlarsen (MRG-201) is an LNA RNA mimic of miR-29 de- 112 
veloped by MiRagen Therapeutics for keloid disorder and decreases the expression of 113 
collagen and other proteins that are involved in scar formation and has been shown to 114 
inhibit fibrosis [160]. miR-29 family members are typically downregulated in fibrotic dis- 115 
eases [161]. Clinical trials is being conducted to assess Remlarsen’s safety and efficacy in 116 
treating fibrotic disorders such as hypertrophic scars and idiopathic pulmonary fibrosis 117 
when administered by intradermal injection at the site of an excisional wound [160] 90]. 118 
The phase II clinical trial is currently underway to determine if it can limit the formation 119 
of fibrous scar tissue in certain diseases (NCT03601052). 120 

TargomiRs: The MesomiR 1 trial (NCT02369198) tested the safety and efficacy of 121 
miR-15/16 encapsulated in bacterial minicells (TangomiRs) in patients with recurrent ma- 122 
lignant pleural mesothelioma (MPM. TangomiRs developed by EnGeneIC to deliver 123 
miR16 mimics encapsulated in TargomiRs composed of nonliving bacterial nanocells with 124 
anti-EGFR bispecific antibody to target EGFR-expressing cancer cells were tested as 2nd 125 
or 3rd Line Treatment for patients with recurrent malignant pleural mesothelioma (MPM) 126 
and non-small cell lung cancer (NSCLC) (NCT02369198) [162]. More specifically, mir-16 127 
mimic was encapsulated in EnGeneIC's bacterially-derived EDV™ (EDV)TM nanocells (a 128 
400 nm particle of bacterial origin able to carry a drug cargo) and targeted with EGFR 129 
antibodies (TargomiRs). miR-15/16 are implicated as tumor suppressors in MPM. Alt- 130 
hough variable response rates were observed with 5% of the patients showing partial re- 131 
sponse, 68% showing stable disease and 27% showing progressive disease after low dose 132 
systemic administration of TargomiRs; however, dose-dependent toxicities were ob- 133 
served (i.e., anaphylaxis, inflammation as well as cardiac events)[128, 162]. 134 

MGN-1374: MGN-1374, an 8-mer LNA ASO developed by miRAgen Therapeutics, 135 
is designed to specifically target the seed region of the miR-15 family and is currently in 136 
the preclinical phase for the control of postmyocardial infarction remodeling. 137 

RGLS4326: RGLS4326 is a single-stranded, chemically modified, 9-mer ASO with full 138 
complementarity to the seed sequence of miR-17. RGLS4326 is designed to inhibit the 139 
pathologic functions of the miR-17 family in Polycystic kidney disease (ADPKD) [163] 140 
[87], an autosomal dominant disease, one of the most frequent monogenic disorders, 141 
caused by mutations in the PKD1 or PKD2 gene and therapeutic options for the treatment 142 
of ADPKD are limited. A phase I clinical trial of RGLS4326 was recently completed 143 
(NCT04536688). 144 

Additionally, Table 2 highlights several miRNA-based drugs currently under pre- 145 
clinical investigation, targeting various diseases such as Peripheral Arterial Disease, 146 
Chronic Heart Failure, Amyotrophic Lateral Sclerosis (ALS), among others. 147 

Moreover, miRNA therapeutics in combination with chemotherapeutic agents have 148 
also been  explored to overcome cancer therapy resistance [142]. Studies indicate that 149 
combining therapeutic miRNAs with chemotherapy can decrease the required drug doses 150 
for cancer treatment [164, 165]. For example, miR-3622b-5p, when paired with cisplatin, 151 
not only enhances apoptosis but also sensitizes ovarian tumor organoids to cisplatin [166], 152 
suggesting the potential of miRNAs in combination with chemotherapy to address cancer 153 
treatment and counteract drug resistance. 154 

5.2. Small molecule modulators of miRNA expression 155 

Because altered levels of miRNA expression is associated with many cancers, restor- 156 
ing the function of tumor suppressor miRNAs by overexpressing or introducing of 157 
miRNA mimics to restore to their relatively normal physiological levels or function or by 158 
inhibiting overexpressed oncogenic miRNAs by miRNA inhibitors (antagomirs), or 159 
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miRNA sponges in cancer represents two major strategies for miRNA therapeutics in can- 160 
cer [122, 167] (Figure 3). 161 

The function of repressed miRNAs can also be restored to their relatively normal 162 
physiological levels and function by using some small molecules that can transcriptionally 163 
activate the expression of miRNA genes leading to expression of endogenous miRNAs 164 
and restoring the expression of tumor suppressive miRNAs. Conversely, overexpressed 165 
oncogenic miRNAs can also be suppressed by small-molecule inhibitors. 166 

As illustrated in Figure 3 and Table 1 and discussed in literature [122], because nu- 167 
cleic acid-based therapeutics have poor cell-permeability for drug delivery, in recent years 168 
small-molecule drugs in the regulation of miRNA expression have been explored since 169 
they can cross the cell membrane by free diffusion and can modulate the expression of 170 
miRNAs and also traditional drug development can be applied for the development of 171 
novel miRNA inhibitors (or activators) [168] (Wu, 2020b). 172 

Table 1. Representative examples of small-molecule miRNA inhibitors. 173 

Small molecule inhibitors 

of miRNAs 

Target 

miRNAs 
Mechanism of action References 

Trypaflavine miR-21 Blocking the assembly of miR-21 with Ago2 [175] 

Streptomycin 
miR-21/ 
miR-27a 

Blocking the cleavage of pre-miR-21 by Dicer [242] 

AC1MMYR2 miR-21 
Blocking the cleavage of pre-miR-21 to produce mature 

miR-21 
[243] 

Diazobenzene miR-21 Inhibition the transcription of miR-21 gene [244] 
Azobenzene miR-21 Inhibition the transcription of miR-21 gene [244] 

Estradiol miR-21 Inhibition the transcription of miR-21 gene [245] 

Polylysine miR-21 
Blocking the formation of mature of pre-miR-21 by the in-

hibition of Dicer 
[175] 

4-benzoylamino-N-(prop-2-
yn- 1-yl)benzamides 

miR-21 Up-regulation of PDCD4, the function target of miR-21 [246] 

Arylamide derivatives miR-21 Blocking the mature of pre-miR-21 [247] 

Kanamycin A 
Let-7/ 

miR-27a 
Binding to pre-let-7 and blocking the function of Dicer [176] 

2-DOS Compound 1 Let-7 Binding to pre-let-7 and blocking the function of Dicer [176] 
2-DOS Compound 2 Let-7 Binding to pre-let-7 and blocking the function of Dicer [176] 
2-DOS Compound 3 Let-7 Binding to pre-let-7 and blocking the function of Dicer [176] 
2-DOS Compound 4 Let-7 Binding to pre-let-7 and blocking the function of Dicer [176] 
2-DOS Compound 5 Let-7 Binding to pre-let-7 and blocking the function of Dicer [176] 
2-DOS Compound 6 Let-7 Binding to pre-let-7 and blocking the function of Dicer [176] 
2-DOS Compound 7 Bantam Binding to pre-bantam and blocking the function of Dicer [176] 
2-DOS Compound 8 miR-142 Binding to pre-miR-142 and blocking the function of Dicer [176] 

2-DOS Compound 9 miR-19b-2 
Binding to pre-miR-19b-2 and blocking the function of 

Dicer 
[176] 

NSC 158959 miR-122 Inhibition of the transcription of miR-122 [177] 
NSC 5476 miR-122 Inhibition of the transcription of miR-122 [177]) 

Benzimidazole miR-96 Up-regulation of FOXO1, the function target of miR-21 [248] 
2-methoxy-1,4-naphtha-

lenequin 
miR-1 Down-regulation the expression level of miR-1 [183] 

Arsenic trioxide miR-27a Down-regulation the expression level of miR-27a [249] 
Neomycin miR-27a Blocking the mature of miR-27a by the inhibition of Dicer [250] 
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Amikacin miR-27a Blocking the mature of miR-27a by the inhibition of Dicer [250] 
Tobramycin miR-27a Blocking the mature of miR-27a by the inhibition of Dicer [250] 

5″-azido-neomycin B miR-525 
Binding to the processing site of Drosha to block the gen-

eration of pre- miR-525 
[251] 

N-substituted oligoglycines miR-21 A specific ligand binding with pri-miR-21. [252] 
Various small molecule inhibitors of various miRNAs with various chemical struc- 174 

tures and different mechanisms of action (Table 1) have been described with different 175 
target sites of inhibition and interference across the whole process of miRNA biogenesis 176 
such as processing, maturation, and function (Figure X)  [122]. 177 

For example, as discussed in literature [122], reduced expression of tumor suppressor 178 
miRNAs can be reactivated to their normal physiological levels by some small molecule 179 
compounds, such as hypomethylating agents [169].  180 

Decitabine or 5-azacytidine are two drugs for the treatment of myelodysplastic syn- 181 
drome and were shown to upregulate the expression of several miRNAs [106].  182 

Similarly, enoxacin was shown to activate the expression of several miRNAs in vitro 183 
[170] and to suppress tumor growth by upregulating the expression of 24 miRNAs in vivo 184 
in mice xenograft models [170] suggesting that small molecule compounds can potentially 185 
restore miRNA expression and function to a more physiological setting. 186 

For example, miR-21 is one of the tumor-associated miRNAs (oncomiR) has been 187 
shown to be upregulated in a variety of tumor cells, including breast cancer, ovarian can- 188 
cer, colon cancer, pancreatic cancer, thyroid cancer, and others and its high expression in 189 
cancer which is closely associated with tumorigenesis [171-174]. 190 

Trypaflavine (TPF), a small molecule inhibitor of miR-21 was shown to suppress the 191 
expression of miR-21 [175]. 192 

Trypaflavine was shown to inhibit the formation of RISC by blocking the assembly 193 
of miR-21 and AGO2 protein, leading to the suppression of the expression level of miR- 194 
21.  195 

Similarly, Kanamycin A was shown to inhibit the expression of let-7 by binding to 196 
pre-let-7 and interfering with Dicer [176]. 197 

Furthermore, small-molecule inhibitors of miR-122, NSC 158959 and NSC 5476 [177] 198 
which may be involved in the modulation of transcription of miR-122 gene to pri-miR- 199 
122. 200 

Importantly, mir-122 is a liver specific miRNA, accounting for about 72% of the total 201 
miRNA in the adult liver and is one of the earliest miRNAs with tissue-specific and high 202 
abundance expression [178]. 203 

miR-122 plays a key role in the regulation of cholesterol and fatty-acid metabolism 204 
in the adult liver suggesting that miR-122 may be an attractive therapeutic target for met- 205 
abolic disease [179]. 206 

Moreover, it was also shown that miR-122 also plays a key role in the development 207 
of various types of liver diseases including acute and chronic liver injury,, liver tumor and 208 
hepatitis C virus (HCV) infection, liver cirrhosis, and alcoholic hepatitis [180]. 209 

miR-1 which is abundantly expressed in skeletal muscle cells plays a role in the reg- 210 
ulation of the formation of skeletal muscle cells and the development of muscle and is 211 
closely associated with the development of the heart [181, 182]. 212 

Various small molecular Inhibitors of miR-1 have been identified from photocycload- 213 
ducts of acetylenes with 2-methoxy-1,4-naphthalenequinone as the basic skeleton by pho- 214 
tocyclization reaction [183]. For example, the small molecule 2-methoxy-1,4-naphtha- 215 
lenequinone was demonstrated to exert specific inhibitory effects on miR-1 and was 216 
shown to significantly inhibit the expression of mature miR-1 in cells. However, the spe- 217 
cific mechanism of action of 2-methoxy-1,4-naphthalenequin for its inhibitory function on 218 
miR-21 remains to be elucidated. 219 

6. Advances in delivery of miRNA therapeutics 220 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 December 2023                   doi:10.20944/preprints202312.1888.v1

https://www.frontiersin.org/articles/10.3389/fphar.2021.736323/full#F4
https://doi.org/10.20944/preprints202312.1888.v1


Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 22 of 42 
 

 

Although a few phase 1 and 2 clinical trials involving miRNA-targeting or miRNA- 221 
based therapeutics, there are no miRNA-based therapeutics in phase III trials so far. This 222 
is partly due to the challenge of targeted delivery of miRNAs to specific cell types, tissues, 223 
and organs. Although targeting of miRNAs to a cell of interest by using various methods 224 
(e.g. antibodies, nanoparticles, or ligands) have been reported to improve the efficacy of 225 
miRNAs and reduce off-target effects (e.g., immunotoxicity [184], there are still limitations 226 
and challenges for miRNA therapeutics warranting more research in this field.= 227 

As illustrated in Figure 4 and discussed in detail in the literature in detail [77, 84, 185, 228 
186], there are various strategies being explored as a mechanism to deliver miRNA thera- 229 
peutics (mimics and antagomirs) to the indented tissue and to improve the pharmacoki- 230 
netic mechanisms, and avoid off-target effects. These include vector-based and non-vec- 231 
tor-based methods including lipid-based nanoparticles, polymeric vectors/dendrimer- 232 
based vectors, cell-derived membrane vesicles, 3D scaffold-based delivery systems, and 233 
other nanoparticles derived from polymers and metals that are biodegradable and bio- 234 
compatible. 235 

 236 
Figure 4. Examples of miRNA delivery systems. MiRNA therapeutics can be administered orally 237 
or intranasally or through venous (intravenously) or muscle (intramuscularly) or skin (subcutane- 238 
ously) injections,  or via cell-/tissue-directed approaches, or adoptive cell transfer, or the implanta- 239 
tion of 3D matrices that release miRNA therapeutics, or other extracorporeal miRNA delivery strat- 240 
egies [77]. Other modes of delivery of miRNA therapeutics include vector based and non-vector- 241 
based delivery systems including adeno-associated virus. (A), lentivirus (B), bacterial nanocells (C), 242 
bacteriophages (D) liposomes, including  monovalent and multivalent lipids such as cationic lipid- 243 
based ligand-targeted nanoparticles (E), natural polymer-based nanoparticles (F), polymer based 244 
nanoparticles (natural, green and synthetic, blue) conjugated with polyethylene glycol (PEG) (G), 245 
extracellular vesicles or exosomes (H), gold nanoparticles [268] (I) carbon nanotubes (J), quantum 246 
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dot nanoparticles (K), core-shell magnetic nanoparticles (L), and others such as polymeric micelles, 247 
and mesoporous silica nanoparticles are the examples of nanocarriers as drug-delivery systems 248 
[145]. Moreover, there have been efforts to improve the serum stability, pharmacokinetics, and tis- 249 
sue specificity by targeted delivery of miRNA mimics, miRNA inhibitors  and other nucleic acid 250 
therapeutics by incorporation of various chemical modifications and/or conjugation of these RNA 251 
and nucleic acid therapeutics to biomolecules to facilitate receptor-mediated uptake such as N- 252 
acetylgalactosamine (GalNAc), 2’-O-methyl nucleotide, phosphorothioate, cholesterol, locked nu- 253 
cleic acid (LNA), and aptamer moieties are also shown as examples [77, 84, 186, 208, 269]. Created 254 
with BioRender.com. 255 

As such, there is a need for an efficient delivery system for developing miRNA-based 256 
therapeutics. 257 

As discussed in detail in literature [187], several different strategies have been ex- 258 
plored to efficiently deliver RNA-based therapeutics (Figure 4) including vector-based 259 
and non-vector-based delivery systems including adeno-associated virus, lentivirus, bac- 260 
terial nanocells [188], bacteriophages, cationic lipid-based liposomes, including monova- 261 
lent and multivalent lipids, natural polymer-based nanoparticles, polymer based nano- 262 
particles conjugated with polyethylene glycol (PEG), extracellular vesicles (EVs) or exo- 263 
somes, nanocomplex-forming functionalized metals such as gold nanoparticles, and car- 264 
bon nanotubes and many others that are engineered to contain biomolecule conjugates for 265 
improved stability and pharmacokinetics and target delivery to the intended cell or tissue 266 
type [84, 186, 187, 189, 190]. A recent report demonstrated enhanced antitumor potency of 267 
STING agonists after covalent conjugation of cyclic dinucleotides (CDN) to polymer na- 268 
noparticles (poly(β-amino ester) formulation for the intravenous delivery [191]. 269 

Non pathogenic recombinant viral vectors including retroviruses and lentiviruses 270 
(which bears a risk for genomic integration), adenovirus, and adeno-associated viruses 271 
(only remains transiently stable in a episomal form in the host cell’s nucleus [192, 193] 272 
encoding the intended RNA are also being explored for intracellular delivery of miRNA- 273 
based therapeutics and hence become a major focus of attention [194]. A Phase II trial is 274 
currently testing an adeno-associated viral vector for the delivery of the miRNA drug 275 
AMT-130 for the treatment of Huntington’s disease (ClinicalTrials.gov identifier 276 
NCT04120493) [195-197]. Despite their potential for the delivery and expression of miR- 277 
NAs, there are various side effects with the use of viral vectors such as immunogenicity 278 
and transgene-related immune responses [198]. 279 

Packaging of the negatively charged nucleic acids in liposome nanoparticles mask 280 
their negative charge and also protects against serum nuclease degradation [190, 199]. De- 281 
livery of miRNAs using liposome nanoparticles has already been applied in several clini- 282 
cal studies, such as MRX34 (NCT01829971, NCT02862145) [82, 83].  283 

Similarly, miRNA-loaded bacterial minicells were used for the delivery of miR-16 284 
mimics in a phase 1 trial in patients with recurrent malignant pleural mesothelioma 285 
(MesomiR 1, NCT02369198) [162, 200]. However, the study also reported several side ef- 286 
fects including dose-limiting toxicities, decreased lymphocyte counts, or cardiac events 287 
[162].  288 

Extracellular vesicles (and exosomes) that can be loaded with a desired cargo to per- 289 
mit in-body cellular transfer are also being explored as drug delivery systems [201]. EVs 290 
derived from mesenchymal stromal cells from human adipose tissue were engineered to 291 
package miR-125b which consequently was shown to inhibit the proliferation of human 292 
hepatocarcinoma cells [202]. 293 

In addition, different modalities of drug delivery systems have been explored for the 294 
delivery of miRNA-based drugs such as core-shell magnetic nanoparticles, quantum dot 295 
nanocrystals, polymeric micelles, and mesoporous silica nanoparticles are among the 296 
other examples of nanocarriers as drug-delivery systems to improve the therapeutic ef- 297 
fectiveness and specificity, and tissue targeting of miRNA and other nucleic acid thera- 298 
peutics [145]. 299 
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For example, covalent conjugation of miRNAs and other nucleic acid-based drugs 300 
and biomolecules to lipids, peptides, or sugars that work via receptor-mediated endocy- 301 
tosis mechanisms is another promising strategy [190]. 302 

Similarly, lipophilic cholesterol conjugate was used for a cell type–independent de- 303 
livery of miR-29–based mimic (remlarsen/MRG-201) to human skin fibroblasts by skin 304 
injection in a Phase II trial on keloid disorder  to repress extracellular matrix expression 305 
and fibroplasia in the skin ( NCT02603224, NCT03601052) [160]. 306 

Aptamer conjugates coupled to corresponding miRNA therapeutics by simple sticky- 307 
end annealing [203] is yet another strategy for the delivery of miRNAs to intended cell 308 
type. Aptamers are single-stranded nucleic acids that are developed as high-affinity lig- 309 
ands specific to a cell surface receptors to facilitate the delivery of therapeutic cargo in- 310 
cluding miRNAs through receptor-mediated transport [190, 203]. Aptamer-conjugated 311 
miRNAs, including the Aptamer-miR-34c conjugate (GL21.T-miR-34c) are currently being 312 
explored in preclinical studies in non-small-cell lung cancer cells  [204]. 313 

Other biomolecule conjugates including N-acetylgalactosamine (GalNAc) which en- 314 
ables a targeted delivery of nucleic acid therapeutics via endocytosis by the stimulation of 315 
the liver cell–specific asialoglycoprotein receptors have also been explored in clinical trials 316 
[205, 206]. GalNAc conjugated to a miR-122 inhibitor (RG-101) and to an miR-103/107 in- 317 
hibitor (RG-125/AZD4076) were explored in clinical trials for chronic HCV [EU Clinical 318 
Trials Register (clinicaltrialsregister.eu) EudraCT numbers 2015-001535-21, 2015-004702- 319 
42, 2016-002069-77] and steatohepatitis (NCT02612662, NCT02826525), respectively [206- 320 
208]. However, because of some side effects (i.e., jaundice cases), the RG-101 clinical trial 321 
was halted and the cause of which is still under investigation [156, 209, 210].  322 

Other examples of the use of GalNAc-Conjugated LNA, anti-miR-122 antisense oli- 323 
gonucleotides, or nano-carrier vehicles in combination with cell type-specific biomolecule 324 
conjugates or miR-155 inhibitors by gold nanoparticles functionalized with antagomir and 325 
AS1411 aptamer have been explored in recent preclinical studies [211, 212]. 326 

In addition, the 3D matrices for delivering nucleic acid–based therapeutics and con- 327 
ventional drugs are currently undergoing optimization with diverse design features. This 328 
encompasses various application routes, such as edible or injectable carriers [77, 213-215]. 329 
One potential method of administering miRNAs is orally [75]. MiRNAs are often associ- 330 
ated with extracellular vesicles (EVs), RNA-binding proteins, lipoproteins, or lipid deriv- 331 
atives, along with nanoparticles which shield miRNAs from the adverse gastrointestinal 332 
environment, including salivary and pancreatic RNases, the stomach's low pH, digestive 333 
enzymes, peristaltic activity, and microbial enzymes. Such protection likely facilitates the 334 
absorption of miRNAs from the digestive tract [75]. However, there is ongoing debate 335 
surrounding the absorption, stability, and physiological impact of these food-derived 336 
miRNAs. 337 

7. Progress in chemical modifications of miRNAs for improved stability and cellular 338 
uptake 339 

As illustrated in Figure 4 and discussed in the literature [77], a combination of chem- 340 
ical modifications, biomolecule conjugation, or the use of carriers improves site-directed 341 
and efficient cell targeting of miRNA and other nucleic acid therapeutics. In addition, var- 342 
ious types of chemical modifications of nucleobases, ribose sugar, or the phosphate back- 343 
bone can mask the negative charge of the miRNAs and other nucleic acids and increase 344 
their adhesion to the cell surface, thereby facilitating cellular uptake [190, 216] and also 345 
improving their stability. 346 

Among the commonly used nucleic acid modifications, locked nucleic acid (LNA) 347 
bases [216] are characterized by the introduction of methylene bridges which reduce the 348 
flexibility of the ribose ring, resulting in a locked conformation of the modified nucleo- 349 
tides [217, 218]. 350 

LNA-modified RNA-based therapeutics are more resistant to ribonucleases and ex- 351 
hibit improved cellular uptake, primarily through an endocytosis mechanism that 352 
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remains not fully understood [219]. The locked conformation enhances the capability of 353 
RNA-based therapeutics to establish stable duplexes by binding to and inhibiting the 354 
function of the target miRNA. 355 

Consequently, LNA-modified RNAs are frequently employed in single-stranded an- 356 
tagomirs, such as antisense oligonucleotides (ASOs) and this locked conformation en- 357 
hances the capability of ASOs to establish stable duplexes by binding to and inhibiting the 358 
function of the target miRNA  [216, 219]. Due to these benefits, LNA-modified oligonu- 359 
cleotides have emerged as one of the  primary approaches for inhibitory therapeutics 360 
targeting both miRNA and mRNA. 361 

Phosphorothioate modifications, involving the introduction of a sulfur atom into the 362 
oligonucleotide's phosphodiester backbone, have emerged as a promising method for im- 363 
proving oligonucleotide stability and promoting endosomal uptake, particularly through 364 
stabilin receptors found on cell surfaces (e.g., in kidney cells) [220, 221]. The latter ap- 365 
proach has been utilized for the targeted renal delivery of synthetic miR-21–anti-miR (RG- 366 
012/lademirsen/SAR339375) in a clinical investigation involving Alport syndrome (Clini- 367 
calTrials.gov identifiers NCT03373786, NCT02855268) [222]. However, certain sequence- 368 
independent effects have been documented in association with phosphorothioate-modi- 369 
fied oligonucleotides [154]. A recent investigation has described a fully modified form of 370 
miR-34a (FM-miR-34a) that effectively addresses issues related to miR-34a stability, non- 371 
specific delivery, and delivery-related toxicity [69]. FM-miR-34a demonstrated a potent 372 
inhibition of proliferation and invasion, leading to sustained suppression of its target 373 
genes for over 120 hours following the in vivo delivery of FM-miR-34a conjugated to folate 374 
(FM-FolamiR-34a). This treatment resulted in the inhibition of tumor growth, leading to 375 
complete cures in some mice [69]. No significant changes observed in the body weight of 376 
mice throughout the study indicating the safety of FM-FolamiR-34. These results have the 377 
ability to revitalize miR-34a as an anti-cancer agent, providing a strong rationale for clin- 378 
ical testing. 379 

8. Progress in predicting and validating miRNA targets 380 

As discussed in the literature [85] the mechanistic functions of candidate miRNAs 381 
can be evaluated through bioinformatic analysis and/or in vitro experiments before pro- 382 
gressing to testing in preclinical animal models. In addition. multiple databases and algo- 383 
rithms have been developed and are available for predicting their targets associated with 384 
each miRNA [109, 223]. To enhance predictive accuracy of miRNA target prediction, it is 385 
a common practice to employ multiple distinct algorithms simultaneously to predict 386 
miRNA binding sites in protein-coding genes and relevant biological pathways and net- 387 
works. An example algorithms is TargetScan [109], which predicts miRNA targets  based 388 
on seed regions that are essential for mRNA binding. TargetScan encompasses nearly all 389 
miRNA sequences documented in miRBase to date. 390 

Likewise, advances in high-throughput screens and bioinformatic tools for target 391 
predictions have significantly facilitated the study of miRNAs and prediction of their pu- 392 
tative targets and biological pathways. For example, bioinformatics tools such as KEGG 393 
and Ingenuity Pathway Analysis not only predict potential biological pathways but, in 394 
some instances, also identify disease states that may be influenced by miRNAs. 395 

Furthermore, various computational tools can be used for calculating the free energy 396 
between the RNA sequences of interest [224]. For example, a lower free energy, typically 397 
around -20 or less, is indicative of a more robust binding [224]. Consequently, the integra- 398 
tion of clinical research databases with miRNA bioinformatics platforms could further 399 
improve the identification and assessing potential therapeutic candidates. 400 

As for the preclinical models, various human cell lines and induced-pluripotent stem 401 
(IPS) cells have been used to investigate the mechanisms, toxicity, and potential therapeu- 402 
tic efficacy of miRNA candidates as well as epigenetic manipulation of target transcripts 403 
[85]. For example, use of IPS cells enable modulation of biological pathways along distinct 404 
stem cell lineages from readily available skin tissue source [225, 226]. Furthermore, the 405 
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availability of various animal models through academic laboratories or commercially fa- 406 
cilitated efficient validation of findings from in vitro miRNA studies. Other animal mod- 407 
els including nonhuman primate models have also been successfully used for the preclin- 408 
ical safety and toxicology testing of miRNA therapeutics supporting the initiation of sev- 409 
eral human miRNA therapeutic clinical trials. 410 

Like other drug classes, the development of miRNA-based drugs must go through a 411 
sequence of developmental stages, spanning from discovery to preclinical studies, toxi- 412 
cology assessment, pre-IND, and multiple phases of human clinical trials prior to ap- 413 
proval by regulatory agencies before market entry (Figure 5) [142].  414 

 415 
Figure 5. Illustration of the miRNA drugs discovery and development process beginning from the 416 
target identification and miRNA discovery to FDA approved miRNA therapeutics in the market. In 417 
the traditional drug development process, the timeline from target, drug discovery to phase 1-3 418 
human clinical trials and, ultimately, FDA approval, followed by Phase 4 studies can go on for sev- 419 
eral years. Conversely, RNA-based and more specifically, miRNA-based drug development can ac- 420 
celerate miRNA-based drug discovery and development, potentially mitigating attrition rates, time 421 
constraints, and costs. Created with BioRender.com. 422 

In the traditional drug development process, the timeline from identifying a drug 423 
target to drug discovery and lead development through preclinical and phase  1-3 hu- 424 
man clinical trials, FDA approval, and subsequent Phase 4 studies often spans several 425 
years. However, the escalating costs and time required in this process have become un- 426 
sustainable, urging the imperative to hasten drug discovery and development while curb- 427 
ing associated expenses and timeframes. 428 

Conversely, leveraging RNA-based methodologies, particularly miRNA-based ap- 429 
proaches, holds promise in expediting both the discovery and development of drugs, po- 430 
tentially mitigating attrition rates, reducing time constraints, and cutting costs. 431 
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9. Progress in preclinical validation of miRNA therapeutics 432 

As discussed in the literature [77, 85], single miRNAs not only can regulate an entire 433 
pathway and multitude of mRNA targets but also each mRNA may also be targeted by 434 
multiple miRNAs [227]. It has been suggested that miRNAs can regulate a diverse range 435 
of RNAs stems from their ability to bind to target mRNAs even when the pairing is not 436 
perfect. As a result, a single miRNA can regulate a pool of targets involved in similar 437 
cellular processes, thereby amplifying the cellular response Although a single miRNA can 438 
inhibit hundreds of genes, the effect on each gene is generally mild [116] and multiple 439 
miRNAs can regulate the same gene [117, 227] thereby amplifying the cellular response. 440 

Because a single miRNA has the potential to bind to as many as 200 target mRNAs, 441 
each with diverse functions, including transcription factors, receptors and many others, 442 
consequently, entire signaling pathways can be regulated by individual miRNAs [117] or 443 
miRNA clusters [228]. 444 

The pivotal role of miRNAs in the regulation of multiple genes and their far-reaching 445 
effects within regulatory networks presents significant challenges for miRNA therapeu- 446 
tics [229][85]. Therefore, the successful development of miRNA-based therapeutics re- 447 
quires a comprehensive functional characterization and validation of the molecular effects 448 
of each miRNA prior to their application as therapeutics [77, 85]. Toward the functional 449 
characterization of each miRNA, many steps must be undertaken, ranging from the con- 450 
firmation of the authenticity of an miRNA as a true miRNA, the enhancement of miRNA 451 
target prediction algorithms, and the experimental validation of their functional effect on 452 
their intended targets in relevant preclinical models [77]. 453 

10. Off-target effects of miRNA therapeutics 454 

Among the challenges inherent in miRNA-based therapeutics, off-target effects and 455 
associated toxicities emerge due to the capacity of each miRNA to regulate the expression 456 
of multiple genes and are one of the main challenges associated with miRNA therapeutics. 457 
Thus, further research is essential for the development of miRNAs as effective cancer ther- 458 
apeutics. Additionally, numerous miRNAs are dysregulated not only in cancer cells but 459 
also in other cells within the tumor microenvironment (TME), where they might have op- 460 
posing functions. 461 

Furthermore, depending on the route of administration and the way to enable an 462 
intracellular delivery, the miRNA therapeutics are not necessarily restricted to the in- 463 
tended tissue or cells but can also lead to systemic side effects [77]. For example, MRX34, 464 
a synthetic miR-34a mimic as a tumor suppressor [230] systemically administered by a 465 
liposomal amphoteric (i.e., pH-dependent) delivery, which takes advantage of the low- 466 
pH environment of tumorous tissues [231] used for the treatment of various solid tumors 467 
and hematologic malignancies (NCT01829971) was terminated prematurely because of 468 
severe immune-related side effects leading to the death of four patients [82, 83]. Previous 469 
animal studies, however, demonstrated that a miR-34a mimic was not only taken up by 470 
tumor tissue but also by bone marrow and spleen [232, 233] which are involved in the 471 
generation and preservation of immune cells. Supporting these preclinical observations, 472 
the clinical testing of miR-34a mimic demonstrated a dose-dependent change in several 473 
target genes in white blood cells [83]. Consequently, miR-34a mimic not only functions as 474 
a tumor suppressor but also impacts the immune cells by modulating calcium or chemo- 475 
kine signaling such as CXCL10/CXCL11/CXCR3-axis in CD4+, CD8+ T cells, and M1 mac- 476 
rophages [234, 235]. 477 

Despite the lack of the direct causative link between the patient death, the miR-34a 478 
function in immune cells has not been yet established. However, the serious and deadly 479 
adverse effects of miR-34a mimic MRX34 underscores the need for a priori risk assessment 480 
of miRNA therapeutics, specifically their potential off-target effects in other unintended 481 
tissues highlighting the need for the development of more precise tissue target delivery 482 
systems. 483 
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11. Challenges and future perspectives 484 

In addition to their potential utility as biomarkers [68], miRNA mimics, and inhibi- 485 
tors provide a significant potential as therapeutics as many miRNAs function as oncomirs 486 
or tumor suppressors, and restoring deregulated miRNA levels to that of healthy tissue 487 
levels could potentially help in maintaining the endogenous anti-tumor regulatory mech- 488 
anisms. While many new immunotherapeutic such as antibodies, recombinant proteins, 489 
cell therapies, and small molecules have shown their success in the treatment of various 490 
types of cancers [236], because of the global success of mRNA vaccines as modulators of 491 
immune stimulation for tackling COVID-19 pandemic, there has been a resurgence of 492 
RNA-based cancer immunotherapies [187]. Moreover, further improvements in RNA 493 
chemistry and delivery are opening new opportunities for RNA-based immunotherapy. 494 
Although, drug development, including RNA-based drugs, often requires many years 495 
and substantial costs before approval by the FDA or other regulatory agencies (Figure 5), 496 
the global threat of the COVID-19 pandemic has catalyzed the extremely rapid develop- 497 
ment of a new class of mRNA-based vaccines. These mRNA vaccines whether developed 498 
by BioNtech in partnership with Pfizer or Moderna have shown to deliver on their prom- 499 
ise i.e., they can be developed extremely fast, can be manufactured under GMP-compliant 500 
manufacturing processes, and can be scaled for rapid availability of large numbers of 501 
doses, were safe and active at a relatively low dose range [141, 187, 237, 238]. Because of 502 
this, many companies are now leveraging the experience gained from the COVID-19 vac- 503 
cine development to develop RNA–based cancer therapies and potentially for other dis- 504 
eases. This of course have reignited the potential of miRNA as both diagnostics and ther- 505 
apeutics. The approval of several antisense, small interfering RNA (siRNA), and mRNA- 506 
based drugs and vaccines have validated their potential and opened the door for expan- 507 
sion into new indications. Research surrounding RNA-based therapies comprises a broad 508 
ecosystem, ranging from RNA engineering, and RNA chemistry including various modi- 509 
fications to improve pharmacokinetics and reduce non-specific undesirable side effects to 510 
delivery technologies. Furthermore, novel RNA constructs including those self-amplify- 511 
ing RNA, circular RNA, siRNA, as well as gene editing (Cas9 mRNA, single guide RNA 512 
[sgRNA]) all hold promise for next-generation cancer immunotherapy. 513 

However, despite this potential over many years, there are several challenges includ- 514 
ing sensitivity, specificity, toxicity immunogenicity, delivery among many others which 515 
are a significant barrier to exploiting the full potential of miRNAs as therapeutics. 516 

In addition, the development of novel targeted delivery systems would be vital for 517 
the delivery of miRNAs. The delivery method must be target-specific, and be able to de- 518 
liver the miRNA drugs to the targeted cells or tissues [142]. As illustrated in Figure 3, the 519 
future lies in the targeted delivery vehicles, including lipid and polymer nanoparticles, 520 
cell or extracellular vesicle-based packaging, and hybrid systems, as well as viral vectors 521 
that will likely increase the therapeutic potency of various RNA-based therapies while 522 
decreasing side effects.  523 

In addition, there are other challenges that need to be addressed with regard to the 524 
sensitivity, specificity, toxicity, and applicability of potential utility of miRNAs as thera- 525 
peutics and therapeutic targets. Because each miRNA regulates more than one gene, 526 
sometimes a single miRNA can regulate entire cellular pathways via interacting with mul- 527 
tiple target genes. Likewise, each mRNA is regulated by more than one miRNA [77]. This 528 
phenomenon is referred to as “too many targets for miRNA effect” (TMTME) [129]. Alt- 529 
hough this characteristics of miRNAs make them a powerful new class of therapeutic, it 530 
also represents a major challenge in terms of controlling adverse effects that have been 531 
observed in clinical trials [77]. Because of this, Zhang et al. [129] proposed that adverse 532 
events observed in terminated clinical trials involving miRNA therapeutics could be at- 533 
tributed to the broad-ranging  effects of miRNAs. 534 

In addition, the type of miRNAs might change during the course and stage of cancer 535 
which further complicates the target prediction, however, can also be beneficial for as- 536 
signing a specific miRNA or several miRNAs to a specific stage of cancer. Therefore, more 537 
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innovative approaches for predicting miRNA targets might be required to validate the 538 
predicted targets. 539 

Additional issues that need to be resolved include immunogenic reactions. Although 540 
viral delivery systems undoubtedly enhance cellular uptake and expression of miRNAs, 541 
they are associated with various side effects, including immunogenicity [198]. To address 542 
this issue, there needs to be a better understanding on the prevalence of immunogenic 543 
reactions resulting from viral transfer systems. 544 

In addition, further research is needed to investigate whether severe immunogenic 545 
reactions are also possible due to modifications in miRNAs, such as LNA miRNAs and 546 
artificial miRNAs (amiRNAs), or through miRNA interfering molecules like small cell- 547 
permeable molecules, application systems including biodegradable 3D matrices, carriers 548 
like functionalized metals, viral transfer systems, or biomolecule conjugates such as ap- 549 
tamers? Additionally, is it feasible to diminish immunogenic reactions by concealing or 550 
masking reactive components? 551 

Additionally, as detailed, as summarized in Table 4 and discussed in literature, [77] 552 
there are many other key outstanding issues that must be overcome before miRNA ther- 553 
apeutics can become widely adopted as novel therapeutics in the clinic. 554 

Table 4. Key questions to address before miRNA therapeutics become clinically impactful. 555 

1 
What methods can be used to effectively guide therapeutic miRNAs/miRNA inhibitors to their intended target 

tissue and cells in vivo? 

2 
How can the design of miRNA/miRNA-based drugs and delivery vehicles be optimized to reduce or, ideally, 

eliminate unintended impacts on non-targeted cells? 

3 
What other strategies can be used to improve more accurate targeting for miRNA/miRNA inhibitor therapeu-

tics? 

4 
Is there a risk of incompatibilities when using diverse carrier materials for advanced miRNA/miRNA inhibitor-
based drug delivery, which may lead to undesired interactions between the materials and miRNA therapeutics? 

5 
Is there a risk of incompatibilities when using miRNA/miRNA inhibitor therapeutics in combination with tradi-

tional drugs pose the risk of incompatibilities? 

6 

Do  modifications of miRNA/miRNA inhibitors such as LNA miRNA/miRNA inhibitors and other synthetic 
miRNAs, as well as agents such cell-permeable molecules, delivery methods such as biodegradable 3D matrices, 
carriers like functionalized metals, viral transfer systems, or biomolecule combinations such as aptamers invoke 
immunogenic responses? If so, can the activation of immunogenic responses be ameliorated through the mask-

ing of reactive components or moieties? 

7 
What is the level of risk associated with genomic integrations of viral transduction constructs that carry miRNA 

or miRNA inhibitors? 

8 
What is the impact of the expression of endogenous miRNAs and mRNAs on exogenously delivered therapeu-
tic miRNAs and miRNA inhibitors which may be also affected by factors like cell type, cell cycle, and the cellu-

lar environment? 

9 
What is the necessary dosage for particular administration techniques for miRNA/miRNA inhibitors, such as 

skin injection, infusion, or inhalation, and for carrier-based methods like biodegradable 3D matrices? 

10 
How can the administration of miRNA/miRNA inhibitor therapeutic doses be regulated along intricate in vivo 

delivery pathways? 

11 
Is it possible to achieve consistent and sustainable rates of cellular uptake of miRNA/miRNA inhibitor thera-

peutics under varying in vivo conditions? 
12 In what ways can dosing of miRNA mimics and inhibitors support the desired gene targeting outcome? 

These findings emphasize the need for further investigation in developing miRNAs 556 
as both novel therapeutics and therapeutic targets for cancer. 557 

12. Conclusions 558 
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Because many miRNAs is abnormally expressed or mutated in many cancers acting 559 
as oncogenes or a tumor suppressors [99, 239-241], they have emerged as potential bi- 560 
omarkers [68], therapeutic targets, and therapeutics [81]. However, there are many out- 561 
standing issues and challenges with respect to specificity and associated off-targeting ef- 562 
fects of miRNA-based therapeutics since each miRNA appears to regulate more than tar- 563 
get and each target is regulated more than one miRNA leading to undesired toxicity hence 564 
limiting their use as therapeutics. 565 

Currently, most of the miRNA therapeutics are still in early phases of human clinical 566 
trials; as such, it is awaited to see how other miRNA therapeutics perform in human clin- 567 
ical trials in terms of toxicity or side effects. Notably, a few recent clinical trials using 568 
miRNA therapeutics have reported some serious adverse events. For example, MRX34, a 569 
microRNA liposomal injection developed by Mirna Therapeutics, Inc. evaluated in a 570 
Phase 1 clinical trial for its efficacy against melanoma was withdrawn (NCT02862145) or 571 
terminated (NCT01829971) [82-84] due to serious adverse events. As a result, numerous 572 
challenges must be addressed to bring therapeutic miRNAs into clinical practice. These 573 
include establishing miRNA specificity to their intended targets, reducing immunogenic 574 
reactions and adverse events, determining optimal dosing for the desired therapeutic ef- 575 
fect while minimizing side effects [77], and developing improved methods for targeted 576 
delivery. 577 

Despite these significant challenges, the potential of miRNAs as a therapeutic ap- 578 
proach for various diseases is clear. Further research will be necessary to establish whether 579 
miRNAs can effectively serve as therapeutics or therapeutic targets for clinical applica- 580 
tions. 581 

Abbreviations and acronyms:  582 

AGO Argonaute 

AGO2 Argonaute RISC Catalytic Component 2 

ALS Amyotrophic lateral sclerosis 

ASO Antisense oligonucleotides 

CLL Chronic Lymphocytic Leukemia 

CTCL Cutaneous T-cell Lymphoma 

ATLL Adult T-Cell Leukemia/Lymphoma 

COVID-19 coronavirus disease 2019 

DICER1 Dicer 1, Ribonuclease III 
DLBCL Diffuse Large B-Cell Lymphoma 
EGFR Epidermal growth factor receptor 

DGCR8 DiGeorge Syndrome Critical Region 8 
DROSHA Drosha Ribonuclease III 

EVs Extracellular vesicles 
GalNAc N-acetylgalactosamine 

HCV Hepatitis C virus 
KEGG Kyoto Encyclopedia of Genes and Genomes 
LNA Locked nucleic acid (LNA) 
MF Mycosis fungoides 

mRNA messenger RNA 
miRNA microRNA 
ncRNAs non-coding RNAs 
P-bodies Processing bodies 

pre-miRNA precursor microRNA 
pri-miRNA primary microRNA 
RNA Pol II RNA polymerase II 
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SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 
sgRNA Single guide RNA 
siRNA Small interfering RNA 
TDMD Target-directed miRNA degradation mechanism 

TME Tumor microenvironment 
TRBP The TAR RNA-binding protein 
TTR Transthyretin 
UTR Untranslated region 

XenomiRs Exogenous miRNAs 
XPO5 Exportin 5 
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