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Abstract: Rational delineation of urban–rural boundaries is a foundational prerequisite for holistic urban and 

rural development planning and rational resource allocation. However, the results of division of urban–rural 

boundaries extracted using a single data source are non-comprehensive. To address this problem, the present 

study proposes a method for using multiple sources such as population data, nighttime light data, land use, 

and points of interest (POI) data to extract urban–rural boundaries. Considering Guizhou Province for a case 

study, we here present a two-step method for identifying urban–rural boundaries. First, the random forest 

model was combined with the dasymetric mapping method to obtain the population spatialization data with 

a 30-m resolution in the studied province. Second, using the breaking point method, we extracted the urban–

rural boundary for Guizhou Province in 2020 based on the spatialized population. This method fully integrated 

the benefits of various data and judiciously extracted the boundaries of the main urban areas and small- and 

medium-sized towns of each city in the study province at the same spatial scale. The stratified random 

sampling method revealed that the average overall accuracy was 88.05%. The method proposed has certain 

universality and application value and allows identifying the urban–rural boundaries more accurately and 

practically. 

Keywords: Urban–rural boundary demarcation; population spatialization; dasymetric mapping; breaking 

point 

 

1. Introduction 

The rapidly advancing urbanization and the implementation of the urban–rural integration 

development strategy have gradually extended the mutual nesting and influence between urban and 

rural areas1. The urban fringe area, which is located between built-up and rural areas, has steadily 

become the most dynamic zone for urban development, diffusion, and sprawl2. Under the influence 

of both urban and rural areas3, problems such as man–land contradictions and land use conflicts 

have emerged in these urban fringe areas. These issues have led to several other problems such as 

chaotic urban and rural planning, resource misallocation, and unbalanced public service4. Therefore, 

identifying the spatial identification method of urban and rural fringe areas and reasonably 

delineating the urban–rural spatial boundary for the overall planning of urban and rural 

development, rational resource distribution, and promotion of coordinated development of these 

areas are of great significance[5,6]. 

The urban–rural fringe area is affected by factors such as population, urban size, and economy3, 

which make its spatial form dynamic that is constantly undergoing changes. Therefore, most studies 

have been conducted from the perspectives of population characteristics[7,8,9] and urban spatial 

morphological changes[10,11]. Population, as one of the key factors for the evolution of urban–rural 

boundaries, is a crucial indicator for measuring the spatial structure of cities. Previous research 

methods have mostly focused on the qualitative demarcation of urban–rural boundaries based on 
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population density [12,13] from the perspective of administrative or natural regions. Subsequently, 

various indicators closely related to human activities, such as commuting levels[7,13], socio-economic 

linkages14, and infrastructure services[15,16], were used for delineating these boundaries. Some 

recent studies have attempted to demarcate urban–rural boundaries by using spatial positioning data 

such as points of interest (POI)[17,18], takeaway data19, and locations of new residential buildings in 

suburbs20.  

Advancement of remote sensing technology has resulted in increasing research on the methods 

for determining urban spatial morphological change. These methods are combined with quantitative 

methods such as the breaking point method21, information entropy method22, and mutation 

detection23for identifying the spatial boundaries of cities. The urban–rural boundary is principally 

obtained by extracting the relevant indicators of land spatial morphology, such as the impervious 

surface index and landscape disorder degree24,25. The extent of urban built-up at the global [26,27] 

and urban scales [10,28,29] was determined. The remote sensing image data used included Landsat-

TM images30, nighttime light data 26, Sentinel[11,19,31], and other sources. Convolutional11and 

deep neural network models32have also been used for studying urban–rural boundaries. However, 

being a complex socio-economic polyhedron, the formation of this urban–rural boundary is affected 

by various factors. When delineating boundaries, the urban fringe zone often cannot rely solely on 

some types of indicators such as territorial units or a given population range3. 

To compensate for the lack of comprehensive data from a single data source, some scholars have 

attempted to use nighttime light data33 combine two types of indicators related to population and 

land, and employ an empirical threshold method or classification method34to obtain the urban 

boundary range. These studies have preferred to construct composite indices for unifying data types. 

However, obtaining unified data at the spatial scale is difficult because of the availability of various 

spatial data sources, which then reduces those methods’ applicability35. By contrast, population 

spatialization fits population data to spatial locations by establishing relationships between the 

population and influencing factors. It presents the geographical distribution characteristics of the 

population as grid cells36 can display more refined spatial information in the statistical population 

data. To some extent, population spatialization can "bridge" spatial scale differences between 

different data. 

Therefore, considering Guizhou Province as the study area, this study first integrated various 

data including those of land use, nighttime light, demographic features, POI, and topography. Using 

the population spatialization method and the random forest model, the multi-source data were then 

uniformly mapped to the grid data with a 30-m resolution to achieve the fusion of multi-source data 

at the same scale. Using the breaking point method, the urban–rural boundary for Guizhou Province 

(GZURB) was extracted based on the spatialized population. This study offers a new approach for 

demarcating urban boundaries. 

2. Materials and Methods 

2.1. Study Area 

Guizhou Province (Figure 1) is situated in the southwestern region of China, spanning 

coordinates 24°37′–29°13′N latitude and 103°36′–109°35′E longitude. This province comprises nine 

municipal-level and 88 county-level administrative divisions. Its total land area is approximately 

176,167 km². Of the total land area, approximately 61.7% is mountainous terrain, 31.1% is hilly, and 

only 7.5% comprises the mountainous Pingba region. The karst landform area accounts for 

approximately 62% of the total area of the province. Guizhou Province is a typical mountainous 

region. 
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Figure 1. Study area. 

Over the past three decades, the urbanization rate in the study province has increased 

significantly. It was 23.87% in 2000, which increased to 33.81% by 2010 and reached 53.15% in 2020. 

In comparison, the overall urbanization rate of China increased from 36.2% in 2000 to 49.7% in 2010, 

which further accelerated to 63.9% in 2020. Notably, although the urbanization rate of the study 

province has not yet reached the overall level of China, its urbanization growth rate has far exceeded 

that of China (Figure 2). Because Guizhou Province is located in the transportation hub of southwest 

China and is a crucial part of the Yangtze River Economic Belt, the coordination and optimization of 

urban and rural spatial layouts in this province have been the research focus in related regions. 

Therefore, considering this province as the study area, the present study analyzed the urban–rural 

boundary with a decentralized distribution pattern, which is favorable for comprehending the 

development and change characteristics of southwest China, especially in karst landform regions. 

 

Figure 2. Urbanization change rate from 2000 to 2020. 

2.2. Research Method 

2.2.1. Overall Framework 
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This paper proposes an urban–rural boundary delineation method that includes four steps: data 

collection and preprocessing, population spatial representation, urban–rural boundary 

determination, and accuracy verification (Figure 3). First, various data such as NPP/VIIRS, land use, 

and POI data were collected and preprocessed to construct a characteristic factor database. Second, a 

random forest regression model coupled with dasymetric mapping was used to generate the 

population spatialization data with 30-m spatial resolution in the study province. Then, the 

population spatialization result was considered as the index factor, and the urban–rural boundary 

was extracted using the breaking point method. Finally, stratified random sampling and comparative 

analysis were used to verify whether the boundary division results were accurate. 

 

Figure 3. Flow chart of delimiting urban boundary divisions. 

2.2.2. Population Spatialization Methods 

The spatial interpolation method36and multiple linear regression models[37,38] have often been 

used in the population spatialization studies. Although the spatial interpolation method can, to some 

extent, eliminate the influence of administrative boundaries, accurately expressing the true 

characteristics of the spatial distribution of a population within administrative units is difficult. 

Multiple linear regression models can more accurately fit the spatial distribution of the population 
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but are relatively less effective when addressing data collinear problems. By contrast, the random 

forest model can construct complex nonlinear relationships between the population and its auxiliary 

variables, leading to a high-precision spatial distribution of the population[39-41]. Therefore, in 

recent years, the random forest model has been extensively used in the spatial expression of 

populations. This 2001’s Bierman model [42] is a decision tree-based ensemble learning algorithm 

that involves introducing the bagging algorithm for multiple random sampling into decision trees 

and combining the extracted multiple decision trees to complete integrated model construction [43]. 

Population data, POI data, and other characteristic factors constituted the foundational database. 

The random forest model was employed for training to predict population weight values for different 

factors. Leveraging dasymetric mapping [44], the actual area’s total population was spatially 

assigned based on the aforementioned predicted weight values to achieve a spatial representation of 

population quantities. The calculation formula is as follows: 

ijji DDSP ×= /  (1) 

where Pi represents the final population count for grids; Sj denotes the total statistical population of 

the city where grid j is located; Dj is the total weighted value of the estimated grid i in the city 

(autonomous prefecture), and Di denotes the raster value of the estimated grid i. 

2.2.3. Methods of Urban–Rural Boundary Delimitation 

Methods such as information entropy, mutation detection, and breaking point analysis[45,46] 

have been widely used for delineating urban–rural boundaries. The information entropy method 

requires that a reasonable threshold is selected and exposed to some subjectivity22. The mutation 

detection method focuses on a single factor, whereas the breaking point method offers a clear 

inflection point for outlining urban–rural boundaries3. Hence, the breaking point analysis method 

was adopted in this study for identifying these boundaries. The breaking point theory47, proposed 

by P.D. Converse in 1949, postulates that the population size of and distance between two cities 

determine the attraction between those cities. The fundamental principle involves identifying the 

distance decay mutation peak for each element in the same direction as the breaking point by using 

the following formula: 
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where dA is the distance from the breaking point to the city, DAB represents the distance between two 

cities, and PA and PB are the population size values of the two cities, respectively. 

The fracture point is determined by calculating the maximum distance attenuation value as 

follows: 
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where Di is the maximum distance attenuation value on the ith profile line, xij is the jth sequence 

eigenvalue on the ith profile line, and xi(j+1) is the (j+1)th sequence eigenvalue on the ith profile line. 

2.2.4. Accuracy Verification Methods 

The accuracy of both population spatialization and urban–rural boundary delineation was 

evaluated in this study. Because population spatialization results directly impact urban–rural 

boundary delineation, we conducted an error analysis of population spatialization by employing 

three evaluation indicators: root mean square error (RMSE), relative root means square error 

(%RMSE), and mean absolute error (MAE). Population spatialization results were compared and 

analyzed with datasets such as WorldPop and LandScan to assess the accuracy of the results. The 

accuracy of urban–rural boundary demarcation was verified using stratified random sampling and 

comparative analysis.  

3. Data Sources and Processing 
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We here used a comprehensive array of data sources, including land use data, administrative 

divisions, normalized difference vegetation index (NDVI), digital elevation model (DEM), 

NPP/VIIRS and DMSP/OLS nighttime light remote sensing data, demographic statistics, 

meteorological information (including precipitation and temperature data), POI data, road networks, 

river data, and population datasets from WorldPop and LandScan. Table 1 presents data information 

and their sources. 

Table 1. Data information and sources. 

Data 

Type 
Data Name 

Data 

Year 
Scale/Resolution Data Sources 

Vector 

data 

GlobeLand30 2020 30 m https://www.webmap.cn 

Administrative 

division data 
2019 1:1,000,000 https://www.webmap.cn 

Rivers 2019 1:1,000,000 https://www.webmap.cn 

Roads 2020 1:1,000,000 https://www.openstreetmap.org 

POI data 2020 - https://lbs.amap.com 

Raster 

data 

DEM 2020 30 m https://www.gscloud.cn 

Meteorological 

data 
2020 1 km https://data.tpdc.ac.cn 

NDVI 2020 

Spatial 

resolution: 250m 

Temporal 

resolution: 16 

days 

https://ladsweb.modaps.eosdis.nasa.gov 

NPP/VIIRS 2020 500 m https://www.ngdc.noaa.gov/eog/dmsp.html 

DMSP/OLS 2020 1 km https://payneinstitute.mines.edu 

WorldPop 2020 100 m https://www.worldpop.org 

LandScan 2020 1000 m https://landscan.ornl.gov 

Statistical 

data 

Population census 

data 
2020 - 

http://www.stats.gov.cn 

https://www.guizhou.gov.cn 

Because of the diversity of data sources, different data types were first standardized to the 

Lambertian projection uniformly and then resampled to a 30-m resolution. The primary data 

processing steps are as follows: 

1. Nighttime Light Data: Using the constant target area method48NPP/VIIRS and DMSP/OLS 

images were subjected to oversaturation correction, continuity correction, and outlier processing, 

along with mutual substitution between continuous year images. Following logarithmic 

transformation49, a function relationship was established for DN values between the two images to 

ensure consistency in the correction results for nighttime light data of Guizhou Province in 2020 

(Figure 4). 
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Figure 4. Correction results of nighttime light image consistency. 

(1) Land use data: Using the GlobeLand30 dataset, land use data for Guizhou Province were extracted, 

and the proportions of various land cover types in each district were evaluated. These results 

allowed us to calculate the cultivated land index, grassland index, shrubland index, forest index, 

water index, and artificial surface index. 

(2) Urban Nighttime Light Index and Human Settlements Index: We constructed the corrected urban 

nighttime light index VANUI 50and the human settlements index (HSI) by comprehensively 

using nighttime light data and the NDVI vegetation index. 

(3) DEM: We applied the moving window method and the mean variation point method 51for 

identifying the optimal statistical unit for topographic relief in the study area. Additionally, the 

proportion factor of a flat land area in the study area 52was incorporated to calculate 

topographic relief. 

(4) Meteorological data: ArcGIS software was used to query, screen, and calculate the annual average 

precipitation and temperature for each district in the study province. 

(5) POI: Fourteen types of POI data were obtained from the open API platform of Amap for 2020, and 

kernel density analyses were performed to calculate the average kernel density for each district. 

(6) River and road data: Leveraging existing datasets and the Euclidean distance method, we 

computed the straight-line distance between each point and the nearest river and road and 

determined Euclidean distance mean values. 

(7) NDVI: Based on MOD13Q1 data, the administrative division data of Guizhou Province were used 

to crop the NDVI image data for each time period. Subsequently, the average values of NDVI 

images in 2020 were calculated using a raster calculator. 

To alleviate the impact of different scales and dimensions, the Min-Max data standardization 

method was applied to normalize various indicators and compile a database of population 

spatialization characteristic factors (Table 2). 

Table 2. Database of population spatialization characteristic factors. 

Source of the Characteristic Factor Name of the Characteristic Factor 
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GlobeLand30 

Cultivated land index 

Forest index 

Grassland index 

Shrubland index 

Water index 

Artificial surface index 

Nighttime light data Average brightness of night lights 

NDVI 
Average value of  

NDVI index 

NDVI and nighttime light data 
VANUI 

HSI 

DEM 

DEM 

Slope 

Aspect 

relief amplitude 

River and road data 
Distance from the road 

Distance from the river 

Meteorological data 
Annual average temperature 

Annual average precipitation 

POI data Kernel density of POI data 

4. Results and Discussion 

4.1. Results of Population Spatialization  

By referring to the database of population spatialization characteristic factors, statistical mean 

data were correlated with the districts in the study province by using ArcGIS software. To construct 

a fundamental dataset, the population density data from the 2020 census for each district were used 

as the dependent variable, whereas the database of characteristic factors was used as the independent 

variable. The corresponding random forest model was constructed using the R programming 

language. The data were categorized into training (70%) and test (30%) sets (Table 3). 

Table 3. Parameter setting of the random forest model. 

Parameter Name Parameter Value 

Number of decision trees 100 

Maximum number of features during partitioning Auto 

Minimum number of samples for leaf nodes 1 

Maximum depth of the tree 10 

Sampling rule With replacement 

Out of bag estimation Yes 

Initially, the model for the relationship between independent variables and population density 

was established. The model was then applied to the characteristic factor data at a 30-m grid scale, 

which yielded the initial population grid data on the basis of the random forest model prediction, 

known as the grid weight eigenvalue. To ensure that the grid data align with the actual district 

population, dasymetric mapping was performed to allocate the actual city population based on 

weight values. Subsequently, the total number of weight values in each city or state was tallied, and 

the grid's population count was computed using the ratio of actual population data to the total 

number of weight layers, which resulted in the final population spatialization outcome (Figure 5). 
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The population spatialization results (Figure 5) were achieved by integrating multi-source data, 

including nighttime light, land use, and POI data. These results revealed a population distribution 

pattern, characterized by a high population density in the primary urban areas and a relatively low 

density in the surrounding regions, in the study province. Of note, the population was concentrated 

in the central and northwest parts of Guizhou Province, with eastern and southern areas exhibiting 

sparser populations. Population was significantly concentrated in major urban areas within cities, 

with Guiyang City, the provincial capital, being the primary center. 

 

Figure 5. Population spatialization results of Guizhou Province. 

4.2. Accuracy of Population Spatialization Data 

We extracted corresponding data for our study area from the WorldPop and LandScan datasets 

and comparatively assessed the population spatialization dataset, with MAE, RMSE, and %RMSE 

values as index factors (Table 4). The simulation accuracy of the WorldPop dataset, LandScan dataset, 

and the population spatialization method applied in this study were 79.71%, 78.54%, and 93.34%, 

respectively, which indicated relatively high accuracy of the population spatialization method. 

Table 4. Precision comparison of population spatialization results. 

Data Year Dataset MAE RMSE %RMSE 

2020 

Population spatialization 6675.60 29294.23 6.66 

WorldPop 53795.71 89286.58 20.29 

LandScan 46776.30 94433.72 21.46 

4.3. Identification of Urban–Rural Boundaries Based on Population Spatialization 

We here adopted the urban–rural fringe boundary as the urban–rural boundary. Leveraging 

population spatialization data and the breaking point theory, the population density of the study 
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province in 2020 was computed and the spatial boundary between urban and rural populations 

within the province was successfully delineated. 

Once the population spatialization data met the required accuracy standards, our next objective 

was to locate the urban–rural boundary. To achieve this objective, we initiated a meticulous process 

as outlined below. 

Considering the unique characteristics of each city in Guizhou Province, the geometric center 

point of each city was selected as the reference origin. Starting from the east, we drew 360 cross-

sectional lines at 1° intervals, thereby encircling the city's perimeter. These lines intersected with the 

urban–rural division index factor, thus yielding 360 cross-sectional data columns containing 

population data. We then calculated the maximum distance attenuation value from these columns 

(Figure 6). 

 
Figure 6. Sketch of profile line (Guiyang City). 

Next, the distance attenuation value from the cross-sectional line to the corresponding spatial 

grid was linked through attribute fields for identifying the grid position of the breaking point. 

Considering the distance between the breaking point and the city center, we excluded any anomalous 

mutation values and connected the breaking points. Finally, the urban–rural boundary delineation 

was determined for the nine cities in the study province (Figure 7). 

The extraction results (Figure 7) unveiled that this approach can precisely extract urban 

boundaries of the nine cities and effectively identify small towns with dispersed distributions within 

each city. Moreover, this approach shows enhanced recognition of the core areas. An analysis of the 

spatial distribution of the provincial population revealed that the development of urban population 

spatial boundaries in each city follows a pattern characterized by a central core and multiple sub-

cores. 

   
(a) Guiyang (b) Zunyi (c) Tongren 
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(d) Anshun (e) Bijie (f) Liupanshui 

   
(g) Qiannan Buyi and Miao 

Autonomous Prefectur 
(h) Qiandongnan Miao and Dong 

Autonomous Prefecture 
(i) Qianxinan Buyi and Miao 

Autonomous Prefecture 

Figure 7. Results of urban boundary delimitation of various cities/autonomous prefectures in 

Guizhou Province. 

4.4. Discussion on the Accuracy of GZURB 

4.4.1. Accuracy Validation Based on the Stratified Random Sampling Method 

The Landsat 8 OLI_TIRS remote sensing images from 2020 (https://www.gscloud.cn/) were used 

as the foundational map. A random sampling method was applied to assess the accuracy of the 

extracted boundary data. In total, 1000 sample points were randomly selected from the GZURB-

designated urban and non-urban areas in the urban–rural boundary dataset of the study province. 

The GZURB accuracy was verified by calculating the sample point number in urban and non-urban 

areas. The number of random sampling points falling within the urban and non-urban areas was 

recorded for constructing a confusion matrix. Four indicators, namely overall accuracy (OA), kappa 

coefficient, producer accuracy (PA), and user accuracy (UA), were used to assess whether the 

classification results were accurate and consistent. 

As shown in Table 5, the proposed method achieved a UA and PA of 96.69% and 78.80%, 

respectively, for the urban area and 82.11% and 97.30%, respectively, for the non-urban area. The OA 

of GZURB reached 88.05%, and the kappa coefficient was 0.761, which indicated a high classification 

accuracy of the dataset. 

Table 5. Accuracy verification of GZURB. 

 Urban Nonurban Total UA 

Urban 788 27 815 96.69% 

Non-urban 212 973 1185 82.11% 

Total 1000 1000 2000 - 
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PA 78.80% 97.30% - - 

OA 88.05% 

kappa 0.716 

4.4.2. Accuracy of Superimposed Remote Sensing Image Data  

To further assess the accuracy of GZURB, a comparative analysis was conducted using World 

Imagery (WB_2020_R01) for ascertaining the consistency of the study dataset. Data from the seventh 

national population census revealed that Guiyang, Zunyi, and Bijie were the top three most populous 

cities within Guizhou Province, having permanent populations of 5.987, 6.6067, and 6.8996 million, 

respectively. Consequently, these cities were selected as focal points for a detailed evaluation of the 

extraction performance of GZURB, and a comprehensive urban–rural boundary division map was 

employed. 

 

 

 

 

(a1) (b1) 

  
(a)Guiyang (a2) (b)Zunyi (b2) 

  

(c)Bijie (c1) (c2) 
Figure 8. Overlay of UZURB and World Imagery. 

The primary urban zones along with certain dispersed small towns within the study area were 

successfully identified and delineated (Figure 8). This approach enabled effective delineation 

between urban and non-urban areas on the basis of distinctions arising from varying spatial 

configurations of urban boundaries. In the heart of Guiyang, which has a relatively dense population 

(Figure 8a), the method proposed could accurately identify the urban–rural demarcation despite the 

complexity of the urban boundary. Specifically, in the intricate urban periphery, the proposed 

methodology exceled in conveying the intricate spatial nuances of this region. Despite the scattered 

distribution of Zunyi and Bijie, which primarily comprise small towns, the boundary identification 

approach advocated here also yielded remarkable outcomes for the peripheries of these smaller 

municipalities (Figure 8b, Figure 8c). 

On analyzing the accuracy of urban boundary extraction in the study province, we noted that 

the boundary delineation results for the main urban areas were superior to those for the small towns. 
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To delve into this phenomenon, the significance of different characteristic factors in population 

spatialization for each city (prefecture) in the study area was ranked (Figure 9), which indicated that 

POI data hold the highest feature importance of 25.300%. The results further indicated that POI data 

are crucial in delineating urban boundary, particularly in urban core recognition, whereas factors 

such as slope, rainfall, and shrubland data have relatively limited impact. 

 
Figure 9. Importance ranking of feature factors. 

The POI data encompass various sectors, including retail, education, and healthcare, and offer 

noteworthy advantages in reflecting the spatial distribution characteristics of urban structures. Figure 

10 presents the distribution of the POI kernel density in Guizhou Province in 2020. As depicted, the 

POI distribution in the core areas of each city was relatively dense. The POI density decreased 

considerably near the boundaries of built-up areas and small towns, with the number of POI points 

declining from urban centers to urban edges and rural areas. The higher POI data density in the 

primary urban areas positively correlated with the finer urban–rural boundary division results, 

which contributed to highly accurate boundary recognition. This result aligns perfectly with previous 

research findings [8,18]. 
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Figure 10. Kernel density map of POI data. 

In summary, the urban–rural boundary delineation method proposed here was more accurate 

in recognizing boundaries in the key urban areas of Guizhou Province. This delineation effectively 

captured the study area’s boundary range, thereby offering an accurate reflection of the spatial 

boundary between the urban and rural populations in the study province in 2020. 

5. Conclusions 

The method proposed in this study comprehensively considers data from different sources and 

spatializes them into a unified grid unit to extract the urban–rural boundary. Considering Guizhou 

Province in China as the research area, we included multi-source data, such as POI data, nighttime 

light data, and population data. By applying the random forest model and dasymetric mapping 

method, a spatial distribution model of Guizhou Province's population in 2020 was constructed and 

the spatial data of the population with a 30-m resolution were obtained. The stratified random 

sampling method exhibited that the OA of the proposed urban–rural boundary extraction method 

was 88.05%, with a kappa coefficient of 0.761. This method can effectively extract the spatial boundary 

range of urban and rural populations and strongly support urban and rural planning and resource 

management. However, obtaining a more detailed spatial distribution of the city population is not 

possible because of the low spatial resolution of nighttime light data. In future, we intend to use 

higher resolution data for a more accurate reflection of the dynamics of population spatial changes, 

which can provide more precise urban–rural boundary delineations. 
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