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Abstract: Rational delineation of urban—rural boundaries is a foundational prerequisite for holistic urban and
rural development planning and rational resource allocation. However, the results of division of urban-rural
boundaries extracted using a single data source are non-comprehensive. To address this problem, the present
study proposes a method for using multiple sources such as population data, nighttime light data, land use,
and points of interest (POI) data to extract urban-rural boundaries. Considering Guizhou Province for a case
study, we here present a two-step method for identifying urban-rural boundaries. First, the random forest
model was combined with the dasymetric mapping method to obtain the population spatialization data with
a 30-m resolution in the studied province. Second, using the breaking point method, we extracted the urban—
rural boundary for Guizhou Province in 2020 based on the spatialized population. This method fully integrated
the benefits of various data and judiciously extracted the boundaries of the main urban areas and small- and
medium-sized towns of each city in the study province at the same spatial scale. The stratified random
sampling method revealed that the average overall accuracy was 88.05%. The method proposed has certain
universality and application value and allows identifying the urban—rural boundaries more accurately and
practically.

Keywords: Urban-rural boundary demarcation; population spatialization; dasymetric mapping; breaking
point

1. Introduction

The rapidly advancing urbanization and the implementation of the urban-rural integration
development strategy have gradually extended the mutual nesting and influence between urban and
rural areasl. The urban fringe area, which is located between built-up and rural areas, has steadily
become the most dynamic zone for urban development, diffusion, and sprawl2. Under the influence
of both urban and rural areas3, problems such as man-land contradictions and land use conflicts
have emerged in these urban fringe areas. These issues have led to several other problems such as
chaotic urban and rural planning, resource misallocation, and unbalanced public service4. Therefore,
identifying the spatial identification method of urban and rural fringe areas and reasonably
delineating the urban-rural spatial boundary for the overall planning of urban and rural
development, rational resource distribution, and promotion of coordinated development of these
areas are of great significance[5,6].

The urban—rural fringe area is affected by factors such as population, urban size, and economy3,
which make its spatial form dynamic that is constantly undergoing changes. Therefore, most studies
have been conducted from the perspectives of population characteristics[7,8,9] and urban spatial
morphological changes[10,11]. Population, as one of the key factors for the evolution of urban-rural
boundaries, is a crucial indicator for measuring the spatial structure of cities. Previous research
methods have mostly focused on the qualitative demarcation of urban-rural boundaries based on
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population density [12,13] from the perspective of administrative or natural regions. Subsequently,
various indicators closely related to human activities, such as commuting levels[7,13], socio-economic
linkages14, and infrastructure services[15,16], were used for delineating these boundaries. Some
recent studies have attempted to demarcate urban-rural boundaries by using spatial positioning data
such as points of interest (POI)[17,18], takeaway datal9, and locations of new residential buildings in
suburbs20.

Advancement of remote sensing technology has resulted in increasing research on the methods
for determining urban spatial morphological change. These methods are combined with quantitative
methods such as the breaking point method21, information entropy method22, and mutation
detection23for identifying the spatial boundaries of cities. The urban—rural boundary is principally
obtained by extracting the relevant indicators of land spatial morphology, such as the impervious
surface index and landscape disorder degree24,25. The extent of urban built-up at the global [26,27]
and urban scales [10,28,29] was determined. The remote sensing image data used included Landsat-
TM images30, nighttime light data 26, Sentinel[11,19,31], and other sources. Convolutionallland
deep neural network models32have also been used for studying urban-rural boundaries. However,
being a complex socio-economic polyhedron, the formation of this urban—-rural boundary is affected
by various factors. When delineating boundaries, the urban fringe zone often cannot rely solely on
some types of indicators such as territorial units or a given population range3.

To compensate for the lack of comprehensive data from a single data source, some scholars have
attempted to use nighttime light data33 combine two types of indicators related to population and
land, and employ an empirical threshold method or classification method34to obtain the urban
boundary range. These studies have preferred to construct composite indices for unifying data types.
However, obtaining unified data at the spatial scale is difficult because of the availability of various
spatial data sources, which then reduces those methods’ applicability35. By contrast, population
spatialization fits population data to spatial locations by establishing relationships between the
population and influencing factors. It presents the geographical distribution characteristics of the
population as grid cells36 can display more refined spatial information in the statistical population
data. To some extent, population spatialization can "bridge" spatial scale differences between
different data.

Therefore, considering Guizhou Province as the study area, this study first integrated various
data including those of land use, nighttime light, demographic features, POI, and topography. Using
the population spatialization method and the random forest model, the multi-source data were then
uniformly mapped to the grid data with a 30-m resolution to achieve the fusion of multi-source data
at the same scale. Using the breaking point method, the urban—rural boundary for Guizhou Province
(GZURB) was extracted based on the spatialized population. This study offers a new approach for
demarcating urban boundaries.

2. Materials and Methods

2.1. Study Area

Guizhou Province (Figure 1) is situated in the southwestern region of China, spanning
coordinates 24°37'-29°13'N latitude and 103°36'-109°35'E longitude. This province comprises nine
municipal-level and 88 county-level administrative divisions. Its total land area is approximately
176,167 km?. Of the total land area, approximately 61.7% is mountainous terrain, 31.1% is hilly, and
only 7.5% comprises the mountainous Pingba region. The karst landform area accounts for
approximately 62% of the total area of the province. Guizhou Province is a typical mountainous
region.
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Figure 1. Study area.
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Over the past three decades, the urbanization rate in the study province has increased
significantly. It was 23.87% in 2000, which increased to 33.81% by 2010 and reached 53.15% in 2020.
In comparison, the overall urbanization rate of China increased from 36.2% in 2000 to 49.7% in 2010,
which further accelerated to 63.9% in 2020. Notably, although the urbanization rate of the study
province has not yet reached the overall level of China, its urbanization growth rate has far exceeded
that of China (Figure 2). Because Guizhou Province is located in the transportation hub of southwest
China and is a crucial part of the Yangtze River Economic Belt, the coordination and optimization of
urban and rural spatial layouts in this province have been the research focus in related regions.
Therefore, considering this province as the study area, the present study analyzed the urban-rural
boundary with a decentralized distribution pattern, which is favorable for comprehending the
development and change characteristics of southwest China, especially in karst landform regions.
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Figure 2. Urbanization change rate from 2000 to 2020.
2.2. Research Method

2.2.1. Overall Framework
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This paper proposes an urban-rural boundary delineation method that includes four steps: data
collection and preprocessing, population spatial representation, urban-rural boundary
determination, and accuracy verification (Figure 3). First, various data such as NPP/VIIRS, land use,
and POI data were collected and preprocessed to construct a characteristic factor database. Second, a
random forest regression model coupled with dasymetric mapping was used to generate the
population spatialization data with 30-m spatial resolution in the study province. Then, the
population spatialization result was considered as the index factor, and the urban-rural boundary
was extracted using the breaking point method. Finally, stratified random sampling and comparative
analysis were used to verify whether the boundary division results were accurate.
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Figure 3. Flow chart of delimiting urban boundary divisions.

2.2.2. Population Spatialization Methods

The spatial interpolation method36and multiple linear regression models[37,38] have often been
used in the population spatialization studies. Although the spatial interpolation method can, to some
extent, eliminate the influence of administrative boundaries, accurately expressing the true
characteristics of the spatial distribution of a population within administrative units is difficult.
Multiple linear regression models can more accurately fit the spatial distribution of the population
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but are relatively less effective when addressing data collinear problems. By contrast, the random
forest model can construct complex nonlinear relationships between the population and its auxiliary
variables, leading to a high-precision spatial distribution of the population[39-41]. Therefore, in
recent years, the random forest model has been extensively used in the spatial expression of
populations. This 2001’s Bierman model [42] is a decision tree-based ensemble learning algorithm
that involves introducing the bagging algorithm for multiple random sampling into decision trees
and combining the extracted multiple decision trees to complete integrated model construction [43].

Population data, POI data, and other characteristic factors constituted the foundational database.
The random forest model was employed for training to predict population weight values for different
factors. Leveraging dasymetric mapping [44], the actual area’s total population was spatially
assigned based on the aforementioned predicted weight values to achieve a spatial representation of
population quantities. The calculation formula is as follows:

Pi=S;/ DixDi 1)

where Pi represents the final population count for grids; S; denotes the total statistical population of
the city where grid j is located; D; is the total weighted value of the estimated grid i in the city
(autonomous prefecture), and D: denotes the raster value of the estimated grid i.

2.2.3. Methods of Urban-Rural Boundary Delimitation

Methods such as information entropy, mutation detection, and breaking point analysis[45,46]
have been widely used for delineating urban—rural boundaries. The information entropy method
requires that a reasonable threshold is selected and exposed to some subjectivity22. The mutation
detection method focuses on a single factor, whereas the breaking point method offers a clear
inflection point for outlining urban-rural boundaries3. Hence, the breaking point analysis method
was adopted in this study for identifying these boundaries. The breaking point theory47, proposed
by P.D. Converse in 1949, postulates that the population size of and distance between two cities
determine the attraction between those cities. The fundamental principle involves identifying the
distance decay mutation peak for each element in the same direction as the breaking point by using
the following formula:

Dus

:1+\/PB/PA @

where da is the distance from the breaking point to the city, Das represents the distance between two

di

cities, and Pa and Ps are the population size values of the two cities, respectively.
The fracture point is determined by calculating the maximum distance attenuation value as
follows:

|.Xij—)Ci(j + 1)|

Z|Xij—.Xi(j+l)|/N

where Di is the maximum distance attenuation value on the ith profile line, x; is the jth sequence

Di = max(

®)

eigenvalue on the ith profile line, and xi¢+1) is the (j+1)th sequence eigenvalue on the ith profile line.

2.2.4. Accuracy Verification Methods

The accuracy of both population spatialization and urban-rural boundary delineation was
evaluated in this study. Because population spatialization results directly impact urban-rural
boundary delineation, we conducted an error analysis of population spatialization by employing
three evaluation indicators: root mean square error (RMSE), relative root means square error
(%RMSE), and mean absolute error (MAE). Population spatialization results were compared and
analyzed with datasets such as WorldPop and LandScan to assess the accuracy of the results. The
accuracy of urban-rural boundary demarcation was verified using stratified random sampling and
comparative analysis.

3. Data Sources and Processing
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We here used a comprehensive array of data sources, including land use data, administrative
divisions, normalized difference vegetation index (NDVI), digital elevation model (DEM),
NPP/VIIRS and DMSP/OLS nighttime light remote sensing data, demographic statistics,
meteorological information (including precipitation and temperature data), POI data, road networks,
river data, and population datasets from WorldPop and LandScan. Table 1 presents data information
and their sources.

Table 1. Data information and sources.

Data Data
Data Name Scale/Resolution Data Sources
Type Year
GlobeLand30 2020 30 m https://www.webmap.cn
Administrative
2019 1:1,000,000 https://www.webmap.cn
Vector division data
data Rivers 2019 1:1,000,000 https://www.webmap.cn
Roads 2020 1:1,000,000 https://www.openstreetmap.org
POI data 2020 - https://Ibs.amap.com
DEM 2020 30 m https://www.gscloud.cn
Meteorological
data 2020 1 km https://data.tpdc.ac.cn
Spatial
resolution: 250m
Raster NDVI 2020 Temporal https://ladsweb.modaps.eosdis.nasa.gov
data resolution: 16
days
NPP/VIIRS 2020 500 m https://www.ngdc.noaa.gov/eog/dmsp.html
DMSP/OLS 2020 1 km https://payneinstitute.mines.edu
WorldPop 2020 100 m https://www.worldpop.org
LandScan 2020 1000 m https://landscan.ornl.gov
Statistical ~Population census 2020 ] http://www .stats.gov.cn
data data https://www.guizhou.gov.cn

Because of the diversity of data sources, different data types were first standardized to the
Lambertian projection uniformly and then resampled to a 30-m resolution. The primary data
processing steps are as follows:

1. Nighttime Light Data: Using the constant target area method48NPP/VIIRS and DMSP/OLS
images were subjected to oversaturation correction, continuity correction, and outlier processing,
along with mutual substitution between continuous year images. Following logarithmic
transformation49, a function relationship was established for DN values between the two images to
ensure consistency in the correction results for nighttime light data of Guizhou Province in 2020
(Figure 4).


https://doi.org/10.20944/preprints202312.1821.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2023 doi:10.20944/preprints202312.1821.v1

104°0'0"E 105°0'0"E 106°0'0"E 107°0'0"E 108°0'0"E 109°0'0"E
1 1 1 1 1 1

N

29°0'0"N
1

T
29°0'0"N

28°0'0"N
1

T
28°0'0"N

27°0'0"N
1

T
27°0'0"N

26°0'0"N

T
26°0'0"N

25°0'0"N
1

Z
Z
_ re
o
w» oy b
Z Nighttime Light Digital Number

s High : 186,353 0 45 90 180 -

e - — ki z
< =1

ISl - S
Low : 0.959 gc;
o

T T T T T T
104°0'0"E 105°0'0"E 106°0'0"E 107°0'0"E 108°0'0"E 109°0'0"E

Figure 4. Correction results of nighttime light image consistency.

(1) Land use data: Using the GlobeLand30 dataset, land use data for Guizhou Province were extracted,
and the proportions of various land cover types in each district were evaluated. These results
allowed us to calculate the cultivated land index, grassland index, shrubland index, forest index,
water index, and artificial surface index.

(2) Urban Nighttime Light Index and Human Settlements Index: We constructed the corrected urban
nighttime light index VANUI 50and the human settlements index (HSI) by comprehensively
using nighttime light data and the NDVI vegetation index.

(3) DEM: We applied the moving window method and the mean variation point method 51for
identifying the optimal statistical unit for topographic relief in the study area. Additionally, the
proportion factor of a flat land area in the study area 52was incorporated to calculate
topographic relief.

(4) Meteorological data: ArcGIS software was used to query, screen, and calculate the annual average
precipitation and temperature for each district in the study province.

(5) POL: Fourteen types of POI data were obtained from the open API platform of Amap for 2020, and
kernel density analyses were performed to calculate the average kernel density for each district.

(6) River and road data: Leveraging existing datasets and the Euclidean distance method, we
computed the straight-line distance between each point and the nearest river and road and
determined Euclidean distance mean values.

(7) NDVI: Based on MOD13Q1 data, the administrative division data of Guizhou Province were used
to crop the NDVI image data for each time period. Subsequently, the average values of NDVI
images in 2020 were calculated using a raster calculator.

To alleviate the impact of different scales and dimensions, the Min-Max data standardization
method was applied to normalize various indicators and compile a database of population

spatialization characteristic factors (Table 2).

Table 2. Database of population spatialization characteristic factors.

Source of the Characteristic Factor Name of the Characteristic Factor
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Cultivated land index
Forest index
Grassland index

GlobeL.and30 Shrubland index
Water index
Artificial surface index
Nighttime light data Average brightness of night lights
Average value of
NDVI NDVI index
NDVI and nighttime light data VANUI
HSI
DEM
DEM Slope
Aspect

relief amplitude

. Distance from the road
River and road data . .
Distance from the river

Annual average temperature
Annual average precipitation
POI data Kernel density of POI data

Meteorological data

4. Results and Discussion

4.1. Results of Population Spatialization

By referring to the database of population spatialization characteristic factors, statistical mean
data were correlated with the districts in the study province by using ArcGIS software. To construct
a fundamental dataset, the population density data from the 2020 census for each district were used
as the dependent variable, whereas the database of characteristic factors was used as the independent
variable. The corresponding random forest model was constructed using the R programming
language. The data were categorized into training (70%) and test (30%) sets (Table 3).

Table 3. Parameter setting of the random forest model.

Parameter Name Parameter Value
Number of decision trees 100
Maximum number of features during partitioning Auto
Minimum number of samples for leaf nodes 1
Maximum depth of the tree 10
Sampling rule With replacement
Out of bag estimation Yes

Initially, the model for the relationship between independent variables and population density
was established. The model was then applied to the characteristic factor data at a 30-m grid scale,
which yielded the initial population grid data on the basis of the random forest model prediction,
known as the grid weight eigenvalue. To ensure that the grid data align with the actual district
population, dasymetric mapping was performed to allocate the actual city population based on
weight values. Subsequently, the total number of weight values in each city or state was tallied, and
the grid's population count was computed using the ratio of actual population data to the total
number of weight layers, which resulted in the final population spatialization outcome (Figure 5).
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The population spatialization results (Figure 5) were achieved by integrating multi-source data,
including nighttime light, land use, and POI data. These results revealed a population distribution
pattern, characterized by a high population density in the primary urban areas and a relatively low
density in the surrounding regions, in the study province. Of note, the population was concentrated
in the central and northwest parts of Guizhou Province, with eastern and southern areas exhibiting
sparser populations. Population was significantly concentrated in major urban areas within cities,
with Guiyang City, the provincial capital, being the primary center.
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Figure 5. Population spatialization results of Guizhou Province.

4.2. Accuracy of Population Spatialization Data

We extracted corresponding data for our study area from the WorldPop and LandScan datasets
and comparatively assessed the population spatialization dataset, with MAE, RMSE, and %RMSE
values as index factors (Table 4). The simulation accuracy of the WorldPop dataset, LandScan dataset,
and the population spatialization method applied in this study were 79.71%, 78.54%, and 93.34%,
respectively, which indicated relatively high accuracy of the population spatialization method.

Table 4. Precision comparison of population spatialization results.

Data Year Dataset MAE RMSE %RMSE
Population spatialization 6675.60 29294.23 6.66
2020 WorldPop 53795.71 89286.58 20.29
LandScan 46776.30 94433.72 21.46

4.3. Identification of Urban—Rural Boundaries Based on Population Spatialization

We here adopted the urban-rural fringe boundary as the urban-rural boundary. Leveraging
population spatialization data and the breaking point theory, the population density of the study
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province in 2020 was computed and the spatial boundary between urban and rural populations
within the province was successfully delineated.

Once the population spatialization data met the required accuracy standards, our next objective
was to locate the urban-rural boundary. To achieve this objective, we initiated a meticulous process
as outlined below.

Considering the unique characteristics of each city in Guizhou Province, the geometric center
point of each city was selected as the reference origin. Starting from the east, we drew 360 cross-
sectional lines at 1° intervals, thereby encircling the city's perimeter. These lines intersected with the
urban-rural division index factor, thus yielding 360 cross-sectional data columns containing
population data. We then calculated the maximum distance attenuation value from these columns
(Figure 6).

Yy
77777
'//////
//
////// /,
////

Figure 6. Sketch of profile line (Guiyang City).

Next, the distance attenuation value from the cross-sectional line to the corresponding spatial
grid was linked through attribute fields for identifying the grid position of the breaking point.
Considering the distance between the breaking point and the city center, we excluded any anomalous
mutation values and connected the breaking points. Finally, the urban—rural boundary delineation
was determined for the nine cities in the study province (Figure 7).

The extraction results (Figure 7) unveiled that this approach can precisely extract urban
boundaries of the nine cities and effectively identify small towns with dispersed distributions within
each city. Moreover, this approach shows enhanced recognition of the core areas. An analysis of the
spatial distribution of the provincial population revealed that the development of urban population
spatial boundaries in each city follows a pattern characterized by a central core and multiple sub-
cores.
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(e) Bijie (f) Liupanshui

(g) Qiannan Buyi and Miao (h) Qiandongnan Miao and Dong (i) Qianxinan Buyi and Miao

Autonomous Prefectur Autonomous Prefecture Autonomous Prefecture

Figure 7. Results of urban boundary delimitation of various cities/autonomous prefectures in
Guizhou Province.

4.4. Discussion on the Accuracy of GZURB

4.4.1. Accuracy Validation Based on the Stratified Random Sampling Method

The Landsat 8 OLI_TIRS remote sensing images from 2020 (https://www.gscloud.cn/) were used
as the foundational map. A random sampling method was applied to assess the accuracy of the
extracted boundary data. In total, 1000 sample points were randomly selected from the GZURB-
designated urban and non-urban areas in the urban-rural boundary dataset of the study province.
The GZURB accuracy was verified by calculating the sample point number in urban and non-urban
areas. The number of random sampling points falling within the urban and non-urban areas was
recorded for constructing a confusion matrix. Four indicators, namely overall accuracy (OA), kappa
coefficient, producer accuracy (PA), and user accuracy (UA), were used to assess whether the
classification results were accurate and consistent.

As shown in Table 5, the proposed method achieved a UA and PA of 96.69% and 78.80%,
respectively, for the urban area and 82.11% and 97.30%, respectively, for the non-urban area. The OA
of GZURB reached 88.05%, and the kappa coefficient was 0.761, which indicated a high classification
accuracy of the dataset.

Table 5. Accuracy verification of GZURB.

Urban Nonurban Total UA
Urban 788 27 815 96.69%
Non-urban 212 973 1185 82.11%

Total 1000 1000 2000 -
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PA 78.80% 97.30% - -
OA 88.05%
kappa 0.716

4.4.2. Accuracy of Superimposed Remote Sensing Image Data

To further assess the accuracy of GZURB, a comparative analysis was conducted using World
Imagery (WB_2020_R01) for ascertaining the consistency of the study dataset. Data from the seventh
national population census revealed that Guiyang, Zunyi, and Bijie were the top three most populous
cities within Guizhou Province, having permanent populations of 5.987, 6.6067, and 6.8996 million,
respectively. Consequently, these cities were selected as focal points for a detailed evaluation of the
extraction performance of GZURB, and a comprehensive urban-rural boundary division map was
employed.

(c)Bijie (cl) (c2)

Figure 8. Overlay of UZURB and World Imagery.

The primary urban zones along with certain dispersed small towns within the study area were
successfully identified and delineated (Figure 8). This approach enabled effective delineation
between urban and non-urban areas on the basis of distinctions arising from varying spatial
configurations of urban boundaries. In the heart of Guiyang, which has a relatively dense population
(Figure 8a), the method proposed could accurately identify the urban-rural demarcation despite the
complexity of the urban boundary. Specifically, in the intricate urban periphery, the proposed
methodology exceled in conveying the intricate spatial nuances of this region. Despite the scattered
distribution of Zunyi and Bijie, which primarily comprise small towns, the boundary identification
approach advocated here also yielded remarkable outcomes for the peripheries of these smaller
municipalities (Figure 8b, Figure 8c).

On analyzing the accuracy of urban boundary extraction in the study province, we noted that
the boundary delineation results for the main urban areas were superior to those for the small towns.
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To delve into this phenomenon, the significance of different characteristic factors in population
spatialization for each city (prefecture) in the study area was ranked (Figure 9), which indicated that
POI data hold the highest feature importance of 25.300%. The results further indicated that POI data
are crucial in delineating urban boundary, particularly in urban core recognition, whereas factors
such as slope, rainfall, and shrubland data have relatively limited impact.

Importance Ranking of Feature Factors

POI

HSI

NDVI

VANUI
Nighttime Light
Artificial Surface
Road

Slope

Cultivated Land

Precipitation
DEM

Forest
River [0
Aspect
Shrubland

0.10 0.15 0.20
Percentage (%)

Figure 9. Importance ranking of feature factors.

The POI data encompass various sectors, including retail, education, and healthcare, and offer
noteworthy advantages in reflecting the spatial distribution characteristics of urban structures. Figure
10 presents the distribution of the POI kernel density in Guizhou Province in 2020. As depicted, the
POI distribution in the core areas of each city was relatively dense. The POI density decreased
considerably near the boundaries of built-up areas and small towns, with the number of POI points
declining from urban centers to urban edges and rural areas. The higher POI data density in the
primary urban areas positively correlated with the finer urban—rural boundary division results,
which contributed to highly accurate boundary recognition. This result aligns perfectly with previous

research findings [8,18].
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Figure 10. Kernel density map of POI data.

In summary, the urban—rural boundary delineation method proposed here was more accurate
in recognizing boundaries in the key urban areas of Guizhou Province. This delineation effectively
captured the study area’s boundary range, thereby offering an accurate reflection of the spatial
boundary between the urban and rural populations in the study province in 2020.

5. Conclusions

The method proposed in this study comprehensively considers data from different sources and
spatializes them into a unified grid unit to extract the urban—rural boundary. Considering Guizhou
Province in China as the research area, we included multi-source data, such as POI data, nighttime
light data, and population data. By applying the random forest model and dasymetric mapping
method, a spatial distribution model of Guizhou Province's population in 2020 was constructed and
the spatial data of the population with a 30-m resolution were obtained. The stratified random
sampling method exhibited that the OA of the proposed urban—rural boundary extraction method
was 88.05%, with a kappa coefficient of 0.761. This method can effectively extract the spatial boundary
range of urban and rural populations and strongly support urban and rural planning and resource
management. However, obtaining a more detailed spatial distribution of the city population is not
possible because of the low spatial resolution of nighttime light data. In future, we intend to use
higher resolution data for a more accurate reflection of the dynamics of population spatial changes,
which can provide more precise urban-rural boundary delineations.
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