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Abstract: Chlorophyll 𝑎 concentration (Chl) is a key variable for estimating primary production 
(PP) through ocean-color remote sensing (OCRS). Accurate Chl estimates are crucial for better 
understanding of the spatio-temporal trends of PP in recent decades as a consequence of climate 
change. However, a number of studies have reported that currently operational chlorophyll 𝑎 
algorithms perform poorly in the Arctic Ocean (AO), largely due to the interference of colored and 
detrital material (CDM) with the phytoplankton signal in the visible part of the spectrum. To 
determine how and to what extent CDM biases the estimation of Chl, we evaluated the 
performances of 8 currently available ocean-color algorithms: OC4v6, OC3Mv6, OC3V, OC4L, 
OC4P, AO.emp, GSM01 and AO.GSM. Our results suggest that the empirical AO.emp algorithm 
performs the best overall, but for waters with high CDM (𝑎௖ௗ௠(443) > 0.067 m-1), a common scenario 
in the Arctic, the two semi-analytical GSM models yield better performance. In addition, sensitivity 
analyses using a spectrally- and vertically-resolved Arctic primary-production model show that 
errors in Chl estimates mostly propagate proportionally to PP estimates, with amplification of up to 
7%. We also demonstrate that the higher the level of CDM in relation to Chl in the water column, 
the larger the bias in both Chl and PP estimates. Lastly, although the AO.GSM is the best overall 
performer among the algorithms tested, it tends to fail for a significant number of pixels (16.2% 
according to the present study), particularly for waters with high CDM. Our results therefore 
suggest the ongoing need to develop an algorithm that provides reasonable Chl estimates for a wide 
range of optically-complex Arctic waters. 

Keywords: Arctic Ocean; chlorophyll 𝑎  algorithm; colored and detrital material; primary 
production 
 

1. Introduction 

The Arctic Ocean (AO) is the ocean that receives the largest amount of river discharge relative 
to its volume (11% of global river discharge while its volume represents only 1% of global ocean, [1]). 
In this context, as its drainage basin is even larger than its area, the AO is characterized by a high 
level of colored dissolved organic matter (CDOM) in relation to other optically significant 
components when compared to other oceans. In addition, under the pressure of global warming, 
significant amounts of dissolved organic carbon (DOC) deriving from the thawing of permafrost are 
delivered into the AO, currently experiencing a long-term increase in river discharge [2,3]. As a result, 
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unlike other oceans, the optical properties of the AO are much affected by CDOM, as pointed out by 
multiple studies [4–11]. 

In this most river-influenced and landlocked of oceans [12], the impact of CDOM on optical 
properties is most prominent in Arctic coastal regions, especially in and around large river plumes, 
and under the influence of coastal erosion, permafrost thaw and glacial run-off. In such complex 
coastal waters, phytoplankton blooms are a common major ecological event making up a substantial 
part of the annual primary production and energy transfer supporting the entire marine food web 
[13,14]. 

Ocean-color remote sensing (OCRS) has been used extensively to estimate primary production 
in the AO (e.g. [15],[16],[17],[18]). Despite the efforts made to address the complex optical properties 
using regionally tuned empirical [19] or semi-analytical algorithms (e.g. [18]), doubts persist 
regarding the validity of the very high PP values systematically found in coastal waters, especially 
above the Russian continental shelves. More specifically, uncertainty surrounding chlorophyll 𝑎 
concentration (Chl) retrievals, and consequently PP estimates, is not quantitatively known. 

CDOM exhibits high absorption in the ultraviolet and visible portion of the spectrum, and 
decays approximately exponentially to the red [20]. Waters with high CDOM content (denoted as 
“CDOM-rich waters” hereafter) are subject to significant interference with the phytoplankton signal 
in the blue-to-green band ratio for derivations of Chl. Algorithms for the latter are not limited to 
global empirical algorithms (distinguished by the number of wavelengths, the satellite involved, and 
the version number; e.g. OC4v6, OC3Mv6, and OC4Mev6; [21],[22]), but also include Arctic regional 
algorithms (e.g. OC4L and OC4P [19,23] respectively) and the semi-analytical algorithm GSM01 
(Garver-Seigel-Maritorena algorithm [24]). 

Before seeking solutions to the problems that high CDOM content in the water column raise for 
obtaining accurate Chl estimates, we first need to assess how and to what extent CDOM biases Chl 
estimates. In addition, Chl being a key variable used for PP estimates, it is necessary to quantify 
uncertainties in PP estimates induced by errors in algorithm-derived Chl estimates. Unlike the case 
of oligotrophic waters where large relative errors in Chl estimates have limited impact on absolute 
PP estimates, for coastal eutrophic waters, small relative errors in Chl estimates can result in 
significant absolute errors in the estimation of PP. 

To address these issues, we first built a high-quality bio-optical in situ dataset at a pan-Arctic 
scale. The objectives of this study were then to: 1) evaluate the performances of currently available 
ocean-color algorithms in terms of the impact of colored and detrital material (CDM); and 2) 
determine how errors in algorithm-derived Chl propagate to PP estimates using a spectrally- and 
vertically-resolved Arctic primary-production model. Here, CDM (sum of CDOM and non-algal 
particles) was used instead of CDOM as CDM is a direct retrieval from OCRS, and the absorption 
due to non-algal particles (NAP) is limited compared to CDOM. 

2. Data 

2.1. In situ data 

The Arctic dataset that we used to evaluate the algorithms was gathered from the following five 
cruises: the France-Canada-USA joint Arctic campaign MALINA [25], ICESCAPE (Impacts of Climate 
on Ecosystems and Chemistry of the Arctic Pacific Environment) 2010 and 2011 [26], Tara Oceans 
Polar Circle expedition [27], and the GREEN EDGE project [28]. Sampling of MALINA and GREEN 
EDGE (ship operation) was conducted aboard the Canadian icebreaker CCGS Amundsen. The two 
ICESCAPEs were aboard the US icebreaker USCGC Healy. The Tara expedition was conducted using 
the French schooner TARA. 

Among the measured variables, remote-sensing reflectance 𝑅௥௦(𝜆) and Chl are the two most 
important variables for evaluating the performance of Chl algorithms. In the present study, all 𝑅௥௦(𝜆) 
values were determined with the same instrument, the Compact-Optical Profiling System (C-OPS, 
Biospherical Instrument Inc.). Specific information about the C-OPS is provided by [29]. Briefly, the 
C-OPS consists of two 7 cm-diameter radiometers: one measuring in-water upwelling radiance 
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𝐿௨(𝜆, 𝑧) and the other measuring in-water downward irradiance 𝐸𝑑(𝜆, 𝑧), pressure/depth, and dual 
axes tilts. The above-water downward solar irradiance (𝐸𝑠(𝜆)) was also measured to account for 
changes in the incident light field during in-water profiles. All radiometers were equipped with 19 
state-of-the-art microradiometers spanning the 320–780 nm spectral range, and only data with tilt 
angles less than 5° were used. Subsurface 𝐿௨ି(𝜆) and 𝐸𝑑−(𝜆) were derived by loess extrapolating 𝐿௨(𝜆, 𝑧) and 𝐸𝑑(𝜆) through progressively optimized depth intervals within the first optical depth 
[30]. Finally, 𝑅௥௦(𝜆) was calculated as: 𝑅௥௦(𝜆) = 0.52𝐿௨ି(𝜆)/𝐸ௗି (𝜆). Only wavebands common to the 
five selected cruises (412, 443, 490, 510, 555 and 670 nm) were used in this study. 

Chl was determined by High-Performance Liquid Chromatography (HPLC). Generally, 25 mm 
GF/F filters were used to collect phytoplankton from seawater samples. Filters were extracted in 100% 
methanol, disrupted by sonication and clarified by filtration (GF/F Whatman) before being analyzed 
by HPLC later in the laboratory to obtain separated pigments. HPLC measurements for ICESCAPE 
samples followed the protocols described in [31], while for MALINA, Tara-Arctic, and GREEN EDGE 
samples, we applied a protocol modified from [32] to increase sensitivity in the analysis of ultra-
oligotrophic waters. Finally, total chlorophyll 𝑎 pigment concentration was defined as the sum of 
mono and divinyl chlorophyll 𝑎 concentrations, chlorophyllide 𝑎 and the allomeric and epimeric 
forms of chlorophyll 𝑎 [33,34]. 

The absorption coefficient of CDM (𝑎௖ௗ௠(𝜆)) is the sum of the absorption coefficients of CDOM 
(𝑎௖ௗ௢௠(𝜆) ) and NAP (𝑎௡௔௣(𝜆) ). 𝑎௖ௗ௢௠(𝜆)  was measured using a liquid-core waveguide system, 
UltraPath (WPIInc.,http://www.wpi-europe.com/products/spectroscopy/ultrapath.htm) following 
[35] and [7]. 𝑎௡௔௣(𝜆) was determined using a Perkin-Elmer Lambda-19 spectrophotometer equipped 
with a 15 cm integrating sphere following the methodology described in [35]. In this study, 𝑎𝑐𝑑𝑚(443) was only used for water-type classification purposes. 

There are 148 data records containing contemporaneous observations of Chl and 𝑅௥௦(𝜆) from 
these five cruises, and the number of coincident 𝑎𝑐𝑑𝑚(443) is 96. 

Data collected through PPARR (Primary Production Algorithm Round-Robin) in this study was 
used for comparison purposes with the satellite climatology products only. In short, at each station, 
surface Chl was measured via the fluoremetric method between 0 and 5 m depth, while PP was 
measured at various depths using 13C- or 14C-labeled compounds. Details were described at [36]. The 
numbers of stations, sampling dates, sampling regions and data sources for all expeditions are 
summarized in Table 1 while the locations of sampling stations are shown in Figure 1. 

Table 1. Summary of in situ datasets. 

Data Station Year Month Region Source 

MALINA 37 2009 July-August Southern Beaufort Sea SeaBASS 

ICESCAPE2010 34 2010 June-July Chukchi and Beaufort Sea SeaBASS 

ICESCAPE2011 16 2011 June-July Chukchi and Beaufort Sea SeaBASS 

TARA 27 2013 May-November Polar circle SeaBASS 

GREEN EDGE 34 2016 June-July Baffin Bay Individual 

PPARR 973 1959-2011 August Arctic Ocean NOAA NCEI 
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Figure 1. Map of the Arctic Ocean showing the locations of stations from various datasets. 

To evaluate algorithms from the perspective of the impact of CDM, we arbitrarily split the 
algorithm-evaluation dataset into 4 water types. For this purpose, missing 𝑎𝑐𝑑𝑚 (443) was estimated 
according to [37]. Then based on the measured median value of Chl (0.35 mg m-3), we split the in situ 
dataset in half. For the half with Chl ≤ 0.35 mg m-3, samples with 𝑎𝑐𝑑𝑚(443) ≤ 0.067 m-1 were 
classified as chl.acdm while those with 𝑎𝑐𝑑𝑚(443) > 0.067 m-1 were regarded as chl.ACDM. The same 
procedure was applied to the other half of the dataset with Chl > 0.35 mg m-3, thus deriving 
CHL.acdm and CHL.ACDM. This classification approach is illustrated in Figure 2 and Table 2. 

Table 2. Classification criteria. 

Water type Threshold Number 

chl.acdm Chl ≤ 0.35 mg m-3, 𝑎𝑐𝑑𝑚(443) ≤ 0.067 m-1 48 

CHL.acdm Chl > 0.35 mg m-3, 𝑎𝑐𝑑𝑚(443) ≤ 0.067 m-1 26 

chl.ACDM Chl ≤ 0.35 mg m-3, 𝑎𝑐𝑑𝑚(443) > 0.067 m-1 26 

CHL.ACDM Chl > 0.35 mg m-3, 𝑎𝑐𝑑𝑚(443) > 0.067 m-1 48 
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Figure 2. This scatter plot illustrates water-type classification according to the level of 𝑎௖ௗ௠(443) and 
Chl in the water column.  

2.2. Satellite products 

OC-CCI (Ocean Color Climate Change Initiative, https://esa-oceancolour-cci.org/) L3b daily 
chlorophyll 𝒂  products and reflectance products, and MODIS atmospheric products (MYD08, 
https://ladsweb.modaps.eosdis.nasa.gov) in August from 2003 to 2018, were downloaded to generate 
climatology Chl and PP products for the AO. Note that the OC-CCI chlorophyll 𝒂 products are 
merged products based on SeaWiFS (Sea-viewing Wide Field-of-view Sensor), MERIS (Medium 
Resolution Imaging Spectrometer), aqua-MODIS (Moderate Resolution Imaging Spectroradiometer) 
and VIIRS (Visible Infrared Imaging Radiometer Suite) data to obtain as many pixels as possible, and 
Chl values are calculated by blending algorithms based on the water types as documented in ATBD-
OCAB (Algorithm Theoretical Baseline Document-Ocean Color Algorithm Blending, [38]), which is 
substantially an empirical approach. 

3. Methods 

3.1. Descriptions of existing operational ocean-color algorithms 

In this study, global empirical algorithms for SeaWiFS (OC4v6), MODIS (OC3Mv6) and VIIRS 
(OC3V), two regional empirical algorithms (OC4L and OC4P), one AO empirical algorithm 
(AO.emp), and two semi-analytical algorithms (GSM01 and GSM.AO) were evaluated. 

3.1.1. Empirical algorithms 

All empirical algorithms use polynomial functions to fit the relationship between Chl and the 
maximum blue-to-green ratio of remote-sensing reflectance: Chl = 10௔బା௔భோା௔మோమା௔యோయା௔రோర , (1) 
where 𝑅 is the base 10 logarithm of the maximum blue-to-green band ratio of 𝑅௥௦  and 𝑎𝑖 is an 
empirically-derived coefficient from the list in Table 3. 

Table 3. Band configurations and coefficients of the empirical chlorophyll ɑ algorithms evaluated. 
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Algorithms Blue Green 𝒂଴ 𝒂1 𝒂ଶ 𝒂3 𝒂ସ 

OC3Mv6 443>488 547 0.2424 -2.7423 1.8017 0.0015 -1.2280 

OC3V 443>486 551 0.2228 -2.4683 1.5867 -0.4275 -0.7768 

OC4v6 443>490>510 555 0.3272 -2.9940 2.7218 -1.2259 -0.5683 

OC4P 443>490>510 555 0.2710 -6.2780 26.29 -60.94 45.31 

OC4L 443>490>510 555 0.5920 -3.6070 - - - 

AO.emp 443>490>510 555 0.1746 -2.8293 0.6592 - - 

Note that the wavelengths used for the blue and green bands vary slightly among sensors (see 
Table 3) and were designed for different water bodies. OC3Mv6, OC4v6, and OC3V were obtained 
using a global in situ dataset mainly from Case 1 and non-polar waters [21,22]. OC4P and OC4L were 
tuned using in situ measurements made in Canadian Arctic waters (in the vicinity of Resolute Bay 
and in the Labrador Sea, [23]), and the Western Arctic (Chukchi and Beaufort Seas, [19]), respectively. 
AO.emp was optimized using a large dataset compiled at a pan-Arctic scale [18,39]. 

3.1.2. Semi-analytical algorithm – GSM 

The GSM semi-analytical ocean-color model was initially developed by [40] and later updated 
by [24] for SeaWiFS over non-polar Case 1 waters. The basic principle is to minimize the difference 
between the measured and modeled below-surface remote-sensing reflectance 𝑟𝑟𝑠 using non-linear 
optimization until a predefined convergence threshold is met. A detailed description of the GSM01 
model and values of model parameters can be found in [24]. 

The GSM model can be tuned easily by reparameterizing model parameters using bio-optical 
data. [18] optimized the model parameters using a genetic optimization method for the AO based on 
the Arctic dataset described in [39], and the tuned model was named AO.GSM. Lewis et al. thus 
found that the optimized parameters more accurately represent the AO’s unique bio-optical 
characteristics. Details of the genetic optimization procedure and parameter values were described 
in [18]. 

3.2 Evaluation criteria 
The performance of each ocean-color algorithm was assessed following the metrics described in 

[41]. The first of these is the number of effective retrievals, 𝑛. For example, GSM01 may generate 
negative Chl values due to the optimization regime, these negative retrievals were considered as 
failures. The next two metrics are bias and mean absolute error (MAE), which have been proven to 
be robust and straightforward metrics for evaluating ocean-color algorithms with non-Gaussian 
distributions and outliers [41]: bias = 10meanቀ௟௢௚ଵ଴൫௑ಾ൯ି௟௢௚ଵ଴൫௑ಶ൯ቁ, 𝑎𝑛𝑑(2) MAE = 10meanห௟௢௚ଵ଴൫௑ಾ൯ି௟௢௚ ൫௑ಶ൯ห. (3) 

Bias illustrates the systematic direction of error, as either underestimation or overestimation on 
average. A bias close to 1 means minimum bias, while a value lower than 1 reflects underestimation. 
A bias of 0.8 for instance reflects an average of 20% underestimation. The same reasoning holds for 
overestimations. MAE indicates random error and is always larger than 1. For instance, a MAE of 1.2 
means average 20% relative error in retrievals compared to measured values. 

The fourth metric is wins, which is obtained through pairwise comparison. That is, for each pair 
of estimated and measured variables, residuals (defined as estimated value minus measured value) 
for model A and model B are calculated, and the model with the lower residual is the winner while 
models that fail are directly designated as losers. Wins, described as the percentage of winners to the 
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total number of pairs, can be used to tell which model performs better and help to decide which 
model should be used in applications. 

In addition, the slope and coefficient of determination (𝑟2) for log-transformed variables were 
also produced via type II reduced major axis (RMA) regression [42] as complementary metrics. 

3.3. Primary-production model 

The spectrally-resolved primary-production model for the Arctic waters developed by [16] was 
adopted in the present study. One advantage of this model compared to others [15,43,44] is its 
consideration of the propagation of spectral light in the atmosphere and the ocean using methods 
appropriate for both Case 1 and Case 2 waters. In recent years, this model has been further optimized 
to account for subsurface chlorophyll 𝑎 maxima often observed in the AO. This was achieved by 
using the statistical relationships between Chl at surface and at depth, published by [45]. 
Furthermore, instead of using 𝑅௥௦ and Chl data from the GlobColour dataset as in [16], the present 
study used 𝑅௥௦(𝜆) merged products based on SeaWiFS, MERIS, aqua-MODIS and VIIRS data from 
OC-CCI for better coverage, and derived Chl products through the merged 𝑅௥௦(𝜆) products using 
the above-mentioned chlorophyll 𝑎 algorithms. 

The structure of this spectrally- and vertically-resolved Arctic primary-production model is 
illustrated in Figure 3. Basically, the daily rates of PP carbon fixation by phytoplankton cells in units 
of mgC m-2 d-1 are estimated using the classic photosynthesis versus light model [46]: PP = PBmax∫௧ୀ଴ଶସ௛න Chl௭భబబ%௭బ.భ% (𝑧) ቆ1 − 𝑒ିPUR(௭,௧)ாೖ(PUR)ቇ𝑑𝑧𝑑𝑡, (4) 
where PBmax  (mgC mgChl-1 h-1) is the light-saturated chlorophyll-normalized carbon-fixation rate, 
which is assumed as being constant at 2.0 mgC mgChl-1 h-1 (see [16] and references therein). Chl(𝑧) 
is chlorophyll 𝑎 concentration at a given depth 𝑧, which can be propagated from surface values 
following [45]. PUR(𝑧, 𝑡) is photosynthetically usable radiation expressed in µmol photons m-2 s-1 
[47], which can be estimated using input atmospheric data and satellite-observed 𝑅௥௦(𝜆), and the 
spectral model of light propagation through the atmosphere and ocean has been described in [16]. 𝐸𝑘(𝑧)  (µmol photons m-2 s-1) is the saturation irradiance, parameterized here as a function of 
PUR(𝑧, 𝑡) [16]. 

 

Figure 3. Structure of the spectrally- and vertically-resolved Arctic primary-production model. 
Yellow, gray, blue, green and magenta frames refer to model inputs, methods described in literature, 
intermediate variables, constant values and photosynthesis model, respectively (courtesy of Marcel 
Babin and Simon Bélanger). 
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To quantify the impact of Chl retrievals derived from various algorithms on PP estimates, we 
performed a sensitivity analysis using an Arctic primary-production model as described below. In 
short, measured Chl and 𝑅௥௦(𝜆) along with temporally- and geographically-matched atmospheric 
parameters were inputted into the Arctic primary-production model to derive spectrally- and 
vertically-resolved PP (named as PP-Ref). Subsequently, the Chl input alone was replaced by the Chl 
estimates derived through the various above-mentioned chlorophyll a algorithms, using measured 𝑅௥௦(𝜆) to obtain PP estimates (named as PP-Algorithm; for instance, PP generated via OC4L-derived 
Chl was referred to as PP-OC4L). Note that since the primary-product model is a bin-based approach, 
several samples might be projected to the same bin; therefore, the total number of PP estimates is 135 
rather than 148. Also note that in this model, PP is not exactly proportional to Chl (Figure 3). 

3.4. Climatology products 

The Chl climatology product in August was obtained by averaging all the OC-CCI daily Chl 
products collected in August from 2003 to 2018. Meanwhile, to obtain the PP climatology product in 
August, firstly, each daily Chl product acquired in August was entered into the Arctic primary-
production model (described in Section 2.4) along with the corresponding daily reflectance product 
and MODIS atmospheric product to derive the daily PP product; then, all the daily PP products were 
averaged to calculate the climatology PP product. 

3.5. Matchup analysis 

The algorithm-evaluation dataset was firstly matched with PPARR to search for concurrent 
measurements of both Chl and PP. This in situ dataset was then compared with daily Chl and PP 
products (described in Section 3.4) to look for temporal- and spatial-matched pairs. Concretely, this 
meant, for each in situ entry, keeping only the closest (within 4km) satellite data obtained on the same 
day. Finally, only 5 in situ and satellite matchups were thus identified due to the lack of in situ 
measurements in the AO. 

4. Results 

4.1. Overview of product performance 

Given the lack of in situ and satellite matchups, the accuracy of Chl products at a pan-Arctic 
scale was generally assessed by comparing the climatology Chl product in August (Figure 4a) with 
the in situ Chl measurements taken in August from PPARR via a kernel density plot (Figure 4b). It 
was found that the Chl product tends to generate higher estimates (median Chl=0.66 mg m-3) 
compared with the in situ values (median Chl=0.40 mg m-3), especially in the section where Chl<1.2 
mg m-3 (accounting for nearly 2/3 of all pixels). This comparison also yielded a small percentage of 
visibly higher estimates in the 4.0 to 11.0 mg m-3 range. By referring to the Chl distribution shown in 
Figure 4a, we can see that this proportion of higher estimates can be attributed to areas in and around 
the large river plumes which hold considerabl amounts of CDM as a result of river discharge. 
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Figure 4. (a) Climatology chlorophyll product in August derived through the blended empirical 
algorithm; (b) kernel density plot of Chl measurements collected in August from PPARR (red) and 
Chl climatology product in August (green); (c) climatology primary product in August produced 
through the Arctic primary-production model using OC-CCI daily reflectance and chlorophyll 
products; (d) kernel density plot of PP measurements collected in August from PPARR (red) and PP 
climatology product in August (green). 

The corresponding climatology PP product is shown in Figure 4c, and the density curve 
compared with PP measurements from PPARR (same pairs of Chl measurements shown in Figure 
4b) is illustrated in Figure 4d. As in the case of Chl estimates, PP estimates were also higher overall 
(median PP=0.33 gC m-2d-1) in comparison with in situ values (median PP=0.22 gC m-2d-1). Only one 
crest was recorded, located at 0.33 gC m-2d-1. One-third of all the PP estimates in the 0.007 to 0.2 gC 
m-2d-1 range were higher than the measurements, which is likely due to the higher Chl estimates. In 
the higher range (PP>0.6 gC m-2d-1) however, another one-third of PP estimates were lower than 
measurements. The higher estimates on the left side and lower estimates on the right side steepened 
the crest, resulting in the density at the crest as being nearly 8 times that of the in situ one. 
Significantly, the higher Chl estimates in and around large river plumes did not lead to higher PP 
estimates. It is likely that the high proportion of CDM in the water column was extremely absorbent 
of sunlight, thereby resulting in less PUR for absorption by phytoplankton [48]. 

4.2. Bio-optical algorithm evaluations 
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Chl is one of the key variables influencing PP estimates [16]. Since several chlorophyll 𝑎 
algorithms are available, their relative performance needs to be examined first. Figure 5 shows the 
comparison between measured and estimated Chl using the various algorithms mentioned above for 
the 4 water types (see definition in Section 2.3). Overall, all the algorithms showed a trend of 
overestimation. OC4v6 and OC4L boosted estimations the most, overestimating by 132% whereas 
OC4P was the least biased but had the largest MAE (Table 4). The MAE of AO.GSM was the smallest, 
followed by GSM01 and AO.emp, and lastly by the three global algorithms. The MAE of OC4L was 
noticeably larger than that of the global algorithms, indicating that the regional Arctic empirical 
algorithm was not suitable for the pan-Arctic Ocean as regional algorithms are subject to the 
compatibility of the waters under study with the waters from which data were obtained for algorithm 
development. As for the performance of regression, AO.GSM had the largest 𝑟2, but its slope was 
not as close to 1 as that of the other algorithms except for the two Arctic regional algorithms OC4P 
and OC4L. 

 
Figure 5. Comparisons between measured and estimated Chl for individual chlorophyll ɑ algorithms 
at 4 water types (see Table 2 for definition). 

Table 4. Performance metrics of the various algorithms evaluated. 
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Algorithm n bias MAE Overall Wins (%) r2 slope 

OC3Mv6 148 2.22 2.68 48.9 0.49 0.86 

OC3V 148 2.17 2.64 48.0 0.49 0.83 

OC4v6 148 2.32 2.75 37.2 0.52 0.83 

OC4P 112 1.08 3.16 38.8 0.21 1.61 

OC4L 148 2.30 2.82 43.2 0.55 1.28 

AO.emp 148 1.36 2.15 65.6 0.54 0.92 

GSM01 141 1.59 2.08 58.6 0.62 0.97 

AO.GSM 124 1.24 1.73 58.0 0.79 0.77 

To rank the overall performances of all the algorithms tested, percent wins between every pair 
combination of two algorithms were calculated (Table 5). Among the three global algorithms, 
OC3Mv6 performed the best and OC4v6 the worst. They all outperformed the two regional Arctic 
algorithms, but lost when compared with AO.emp, GSM01 and AO.GSM. OC4L only performed 
better than OC4P which had the worst overall performance. As for GSM01, it outperformed the other 
algorithms except for AO.emp and AO.GSM. The percent wins of AO.emp were equal to those of 
AO.GSM. However, AO.emp emerged with a larger proportion of overall wins (65.6%). In this way, 
AO.emp was the best algorithm among all tested in the present study. 

Table 5. Algorithm performance assessed through pair-to-pair comparison. 

 Percent Wins 

Algorithm OC3Mv6 OC3V OC4v6 OC4P OC4L 
AO.em

p 
GSM01 AO.GSM 

OC3Mv6 - 46.6 27.7 39.9 41.9 72.3 66.9 62.2 

OC3V 53.4 - 29.1 39.2 42.6 71.6 67.6 60.8 

OC4v6 72.3 70.9 - 39.2 46.6 73.0 73.0 64.9 

OC4P 60.1 60.8 60.8 - 56.1 67.6 60.8 55.4 

OC4L 58.1 57.4 53.4 43.9 - 67.6 63.5 53.4 

AO.emp 27.7 28.4 27.0 32.4 32.4 - 42.6 50.0 

GSM01 33.1 32.4 27.0 37.2 36.5 57.4 - 59.5 

AO.GSM 37.8 39.2 35.1 39.9 46.6 50.0 35.8 - 

Overall Wins 48.9 48.0 37.2 38.8 43.2 65.6 58.6 58.0 

Failure    36 (24.3%)   7 (4.7%) 24 (16.2%) 

When taking a closer look at the different water types, symbols representing waters with high 
CDM (i.e. ‘diamonds’ for chl.ACDM and ‘pluses’ for CHL.ACDM) are distributed in a more scattered 
fashion than those for waters with low CDM for all empirical algorithms and GSM01 (Figure 5). 
However, this phenomenon is not visible for AO.GSM, namely because for waters with high CDM, 
this algorithm obtained 24 failures (accounting for 16.2% of the total sample), which were thus 
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excluded from the comparisons (see Figure 7 and Table 6). In other words, AO.GSM is more likely to 
fail for waters with high CDM. These findings indicate that a high proportion of CDM in the water 
column is the main obstacle to success for these empirical and semi-analytical algorithms. 

Table 6. Performance metrics of GSM01 and AO.GSM by individual water type and across all water 
types. 

Water Type 
Algorith

m 
n bias MAE Wins (%) Failure r2 slope 

chl.acdm 
GSM01 48 1.96 1.99 6.2  0.71 0.85 

AO.GSM 48 1.74 1.78 93.8  0.75 0.92 

CHL.acdm 
GSM01 26 0.83 1.33 69.2  0.52 1.09 

AO.GSM 26 0.74 1.41 30.8  0.50 1.11 

chl.ACDM 
GSM01 24 2.10 2.72 34.6 2 (7.7%) 0.08 1.03 

AO.GSM 15 2.02 2.02 57.7 11 (42.3%) 0.65 1.25 

CHL.ACDM 
GSM01 43 1.57 2.45 47.9 5 (10.4%) 0.27 1.03 

AO.GSM 35 0.92 1.81 41.7 13 (27.1%) 0.47 0.79 

Across all 
GSM01 * 124 1.47 1.81 29.0  0.80 0.81 

AO.GSM 124 1.24 1.73 71.0  0.79 0.77 

* Subset of GSM01-derived retrievals with data common to that of AO.GSM. 

Boxplots were deployed to quantify the difference between measured and estimated Chl by 
individual algorithms for each water type (Figure 6). The MAEs were also labeled. Generally, the 
MAE of most of the algorithms tested (except OC4P and AO.emp) was the smallest for CHL.acdm 
(1.33 to 1.44), but the largest for chl.ACDM (2.02 to 7.11). Combined with the finding that the MAE 
for chl.acdm was smaller than that for CHL.ACDM, our results suggest that the higher the level of 
CDM in relation to Chl, the greater the uncertainties surrounding Chl estimates. Given that OC4P 
had the largest MAE (3.16) and the most failures (24.3%), it is hereafter excluded from further 
analysis. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 December 2023                   doi:10.20944/preprints202312.1775.v1

https://doi.org/10.20944/preprints202312.1775.v1


 13 

 

Figure 6. Pair-to-pair comparison between GSM01 and AO.GSM, circles and x symbols refer to the 
same data pairs derived from GSM01 and AO.GSM, diamonds refer to the data failed using AO.GSM 
but succeeding using GSM01. 

 

Figure 7. Boxplots of percentage difference between measured and estimated Chl (red), between PP 
derived using measured Chl and PP estimated from algorithm-derived Chl (green) for 4 water types 
(see Table 2 for definition). The labels above boxplots show MAE, those below show the numbers of 
samples classified as a certain water type. 

For waters with low CDM (waters where 𝑎𝑐𝑑𝑚(443) < 0.067 m-1 in this study), the three global 
algorithms had the highest MAE, with values up to 2.86, followed by OC4L, GSM01 and AO.GSM 
for chl.acdm (Figure 6). AO.emp obtained the lowest MAE (1.75), but the largest MAE (2.01) for 
CHL.acdm, as confirmed by the notable underestimation shown by the ‘x’ symbols in Figure 5. The 
MAEs of the other algorithms were around only 1.4 for CHL.acdm, with GSM01 producing the 
smallest (1.33). 

For waters with high CDM (i.e. chl.ACDM and CHL.ACDM), OC4L obtained the largest MAEs 
(7.11 and 3.48, respectively), indicating that this regional Arctic empirical algorithm is less applicable 
for CDM-rich waters than the global empirical algorithms. AO.emp yielded the smallest MAE among 
all empirical algorithms tested for waters with high CDM, but the contrary was found for CHL.acdm. 
It seems that empirical algorithms only consider the main characteristics of water bodies, and thus 
cannot work well for all types of waters. However, the two GSM models had the smallest MAEs for 
chl.ACDM, and obtained relatively good performances for other water types. It is therefore 
recommended that semi-analytical algorithms, such as GSM-like models, be used for CDM-rich 
waters even if they may produce failures. 

To give a comprehensive comparison of the two GSM models, Table 6 summarizes their 
performance metrics for each water type. According to the wins, AO.GSM outperformed GSM01 for 
chl.acdm and chl.ACDM, but lost for CHL.acdm and CHL.ACDM. Figure 7 shows the pair-to-pair 
comparisons, with the diamond symbols representing the samples which failed with AO.GSM but 
succeeded with GSM01. The latter all belonged to water types with high CDM, and most of them 
were located far from the 1:1 regression line. When excluding these diamonds, AO.GSM 
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outperformed GSM01 with 71.0% wins (see Table 6). It was thus shown that AO.GSM has the ability 
to eliminate retrievals with poor performance. 

In terms of overall wins, AO.emp was the best chlorophyll a algorithm tested. However, for 
waters with high CDM, which are of particular interest here, GSM-like models demonstrate better 
performance for the AO than empirical algorithms. 

4.3. Impacts on PP estimates 

Figure 8 shows the comparisons between PP-Ref and each PP-Algorithm (see Section 3.3 for 
definition). Generally, the comparisons of PP estimates followed the same trends as those for Chl. In 
other words, when Chl was overestimated, the corresponding PP-Algorithm also showed a trend of 
overestimation compared with PP-Ref. The same was also true for underestimation. It should be 
noted that the boundaries between water types grew blurry with respect to Chl level. For instance, 
some ‘plus’ symbols (see the black circle in Figure 8) representing water type CHL.ACDM were 
located to the left of some ‘circle’ and ‘diamond’ symbols which referred to waters with low Chl, 
indicating that PP for waters with low surface Chl can exceed that of waters with high surface Chl 
due to the possible existence of a prominent subsurface chlorophyll maximum. 
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Figure 8. Comparisons between PP estimated from in situ Chl and PP estimated from algorithm-
derived Chl for 4 water types (see Table 2 for definition). The black circle in Subfigure (g) is used to 
illustrate the mix of water types in terms of the level of Chl in the water column. 

The same boxplots of percentage difference between PP-Ref and PP-Algorithm are shown in 
Figure 6. It can be seen that the percentage differences of PP followed the trend of Chl, and the 
rankings of MAE reflected those of Chl but with relative larger values. Taking the best algorithm 
AO.emp as an example, the MAEs of PP were 0.5%, 3.4%, 5.1%, and 3.9% larger than those of Chl for 
water types chl.acdm, CHL.acdm, chl.ACDM and CHL.ACDM, respectively. In addition, the 
amplifications of difference from Chl to PP were generally greater in waters with a relatively high 
proportion of CDM. Overall, considering all the algorithms, the amplification of difference from Chl 
to PP, largely due to the statistical approximation of the vertical Chl profile, did not exceed 7%. 

In addition to the assessment of error propagation from Chl to PP, the impact of CDM on PP 
estimates was also explored through matchup analyses. Figure 9 shows the residual of PP estimates 
resulting from Chl errors for waters with different levels of CDM. For waters with comparable levels 
of Chl and CDM (i.e. water types chl.acdm and CHL.ACDM), PP absolute errors vary from 0.06 to 
0.24 gC m-2 d-1, which are lower values than for chl.ACDM. We can also note that a 399% 
overestimation of Chl (see the upper green symbol in Figure 9) merely led to 0.15 gC m-2 d-1 absolute 
error in PP for waters with low CDM whereas for waters with high CDM, a lower overestimation 
(199%) of Chl could result in a higher absolute error (0.62 gC m-2 d-1). Meanwhile, a 484% 
overestimation of Chl induced an absolute error that went up to 2.3 gC m-2 d-1 in PP. In this way, a 
high CDM level (relative to Chl) in the water column may not only cause a larger error in the 
inversion of Chl, but also lead to a larger absolute error in the estimation of PP. While the Arctic 
primary-production model used in this study generally showed a trend of underestimation, 
especially for the water type chl.ACDM, more matchup analyses are needed to validate the Arctic PP 
model and to quantify the errors. 

 

Figure 9. Relationship between PP absolute error (PP estimated from in situ Chl subtracted from 
measured PP) and in situ Chl through matchup analyses. Labels refer to percentage errors of Chl 
estimates. A value of 4.99 means overestimation by 399%, while a value of 0.57 reflects 43% 
underestimation. 

5. Discussions and perspectives 

5.1. Chl retrieval error 

As far as the three global chlorophyll 𝑎 algorithms, OC3Mv6, OC3V and OC4v6, are concerned, 
the assumed relationship between 𝑅௥௦ and Chl is problematic for the AO because the absorption 
properties of the latter are fundamentally different from those of typical Case 1 waters. Many studies 
[6–8,37,49–51] have documented that the non-water absorption of the AO is dominated by CDOM 
even at the phytoplankton absorption peak at 443 nm. In this way, the presence of CDOM at levels 
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higher than the global mean will reduce the 𝑅௥௦  signal at blue wavelengths due to its strong 
absorption. As a consequence, global empirical algorithms using maximum blue-to-green 𝑅௥௦ ratios 
tend to have lower maximum band ratios, leading to an overestimation of Chl. Generally, the 
predominant influence of CDOM is to increase the intercept of the in situ versus algorithm-derived 
Chl regression and to only minimally change the slope [52]. 

In addition, as a consequence of the Arctic’s photo-acclimation of low irradiance and cold 
temperatures, an increase in phytoplankton cell size and/or in intra-cellular pigment concentration 
decreases the light-absorption coefficient per unit Chl [6,8,19]. This higher package effect flattens the 
absorption spectrum of chlorophyll 𝑎, especially at the blue absorption peak. Thus, in contrast to the 
effect of CDOM, a relatively larger decrease in 𝑎𝑝ℎ∗  at blue wavelengths than at green wavelengths 
yields a larger maximum band ratio, leading to an underestimation of Chl when using global 
empirical algorithms for the AO. As a result, a relatively higher pigment-package effect decreases the 
slope of the in situ versus estimated Chl regression without significantly changing the intercept [52]. 

Overall, the difference between simulated and measured Chl is a consequence of the combined 
effects of Chl overestimation due to relatively higher CDOM absorption, and underestimation due to 
relatively higher pigment-package effects. In this study, the three global algorithms showed an 
obvious overestimation at all Chl ranges (Figure 5a-c), indicating that relatively higher CDOM 
absorption was the dominant factor that biased Chl estimates in the AO. 

The failure of the two regional Arctic chlorophyll 𝑎 algorithms was imputed to the significant 
spatial variance of bio-optical properties at a pan-Arctic scale. The AO is a spatially heterogeneous 
sea. In other words, the composition of non-water constituents and bio-optical properties 
significantly differs from region to region due to varying degrees of river inputs, nutrient levels, sea-
ice coverage, shelf widths, and circulation patterns [37,52]. Hence, a single regional empirical 
algorithm, like OC4L or OC4P tuned for the Beaufort and Chukchi Seas, is not appropriate for the 
entire AO. This is likely reflected by the worse performances that these algorithms recorded 
compared to the global empirical algorithms evaluated in the present study (see Figure 5 and Table 
4). Such a degree of variability makes it difficult to establish a standard empirical formulation that 
may provide robust predictions with acceptable error limits, at least on the scale of the entire Arctic 
region. This was the case of AO.emp. Although the MAE of AO.emp was lower than those of the 
other algorithms for chl.acdm, for CHL.acdm its MAE was even larger than those of the global 
algorithms. Thus, in theory, it is recommended to use a semi-analytical algorithm which compensates 
for optical properties in a given location through an optimization process and allows for 
discrimination and quantification of the roles of non-phytoplankton constituents in the optical 
properties of seawater, to improve the accuracy of Chl estimates from OCRS in polar waters. 

The standard semi-analytical algorithm GSM01, with parameters optimized for non-polar Case 
1 waters, could not properly represent the combination of water constituents in the AO. In other 
words, due to the high CDM proportion in the AO, the spectral slope for 𝑎௖ௗ௠ should be sharper, 
and 𝑎𝑝ℎ∗ (𝜆) should be lower to account for a higher package effect. This may be the reason why 
GSM01 performed worse than AO.emp (see Table 4). After reparameterizing for the AO, AO.GSM 
outperformed GSM01 in the pair-wise comparison and showed the lowest MAEs for water types 
chl.ACDM and CHL.ACDM. However, for these two water types, AO.GSM also had 24 failures, 
which represents 16.2% of the total samples. Future research should therefore aim for a chlorophyll 𝑎 algorithm which can produce as many effective retrievals with reasonable uncertainty. 

5.2. PP estimate error 

PP was estimated in the present study using the classic photosynthesis versus light model based 
on the integration of carbon fixation by phytoplanktonic cells. The prime determinant of PP variations 
for ice-free waters in such models designed for OCRS data is Chl, except during seasons when 
incident irradiance becomes highly limiting. It is expected that errors in Chl should mostly propagate 
proportionally to PP, especially when all other variables are kept constant from one set of simulations 
to another, as in our study. In the model we used, however, Chl also drives the vertical distribution 
of chlorophyll concentration, as well as the chlorophyll-specific absorption coefficient of 
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phytoplankton. Nevertheless, our results suggest and largely confirm that errors in Chl mostly 
propagate proportionally to PP. 

In the present study, since we only obtained 5 in situ and satellite-derived PP matchups, we 
further compared the PP estimates produced from the algorithm-evaluation dataset with the in situ 
PP from PPARR to assess their accuracy. Figure 10a shows the relationship between in situ PP and 
Chl using the PPARR dataset. It can be seen that, in the range from 0.1 to 1.0 mg m-3, PP varied across 
three orders from 0.01 to 10.0 gC m-2 d-1. In addition, for Chl<6.0 mg m-3, the triangle symbols were 
likely to be evenly distributed along the regression line, while for Chl>6.0 mg m-3, all triangles lay 
below the regression line. Figure 10b illustrates the relationship between estimated PP and measured 
Chl using the algorithm-evaluation dataset, duplicating the regression line of Figure 10a for the 
purpose of comparison. For waters with low CDM (i.e. water types chl.acdm and CHL.acdm), the 
estimated PP fitted the in situ regression line well. Meanwhile, for CDM-rich waters, PP estimates 
were more likely to be located at the bottom-right of the regression line, especially for CHL.ACDM 
which is located the farthest from the regression line. It seems that chlorophyll-specific PP in CDM-
rich waters is relatively lower than in waters with low CDM. In addition, various vertical Chl profiles 
with the same surface value may lead to significant variance in the estimation of PP. Therefore, 
remote sensing of detectable Chl vertical structures is still expected to obtain more accurate PP 
estimates in the future, and more in situ and satellite matchups are needed to quantify their accuracy. 

 
Figure 10. (a) Relationship between in situ PP and Chl from PPARR; (b) relationship between PP 
estimates and in situ Chl using the dataset used for algorithm evaluation. The black dashed line is the 
regression line between in situ PP and Chl from PPARR. 

5.3. Conclusion 

Given that the poor performance of standard empirical algorithms in the AO is due to the 
interference of CDM in phytoplankton signals in the visible spectrum, in this study we evaluated 
currently available algorithms to investigate the impact of CDM. We found that the higher the level 
of CDM in relation to Chl in the water column, the larger the bias in the estimation of Chl. Overall, 
AO.emp performed the best among all the algorithms tested, but for the CDM-rich waters of greatest 
interest here, GSM models performed better than all the empirical algorithms. Therefore, the use of 
an empirical algorithm for the entire AO should be avoided when possible. It is recommended that 
semi-analytical algorithms (such as GSM-like models) be used instead, as they can discriminate and 
quantify the roles of non-phytoplankton constituents for the heterogeneous AO. Nevertheless, given 
that AO.GSM is more likely to fail for waters with high CDM, future research is required to develop 
another semi-analytical algorithm that can produce as many possible effective retrievals with 
reasonable uncertainty. 
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Through analysis of the sensitivity of PP estimations to Chl, we found that errors in Chl mostly 
propagate proportionally to PP, and were slightly amplified (<7%) mainly due to the statistically 
vertically-resolved Chl profile. In addition, matchup analysis allowed us to find that PP absolute 
error was much larger for CDM-rich waters. For instance, a 399% overestimation of Chl for waters 
with low CDM merely led to 0.15 gC m-2 d-1 absolute error in PP, while for waters with high CDM, 
PP absolute error could reach up to 2.3 gC m-2 d-1 with an overestimation of Chl by 484%. It was also 
discovered that the spectrally- and vertically-resolved Arctic primary-production model used in this 
study underestimated PP to some extent. Overall, our PP calculations provide a quantitative 
indication of the uncertainty in PP estimates that can be expected in the Arctic, for different seawater 
optical categories as defined here. 
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