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Abstract: Telomeres are specialized structures at the ends of linear chromosomes that protect them
from degradation and fusion. Telomere replication is a complex process that involves both DNA
polymerases and a specialized enzyme called telomerase. Telomerase is a ribonucleoprotein
complex that synthesizes telomeric DNA by using an internal RNA template. However, telomerase
alone cannot fully replicate the telomeric DNA, and requires the cooperation of other factors, such
as shelterin, CST, and DNA repair proteins. Moreover, telomere replication is tightly regulated by
various mechanisms, such as cell cycle checkpoints, telomere length homeostasis, and telomere
position effect. Dysregulation of telomere replication can lead to genomic instability, cellular
senescence, and cancer. Therefore, understanding the molecular details of telomere replication is
crucial for elucidating the role of telomeres in aging and disease.
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Challenges and Dynamics of Telomere Replication

Eukaryotic cells have linear chromosomes that enable the shuffling of alleles between
homologous chromosomes during meiosis, which increases genetic diversity [1]. However, linear
chromosomes also have telomeres, which are vulnerable regions at the ends of chromosomes that
consist of thousands of repeats of the sequence 5-TTAGGG-3', with a single-stranded 3" overhang
that can form a loop structure by invading the double-stranded repeats [3]. Telomeres are bound by
the shelterin complex, which includes TRF1, TRF2, POT1, TIN2, RAP1, and TPP1, and protects
telomeres from DNA damage responses and end joining, which can cause genomic instability, cell
cycle arrest, senescence, or cell death [3]. Telomeres are shortened by the end replication problem,
which occurs during the leading-strand synthesis and removes some of the telomeric repeats [2,4].
To prevent telomere erosion, shelterin recruits telomerase, a reverse transcriptase that adds repeats
to the overhang using its RNA component (TERC) [5]. Telomerase is regulated by the CST complex,
which also promotes the lagging-strand synthesis [6]. Cancer cells can bypass telomere shortening
by activating telomerase or using the ALT mechanism [7]. Telomeres are challenging regions for
DNA replication, as they present multiple obstacles for the replication machinery. Replication forks
often slow down and stall near the telomeric chromatin, and may collapse if not resolved, leading to
double-strand breaks and homologous recombination [2,8]. This can result in telomere loss or
aberrations, which can be detected by FISH on metaphase chromosomes [9]. These abnormal
structures may also reflect telomere entanglement or incomplete replication. Telomere replication is
therefore a source of stress that threatens telomere integrity and stability. The timing of telomere
replication is also crucial for telomere homeostasis and telomerase regulation [2]. In mammalian cells,
telomeres replicate throughout the S phase, whereas in yeasts, they replicate at the end of the S phase
[10]. However, short telomeres or global replication perturbations can advance the replication of
telomeres, altering the telomere length equilibrium [11].
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Figure 1. The role of shelterin in protecting and regulating telomeres. This is a diagram of how the

shelterin complex attaches to the telomeric DNA. The shelterin components TRF1 and TRF2 form
dimers that bind to specific regions of the telomeric DNA. Image source: Doksani Y. (2019). The
Response to DNA Damage at Telomeric Repeats and Its Consequences for Telomere Function. Genes,
10(4), 318. https://doi.org/10.3390/genes10040318

Unwinding of G4 Structures for Telomere Replication

The obstacles that slows down the replication fork include heterochromatin, T-loop, TERRA,
RNA:DNA hybrids, and nuclear envelope attachment. One of the most challenging obstacles is the
G-quadruplex (G4) structure, which is formed by four guanines stacking together in a planar
arrangement. G4 can occur in the single-stranded G-rich lagging strand template during replication
or transcription, and can block the fork or cause it to break [2]. This can lead to chromosome
instability and telomere loss [12]. To prevent this, cells have several strategies to overcome the
telomere replication problem, such as helicases, nucleases, and fork protection complex (FPC). The
FPC is part of the replisome and ensures proper fork pausing and passage [13]. The shelterin complex
also helps to promote efficient telomere replication and prevent fork stalling and collapse [2,14]. Thus,
replisome and shelterin cooperate to maintain telomere stability. To prevent the interference of G4
structures with telomere replication, several helicases and single-strand DNA binding proteins (SSB)
are recruited to unwind G4. For example, WRN and BLM, which are 3'-5'-directed helicases from the
RecQ family that are mutated in Werner’s and Bloom’s syndromes, respectively [2,15]. WRN may be
involved in G4 resolution at telomeres by interacting with replication factor A complex (RPA), PCNA,
Pol d, and TRF2 [16]. RPA can also bind and unfold G4 structures by itself, or recruit other helicases
through physical interactions [17]. Telomeric proteins, such as POT1 and the shelterin components
TRF1 and TRF2, may also prevent G4 formation by binding to telomeric tails or acting as scaffolds
for replication factors [18,19]. The proliferating cell nuclear antigen (PCNA) may coordinate this
network by recruiting different factors to the replisome [19].

BLM may collaborate with TRF1, which has the FxLxP motif for BLM binding [20]. TRF1 may
also recruit BLM to remove G4 and avoid telomere fragility [20]. Another helicase that can resolve
G4 with a 5'-3' polarity is RTEL1, which is essential for DNA replication and recombination [21].
RTEL1 may be associated with the replisome by its PIP box domain that binds PCNA [21]. BLM and
RTEL1 have different roles, as their deficiency causes additive telomere fragility [2,21]. Therefore,
helicases that are linked to the replisome or shelterin can unwind G4 and ensure telomere
replication.The Pifl helicase family is widespread in eukaryotes and has various roles in DNA
metabolism, including G4 unwinding. In yeast, there are two Pif1 family members: ScPif1 and Rrm3.
ScPifl is a potent G4 unwinder that inhibits telomerase by displacing its RNA component from
telomeric ends [22]. Rrm3 travels with the replication fork and helps replicate telomeric repeats [23].
In humans and mice, PIF1 also unwinds G4 and interacts with TERT [24]. In fission yeast, Pfhl is
essential for replicating difficult regions and resolving G4 at telomeres [2,25]. Another protein that
may process G4 at telomeres is DNA2, a 5'-3' helicase/nuclease that cleaves G4 in vitro and co-
immunoprecipitates with TRF1-TRF2 [26].
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Overcoming Replication Challenges at Telomeres

The T-loop is a structure formed by the invasion of the telomeric 3" overhang into the double-
stranded part of the telomere, creating a D-loop. This protects the telomere from degradation, but
also poses a challenge for DNA replication. To avoid replication fork collision and allow telomerase
access, the T-loop needs to be disassembled in a timely manner. RTEL1 is a helicase that participates
in this process by interacting with the shelterin protein TRF2, that binds to the T-loop base [27].
RTELL1 also associates with the replisome through PCNA to promote replication [28]. How RTEL1
coordinates its interactions with PCNA and TRF2 throughout the cell cycle is unclear, as well as how
it distinguishes between different replication barriers such as G4, T-loops, or others. Helicases, such
as WRN, BLM, and RECQL4, may also be involved in T-loop resolution [2,29]. If RTELI1 fails, the
SLX1-SLX4 nucleases resolve the T-loop inappropriately, causing telomere instability [30]. TRF2 also
recruits Apollo, a 5'-exonuclease that prevents topological stress at the T-loop base [31]. The
regulation of T-loop resolution likely depends on a complex network of post-translational
modifications, involving the shelterin proteins. TERRA is a type of non-coding RNA that is
transcribed from the subtelomeric regions to the TTAGGG repeats at the ends of eukaryotic
chromosomes [32]. TERRA can form RNA:DNA hybrids with the telomeric DNA, displacing the G-
rich strand and creating R-loops [33]. This R-loop can interfere with the replication of telomeric
repeats and cause telomere fragility and genomic instability [34]. To prevent this, TERRA levels are
regulated during the cell cycle, peaking at G1-S and declining from S to G2 [2,35]. Moreover, several
factors are involved in resolving TERRA R-loops, such as RNase H, which degrades the RNA strand
[36], ATRX, which is a chromatin remodeler that may recognize or modify G4 structures [36], and
UPF1, which is a helicase that participates in telomere replication [37]. These mechanisms ensure that
TERRA does not impair the completion of leading-strand telomere replication and maintain telomere
integrity.

TERRA also has many positive roles in telomere biology, such as regulating telomere length,
replication, protection, chromatin structure, and mobility [38]. Therefore, TERRA levels and R-loop
formation must be tightly controlled to avoid replication—transcription conflicts [2]. Several proteins
can degrade or displace TERRA, such as Pif]l and FEN1 helicases, but the coordination and regulation
of these mechanisms are not fully understood [39]. Telomeres also form a compact chromatin
structure that protects them from DNA damage response, but also poses a barrier to the replication
fork. TRF2 binds to telomeric DNA, modulates the topological state of telomeres and cooperates with
Apollo and topoisomerase 2a to remove superhelical constraints [40]. Telomere anchoring is another
source of topological stress that needs to be resolved during replication. The nuclear envelope (NE)
and the nuclear matrix (NM) are two structures that constrain the localization and movement of
telomeres, the ends of chromosomes. Telomeres are attached to the NE on one side of the nucleus
and centromeres on the other in yeast cells [41]. This attachment is mediated by different proteins,
such as Esc1-Sir4—Rap1 and yKu-Mps3 in budding yeast, and Bqt4 and Rap1 in fission yeast [2]. Fft3,
a chromatin remodeler, also contributes to telomere anchoring [42]. Human telomeres, however, are
distributed throughout the nucleus and interact with the NM via shelterin and lamins [43]. Only some
telomeres are found at the NE [10]. To replicate telomeres, these topological constraints have to be
overcome by detaching telomeres from the NE or NM. This is a potential research topic for the future.

Conclusion

The replication of telomeres, the ends of chromosomes, is a challenging process that requires
overcoming several obstacles. These include secondary structures (G4 and T-loops), transcription,
and topological constraints due to compaction and anchoring of telomeric chromatin. These factors
can cause replication stress and fork stalling at telomeres. Shelterin, a complex of telomere-binding
proteins, protects telomeres from replication stress by modulating two distinct pathways. TRF1
prevents fork stalling and ATR activation in S phase [9], while TRF2 resolves supercoiling generated
by fork progression [31]. The coordination and regulation of these pathways, as well as the molecular
interactions between shelterin and the replisome, are not fully understood and require further
investigation. Post-translational modifications of TRF1 and TRF2 [44] may play a key role in this
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process. Telomere replication also influences telomere length maintenance by telomerase, an enzyme
that adds DNA repeats to telomeres. Two models have been proposed to explain how telomerase
elongates short telomeres preferentially [45]. Both models involve the association of telomerase with
the replication fork and the dissociation of telomerase due to natural barriers at telomeres. Thus
telomere replication and elongation are tightly linked processes.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org.
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