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Abstract: Salmonella causes various type of disease worldwide with a remarkable pace. Salmonella
enteric serotype typhi (S. typhi), a gram-negative bacterium (only cause disease in man) is the mainly
causative agent of Typhoid fever. Typhoid fever is most common in poor and unprivileged
developing countries of Asia and Africa. One of the major components of virulence factors produced
during salmonella infection is Lipid A, which acts as a potent human immuno-modulator bacterial
endotoxin. Regulation of Lipid A biosynthetic pathway occurs at second step, catalyzed by LpxC, a
Zn2+ dependent metalloamidase. Systematic Screening of a pool of drug datasets like natural
products library from Zinc database, Asinex database, Thiophene analogues fruitfully provided us
3 potent lead molecules s1_dl_mseq?2, s1_ll_mseq2, and s2_ll_mseq8 which actively binds with LpxC
enzyme and could be developed into sound inhibitors of LpxC enzyme after the application of drug
development and processing strategies. Wet lab experimentation is required to validate these results
for further use.

Keywords: Salmonella Typhi; LpxC; MD simulation; pharmacophore modelling; Raetz pathway;
Lipid A

1. Introduction

The A large number of infections are caused by Salmonella worldwide. The most frequent
Serotypes associated with invasive disease are S. Typhi, S. Typhimurium and S. Enteritidis [1,2].
Prevalence of insidious non-typhoidal Salmonella (iNTS) disease is as high as 227 per 100,000 cases
every year. Salmonella enteric serotype Typhi (S. Typhi), gram negative bacteria (only cause disease
in man) is the predominant causative agent of Typhoid fever. Cases of 12% to 30% of untreated illness
end up in the form of death. Reversion of fever can occur in about 10% of untreated people. Typhoid
fever is most common in poor and undeveloped (low or middle-income) countries with rates greater
than 100 per 100,000 persons per year in parts of Asia and Africa. US suffer outbreaks every year [3].
The global burden of typhoid fever disease as estimated by WHO is 11-20 million cases annually,
consequential casualties about 1,28,000-1,61,000 per year (www.who.int/news-room/fact-
sheets/detail/typhoid). The S. typhi colonized gallbladder showed an asymptomatic chronic
infection. It is a fact that a typhoid toxin with a carcinogenic potential is produced by S. typhi, that
induces DNA damage and cell cycle alterations in intoxicated cells [4]. This is also a reason to work
on this bacterium as the subject of the study.

Most of the Salmonella infections originate from contaminated water and food in hospitals. The
situation has been aggravated due to increased incidents of drug resistance of Salmonella strains
towards a broad range of antibiotics. Salmonella is resistant to a number of antibiotics viz, ampicillin,
ciprofloxacin, Streptomycin, furazolidone, sulfonamides, tetracyclines and fluoroquinolones [5,6].
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Although, two FDA approved vaccines are also available but with limited functionality. Children less
than two years of age cannot be treated with these vaccines [3], which makes children at the highest
risk. Therefore, it is imperative to search for new drugs and their profound targets in bacteria which
would have minimum homology and are functionally unrelated to human proteins.

One of the major components of virulence factors produced during salmonella infection is
lipopolysaccharide (LPS). LPSlayer around outer membrane confers a first line of barrier to prevent
entry of harmful substances like antibiotics and other small molecules into the cell [7]. Three parts of
LPS are an outermost immunodominant and highly variable repeating oligosaccharide known as the
[O-antigen] which is linked to the [core oligosaccharide domain] which, in turn is anchored to outer
membrane through glucosamine containing phosphorylated lipid i.e., [Lipid A]. Apart from its
function as a hydrophobic membrane anchor of LPS, Lipid A is a strong human immuno-modulator
bacterial endotoxin [8]. Takayama and colleagues in 1983 elucidated the first complete chemical
structure of lipid A from salmonella typhimurium [9]. It has been observed that E.coli mutants
lacking lipid A, either do not survive or are highly sensitive to antibiotics [10]. Lipid A biosynthesis
involves nine conserved enzymes and all are needed for the viability of the bacterium cell. Regulation
of Lipid A biosynthetic pathway occurs at second step, catalyzed by UDP-3-O-acyl-N-
acetylglucosamine deacetylase (LpxC) [10]. LpxC is a Zn? dependent metalloamidase which
catalyzes the release of acetyl group from UDP-(3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine
(myr- UDP- GIcN) to form UDP-(3-O-(R-3-hydroxymyristoyl))-N-glucosamine and acetate. LpxC
catalyzed reaction is irreversible and therefore is a committed step in lipid A synthesis [10-13].
Consequently, LpxC has been considered significant as a drug target. Structure elucidation of LpxC
from Escherichia Coli, Aquifex Aeolicus, Pseudomonas Aeruginosa and Yersinia Enterocolitica has provided
the substantial understanding of catalytic site topology and catalytic mechanism of the enzyme.
Structural studies have prepared the ground for designing novel inhibitors against the enzyme [14—
17]. A number of LpxC small molecule inhibitors with hydroxamate moiety have been synthesized.
One such hydroxamate based L-161,240 inhibitor which inhibits LpxC from E.coli has been shown
inactive against LpxC from Pseudomonas aeruginosa. This kind of differential inhibition can be
attributed to subtle structural differences of the LpxC enzymes from the two organisms [18]. In case
of E.coli LpxC, a-Bb loop is positioned away from the catalytic site resulting in enlarged catalytic site
as compared to that of AaLpxC and PaLpxC. Consequently, inhibitor molecule BB-78485 with bulky
naphthalene groups can be accommodated in E.coli LpxC catalytic site but not in AaLpxC and PaLpxC
[19]. The differences in inhibitor binding to the orthologs of LpxC in response to slight variations in
their catalytic sites, necessitates structural characterization of more number of LpxC orthologs.
Further, systematic Screening of library database for inhibitors and elucidation of underlying
mechanism of inhibition would further enhance inhibitor design.

2. Materials and Methods

Protein preparation and structure based PLIF generation

Protein preparation and pocket finding of receptor StLpxC. The homology model of StLpxC
(which was previously prepared by us only) [20]. was prepared using Quickprep option of MOE.
This option cleans the protein, repairs any breaks or clashes and minimize the protein for further use.
The binding pocket of StLpxC was found using pocket finder option of MOE.

Known Ligand retrieval and docking with StLpxC. Compounds binding to LpxC protein are
obtained from Binding database. More than 1500 compounds were obtained which are subjected to
washing process to clean the geometry and rotameric conformations of these compounds. Duplicates
and broken molecules were rejected. Out of all these 829 compounds having a recorded IC50 value
were opt-out in a separate MOE based database with .mdp file format. 5 2D-descriptors (TPSA,
SLogP, SMR, a-acc, and don-acc) were then calculated for these compounds. pIC50 (-logIC50) value
was also calculated from IC50 value for better statistical distribution of activity data.

Active site identification and grid generation. Ligand binding is a crucial step to work on for the
treatment of various diseases. Non-specific ligand binding may show several artifects in the body
with higher toxic possibilities. The binding of ligand depends on several features such as H-bond
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donors and acceptors, hydro-phobic or -philic interaction, ionization, chelation of zinc atom, etc.
Although LpxC is highly stable and conserved protein, in the study, we used MOE pocket finder tool
to find the binding site of our homology modelled protein. The best pocket found falls with-in the
agreement of the active site of the protein based on available structural data. Receptor grid was
generated after selection of the active site of protein.

Molecular docking of known inhibitors with receptor StLpxC. Obtained 829 compounds were
docked with StLpxC protein and simultaneous interaction fingerprints were generated using PLIF
(protein ligand interaction fingerprints) protocol in MOE. This helped in understanding the
interaction profiling of all compounds with the protein of interest. This interaction fingerprint profile
was used to further develop the structure and ligand guided Pharmacophore models.

Structure and ligand guided Pharmacophore modeling and Virtual Screening

Pharmacophore modeling. Three different model schemes were prepared using PLIF profiles as
obtained in previous step. Pharmacophore query generator was used to generate the pharmacophore
features collectively obtained from the PLIF profile. These features were then edited in
pharmacophore editor panel to add or subtract features based on our specific needs. This led to the
generation of 3 different pharmacophore models to be used to virtually screen the big dataset of

ader Proten Compute Wintow tielp saoovsia O @ concer [N

Figure 1. A screenshot depicting the process of pharmacophore generation using MOE as the software

in use.

Dataset Generation and Pharmacophore based virtual screening. Various public drug databases
are available online for free. For our study we downloaded Asinex database [21], Natural products
library from ZINC database [22], Thiophene analogues from Pubchem [23] and 20 compounds from
the literature [24] to make in total of 693480 compounds. This dataset is washed through MOE [25]
as the previous dataset and 3D conformers are prepared to be docked with StLpxC. Physical and
chemical properties such as 2D and 3D structure determination. Molecular weight, crystal structure,
and biological application information can be also obtained of the desired compound. In the case of
the desired compound, the compound having the most similar features matches the required
pharmacophore features and can easily interact with our target protein. It has been chosen the
possible hit compounds whose maximum features were matched to query pharmacophore. This
database is used as an input file to be screened directly from the Pharmacophore search window
(with drug-like or lead-like applied filters). New MOE databases of each model with each filter (total
6 databases) were formed to be analyzed later.

ADMET studies
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In-built MOE toxicity prediction tool and PROTOX-II webserver [26,27] is used to carry forward
the ADME and toxicity studies for all 103 molecules obtained after pharmacophore model assessment
and validation.

Molecular Dynamics Simulations

Eight protein-ligand complexes which contained compounds passing all ADME and toxicity
tests were subjected to MD simulation studies. MD simulations were performed using YASARA,
version 15.10.18 [28,29], with the AMBERO3 force field [30]. The protein-ligand complex was placed
in a water box that is 10 A larger than each side of the protein. Hydrogen atoms were added to the
protein structure at the appropriate ionizable groups according to the computed pKa in relation to
the simulation pH, thus a hydrogen atom will be added if the computed pKa is higher than the pH.
The pKa is computed for each residue according to the Ewald method [31,32]. The structure was then
minimized using steepest-descent method followed by simulated annealing. The simulation was
performed at pH 7.0 in a 0.9% NaCl solution at 300K temperature for 100 ns. A cut-off of 7.86 A was
used for van der Waals forces while Particle Mesh Ewald algorithm [33] was used for electrostatic
forces. A multiple time step of 1.25 and 2.5 fs was used for intra-molecular and inter-molecular forces
respectively. All calculations were carried out on an Intel Core i5 2.50 GHz with 4 GB of RAM.

3. Results

Protein preparation and PLIF profile generation

LpxC binding compound database retrieval. Compounds binding to LpxC protein are obtained
from Binding database (https://www.bindingdb.org/bind/index.jsp). This includes all compounds
experimentally solved with three dimensional molecular structures of LpxC proteins as recorded in
PDB database [34-36]. More than 1500 compounds were obtained which are subjected to washing
process to clean the geometry and rotameric conformations of all the compounds for proper 3D-
structural information. Duplicates and broken molecules were rejected. Out of all these, 829
compounds having a recorded IC50 value were opt-out in a separate MOE database with .mdp file
format. Five 2D-descriptors (TPSA, SLogP, SMR, a-acc, and don-acc) were also calculated for these
compounds. pIC50 (-logIC50) value was also calculated from IC50 value for better statistical
distribution of activity data.

PLIF profile generation. Obtained 829 compounds were docked with StLpxC protein and
simultaneous interaction fingerprints were generated using PLIF (protein ligand interaction
fingerprints) protocol in MOE. Protein ligand interaction fingerprints (PLIF) profile (Figure 2)
provides the information regarding the residues of protein taking part in the interaction with various
bound ligands. This profile provides overall interaction database of sites which are highly important
for protein function, and which can be targeted. Apart that other sites which could also be possibly
important and may be used for designing better inhibitors and lead molecules to check the protein
activity. After PLIF profiling, the preparation of pharmacophore query has been performed and 3
manually curated pharmacophore models has been created.
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Figure 2. PLIF profile (upper) and its bar-graph representation (Below) based on 820 ligands binding
to LpxC protein as obtained from Binding database (https://www.bindingdb.org/bind/index.jsp).

Pharmacophore modeling and validation

Pharmacophore model Generation: Utilizing this high number of inhibitor information various
features were determined by the query generation which composed of hydrophobic, hydrophilic,
metal binding, ionizable groups along-with donor and acceptor features. After manual curation, 3
pharmacophore models were generated. Model 1 has total of 7 features including 1 metal binding
donor-acceptor, 2 atomic features, 1 H-bond donor, 2 H-bond acceptor, and 1 aromatic ring features.
Model 2 has a total of 5 features including 1 metal binding donor-acceptor, 1 atomic feature, 1 H-
bond donor, 1 H-bond acceptor and 1 aromatic ring features. Model 3 has total of 4 features including
1 metal binding donor-acceptor, 1 atomic feature, 1 H-bond donor, and 1 H-bond acceptor features.
Specifically, Zn metal ion binding feature is the common feature in all of them. Along-with these
features 66 exclusion volume features are also present in all the 3 models. Obtained pharmacophore
features generated from the protein-ligand complex is depicted that metal ion binding and
hydrophobic interactions are predominantly formed with the amino acid residues of the selected
protein (Figure 3).

Figure 3. Three different Phamacophore models have been developed in the form of three schemes
{Scheme 1 (A), Scheme 2 (B), and Scheme 3 (C)} on the basis of obtained PLIF profile.

Pharmacophore model validation: Pharmacophore model validation substantially increased the
chance of screening and developing potent molecules of high performance. Overall industry of drug
design has the utmost requirement of 3D protein structure and current technology can produce high
quality homology models (if experimental structures are not present). StLpxC is also a comparative
homology modeled protein which composed of all the conserved qualities and energetically stable
conformation. Therefore, molecular docking approach of known inhibitors (most of which are
experimentally solved with crystal structures) with modeled StLpxC has performed to get the PLIF
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profile and the Pharmacophore models. This also provides us enough validation of activity and
validation of made models (as known ligands with known IC50 values are utilized).

Dataset Generation and Pharmacophore based virtual screening. Database generation is the
main part of the whole process of identification of the best lead molecule during the screening
process. For this purpose Asinex database [21], Natural products library from ZINC database [22],
Thiophene analogues from Pubchem [23] and 20 compounds from the literature [24] to make in total
of 693480 compounds were retrieved to make the whole dataset. All three pharmacophore models
were applied as guided method for the screening with lead-like and drug-like filters used to get
separate files for further analysis. A total of 6 such database files were obtained after the application
of all 3 models on the input dataset of compounds. These screenings were run from the
pharmacophore query panel itself. We got 7 compounds with drug-like filter from Model 1, only 2
compounds with lead-like filter from Model 1, 394 compounds (using drug-like filter) from model 2,
180 compounds (using lead-like filter) from Model 2, 10990 compounds (using drug-like filter) from
model 3, and 4978 compounds (using lead-like filter) from model 3. Out of all the screened
compounds 103 compounds (Supplementary Table S1) with highest binding affinity were tabulated.

Pharmacophore based virtual screening and ADMET studies provides us 8 compounds which
are non-toxic and having highest binding affinity. Compound s1_dl_mseq2 (Figure 4 upper left)
showed good binding within the active pocket of the enzyme. Apart from zinc ion it is making
contacts with His265, Thr191, Phe192, Val218 and several other important residues. His163 and Zn-
ion is playing role In Hydrogen bonding with the ligand. Investigation of interaction profile of LpxC
and compound s1_II_mseq?2 (Figure 4 middle left) demonstrated the active participation of Zinc ion,
Thr191, Cys63, Lys239, and Lys143 in making H-bonds with the ligand. Residues like Leu18, Phe192,
Ala215, His265, Gly264, Leu267, Asp140, and many more form a well-defined non-bonding network
with the s1_II_mseq2 ligand. In the case of s2_l1_mseq8 (Figure 4 below left), His79 play a crucial role
in forming two H-bonds with the ligand and His238 is forming one H-bond with a bond length of
3.12A. Non-bonding interaction network consists of residues like His265, Glu78, Leu62, Phel92,
Ile198, Aspl197, Met61, Cys63, and some more. Rest protein-ligand interaction profiles can be
observed in Supplementary Figures S1-5.
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Figure 4. Protein Ligand interaction profile for selected bound molecules docked with StLpxC
enzyme. Upper panel shows the profile for s1_dl_mseq2 compound after docking (left) and after
(right) simulation. Similarly, middle panel shows for s1_ll_mseq2 compound and below panel is
showing the profile for s2_Il_mseq8 compound.

Overall findings suggested that all the selected ligands are binding in the active site of the
protein but ligand sl1_ll_mseq2 found to attain the position (after MD simulation) in which it is
penetrating the hydrophobic channel which acts as the entry point for the substrate (Figure 4 middle
right). Attaining this position, it actually blocked the whole entry to exit path. Although it lost the
polar connections with Zinc and any other atom (in present functional groups conformation), non-
bonding interactions like pi-cation, pi-alkyl, amide-pi stacked and Vander wall interactions (Lys143,
Gly210, I1e198, Cys63, Cys207, Ala266, Thr191, His265, Leu201, Ser211, Gly264, Leu62, etc.) make
good network to stabilize the molecule within the rigid secondary structural elements of the protein.
Rest other molecules largely cover the exit point of the substrate as shown in Figure 12 and
Supplementary Figure S6.

Absorption, distribution, metabolism and excretion (ADME) and toxicity test Analysis of
ADME properties. After administration of the drug through any route to the human body or in the
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animal model, it undergoes the absorption, distribution, metabolism, excretion resulting active or
passive transport to the target site [37-39]. Interaction with the target biological macromolecules
might produce desirable or undesirable pharmacological effect. Drug design is a step-by-step
evaluation process and lack of this evaluation factor may become the reason for rejection of the drug,
which is costly for any drug manufacturing company. The bioavailability of a drug depends on the
safety and efficacy, lack of safety and efficacy are the main causes of drug failure, which are mainly,
depend on the ADME properties. MOE has inbuilt ligand property calculator which provides us
information about the toxicity and other water solubility and lipophilicity related information.

Out of all 103 compounds selected from pharmacophore modeling based guided screening, only
23 compounds were subjected for ADMET calculations. These 23 compounds were screened applying
drug-like and lead-like filters, they are quite robust compounds having all those properties (Table 1).
Computational based in-silico toxicity measurement has been widely used due to their accuracy,
rapidity, accessibility, which can provide information about any synthesis or natural origin
compounds. Apart that, to identify the toxicity and adverse effect of the selected compounds (if any
exists) ProTox-II server [26,27] has also been used for further confirmation. Each software was used
to evaluate several toxicological parameters such as acute toxicity, hepatotoxicity, cytotoxicity,
carcinogenicity, mutagenicity, immunotoxicity, and the result was achieved based on predicted
median lethal dose (LD50) in mg/kg weight (Supplementary Table S2). According to the ProTox-II
server all the 8 complexes having molecules (as shown in Figure 5) that have not shown any sort of
toxicity at all are subjected for MD simulation studies.

53_ll_mseq1366

S1_dI_mseq3

52_dl_mseq87

$2_dl_mseq34

S1_ll_mseq2 51_dl_mseq2

52_dI_mseq33

Figure 5. Molecular structure of selected eight hit compounds produced by pharmacophore based
virtual screening and passed the ADMET test.

Molecular Dynamics simulation

Out of 23 compounds subjected to ADMET calculations, only 8 compounds were able to pass all
the filters and these 8 compounds were subjected to flexible and dynamical simulation studies
providing the opportunity to understand the induced fit ligand interaction with the protein in due
course of time. The results composed of various factors like RMSD, RMSF, SASA, Rg, etc. which
support the dynamical properties of the protein-ligand complexes during the MD simulation studies.
RMSD graph Figure 6-(left) shows that most of the trajectories reached the equilibration state except
for s1_dl_mseq3 and s2_dl_mseq34, which shows little fluctuations especially after 70ns simulation
run. RMSF graph Figure 6-(right) shows residue wise fluctuations during simulation run. More
fluctuation suggests the important involvement of the residue maybe in ligand binding or some other
structural important event.
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Figure 6. RMSD graph (Left) shows that most of the trajectories reached the equilibration state except
for s1_dl_mseq3 and s2_dl_mseq34, which shows little fluctuations especially after 70ns simulation
run. RMSF graph (right) shows residue wise fluctuations during the course of simulation run. More
fluctuation suggests the important involvement of the residue maybe in ligand binding or some other
important structural event.

The MD simulation results based on total potential energy (which forms by combining different
energy contributors like Bond, Angle, Dihedral, Planarity, Coulomb, VAW to make up the total
potential energy) for all the 8 complexes suggested that upon ligand binding no significant deviations
or conformational changes were taken place in the protein structure (Figure 7-(left)). Ligand binding
energy shows the affinity with ligand binds to the protein (Figure 7-(right)). The least static ligand
binding energy for the whole 100ns simulation run was demonstrated dramatically by s1_dl_mseq2
and s3_ll_mseq1366 complexes (~-400 and ~-300 kJ/mol respectively). This maybe the results of the
higher potential and salvation energy components of the ligand. But if we check the overall energy
comparison of potential, salvation and overall bonding energy, it is clear that s2_ll_mseq8 ligand
shows optimum binding affinity throughout the simulation run which if monitored closely, suggests
that it is the optimum ligand to be worked on for futuristic drug development research work.

Total Potential Energy Ligand Binding Energy
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Figure 7. Total potential energy graph (left panel) for various protein-ligand complexes. Complex
s1_ll_mseq2 shows the least potential energy and complex s3_l_mseq1366 shows the highest energy
of total potential. Right panel demonstrates the ligand free binding energy within the respective
complexes. As can be observed ligand s1_dl_mseq2 has the lowest binding energy and complex
s1_dl_mseq3 has the highest ligand binding energy out of all 8 complexes. Lower the binding energy
better is the suggested interaction of ligand with the receptor.

The RMSD of ligand conformation and movement, Rg fluctuations, and SASA values in their
respective complexes during the period of simulation (100 ns) are presented in Figures 8 and 9. Figure
8 (left and right) shows the conformation and movement of ligand from its actual docked position
and pose during simulation of 100ns. In the left graph ligand conformation RMSD shows s2_l1_mseq8
remains in good and static conformation without more deviation from its initial structural framework
whereas s2_dl_mseq34 changed its conformation most out of all 8 compounds. As per the graph
shown in right, s2_ll_mseq8, s1_dl_mseq2, and s1_ll_mseq?2 ligands deviated least from their initial
position and remained bounded with the protein maintaining their position within the active site.
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Rest other ligands are found to be outside the recommended bounded distance of 4A suggesting
lesser potent molecules. Although the conformational and movement RMSD of s1_Il_mseq2 found to
be very prominent, its binding energy with the protein is weak which needs to be addressed if we
choose this ligand for further drug development.

RMSD [Ligand Conformation] RMSD [Ligand Movement]
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Figure 8. In the left graph ligand conformation RMSD shows s1_dl_mseq2 and s1_ll_mseq2 remained
in good and static conformation without more deviation from its initial structural framework whereas
s2_dl_mseq34 changed its conformation most out of all 8 compounds. As per the right shown graph,
s2_ll_mseq8, sl1_dl_mseq2, and sl_ll_mseq2 ligands deviates least from its initial position and
remained bounded with the protein maintaining its position within the active site. Rest other ligands
are found to be outside the recommended bounded distance of 4A suggesting lesser potent molecules.

Left graph demonstrating the conformational positioning of the ligand while in contact with the
protein residues, it is clear that s2_ll_mseq8, s1_ll_mseq2, and s1_dl_mseq2 are maintaining their
initial pose without deviating from their mean position and conformational shape. This often
suggests that binding of ligand in that particular pose is most favourable in making connections with
the surrounding residues. Right graph defines the overall movement of the ligand during the course
of 100ns simulation run from its initial placement. Ligands s2_lI_mseq8 along-with s1_l1_mseq?2,
s1_dl_mseq2 and s2_dl_mseq34 remained to be within the suggested and favoured 4A range of active
pocket residues. S1_dl_mseq3 tried to be in its original place but later moved little away from its
partnering residues. Rest ligands are treated to be moved out of the binding pocket (maybe) because
of less optimum binding environment.

52_dl_mseq33 and s3_ll_mseq1366 shows unrest and making a movement outside the active
cum binding pocket of StLpxC. Rest of the ligands shows static and stable binding in the active site
of the StLpxC protein, ligands s1_dl_mseq2, s1_Il_mseq2, and s2_Il_mseq8 demonstrates their high
potency to be developed into lead potent inhibitors of LpxC which may pass the clinical trials too.
Figure 9 (left panel) shows the values for radius of gyration (Rg) of the selected protein-ligand
complexes. Rg denotes the degree of compactness and rigidness of the protein. Greater Rg value
indicates higher flexibility and conformation of the protein whereas lower Rg value denotes more
rigidity [40]. We can easily observe that all complexes have Rg values with-in the narrow window of
19-19.5 A, depicting the conformational stability and rigidity. On top of that the solvent accessible
surface area (SASA) plot (Figure 9 right panel) also demonstrates the closed conformation of the
protein with conserved and defined packing (even after ligand binding).

Radius of G}’fﬂﬁon [Rg] Solvant Accessible Surface Area [SASA]
((AY]

Area [(A)]

Time (ns)
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Figure 9. Rg plot (left) and SASA plot (right) for all 8 complexes.

Number of H-bonds in the solute (protein-ligand complex) is the overall summation of all the
possible H-bonding interactions took place inra- and inter-molecular way during the whole
simulation run can be observed in Figure 10-(left). Minimum number of H-bonds formed was found
to be ~90 and maximum numbers of H-bonds formed were found to be ~266 during the whole 50ns
simulation run. Similarly, in Figure 10-(right), total number of H-bonds formed between protein-
ligand complex (solute) and surrounding water and ionic cofactors (solute) were calculated. ~492 to
~585 H-bonds were found to be formed between the two.
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Figure 10. Number of H-bonds in the solute (protein-ligand complex) took place inra- and
intermolecular way during the whole simulation run (left graph). In right graph, total number of H-
bonds formed between protein-ligand complex (solute) and surrounding water and ionic cofactors
(solute) were calculated.

Compound s1_dl_mseq2 (Figure 4 upper right) showed good binding within the active pocket
of the enzyme. Apart from electrostatic interaction with zinc ion it is making polar contacts with
Cys63 and Asp197. His265, Thr191, Phe192, Phe194 and several other important residues interact
with the ligand non-bindingly. In the case of s2_ll_mseq8 (Figure 4 below right), most of the polar
interactions lost with time. His79 played a crucial role in forming two H-bonds with the ligand as
before. Especially Zinc ion interacted with the ligand via two strong electrostatic bondings. Non-
bonding interaction network consisted of residues like Leu62, Phe192, Met61, Cys63, Glu78, and
Leu201.

Potential energy and solvation energy graphs (which contribute to the ligand binding energy)
Figure 11 for all 8 protein-ligand complexes. Individual ligand, receptor and complex graphs were
constructed for both potential and solvation energy parameters. This provides us clear idea of how
individual components of the system contribute to stabilizing or destabilizing the whole system in
presence and absence of ligands.
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Figure 11. Potential energy and salvation energy graphs for all 8 protein-ligand complexes. Individual
ligand, receptor and complex graphs were constructed for both potential and salvation energy
parameters.
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Figure 12. [Upper panel] Results obtained after 100ns simulation run in the form of finally attained
conformational poses of protein-ligand complexes S1_dl_mseq2 (A), S1_ll_mseq2 (B), and
S2_11_mseq8 (C). [Below panel] Pictures of aligned superimposed conformational poses obtained
before and after the simulation.

As we overlay the docked and simulated poses of our selected protein-ligand complexes, we
found that the Ca RMSD for both poses are in good overall stable conformations defining that
protein-ligand complex and the protein itself is very stable in nature. The structural alignment
between docked pose of s1_dl_mseq2 and simulated pose of s1_dl_mseq2 has a Ca RMSD of 0.859
A. With a similar fashion, the structural alignment between docked sl_ll_mseq2 and simulated
s1_ll_mseq2 has a Cat RMSD of 1.084 A. This little hike in RMSD is because of the straightened
conformation of ligand which allows it to cover the entry point hydrophobic channel of the LpxC
protein. The structural alignment between docked s2_lI_mseq8 and simulated s2_lI_mseq8 has a Ca
RMSD of 1.146 A. In this case the conformation of ligand changed a lot within the exit point
hydrophobic patch of the enzyme.

5. Conclusions

UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC), a zinc coordinating enzyme that act on
the first committed step in Lipid A biosynthesis, is a crucial component of the cell envelope of Gram-
negative bacteria. The most advanced, disclosed LpxC inhibitors showing antibacterial activity
coordinate zinc through a hydroxamate moiety with concerns about binding to other
metalloenzymes. The discovery, optimization, and efficacy of various such inhibitors met with the
challenging unfruitful end towards the inhibition of the enzyme. Hence the need for new specifically
potent natural or synthetic occurring inhibitors as medicinal alternatives against such deadly
opportunistic pathogen led us to perform this study. This work includes the principles of in-silico
pharmacophore based drug design to find lead molecules in the form of ligands s1_dl_mseq?2,
s1_ll_mseq2, and s2_II_mseq8 which demonstrated high potency to be developed into a lead potent
inhibitor of LpxC which need to be further validated by in-vitro and in-vivo experiments and further
go for the next stage of clinical trials.
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