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Abstract: Salmonella causes various type of disease worldwide with a remarkable pace. Salmonella 
enteric serotype typhi (S. typhi), a gram-negative bacterium (only cause disease in man) is the mainly 
causative agent of Typhoid fever. Typhoid fever is most common in poor and unprivileged 
developing countries of Asia and Africa. One of the major components of virulence factors produced 
during salmonella infection is Lipid A, which acts as a potent human immuno-modulator bacterial 
endotoxin. Regulation of Lipid A biosynthetic pathway occurs at second step, catalyzed by LpxC, a 
Zn2+ dependent metalloamidase. Systematic Screening of a pool of drug datasets like natural 
products library from Zinc database, Asinex database, Thiophene analogues fruitfully provided us 
3 potent lead molecules s1_dl_mseq2, s1_ll_mseq2, and s2_ll_mseq8 which actively binds with LpxC 
enzyme and could be developed into sound inhibitors of LpxC enzyme after the application of drug 
development and processing strategies. Wet lab experimentation is required to validate these results 
for further use. 

Keywords: Salmonella Typhi; LpxC; MD simulation; pharmacophore modelling; Raetz pathway; 
Lipid A 

 

1. Introduction 

The A large number of infections are caused by Salmonella worldwide. The most frequent 
Serotypes associated with invasive disease are S. Typhi, S. Typhimurium and S. Enteritidis [1,2]. 
Prevalence of insidious non-typhoidal Salmonella (iNTS) disease is as high as 227 per 100,000 cases 
every year. Salmonella enteric serotype Typhi (S. Typhi), gram negative bacteria (only cause disease 
in man) is the predominant causative agent of Typhoid fever. Cases of 12% to 30% of untreated illness 
end up in the form of death. Reversion of fever can occur in about 10% of untreated people. Typhoid 
fever is most common in poor and undeveloped (low or middle-income) countries with rates greater 
than 100 per 100,000 persons per year in parts of Asia and Africa. US suffer outbreaks every year [3]. 
The global burden of typhoid fever disease as estimated by WHO is 11-20 million cases annually, 
consequential casualties about 1,28,000-1,61,000 per year (www.who.int/news-room/fact-
sheets/detail/typhoid). The S. typhi colonized gallbladder showed an asymptomatic chronic 
infection. It is a fact that a typhoid toxin with a carcinogenic potential is produced by S. typhi, that 
induces DNA damage and cell cycle alterations in intoxicated cells [4]. This is also a reason to work 
on this bacterium as the subject of the study. 

Most of the Salmonella infections originate from contaminated water and food in hospitals. The 
situation has been aggravated due to increased incidents of drug resistance of Salmonella strains 
towards a broad range of antibiotics. Salmonella is resistant to a number of antibiotics viz, ampicillin, 
ciprofloxacin, Streptomycin, furazolidone, sulfonamides, tetracyclines and fluoroquinolones [5,6].  
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Although, two FDA approved vaccines are also available but with limited functionality. Children less 
than two years of age cannot be treated with these vaccines [3], which makes  children at the highest 
risk. Therefore, it is imperative to search for new drugs and their profound targets in bacteria which 
would have minimum homology and are functionally unrelated to human proteins. 

One of the major components of virulence factors produced during salmonella infection is 
lipopolysaccharide (LPS).  LPS layer around outer membrane confers a first line of barrier to prevent 
entry of harmful substances like antibiotics and other small molecules into the cell [7]. Three parts of 
LPS are an outermost immunodominant and highly variable repeating oligosaccharide known as the 
[O-antigen] which is linked to the [core oligosaccharide domain] which, in turn is anchored to outer 
membrane through glucosamine containing phosphorylated lipid i.e., [Lipid A].  Apart from its 
function as a hydrophobic membrane anchor of LPS, Lipid A is a strong human immuno-modulator 
bacterial endotoxin [8]. Takayama and colleagues in 1983 elucidated the first complete chemical 
structure of lipid A from salmonella typhimurium [9]. It has been observed that E.coli mutants 
lacking lipid A, either do not survive or are highly sensitive to antibiotics [10]. Lipid A biosynthesis 
involves nine conserved enzymes and all are needed for the viability of the bacterium cell. Regulation 
of Lipid A biosynthetic pathway occurs at second step, catalyzed by UDP-3-O-acyl-N-
acetylglucosamine deacetylase (LpxC) [10]. LpxC is a Zn2+ dependent metalloamidase which 
catalyzes the release of acetyl group from UDP-(3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine 
(myr- UDP- GlcN) to form UDP-(3-O-(R-3-hydroxymyristoyl))-N-glucosamine and acetate. LpxC 
catalyzed reaction is irreversible and therefore is a committed step in lipid A synthesis [10–13]. 
Consequently, LpxC has been considered significant as a drug target. Structure elucidation of LpxC 
from Escherichia Coli, Aquifex Aeolicus, Pseudomonas Aeruginosa and Yersinia Enterocolitica has provided 
the substantial understanding of catalytic site topology and catalytic mechanism of the enzyme. 
Structural studies have prepared the ground for designing novel inhibitors against the enzyme [14–
17]. A number of LpxC small molecule inhibitors with hydroxamate moiety have been synthesized. 
One such hydroxamate based L-161,240 inhibitor which inhibits LpxC from E.coli has been shown 
inactive against LpxC from Pseudomonas aeruginosa. This kind of differential inhibition can be 
attributed to subtle structural differences of the LpxC enzymes from the two organisms [18]. In case 
of E.coli LpxC, βa-βb loop is positioned away from the catalytic site resulting in enlarged catalytic site 
as compared to that of AaLpxC and PaLpxC. Consequently, inhibitor molecule BB-78485 with bulky 
naphthalene groups can be accommodated in E.coli LpxC catalytic site but not in AaLpxC and PaLpxC 
[19]. The differences in inhibitor binding to the orthologs of LpxC in response to slight variations in 
their catalytic sites, necessitates structural characterization of more number of LpxC orthologs. 
Further, systematic Screening of library database for inhibitors and elucidation of underlying 
mechanism of inhibition would further enhance inhibitor design. 

2. Materials and Methods 

Protein preparation and structure based PLIF generation 

Protein preparation and pocket finding of receptor StLpxC. The homology model of StLpxC 
(which was previously prepared by us only) [20]. was prepared using Quickprep option of MOE. 
This option cleans the protein, repairs any breaks or clashes and minimize the protein for further use. 
The binding pocket of StLpxC was found using pocket finder option of MOE.  

Known Ligand retrieval and docking with StLpxC. Compounds binding to LpxC protein are 
obtained from Binding database. More than 1500 compounds were obtained which are subjected to 
washing process to clean the geometry and rotameric conformations of these compounds. Duplicates 
and broken molecules were rejected. Out of all these 829 compounds having a recorded IC50 value 
were opt-out in a separate MOE based database with .mdp file format. 5 2D-descriptors (TPSA, 
SLogP, SMR, a-acc, and don-acc) were then calculated for these compounds. pIC50 (-logIC50) value 
was also calculated from IC50 value for better statistical distribution of activity data. 

Active site identification and grid generation. Ligand binding is a crucial step to work on for the 
treatment of various diseases. Non-specific ligand binding may show several artifects in the body 
with higher toxic possibilities. The binding of ligand depends on several features such as H-bond 
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donors and acceptors, hydro-phobic or -philic interaction, ionization, chelation of zinc atom, etc. 
Although LpxC is highly stable and conserved protein, in the study, we used MOE pocket finder tool 
to find the binding site of our homology modelled protein. The best pocket found falls with-in the 
agreement of the active site of the protein based on available structural data.  Receptor grid was 
generated after selection of the active site of protein.  

Molecular docking of known inhibitors with receptor StLpxC. Obtained 829 compounds were 
docked with StLpxC protein and simultaneous interaction fingerprints were generated using PLIF 
(protein ligand interaction fingerprints) protocol in MOE. This helped in understanding the 
interaction profiling of all compounds with the protein of interest. This interaction fingerprint profile 
was used to further develop the structure and ligand guided Pharmacophore models.  

Structure and ligand guided Pharmacophore modeling and Virtual Screening 

Pharmacophore modeling. Three different model schemes were prepared using PLIF profiles as 
obtained in previous step. Pharmacophore query generator was used to generate the pharmacophore 
features collectively obtained from the PLIF profile. These features were then edited in 
pharmacophore editor panel to add or subtract features based on our specific needs. This led to the 
generation of 3 different pharmacophore models to be used to virtually screen the big dataset of 
693480 compounds (Figure 1).  

 
Figure 1. A screenshot depicting the process of pharmacophore generation using MOE as the software 
in use. 

Dataset Generation and Pharmacophore based virtual screening. Various public drug databases 
are available online for free. For our study we downloaded Asinex database [21], Natural products 
library from ZINC database [22], Thiophene analogues from Pubchem [23] and 20 compounds from 
the literature [24] to make in total of 693480 compounds. This dataset is washed through MOE [25] 
as the previous dataset and 3D conformers are prepared to be docked with StLpxC. Physical and 
chemical properties such as 2D and 3D structure determination. Molecular weight, crystal structure, 
and biological application information can be also obtained of the desired compound. In the case of 
the desired compound, the compound having the most similar features matches the required 
pharmacophore features and can easily interact with our target protein. It has been chosen the 
possible hit compounds whose maximum features were matched to query pharmacophore. This 
database is used as an input file to be screened directly from the Pharmacophore search window 
(with drug-like or lead-like applied filters). New MOE databases of each model with each filter (total 
6 databases) were formed to be analyzed later.   

ADMET studies 
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In-built MOE toxicity prediction tool and PROTOX-II webserver [26,27] is used to carry forward 
the ADME and toxicity studies for all 103 molecules obtained after pharmacophore model assessment 
and validation.  

Molecular Dynamics Simulations 

Eight protein-ligand complexes which contained compounds passing all ADME and toxicity 
tests were subjected to MD simulation studies. MD simulations were performed using YASARA, 
version 15.10.18 [28,29], with the AMBER03 force field [30]. The protein-ligand complex was placed 
in a water box that is 10 Å larger than each side of the protein. Hydrogen atoms were added to the 
protein structure at the appropriate ionizable groups according to the computed pKa in relation to 
the simulation pH, thus a hydrogen atom will be added if the computed pKa is higher than the pH. 
The pKa is computed for each residue according to the Ewald method [31,32]. The structure was then 
minimized using steepest-descent method followed by simulated annealing. The simulation was 
performed at pH 7.0 in a 0.9% NaCl solution at 300K temperature for 100 ns. A cut-off of 7.86 Å was 
used for van der Waals forces while Particle Mesh Ewald algorithm [33] was used for electrostatic 
forces. A multiple time step of 1.25 and 2.5 fs was used for intra-molecular and inter-molecular forces 
respectively. All calculations were carried out on an Intel Core i5 2.50 GHz with 4 GB of RAM.  

3. Results 

Protein preparation and PLIF profile generation 

LpxC binding compound database retrieval. Compounds binding to LpxC protein are obtained 
from Binding database (https://www.bindingdb.org/bind/index.jsp). This includes all compounds 
experimentally solved with three dimensional molecular structures of LpxC proteins as recorded in 
PDB  database  [34–36]. More than 1500 compounds were obtained which are subjected to washing 
process to clean the geometry and rotameric conformations of all the compounds for proper 3D-
structural information. Duplicates and broken molecules were rejected. Out of all these, 829 
compounds having a recorded IC50 value were opt-out in a separate MOE database with .mdp file 
format. Five 2D-descriptors (TPSA, SLogP, SMR, a-acc, and don-acc) were also calculated for these 
compounds. pIC50 (-logIC50) value was also calculated from IC50 value for better statistical 
distribution of activity data. 

PLIF profile generation. Obtained 829 compounds were docked with StLpxC protein and 
simultaneous interaction fingerprints were generated using PLIF (protein ligand interaction 
fingerprints) protocol in MOE. Protein ligand interaction fingerprints (PLIF) profile (Figure 2) 
provides the information regarding the residues of protein taking part in the interaction with various 
bound ligands. This profile provides overall interaction database of sites which are highly important 
for protein function, and which can be targeted. Apart that other sites which could also be possibly 
important and may be used for designing better inhibitors and lead molecules to check the protein 
activity.  After PLIF profiling, the preparation of pharmacophore query has been performed and 3 
manually curated pharmacophore models has been created.  
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Figure 2. PLIF profile (upper) and its bar-graph representation (Below) based on 820 ligands binding 
to LpxC protein as obtained from Binding database (https://www.bindingdb.org/bind/index.jsp). 

Pharmacophore modeling and validation 

Pharmacophore model Generation: Utilizing this high number of inhibitor information various 
features were determined by the query generation which composed of hydrophobic, hydrophilic, 
metal binding, ionizable groups along-with donor and acceptor features. After manual curation, 3 
pharmacophore models were generated. Model 1 has total of 7 features including 1 metal binding 
donor-acceptor, 2 atomic features, 1 H-bond donor, 2 H-bond acceptor, and 1 aromatic ring features. 
Model 2 has a total of 5 features including 1 metal binding donor-acceptor, 1 atomic feature, 1 H-
bond donor, 1 H-bond acceptor and 1 aromatic ring features. Model 3 has total of 4 features including 
1 metal binding donor-acceptor, 1 atomic feature, 1 H-bond donor, and 1 H-bond acceptor features. 
Specifically, Zn metal ion binding feature is the common feature in all of them. Along-with these 
features 66 exclusion volume features are also present in all the 3 models. Obtained pharmacophore 
features generated from the protein–ligand complex is depicted that metal ion binding and 
hydrophobic interactions are predominantly formed with the amino acid residues of the selected 
protein (Figure 3). 

 

Figure 3. Three different Phamacophore models have been developed in the form of three schemes 
{Scheme 1 (A), Scheme 2 (B), and Scheme 3 (C)} on the basis of obtained PLIF profile. 

Pharmacophore model validation: Pharmacophore model validation substantially increased the 
chance of screening and developing potent molecules of high performance.  Overall industry of drug 
design has the utmost requirement of 3D protein structure and current technology can produce high 
quality homology models (if experimental structures are not present). StLpxC is also a comparative 
homology modeled protein which composed of all the conserved qualities and energetically stable 
conformation. Therefore, molecular docking approach of known inhibitors (most of which are 
experimentally solved with crystal structures) with modeled StLpxC has performed to get the PLIF 
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profile and the Pharmacophore models. This also provides us enough validation of activity and 
validation of made models (as known ligands with known IC50 values are utilized).  

Dataset Generation and Pharmacophore based virtual screening. Database generation is the 
main part of the whole process of identification of the best lead molecule during the screening 
process. For this purpose Asinex database [21], Natural products library from ZINC database [22], 
Thiophene analogues from Pubchem [23] and 20 compounds from the literature [24] to make in total 
of 693480 compounds were retrieved to make the whole dataset. All three pharmacophore models 
were applied as guided method for the screening with lead-like and drug-like filters used to get 
separate files for further analysis. A total of 6 such database files were obtained after the application 
of all 3 models on the input dataset of compounds. These screenings were run from the 
pharmacophore query panel itself. We got 7 compounds with drug-like filter from Model 1, only 2 
compounds with lead-like filter from Model 1, 394 compounds (using drug-like filter) from model 2, 
180 compounds (using lead-like filter) from Model 2, 10990 compounds (using drug-like filter) from 
model 3, and 4978 compounds (using lead-like filter) from model 3. Out of all the screened 
compounds 103 compounds (Supplementary Table S1) with highest binding affinity were tabulated. 

Pharmacophore based virtual screening and ADMET studies provides us 8 compounds which 
are non-toxic and having highest binding affinity. Compound s1_dl_mseq2 (Figure 4 upper left) 
showed good binding within the active pocket of the enzyme.  Apart from zinc ion it is making 
contacts with His265, Thr191, Phe192, Val218 and several other important residues. His163 and Zn-
ion is playing role In Hydrogen bonding with the ligand. Investigation of interaction profile of LpxC 
and compound s1_ll_mseq2 (Figure 4 middle left) demonstrated the active participation of Zinc ion, 
Thr191, Cys63, Lys239, and Lys143 in making H-bonds with the ligand. Residues like Leu18, Phe192, 
Ala215, His265, Gly264, Leu267, Asp140, and many more form a well-defined non-bonding network 
with the s1_ll_mseq2 ligand. In the case of s2_ll_mseq8 (Figure 4 below left), His79 play a crucial role 
in forming two H-bonds with the ligand and His238 is forming one H-bond with a bond length of 
3.12Å. Non-bonding interaction network consists of residues like His265, Glu78, Leu62, Phe192, 
Ile198, Asp197, Met61, Cys63, and some more. Rest protein-ligand interaction profiles can be 
observed in Supplementary Figures S1–5. 

   
S1_dl_mseq2    S1_dl_mseq2_last 
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S1_ll_mseq2      S1_ll_mseq2_last 

   
S2_ll_mseq8      S2_ll_mseq8_last 

Figure 4. Protein Ligand interaction profile for selected bound molecules docked with StLpxC 
enzyme. Upper panel shows the profile for s1_dl_mseq2 compound after docking (left) and after 
(right) simulation. Similarly, middle panel shows for s1_ll_mseq2 compound and below panel is 
showing the profile for s2_ll_mseq8 compound.  

Overall findings suggested that all the selected ligands are binding in the active site of the 
protein but ligand s1_ll_mseq2 found to attain the position (after MD simulation) in which it is 
penetrating the hydrophobic channel which acts as the entry point for the substrate (Figure 4 middle 
right). Attaining this position, it actually blocked the whole entry to exit path. Although it lost the 
polar connections with Zinc and any other atom (in present functional groups conformation), non-
bonding interactions like pi-cation, pi-alkyl, amide-pi stacked and Vander wall interactions (Lys143, 
Gly210, Ile198, Cys63, Cys207, Ala266, Thr191, His265, Leu201, Ser211, Gly264, Leu62, etc.) make 
good network to stabilize the molecule within the rigid secondary structural elements of the protein. 
Rest other molecules largely cover the exit point of the substrate as shown in Figure 12 and 
Supplementary Figure S6. 

Absorption, distribution, metabolism and excretion (ADME) and toxicity test Analysis of 

ADME properties. After administration of the drug through any route to the human body or in the 
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animal model, it undergoes the absorption, distribution, metabolism, excretion resulting active or 
passive transport to the target site [37–39]. Interaction with the target biological macromolecules 
might produce desirable or undesirable pharmacological effect. Drug design is a step-by-step 
evaluation process and lack of this evaluation factor may become the reason for rejection of the drug, 
which is costly for any drug manufacturing company. The bioavailability of a drug depends on the 
safety and efficacy, lack of safety and efficacy are the main causes of drug failure, which are mainly, 
depend on the ADME properties. MOE has inbuilt ligand property calculator which provides us 
information about the toxicity and other water solubility and lipophilicity related information.  

Out of all 103 compounds selected from pharmacophore modeling based guided screening, only 
23 compounds were subjected for ADMET calculations. These 23 compounds were screened applying 
drug-like and lead-like filters, they are quite robust compounds having all those properties (Table 1). 
Computational based in-silico toxicity measurement has been widely used due to their accuracy, 
rapidity, accessibility, which can provide information about any synthesis or natural origin 
compounds. Apart that, to identify the toxicity and adverse effect of the selected compounds (if any 
exists) ProTox-II server [26,27] has also been used for further confirmation. Each software was used 
to evaluate several toxicological parameters such as acute toxicity, hepatotoxicity, cytotoxicity, 
carcinogenicity, mutagenicity, immunotoxicity, and the result was achieved based on predicted 
median lethal dose (LD50) in mg/kg weight (Supplementary Table S2). According to the ProTox-II 
server all the 8 complexes having molecules (as shown in Figure 5) that have not shown any sort of 
toxicity at all are subjected for MD simulation studies. 

 

Figure 5. Molecular structure of selected eight hit compounds produced by pharmacophore based 
virtual screening and passed the ADMET test. 

Molecular Dynamics simulation 

Out of 23 compounds subjected to ADMET calculations, only 8 compounds were able to pass all 
the filters and these 8 compounds were subjected to flexible and dynamical simulation studies 
providing the opportunity to understand the induced fit ligand interaction with the protein in due 
course of time. The results composed of various factors like RMSD, RMSF, SASA, Rg, etc. which 
support the dynamical properties of the protein-ligand complexes during the MD simulation studies. 
RMSD graph Figure 6-(left) shows that most of the trajectories reached the equilibration state except 
for s1_dl_mseq3 and s2_dl_mseq34, which shows little fluctuations especially after 70ns simulation 
run. RMSF graph Figure 6-(right) shows residue wise fluctuations during simulation run. More 
fluctuation suggests the important involvement of the residue maybe in ligand binding or some other 
structural important event. 
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Figure 6. RMSD graph (Left) shows that most of the trajectories reached the equilibration state except 
for s1_dl_mseq3 and s2_dl_mseq34, which shows little fluctuations especially after 70ns simulation 
run. RMSF graph (right) shows residue wise fluctuations during the course of simulation run. More 
fluctuation suggests the important involvement of the residue maybe in ligand binding or some other 
important structural event. 

The MD simulation results based on total potential energy (which forms by combining different 
energy contributors like Bond, Angle, Dihedral, Planarity, Coulomb, VdW to make up the total 
potential energy) for all the 8 complexes suggested that upon ligand binding no significant deviations 
or conformational changes were taken place in the protein structure (Figure 7-(left)). Ligand binding 
energy shows the affinity with ligand binds to the protein (Figure 7-(right)). The least static ligand 
binding energy for the whole 100ns simulation run was demonstrated dramatically by s1_dl_mseq2 
and s3_ll_mseq1366 complexes (~-400 and ~-300 kJ/mol respectively). This maybe the results of the 
higher potential and salvation energy components of the ligand. But if we check the overall energy 
comparison of potential, salvation and overall bonding energy, it is clear that s2_ll_mseq8 ligand 
shows optimum binding affinity throughout the simulation run which if monitored closely, suggests 
that it is the optimum ligand to be worked on for futuristic drug development research work.   

 

Figure 7. Total potential energy graph (left panel) for various protein-ligand complexes. Complex 
s1_ll_mseq2 shows the least potential energy and complex s3_ll_mseq1366 shows the highest energy 
of total potential. Right panel demonstrates the ligand free binding energy within the respective 
complexes. As can be observed ligand s1_dl_mseq2 has the lowest binding energy and complex 
s1_dl_mseq3 has the highest ligand binding energy out of all 8 complexes.  Lower the binding energy 
better is the suggested interaction of ligand with the receptor. 

The RMSD of ligand conformation and movement, Rg fluctuations, and SASA values in their 
respective complexes during the period of simulation (100 ns) are presented in Figures 8 and 9. Figure 
8 (left and right) shows the conformation and movement of ligand from its actual docked position 
and pose during simulation of 100ns. In the left graph ligand conformation RMSD shows s2_ll_mseq8 
remains in good and static conformation without more deviation from its initial structural framework 
whereas s2_dl_mseq34 changed its conformation most out of all 8 compounds. As per the graph 
shown in right, s2_ll_mseq8, s1_dl_mseq2, and s1_ll_mseq2 ligands deviated least from their initial 
position and remained bounded with the protein maintaining their position within the active site. 
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Rest other ligands are found to be outside the recommended bounded distance of 4Å suggesting 
lesser potent molecules. Although the conformational and movement RMSD of s1_ll_mseq2 found to 
be very prominent, its binding energy with the protein is weak which needs to be addressed if we 
choose this ligand for further drug development. 

 

Figure 8. In the left graph ligand conformation RMSD shows s1_dl_mseq2 and s1_ll_mseq2 remained 
in good and static conformation without more deviation from its initial structural framework whereas 
s2_dl_mseq34 changed its conformation most out of all 8 compounds. As per the right shown graph, 
s2_ll_mseq8, s1_dl_mseq2, and s1_ll_mseq2 ligands deviates least from its initial position and 
remained bounded with the protein maintaining its position within the active site. Rest other ligands 
are found to be outside the recommended bounded distance of 4Å suggesting lesser potent molecules. 

Left graph demonstrating the conformational positioning of the ligand while in contact with the 
protein residues, it is clear that s2_ll_mseq8, s1_ll_mseq2, and s1_dl_mseq2 are maintaining their 
initial pose without deviating from their mean position and conformational shape. This often 
suggests that binding of ligand in that particular pose is most favourable in making connections with 
the surrounding residues. Right graph defines the overall movement of the ligand during the course 
of 100ns simulation run from its initial placement. Ligands s2_ll_mseq8 along-with s1_ll_mseq2, 
s1_dl_mseq2 and s2_dl_mseq34 remained to be within the suggested and favoured 4Å range of active 
pocket residues. S1_dl_mseq3 tried to be in its original place but later moved little away from its 
partnering residues. Rest ligands are treated to be moved out of the binding pocket (maybe) because 
of less optimum binding environment. 

S2_dl_mseq33 and s3_ll_mseq1366 shows unrest and making a movement outside the active 
cum binding pocket of StLpxC. Rest of the ligands shows static and stable binding in the active site 
of the StLpxC protein, ligands s1_dl_mseq2, s1_ll_mseq2, and s2_ll_mseq8 demonstrates their high 
potency to be developed into lead potent inhibitors of LpxC which may pass the clinical trials too. 
Figure 9 (left panel) shows the values for radius of gyration (Rg) of the selected protein-ligand 
complexes. Rg denotes the degree of compactness and rigidness of the protein. Greater Rg value 
indicates higher flexibility and conformation of the protein whereas lower Rg value denotes more 
rigidity [40]. We can easily observe that all complexes have Rg values with-in the narrow window of 
19-19.5 Å, depicting the conformational stability and rigidity. On top of that the solvent accessible 
surface area (SASA) plot (Figure 9 right panel) also demonstrates the closed conformation of the 
protein with conserved and defined packing (even after ligand binding).  
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Figure 9. Rg plot (left) and SASA plot (right) for all 8 complexes. 

Number of H-bonds in the solute (protein-ligand complex) is the overall summation of all the 
possible H-bonding interactions took place inra- and inter-molecular way during the whole 
simulation run can be observed in Figure 10-(left). Minimum number of H-bonds formed was found 
to be ~90 and maximum numbers of H-bonds formed were found to be ~266 during the whole 50ns 
simulation run. Similarly, in Figure 10-(right), total number of H-bonds formed between protein-
ligand complex (solute) and surrounding water and ionic cofactors (solute) were calculated. ~492 to 
~585 H-bonds were found to be formed between the two. 

  

Figure 10. Number of H-bonds in the solute (protein-ligand complex) took place inra- and 
intermolecular way during the whole simulation run (left graph). In right graph, total number of H-
bonds formed between protein-ligand complex (solute) and surrounding water and ionic cofactors 
(solute) were calculated. 

Compound s1_dl_mseq2 (Figure 4 upper right) showed good binding within the active pocket 
of the enzyme.  Apart from electrostatic interaction with zinc ion it is making polar contacts with 
Cys63 and Asp197. His265, Thr191, Phe192, Phe194 and several other important residues interact 
with the ligand non-bindingly. In the case of s2_ll_mseq8 (Figure 4 below right), most of the polar 
interactions lost with time. His79 played a crucial role in forming two H-bonds with the ligand as 
before. Especially Zinc ion interacted with the ligand via two strong electrostatic bondings. Non-
bonding interaction network consisted of residues like Leu62, Phe192, Met61, Cys63, Glu78, and 
Leu201.  

Potential energy and solvation energy graphs (which contribute to the ligand binding energy) 
Figure 11 for all 8 protein-ligand complexes. Individual ligand, receptor and complex graphs were 
constructed for both potential and solvation energy parameters. This provides us clear idea of how 
individual components of the system contribute to stabilizing or destabilizing the whole system in 
presence and absence of ligands. 
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Figure 11. Potential energy and salvation energy graphs for all 8 protein-ligand complexes. Individual 
ligand, receptor and complex graphs were constructed for both potential and salvation energy 
parameters. 
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Figure 12. [Upper panel] Results obtained after 100ns simulation run in the form of finally attained 
conformational poses of protein-ligand complexes S1_dl_mseq2 (A), S1_ll_mseq2 (B), and 
S2_ll_mseq8 (C). [Below panel] Pictures of aligned superimposed conformational poses obtained 
before and after the simulation. 

As we overlay the docked and simulated poses of our selected protein-ligand complexes, we 
found that the Cα RMSD for both poses are in good overall stable conformations defining that 
protein-ligand complex and the protein itself is very stable in nature. The structural alignment 
between docked pose of s1_dl_mseq2 and simulated pose of s1_dl_mseq2 has a Cα RMSD of 0.859 
Å. With a similar fashion, the structural alignment between docked s1_ll_mseq2 and simulated 
s1_ll_mseq2 has a Cα RMSD of 1.084 Å. This little hike in RMSD is because of the straightened 
conformation of ligand which allows it to cover the entry point hydrophobic channel of the LpxC 
protein. The structural alignment between docked s2_ll_mseq8 and simulated s2_ll_mseq8 has a Cα 
RMSD of 1.146 Å. In this case the conformation of ligand changed a lot within the exit point 
hydrophobic patch of the enzyme. 

5. Conclusions 

UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC), a zinc coordinating enzyme that act on 
the first committed step in Lipid A biosynthesis, is a crucial component of the cell envelope of Gram-
negative bacteria. The most advanced, disclosed LpxC inhibitors showing antibacterial activity 
coordinate zinc through a hydroxamate moiety with concerns about binding to other 
metalloenzymes. The discovery, optimization, and efficacy of various such inhibitors met with the 
challenging unfruitful end towards the inhibition of the enzyme. Hence the need for new specifically 
potent natural or synthetic occurring inhibitors as medicinal alternatives against such deadly 
opportunistic pathogen led us to perform this study. This work includes the principles of in-silico 
pharmacophore based drug design to find lead molecules in the form of ligands s1_dl_mseq2, 
s1_ll_mseq2, and s2_ll_mseq8 which demonstrated high potency to be developed into a lead potent 
inhibitor of LpxC which need to be further validated by in-vitro and in-vivo experiments and further 
go for the next stage of clinical trials. 
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