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Abstract: Commercial buildings situated in hot and humid tropical climates rely significantly on 

cooling systems to maintain optimal occupant comfort. A well-accurate day-ahead load profile 

prediction plays a pivotal role in planning the energy requirements of cooling systems. Despite the 

pressing need for effective day-ahead cooling load predictions, current methodologies have not 

fully harnessed the potential of advanced deep-learning techniques. This research paper aims to 

address this gap by investigating the application of innovative deep learning models in day-ahead 

hourly cooling load prediction for commercial buildings situated in tropical climates. A range of 

deep learning techniques, including Deep Neural Network, Convolutional Neural Networks, 

Recurrent Neural Networks, and Long Short-Term Memory networks are employed to enhance 

prediction accuracy. Furthermore, these individual deep learning techniques are synergistically 

integrated to create hybrid models, such as CNN-LSTM and Sequence-to-Sequence models. An 

extensive comparative analysis is conducted to identify the most effective hybrid model. Sequence-

to-sequence model provided better performance compared to the other single and hybrid models. 

Experiments are conducted to choose the time horizons from the past that can serve as input to the 

models. Further, the influence of various categories of input parameters on prediction performance 

has been assessed. Historical cooling load, calendar features and outdoor weather parameters are 

found in decreasing order of influence on prediction accuracy. This research focuses on buildings 

located in Singapore and presents a comprehensive case study to validate the proposed models and 

methodologies. 

Keywords: cooling load prediction; deep learning; sequence-to-sequence; day-ahead predictions 

 

1. Introduction 

Tropical climate is characterized by its all-year-round elevated temperature and humidity. Air 

conditioning systems play a pivotal role in maintaining occupant comfort in the built environment 

in tropical regions. As the rise in atmospheric temperature becomes a major concern about global 

warming, the energy demand of the buildings is expected to drastically increase. Successively, global 

warming and energy demand fuel each other’s growth. At the same time, CO2 emission by buildings 

is increasing at an alarming rate and likely to contribute to one third of the overall CO2 emissions 

soon [2]. Reducing the energy demand of buildings is particularly important in these circumstances.  

Heating, Ventilation and Air Conditioning (HVAC) systems account for 60% of the energy usage 

of buildings in tropical climates [1,2]. Central chilled water plants produce chilled water for the air-

conditioning needs of the large commercial or public buildings in tropical climates. Predictive control 

can enhance the energy efficiency of the central cooling system. Accurate prediction of cooling load 

is a crucial part of this predictive control. Predictions at various time horizons cater to different 

purposes. While short-term load predictions on an hourly basis or at a more reduced time granularity 
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help to dynamically control the chilled water flow rates of the chiller, long-term load predictions, 

such as day-ahead forecast help to plan the next day’s energy demands. Using day-ahead cooling 

load predictions, additional demands can be satisfied easily, resources can be managed efficiently, or 

a proper demand-response system can be activated [3].  

Cooling load predictions can be done in two ways – either by physical models or by data-driven 

models. Physical models are governed by first principle approaches and hence require detailed 

information about building, its internal environment, and various external factors. These systems can 

be complex and less tolerant of errors. Data-driven models, on the other hand, utilize historical data 

to derive the relationship between input variables and the cooling load. They are easy to develop and 

might unravel the hidden patterns in data. The upsurge in sensor technologies makes data 

availability no longer an issue in built environments. Advanced Building Automation Systems (BAS) 

are available in many buildings nowadays. And big data techniques foster the storage and analysis 

of substantial amounts of data. These facts have fueled the growth of more data-driven techniques 

for cooling load prediction of buildings. If enough quantity of data is available, reliable data-driven 

models can be developed.  

Statistical, machine learning and deep learning methods are the three important categories of 

data-driven techniques utilized in cooling load prediction. Compared to statistical and machine 

learning methods, deep learning techniques often provide improved prediction accuracies. This 

success is attributed to the architectural trait of deep learning algorithms. Deep learning techniques 

are vigorous in learning the hidden non-linear characteristics of the data. The term ‘deep’ indicates 

that the data undergoes transformation in multiple layers before reaching the output layer. They are 

derived from the Neural Network architecture, but the layered deep architecture sequentially extracts 

higher level features from the input data. A few drawbacks associated with data-driven models can 

be listed as follows. 1) Data is needed of good quantity and quality to develop reliable data-driven 

models, and 2) Often data-driven models are less interpretable compared to physical models.  

This paper is an endeavor to harness the potential of deep learning techniques to predict the 

hourly cooling load of the next day. External weather parameters, internal parameters like room 

humidity and temperature, calendar information, and historical cooling load were available as input 

parameters. Although occupancy data has been reported to have a pivotal role in cooling load 

predictions, this paper could not explore its potential as the information is not collected by the case 

buildings [29]. Calendar features are added to substitute the occupancy data to the extent possible. 

Next day’s hourly cooling load is predicted 12 hours ahead. Deep learning algorithms, including 

Deep Neural Network (DNN), Convolutional Neural Networks (CNN), Recurrent Neural Networks 

(RNN), and Long Short-Term Memory networks (LSTM) are used as standalone models first. Then, 

their coactive strength is experimented by combining them into hybrid models. CNN-LSTM and 

Sequence-to-sequence models are assayed in this sort.  

2. Literature Survey 

Conventional cooling load prediction methods used statistical time series regression techniques. 

These algorithms include Multiple Linear Regression (MLR), Auto-Regression (AR), Auto-Regressive 

Integrated Moving Average (ARIMA), Auto-Regression with Exogenous Inputs (ARX) etc. [5–7]. 

They are simpler methods, but often less accurate compared to machine learning and deep learning 

counterparts in load prediction [4].  

Day ahead load prediction can be done in two ways – either predict a single value that is the 

anticipated peak load for the next day [4] or predict multiple values, which are the anticipated load 

for each hour of the next day. The second problem is called multi-step prediction task, which is more 

challenging compared to the first one. Compared to statistical methods, machine learning and deep 

learning approaches are prevalent for multi-step prediction. In literature, multi-step prediction is 

done in two ways. In the first approach the multi-output problem will be transformed into multiple 

independent single-output problems [8]. The second approach deploys an inherently multi-target 

capable algorithm to produce the output. Support Vector Regression (SVR) is an example of the first 
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category, as it is inherently a single target algorithm, but many times used in multi-step load 

prediction tasks [3,4,9,10].  

Decision Tree (DT) based methods encompassing Random Forest (RF) and XGBoost are also 

prevailing techniques in day-ahead load prediction. Dudek in [12] discusses day ahead load curve 

prediction using Random Forest. Rule-based feature selection for improvising the prediction results 

of Random Forest is proposed by Lahouar et.al [11]. An online learning method is followed to predict 

the next 24-hour load. XGBoost is an ensemble of decision trees which uses boosting techniques to 

enhance performance. XGBoost is inherently designed as a single output model but can be 

transformed to multi-output case as well. This ensemble method used for day-ahead load prediction 

can be found in [3] and [13]. Another ensemble decision tree method named bagged regression trees 

are employed for day ahead load prediction in [14].  

The skill of Artificial Neural Networks (ANN) in unveiling the non-linear relationships in the 

data makes them specifically suitable for load forecasting problems. Performance can be further 

upgraded by combining other Machine Learning techniques with ANN. For example, k-means 

clustering applied to cluster the patterns and then ANN sub-models for each cluster can be found in 

[15]. A similar sort of performance improvement is materialized in [16] by integrating Self-organizing 

maps (SOM) with ANN. SOM functions as a preprocessing technique for daily electric load 

forecasting. A two-step approach where Wavelet Transform (WT) is blended with ANN is discussed 

in [17]. WT is used for decomposing the input signal before applying ANN for the next day’s load 

prediction. Then the results are refined by a fuzzy inference system in the second step.  

Many recent ventures can be seen where deep learning techniques are exerted for the load 

forecast in buildings. But they are prevalently used for short-term load forecasts like hour ahead or 

half an hour ahead predictions where a single step is predicted. Cai et al. [18] experimented with the 

effectiveness of Convolutional Neural Networks (CNN) and Recurrent Neural Network (RNN) for 

multi-step prediction. Electricity load for the next 24 hours is predicted in this work with improved 

performance compared to seasonal autoregressive integrated moving average with exogenous inputs 

(SARIMAX). 24-hour ahead electricity load forecasting is discussed in [19] as well. This work 

compares the power of different shallow machine learning techniques against the deep learning 

technique – CNN. This paper reports that MLR, SVR and Multivariate Adaptive Regression Splines 

(MARS) performed better than CNN for day-ahead electricity load forecasting.  

Sequence-to-sequence architecture has been tried in electricity load forecasting and building 

energy consumption forecasting. [21] discusses electricity load forecasting of variable refrigerant flow 

systems. Building energy consumption forecasting is another time series regression problem where 

sequence-to-sequence model is reported to be providing satisfactory results [22]. Multiple time 

horizons have been attempted in this work. In the context of 24-hour cooling load prediction, a deep 

neural network (DNN) architecture tried both as a feature selector and predictor can be found in [9]. 

But the DNN architecture is just a deep artificial neural network. This paper reports that the DNN 

was found to enhance the performance while used as a feature selector. Li et.al., [20] reports the merit 

of sequence-to-sequence architecture in short-term one-step ahead cooling load prediction. But multi-

step prediction is not considered in this work.  

 Applicability of attention based RNN for 24-hour ahead cooling load prediction has been 

discussed in [23]. Attention mechanism is utilized to improve the interpretability of the model. Multi-

step ahead cooling load prediction by using RNN model is discussed in [24] as well. Three distinct 

aspects of RNN based forecasting have been considered here - direct approach, recursive approach, 

and multi-input multi-output approach. 

This paper explores various deep learning architectures for day-ahead cooling load profile 

prediction. DNN, CNN, RNN and LSTM models are used as standalone models and then they are 

combined to form hybrid architectures as well. The importance of input parameters has been assessed 

and parameters are chosen based on their influence on target variable. In addition to this, the 

contribution of each category of input variables to the prediction performance has been assessed. The 

best performing model is chosen based on the comparison studies done as part of the experiments.  
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3. Materials and Methods 

The overall research methodology is depicted in Figure 1. The first step comprises data collection 

from various sources like Building Management Systems, simulations, and external weather sources. 

External weather parameters including temperature, relative humidity, wind speed, and solar 

radiation are collected from Solcast website [28]. As data from diverse sources had different time 

scales, cleaning and merging them to make an hourly dataset constitutes the first step in data 

preprocessing. In the ensuing step, the missing data was identified, and the corresponding days were 

removed from the final dataset. Indoor weather parameters and historical cooling load data were 

collected through the help of the Building Management System. Historical cooling load is calculated 

by extracting the flow rates, chilled water supply and return temperatures from the building 

management system.  

 

Figure 1. The overall research methodology. 

3.1. Feature selection 

After cleaning, merging, and handling missing data, an exhaustive analysis was performed to 

select the features required for prediction. Instead of performing a correlation analysis, importance 

of parameters was assessed with the help of a deep learning model itself. The LSTM model with a 

single layer of hidden neurons is selected as the base model to do this assessment. Total parameters 

available for analysis are listed in Table 1. 

Table 1. Initial set of parameters. 

Category Features 

Outside weather features 

Temperature, Solar radiation, 

wind speed, relative humidity, 

precipitable water 

Indoor weather features 
Temperature, relative humidity, 

CO2 

Calendar features 
Hour-of-the-day, Day-of-the-

week 

Cooling load Historical cooling load 
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Different combinations of these parameters were tried for feature selection. It was found that 

historical cooling load and hour of the day are the most key features when day-ahead cooling load 

prediction is considered. From the outdoor weather parameters group, temperature, wind speed, 

humidity and solar radiation are found to be important, whereas precipitable water does not affect 

the results much. Similarly indoor variables like temperature, humidity and CO2 levels were not 

found important in prediction. A culmination was drawn that the indoor weather parameters do not 

considerably influence the next day’s hourly cooling load prediction. The analysis was wound up 

with the list of parameters enclosed in Table 2 chosen for prediction. The subsequent experiments 

and comparisons are performed by using this selected feature set.  

Table 2. Parameters selected after analysis. 

Category Features 

Outside weather features 

Temperature, Solar radiation, 

wind speed, relative 

humidity 

Indoor weather features - 

Calendar features 
Hour-of-the-day, Day-of-the-

week 

Cooling load Historical cooling load 

3.2. Normalization and data preparation 

As can be observed from Table 2, a total of seven input features were selected for the prediction 

task. This refined dataset is passed through a normalization process. Normalization brings all the 

features to a standard scale of 0 to 1, facilitating the convergence of prediction models easy and fast. 

This process is done as per equation 1.  𝑥௜ᇱ =  ௫೔ି௫೘೔೙௫೘ೌೣି௫೘೔೙      (1) 

where 𝑥௜ is the ith sample, 𝑥௠௜௡ and 𝑥௠௔௫ are the minimum and maximum values for that feature 

and 𝑥௜ᇱ is the normalized value. 

The next step entails preparing the dataset for different learning tasks, as each might need a 

slightly different treatment of the input data. For example, Deep Neural Networks requisite input 

data in a 2-dimensional shape. Data can be fed in format (x,y) where x is the input feature vector of 

shape Nxd and y is the output vector of shape Nxh. Here N denotes the number of samples in the 

dataset, d is the dimension of the input, and h is the number of hours of the next day being predicted. 

To cater deep learning models, data is converted to three-dimensional input samples and 

complementary target samples. The input dataset has shape NxTxd and the target dataset has the 

shape Nxhx1, where T denotes the number of historical hours given as input to the model. For 

example, if 12 hour’s data of the daytime of the previous two days is given as input to the model, 

then 𝑇 = 24.  

3.3. Prediction models 

To perform an extensive comparison of the ascendancy of various deep learning models in day-

ahead cooling load prediction, four standalone models and two hybrid models are implemented in 

this work. DNN, CNN, RNN and LSTM are the standalone models while CNN-LSTM and sequence-

to-sequence are the hybrid models. A brief description about each of these learning algorithms is 

given in the sub-sections below. 

3.3.1. Deep neural network 

Deep neural networks have a layered architecture. It is like Artificial Neural Networks in terms 

of its functioning and architecture, but the difference mainly comes from the number of layers added 
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to make the network ‘deep’. Each layer will help the network to extract more higher-level features. 

Unlike conventional neural networks, DNN can add more densely connected layers, each of which 

can use different activation functions if required. Its deftness in adding dropout layers also makes 

them superior to the ANN architecture [9]. This feature makes it capable of dropping a percentage of 

neurons randomly from any layer, and consequently avoids overfitting. The input layer will accept 

the input, hidden layers process the input to extract higher level features and finally output layer 

provides the output. This network can be used as a multi-output model. Depending on the number 

of neurons present in the output layer, multi-output feature can be easily tailored to this architecture. 

3.3.2. Convolutional neural network 

A convolutional Neural Network is a kind of Deep learning network with feed forward 

structure. They use kernels or filters to process the input, which slide over the input and compute the 

cross correlation between the kernel and each part of the input. In this way highly correlated part of 

the input will get more weightage. This method was originally built for image processing tasks, but 

nowadays found successful in time series regression problems like load prediction [18,25,26] as well. 

In addition to the input layer, convolution layers and pooling layers, CNN can have dense layer also 

at the end of the network. This architecture makes it suitable for prediction tasks. With a suitably 

designed dense layer at the end, multi-output prediction is also possible with this network. Upon 

removal of the eventual dense layer, the same architecture serves the purpose of a feature extractor. 

Depending on the size of the kernels used in filtering, higher-level features can be extracted from the 

input. 

When used as a standalone model, CNN follows its conventional architecture with a dense layer 

at the end. Convolution layers can be one dimensional or two-dimensional, the selection 

commensurate with the shape of the filter. One dimensional convolution layer requires only the 

length of the filter to be mentioned, whereas the width is automatically set equal to the width of the 

input data set. Width in this case refers to the number of features in the dataset. Conversely, two-

dimensional convolution layer works with a two-dimensional kernel which will be usually 

mentioned like 2x2, 3x3 or 5x5. Convolution layers extract higher level features from the input data, 

which helps it to predict better.  

3.3.3. Recurrent neural network  

Recurrent neural networks have a structure different from the feed forward neural networks. In 

feed forward networks, input flows in the forward direction only, whereas in recurrent neural 

networks, recurrent connections are possible, which means that output from an internal node can 

impact the subsequent input to the same node. These recurrent connections make this network 

specifically suitable for learning from sequential data like time series. The basic architecture of an 

RNN is depicted in Figure 2.  

 

Figure 2. Basic architecture of RNN. 

Recurrent neural network cell has multiple fixed numbers of hidden units one for each time step 

the network processes. Each unit can maintain an internal hidden state which represents the memory 
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that unit holds regarding the sequential data. This hidden state will be updated at each timestep to 

reflect the changes in the sequential data. Hidden state update is done as per equation 2.  ℎ௧ = 𝑓(𝑊௛ℎ௧ିଵ + 𝑊௫𝑋௧ + 𝑏௛) (2) 
where ℎ௧ is the vector representing hidden state at time t, 𝑊௫ denotes the weights associated with 

inputs, 𝑊௛ are the weights associated with hidden neurons, 𝑋௧ is the input vector and 𝑏௛is the bias 

vector at the hidden layer. 𝑓 denotes the activation function used at the hidden layer. Based on the 

number of inputs and outputs, RNN can be configured as one-to-one, one-to-many, many-to-one, or 

many-to-many. In this work, the RNN takes multiple time steps as input and produces multiple time 

steps as output. Hence it is used as a many-to-many network.  

3.3.4. Long short-term memory 

Long short-term memory (LSTM) is an advanced sort of recurrent neural network, specially 

designed to contend with the problem of vanishing gradients. With the help of a cell and three gates 

as the basic building blocks, it enhances the memorizing capability of recurrent neural networks. 

These three gates are termed as input, output and forget gates. LSTM network can memorize 

thousands of time steps, and this makes it particularly suitable for handling time series problems. 

The gates are used to regulate the flow in and out of cell state. The input gate regulates the flow of 

input to the memory cell and hence decides what latest information is to be added to the current state. 

The output gate determines what information from the memory cell is to be passed to the output. 

Conversely, forget gate helps to decide what information is to be discarded or forgot from the current 

state. With forget gate, LSTM network efficiently forgets the old or irrelevant information. In short, 

LSTM can discriminatively maintain or discard information as the data flows through the network, 

which makes it suitable for learning long sequences. LSTM performs its work with the following four 

steps. 

Step 1: Output of the forget gate, 𝑓௧ is calculated in the first step. 𝑓௧ =  𝜎൫𝑤௙ሾ𝑋௧, 𝑌௧ିଵሿ + 𝑏௙൯ (3) 

where 𝑤௙ and 𝑏௙ denote the weight vector and the bias vector at forget gate, respectively. 𝑋௧ is the 

input at current iteration, 𝑌௧ିଵ  is the output from the previous iteration, and σ is the activation 

function. 

Step 2: The cell state output 𝐶௧ᇱ and the output of the input gate 𝑖௧ are calculated. 𝐶௧ᇱ = 𝑎௜(𝑤௖ሾ𝑋௧, 𝑌௧ିଵሿ + 𝑏௖) (4) 

𝑖௧ =  𝜎(𝑤௜ሾ𝑋௧, 𝑌௧ିଵሿ + 𝑏௜) (5) 

Here, 𝑎௜ is the input activation function, 𝑤௖ and 𝑏௖ are the weight and bias vectors of the cell state, 𝑤௜ and 𝑏௜ are the weight and bias vectors at input gate. 

Step 3: The cell state value 𝐶௧ is updated in this step. 𝐶௧ =  𝑖௧ . 𝐶௧ᇱ + 𝑓௧ . 𝐶௧ିଵ (6) 

Step 4: Output of the output gate, 𝑂௧ is calculated in this step. This gate combines previous 

iterations output 𝑌௧ିଵ and the current input 𝑋௧, using 𝑏௢ as the bias and 𝑤௢ as the weight vector. 

Finally, the output 𝑌௧ is computed. 𝑂௧ =  𝜎(𝑤௢ሾ𝑋௧, 𝑌௧ିଵሿ + 𝑏௢) (7) 

𝑌௧ =  𝑂௧ . 𝑎௢(𝐶௧) (8) 

3.3.5. CNN-LSTM 
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Convolutional neural network and long short-term memory are connected sequentially to make 

a hybrid structure [27]. The structure of this hybrid model is shown in Figure 3. CNN is used as a 

feature extractor here. During the feature selection process done in the beginning, it was identified 

that the historical cooling load is the most influential parameter in prediction. Hence extensive 

experiments are conducted to analyze what combination of inputs to CNN and LSTM will enhance 

the results. Through experiments, it is concluded that the hybrid model provides maximum 

performance when the inputs excluding cooling load are given as input to the CNN. More 

informative features are extracted from these input parameters using CNN. Then the extracted 

features are combined with the original cooling load features before providing as input to the LSTM 

model. This process is shown in Figure 3. 

 

Figure 3. Structure of CNN-LSTM hybrid model. 

Outputs of LSTM network is processed by a dense layer to finally obtain the desired multi-step 

prediction. One dimensional as well as two-dimensional convolution layers are tried in CNN. The 

LSTM can consider the sequential behavior of historical cooling load as the cooling load is given in 

raw form to the LSTM network, without passing through the CNN. The configuration of the CNN-

LSTM model used for processing SIT@Dover dataset in this work is shown in Table 3. The number of 

features and the kernel size at each convolution layer are set in an ascending order as depicted in the 

table. One-dimensional convolution gave better performance compared to the two-dimensional one.  

Table 3. Configuration of CNN-LSTM network. 

Layer Size 

Input1 T x (D-1) 

Input2 T x 1 

Convolution1, 2 
Feature size = 16, kernel size=2 

activation=tanh 

Convolution 3, 4, 5, 6 
Feature size = 16, kernel size=3 

activation=tanh 

Convolution 7 

 

Feature size = 48, kernel size=3 

activation=tanh 

Reshape T x - 

Concatenate Output of Reshape and Input2 

LSTM 

 

Number of units = 128, activation = 

tanh 

Dense Number of units = h 
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3.3.6. Sequence-to-sequence 

The sequence-to-sequence model, also known as encoder-decoder model is a combination of two 

LSTM networks, the first one being used for encoding the information contained in the input 

sequence and the second one being used for generating the output sequence. A dense layer will be 

connected at the end of LSTM network to take multi-step prediction as output. Encoder LSTM passes 

its hidden states and cell states to the decoder; hence this state is the encoded information. Encoder 

and decoder can have diverse configurations including the number of hidden units, activation 

functions and other parameters. In this work, both LSTM networks use 64 hidden neurons and ‘tanh’ 

as the activation function. Final dense layer has ‘h’ neurons and ‘linear’ activation being used. The 

encoder’s return state is set to true to retrieve the hidden state information from the encoder.  

In addition to the state information retrieved from the encoder, decoder LSTM can take separate 

input from outside, mentioned as input2 in Figure 4. Generally, on decoder side, previous LSTM 

units’ output can be given as input to the consequent LSTM unit. Another alternative option is to 

provide ground truth information as input to the decoder. This method is known as teacher forcing 

and is usually popular in language processing models. Teacher forcing ensures fast and effective 

training of the model. A problem associated with this method is that it might cause errors while using 

a model trained this way in real scenarios for prediction. The model might confront unforeseen 

sequences in real prediction scenarios. In this work also, it is not found realistic to provide the ground 

truth as input to the decoder, and hence an alternate option is adopted here. From the historical 

cooling load series, the most similar day’s load sequence is given as input to the decoder. During 

correlation analysis it is observed that the time lags that have more resemblance to the target load 

sequence are the previous day’s load sequence and the previous week’s same day’s load sequence. 

Experiments revealed that instead of previous day’s load sequence, previous week’s, same day’s load 

sequence is giving better results. Hence this load sequence is given as input to the decoder model.  

 

Figure 4. sequence-to-sequence model architecture. 

3.3.7. Performance metrics 

The performance evaluation metrics are carefully chosen to epitomize an extensive validation 

and comparison of the developed models. To ensure the reliability of results, 10 trial runs are 

conducted for each experiment and the performance measures are averaged over these trials. Root 

Mean Squared Error (RMSE), Coefficient of variation of Root Mean Squared Error (CV-RMSE), Mean 

Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE) are the performance metrics 

selected in this work. Computation of these metrics can be found in equations 9 to 12. 

 𝐑𝐌𝐒𝐄 =  ඩ𝟏𝐍 ෍(𝐲𝐢ᇱ − 𝐲𝐢)𝟐𝐍
𝐢ୀ𝟏  (𝟗) 
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 𝐂𝐕 − 𝐑𝐌𝐒𝐄 = ට𝟏𝐍 ∑ (𝐲𝐢ᇱ − 𝐲𝐢)𝟐𝐍𝐢ୀ𝟏𝟏𝐍 ∑ 𝐲𝐢ᇱ𝐍𝐢ୀ𝟏  (𝟏𝟎) 

 𝐌𝐀𝐏𝐄 =  𝟏𝐍 ෍ |𝐲𝐢ᇱ − 𝐲𝐢|𝐲𝐢 ∗ 𝟏𝟎𝟎%𝐍
𝐢ୀ𝟏  (𝟏𝟏)  

 𝐌𝐀𝐄 =  𝟏𝐍 ෍|𝐲𝐢ᇱ − 𝐲𝐢|𝐍
𝐢ୀ𝟏  (𝟏𝟐)  

where N is the number of samples in test set, 𝑦௜ᇱ is the predicted value and 𝑦௜ is the original value of 

the ith sample in the test set. 

4. Results and discussion 

Experiments are conducted on a Windows 11 machine with an Intel(R) Core (TM) i7-12650H 

Processor and 64 GB physical memory. PyCharm Integrated Development Environment is used for 

implementing prediction models, whereas Keras deep learning library on the TensorFlow platform 

functioned as the supporting software platform. 

4.1. Data 

Three datasets are used in the experiments; two of them are authentic building datasets and the 

third one is a simulated dataset. The buildings are educational institution buildings in Singapore. The 

first dataset appertains to a single office floor in the SIT@Dover building, referred to as the SIT@Dover 

dataset in this paper. Attributable to the fact that this dataset is limited to a single office floor, the 

range of cooling load values is comparatively narrower. The maximum recorded cooling load value 

is 43 kW in this dataset. This building has 75F building management system implemented in it, 

making attainment of data easier. Data spans the timeframe from 1st January 2023 to 7th July 2023, 

recorded at 1-hour intervals. Holidays are not considered while preparing the dataset. Since this 

office works only during daytime, data between 7 AM and 6 PM is considered here, making a total 

of 1524 samples to this dataset.  

The second real dataset, referred as the 'SIT@NYP dataset,' is collected from another institutional 

building in Singapore which is the SIT@NYP building. This dataset has a wider range of cooling load 

values as it spans an entire building with seven floors. The highest cooling load recorded within this 

dataset is 1525 kW. Considering the working hours of the building, holidays are excluded and only 

the data from 8 AM to 6PM is selected for experiments. Minute wise dataset is transformed to an 

hourly one. The period of the dataset spans from May 1st, 2022, to September 30th, 2022, 

encompassing a total of 1144 individual samples.  

The third dataset is simulated by the Integrated Environmental Solution Virtual Environment 

(IESVE) software. The simulated space corresponds to the Co-Innovation and Translation Workshop 

Room, situated on the 16th floor of the innovative Super Low-Energy Building, overseen by the 

Building Construction Authority in Singapore. The simulation model incorporates input variables 

encompassing outdoor and indoor design conditions, including location, space data, and weather 

data. Temperature, relative humidity, internal heat gain and the factors attributed to occupants, 

lighting, and computers are the input attributes considered. This dataset comprises one year of data 

collected at 1-hour intervals, but only day hours from 9 AM to 6PM are considered, and hence totals 

to 3650 samples. 

Train and test sets are derived from the datasets by keeping the sequential order unperturbed. 

For the SIT@Dover dataset, data from 1st January to 15th June 2023 is considered as the training set 

and the rest used to create the test set. Similarly, for SIT@NYP dataset, training set corresponds to the 

period 1st May to 9th September 2023 and for simulated dataset, training set corresponds to 1st 

January to 30th November 2022.  
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4.2. Tuning hyper parameters of models 

For all the models, ‘Adamax’ performed the function of optimizer. This conclusion was drawn 

after comparing it with the other optimizers like Adam, SGD and RMSprop. Learning rate of 0.001 

was chosen from the set [0.1, 0.01, 0.001]. Compared to mean squared error, mean absolute error is 

found providing better results when used as loss function in learning, and hence the models were 

implemented with this loss function. Consistently among all the models, the number of hidden units 

used in the final dense layer was determined based on the number of hours of the next day to be 

predicted.  

For the Deep Neural Network, experiments were conducted to compare the effect of increasing 

the number of hidden layers. It was found that a single hidden layer with 1024 hidden neurons is 

providing better results. Increasing the number of neurons or number of hidden layers further did 

not improve the results. This may be attributed to the fact that when the number layers or neurons 

increases much, the total number of hyper parameters to be learned also increases which 

consequently leads to overfitting.  

For convolutional neural networks, the number of convolution layers and the size of the filter 

were tuned based on the dimension of the input data. For SIT@NYP and simulation datasets, six 

convolution layers were used whereas for SIT@Dover dataset, seven convolution layers were used. 

RNN and LSTM networks used single hidden layers with 64 neurons, a decision taken after 

comparing the performance rendered with a greater number of hidden layers and hidden units.  

The CNN-LSTM hybrid model structure used in this paper necessitates tuning the number of 

layers and the filter size based on the dimension of the input data. It is done in the same way as 

discussed earlier for the standalone CNN model. The LSTM network in this hybrid model used 64 

hidden neurons. For sequence-to-sequence model, both the encoder and decoder LSTM models had 

64 hidden nodes.  

4.3. Decision on time horizons to be given as input 

Depending on the time horizons selected as input from the historical data, the prediction 

accuracy of different models can vary. Identifying the most informative time horizons is found 

crucial. A cross correlation analysis is performed for this purpose. Cross correlation coefficient is a 

statistical method to analyze the correlation between the target variable and the time lags of the 

independent variables. It helps to decide the time lags which are more correlated to the target 

variable, the selection of which as input enhances the prediction accuracies. Figure 5 shows the cross-

correlation analysis done for the cooling load variable of the simulated dataset.  

 

Figure 5. Cross correlation between the load variable and it is on time lags. 
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Cross correlation of cooling load to itself is computed to identify the lag points which are more 

correlated each other. Notably, the simulated dataset has ten hours on each day, and seven days 

considered in a week. As we can see from Figure 5, 10th and 70th time lags are more correlated to the 

cooling load at any hour. The time lag of 10 hours refers to the same hour on the previous day whereas 

the time lag of 70 hours denotes the same hour, on same day of the previous week. The next highest 

correlation can be seen at time lags 60 and 80 followed by the time lag 20. Based on this analysis, the 

previous one or two days and the similar two days in the previous week look important in prediction. 

Two sets of experiments were done to choose the most relevant inputs from these time horizons.  

In the first set of experiments, data of the previous day, same day of previous week and the day 

before that are taken. This set is denoted as ‘Prev1Day-PrevWeek2Days’ in Figure 6. The second set 

of experiments considers the previous two days and same day of the previous week, which is denoted 

as ‘Prev2Days-PrevWeek1Day’ in the figure. Performance comparison between these two sets of 

experiments is depicted in Figure 6. As can be observed from this Figure, all the performance 

measures agree on the fact that the set ‘Prev1Day-PrevWeek2Days’ outperforms the other version. 

Hence the paper follows this time horizon selection as input to the model.  

  

(a) (b) 

  
(c) (d) 

Figure 6. Comparison of performance for two different selection of time horizons. 

4.4. Results 

The comparative performance of all the six models is assessed through experiments. The 

datasets are transformed to samples having shapes suitable for different models. The input samples 

are formed by joining historical data samples as discussed in the above section. Data of previous one 

day and previous week’s two days makes a total of 3xh rows in each sample. Thus, the number of 

historical hours given as input to the model is T=3xh. This value comes out to be 36 for SIT@Dover 

dataset, 33 for SIT@NYP dataset and 30 for the simulated dataset. DNN requires a flattened data 

structure as input to the model. Hence, T hours, each with 7 features makes a total of 252 features for 

SIT@Dover dataset, 231 features for SIT@NYP dataset, and 210 features for the simulated dataset. In 
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cases involving deep learning models, the input samples must have a three-dimensional structure of 

shape NxTxD, where N is the number of samples, T is the number of hours and D equals the number 

of input features. A comparison among the performance offered by various models on different 

datasets under consideration can be seen in Table 4.  

Table 4. Performance metrics computed for various models. 

 Model RMSE CV-RMSE MAPE MAE 

SIT@Dover DNN 3.02 0.097 7.87 2.46 

CNN 2.88 0.090 7.64 2.38 

RNN 2.94 0.091 7.53 2.33 

LSTM 2.66 0.083 7.02 2.15 

CNN-LSTM 2.63 0.082 6.71 2.03 

Seq-to-seq 2.38 0.074 6.26 1.8 

SIT@NYP DNN 99.13 0.13 11.84 73.41 

CNN 103.84 0.13 12.26 73.92 

RNN 95.90 0.12 11.3 68.17 

LSTM 91.54 0.12 10.79 62.24 

CNN-LSTM 93.18 0.12 11.11 65.39 

Seq-to-seq 84.5 0.1 9.8 55.21 

Simulated 

dataset 

DNN 1.19 0.07 5.71 0.87 

CNN 1.1 0.069 5.34 0.82 

RNN 1.08 0.068 5.17 0.79 

LSTM 1.08 0.068 5.23 0.79 

CNN-LSTM 1.11 0.07 5.43 0.82 

Seq-to-seq 0.99 0.06 4.76 0.72 

As the performance metrics quoted in Table 4 depicts, sequence-to-sequence model offered the 

best performance for all the three datasets. When a second LSTM network is added to make a 

sequence-to-sequence architecture, and the most matching load sequence from the history given as 

external input to the decoder LSTM, the performance got boosted. An extensive examination was 

conducted to check the performance variations when providing various combinations of inputs at 

encoder and decoder sides. The above-mentioned input selection is found the most reliable. DNN, 

CNN and RNN offered the least relative performance on all the datasets. While comparing the 

performance of the base deep learning architectures – DNN, RNN, CNN and LSTM – LSTM offered 

consistently better performance on all the datasets under consideration. This superior performance 

of LSTM is attributed to its competence in handling the vanishing gradients problem and memorizing 

long sequences.  

An example of 12-hour cooling load predictions done by various models for SIT@Dover dataset 

has been shown in Figure 7. The example day corresponds to Wednesday, 5th July 2023. A normal 

working day is chosen as the example day to show the predictions done by various deep learning 

models. Figure 7a depicts the predictions of DNN, CNN and RNN, while Figure 7b shows predictions 

of LSTM, CNN-LSTM and Sequence-to-sequence models. Overall, the second set of models, LSTM 

and the two hybrid models derived from LSTM showed better performance compared to DNN, CNN 

and RNN. And, while comparing among the LSTM derived models, the Sequence-to-sequence model 

prediction showed a better match to the actual load.  
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(a) 

 

(b) 

Figure 7. Example 12-hour cooling load prediction by different models. (a) Prediction by DNN, CNN 

and RNN. (b) Prediction by LSTM and hybrid models. 

Figure 8 shows the error computed between the actual load and the predicted cooling load for 

sequence-to-sequence model. As can be observed in this Figure, the first, last and lunch hours have 

the highest errors. While analyzing the general trend in error distribution, it is observed that the 

highest error values occur during the hours where the load values are lower. And, while comparing 

the first half of the day with the second half, the error is more on afternoon hours, and the same trend 

follows generally on all days. This error is mainly attributed to the fact that explicit occupancy 

information is missing in the dataset, and the general trend of people leaving the office in the 

afternoon hours can be captured only if the actual occupancy information is available. This 

emphasizes the fact that occupancy data has an equivalent role on prediction accuracy as external 

weather parameters and the absence of this information can be crucial in performance of the 
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prediction model. Even though calendar features can give hint on occupancy patterns, this 

information has limitations in real predictions. 

 

Figure 8. Distribution of error in load predictions. 

4.5. Validating the importance of various categories of parameters 

Experiments are conducted to assess the influence of various groups of parameters on prediction 

performance. Only those categories included in the final dataset are considered in this experiment. 

‘Outdoor weather parameters’ is one such category which contains outdoor temperature, solar 

radiation, wind speed and relative humidity. ‘Calendar features’ included day-of-the-week and hour-

of-the-day. Historical cooling load is the third category of parameters. The prediction performance 

reported in Table 4 corresponds to the input combining all these parameter categories. In the present 

set of experiments, each category is excluded one by one, and the performance is validated. Figure 9 

shows the RMSE and MAPE values computed by Sequence-to-sequence model for the three datasets 

excluding each category of parameters. ‘All-param’ denotes the normal case in which all three 

categories of parameters are included. The names ‘No-calendar,’ ‘No-weather’ and ‘No-Load’ 

correspond to the cases when calendar features, outdoor weather features and historical cooling load 

are excluded from the input list.  

 
(a) 
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(b) 

 

(c) 

 

(d) 

 
(e) 
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(f) 

Figure 9. RMSE and MAPE when various categories of parameters are excluded from the input. 

As can be observed from the plots in Figure 9, the best performance is obtained from sequence-

to-sequence model when all three categories of input parameters are combined in the input parameter 

list. Historical cooling load among the input features has the most influential effect on prediction 

performance and hence the removal of which degrades the performance more. Calendar features 

have the next highest influence followed by outdoor weather features.  

5. Conclusion 

Compared to short term cooling load predictions like hour-ahead load prediction, deep learning 

techniques are less attempted in day-ahead cooling load predictions. Day-ahead cooling load 

prediction falls into the category of multi-step prediction which is more challenging compared to 

short-term single step prediction. This paper endeavors the application of advanced deep learning 

techniques for the next day’s cooling load prediction. Six different deep learning architectures 

including four single standalone models and two hybrid architectures are attempted for long-term 

cooling load prediction. The selected algorithms represent distinct categories of deep learning 

architectures, like deep neural network, recurrent neural network, convolutional neural network, and 

long short-term memory. Hybrid architectures are formed by combining CNN with LSTM and LSTM 

with LSTM, the latter being called sequence-to-sequence model.  

Experiments and results concluded that relative to the other single standalone models, long-

short term memory provided better results. Input, output and forget gates present in LSTM 

architecture help to decide what information to forget and how much information to be carried 

forwarded to the next steps. LSTM can remember long sequences due to the presence of these gates, 

which is especially useful in day-ahead hourly load predictions. LSTM combined with another LSTM 

as an encoder-decoder architecture is found to enhance the prediction accuracy further. The results 

supported the fact that sequence-to-sequence model is the best performing model among all the deep 

learning models tried in this paper. Future work includes extension of the present sequence-to-

sequence model with an attention mechanism. 
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