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Abstract: The rapid and accurate detection of parasites is crucial for timely curative intervention in
parasitosis and for epidemiological surveillance. To meet the needs of clinical diagnosis, it is
imperative to develop a diagnostic tool based on nucleic acid that combines the sensitivity and
specificity of established nucleic acid amplification tests with the speed, cost-effectiveness, and
convenience of isothermal amplification methods. A new nucleic acid detection method, utilizing
the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) nuclease,
holds promise for point-of-care testing. Specifically, the CRISPR-Cas12a system has demonstrated
numerous advantages for detecting parasites, with hopeful outcomes for identifying malaria,
toxoplasmosis, and other parasitic ailments. This review provides an overview of how CRISPR-
Casl2a can be utilized for parasite detection, evaluates its advantages and disadvantages, and
suggests ways to improve the efficiency and sensitivity of CRISPR-Cas12a-based assays.
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1. Introduction

Parasitosis, caused by parasitic infection, is a prevalent cause of morbidity among humans
worldwide. Tropical zones, particularly those that are impoverished, conflicted, or unsanitary, serve
as endemic foci for a range of parasitic diseases [1]. The World Health Organization (WHO) has
reported that annually 48.4 million cases and 59,724 deaths are attributed to the prevalence of 14
significant parasites, representing a total burden of 8.78 million disability-adjusted life years
(DALYs). Of these instances, 48% represent foodborne parasitic diseases, accounting for 76% of the
DALYs [2]. Transmission through contaminated food is prevalent in low- and middle-income
countries [2]. Approximately 241 million cases of malaria and 627,000 deaths resulting from malaria
were reported across the world in 2020. Innumerable deaths were caused by other parasitic infections,
most notably neglected tropical diseases (NTDs) [3,4].

Unlike the vast majority of bacterial and viral infections, which have an incubation period as
short as hours to days, parasitic diseases tend to have an incubation period of weeks or even months
[4]. The incubation period of specific parasitic diseases, like alveolar echinococcosis, can extend up to

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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10 years [5]. Therefore, early and precise detection of parasitosis is imperative for timely curative
interventions and the prevention of pandemics.

A promising new method for nucleic acid detection utilizes the CRISPR-associated (Cas)
nuclease, which can overcome the limitations of instrument dependence and laborious operational
processes. The present review compares the CRISPR-Casl2a system with alternative molecular
methods for detecting parasitic diseases. Emphasis is placed on the enhancement of one-pot
recombinase polymerase amplification (RPA) Casl2a and even the improvement of CRISPR-
Cas12/Cas13 detection techniques.

2. Application of Nucleic Acids Amplification Tests in Parasite Detection

Currently, the diagnosis of parasitic diseases relies on various methods, including microscopy,
epidemiology, pathophysiology, immunodiagnostics, and nucleic acid amplification tests (NAATS).
Among these options, the microscopic detection of parasites remains the most reliable [6,7]. In
underdeveloped regions with high rates of parasitosis, however, skilled operators are often scarce,
making this technique challenging to implement [8]. Furthermore, this approach is unsuitable for
conditions linked to parasites at developmental stages that are challenging to detect in blood or stool
specimens.

Immunoassay-based diagnostic measures have been in use for decades and are widely utilized
for detecting parasites. However, the application of immunoassays for parasitosis diagnosis has been
limited by several drawbacks, including the possibility of false negatives and false positives [9,10].

Molecular detection of nucleic acids demonstrates superior sensitivity, specificity, and
reproducibility compared to alternative methods (Table 1). As a result, NAATSs are the preferred
molecular detection tools due to their ability to amplify trace amounts of DNA and RNA, allowing
for highly specific detection by complementary nucleotide pairing. Although these techniques have
been used to establish dependable parasitosis diagnostic methods for malaria, filariasis,
toxoplasmosis, and echinococcosis [11-14], such methods require long reaction times, complex
handling, expensive laboratory equipment, and highly skilled technicians.

Table 1. Main strengths and weaknesses of different approaches for parasite detection.

Discipline Strength Weakness

-Accuracy (gold standard) -Lower sensitivity
Morphology  -Can detect multiple species at -Difficulty distinguishing parasite-like egg

the same time -‘High demand for professional skills

-High cost and time consuming

-False positives for cross-reactivity

-Strong specificity ‘False negatives in immunocompromised
Immunology o )
-Strong sensitivity patients
‘Inability to differentiate between ongoing and
past infections
‘High cost
-Strong specificity -Limitations related to sample preparation and
Molecular o )
. -Strong sensitivity equipment
biology . . -
-Strong repeatability ‘Logistics systems requiring fresh sample

analysis (e.g. cryogenic)
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Isothermal amplification technology compensates for these shortcomings. In contrast to PCR,
isothermal amplification technology, exemplified by loop-mediated isothermal amplification
(LAMP) and RPA, significantly reduces the reaction time and dependence on instruments. RPA is an
efficient method for on-site detection due to its simple primer design, low temperature requirements,
and easy storage [15,16]. However, because the reaction occurs at low temperatures, non-specific
amplification by RPA can lead to low specificity. Isothermal amplification technology has been
employed in diagnosing various parasitic diseases, including malaria, leishmaniasis, and
schistosomiasis [15-17].

In addition to the selection of detection methods for NAATSs, which has a significant impact on
the accuracy and sensitivity of parasitic disease diagnosis, the selection of target genes is also a key
point in the establishment of detection methods. Along with 185 ribosomal RNA (rRNA), Internal
Transcribed Spacer (ITS), and mitochondrial genes, stable tandem repeats are beginning to come into
focus. In most parasites, repetitive sequences make up a substantially greater proportion of the
genome when compared to coding sequences, comprising an estimated 20% or even exceeding 30%
[18,19]. Numerous tandem repeats have been utilized to detect multiple protozoans and worms, such
as Trypanosoma cruzi, Onchocerca volvulus, and Schistosoma mansoni (Table 2).

Table 2. List of partial parasitic repeat sequences.

Repeat
GenBank
Parasite Sequence  Length(bp) Quantity . Refs
Accession
Name
Protozoa
Trypanosoma cruzi TCNRE 195 12% of the total genome  K01772 [20]
. 200-300 copies per
Toxoplasma gondii / 529 AF146527 [21]
genome
Plasmodium
) Pfr364 716 41 copies per genome / [22,23]
falciparum
Plasmodium vivax Pvrd7 333 14 copies per genome / [22-24]
Cestodes
6900 copies per haploid
Echinococcus EgGl1 Hae genome
269 DQ157697  [25,26]
granulosus III repeat (1% of E. granulosus
genomic DNA)
) ) None Related
Taenia solium Tsol-9 158 o U45987 [27]
Description
) ) 0.4% of the T. saginata
Taenia saginata HDP1 1272 AJ133764 [28]
DNA
Trematodes
Schistosoma Sml-
) 121 12% of the total genome  M61098 [29-31]
mansoni 7 (DraD)
Schistosoma over 15% of the S.
Dral 121 DQ157698  [32]

haematobium haematobium genome
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4
10,000 copies per
Trichobilharzia haploid genome
ToSau3A 396 AF442689 [33]
ocellata (1.5% of the T. ocellata
genome)
Nematodes
Strongyloides None Related
‘ / 765 AY028262 [34]
stercoralis Description
several thousand copies
) ) per haploid genome
Brugia malayi Hhal repeat 320 M12691  [35,36]
(about 12% of the
genome)
300 copies per haploid
Sspl 195 120344 [37]
. , genome
Whuchereria bancrofti
None Related
LDR 1674 AY297458 [38]
Description
4500 copies per haploid
Onchocerca volvulus 0O-150 149 J04659 [39-41]
genome
Parafilaroides None Related
Pdé5 689 MTO053285  [42]
decorus Description

Specific information on tandem repeats that have been used for parasite detection, including GenBank accession

numbers and references, is provided.

Point-of-care testing (POCT), a priority for strategies relying on mass drug administration to
control many neglected tropical diseases (NTDs), is a medical diagnostic tool that can be used near
or at the point-of-care, allowing for on-site testing [43]. Therefore, it is imperative to develop nucleic
acid-based diagnostic tools that combine the sensitivity and specificity of established NAAT with the
convenience, cost-effectiveness, and speed of isothermal amplification methods. CRISPR-based
diagnostics have the potential to fulfill all these requirements (Table 3).

Table 3. Comparison of CRISPR-Casl2a and commonly used detection technologies in molecular

biology.
Reacti Numb
Device Results POCT
Technol Specific on erof  Quantifica
depende Cost View potenti
ogy ity time  prime tion
ncy Method al
(min) s
Gel
Moderat Moder
PCR Strong  60-180 2 No High  electrophor .
e ate
esis
Fluorescent
g-PCR Extrem
and
(gRT- High Strong >60 2 Yes ely LOW
. computer
PCR) high

system
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Fluorescent
Extrem
and
d-PCR High Strong >60 2 Yes ely LOW

high computer
system
‘Gel
electrophor
LAMP Low Strong <60 4-6 No Low  esis High
-Color
‘Turbidity
‘Gel
electrophor
esis
RPA Low Modera 20-60 2 No Low  ‘Fluorescen  High
te .
-Lateral
flow
-fluorescent
Casl2a Low Strong  20-60 2 No Low  -Lateral High

flow

3. CRISPR-Cas12a for POCT

3.1. Discovery of CRISPR

The CRISPR-Cas system was initially identified by Ishino in 1987 [44] and named in 2002 [45].
Extensive research has since focused on identifying and characterizing the proteins and molecules
involved in the CRISPR-Cas system [46]. CRISPR-Cas systems are composed of Cas genes organized
in operons and a CRISPR array, which consists of unique genome-targeting sequences (called
spacers) interspersed with identical repeats [47]. Jennifer Doudna and Emmanuelle Charpentier were
the first to illustrate the potential of the CRISPR-Cas9 system as a means of gene editing [47].
Subsequently, Janice Chen and Feng Zhang led the primary studies of CRISPR-Casl2a [48] and
CRISPR-Casl13a [49] for the purpose of detection.

3.2. CRISPR-Cas12a Is More Suitable for Rapid On-Site Detection

The Casl2a effector protein, also referred to as the Cpfl effector protein, is a programmable
RNA-guided DNA nuclease that was identified as part of the type-V class II CRISPR-Cas system
[50]. This protein may have come from a distinct TnpB transposase gene family [51]. Compared to
Cas9, the design of Casl2a is simpler and more cost-effective since it only needs one CRISPR RNA
(crRNA) and no trans-activating crRNA (tracrRNA).

Casl2a accurately identifies target sequences and double-stranded DNA, creating gaps by
recognizing T-rich protospacer adjacent motif (PAM) sequences and catalyzing its own crRNA
maturation [52]. It was later discovered that Casl2a exhibits collateral activity and can cleavage
single-stranded DN A without the presence of a complementary crRNA sequence [48]. The non-target
strand and RuvC domains are highly flexible, with the target strand being particularly flexible when
located at the nuclease active site. As a result, the RuvC domain becomes significantly active during
R-loop formation, enabling the entry of single-stranded DNA into the enzyme's active center for
degradation [53].
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Therefore, the target DNA has the potential to act as an activator, triggering both cis- and trans-
cleavage events of the Casl2a nuclease. The FQ reporter in the system is cleaved, releasing
fluorescence signal that is then measured to detect pathogen. The CRISPR-Cas12a system has found
extensive application in detecting COVID-19, with studies demonstrating a detection limit as low as
5-10 copies utilizing the CRISPR-Cas12a system and isothermal amplification technology [54,55]. The
sensitivity of the method was comparable to that of qPCR, and results were obtained via naked-eye
observation within 45 minutes. These advantages enable the detection of parasites through the
CRISPR-Cas12a system and offers benefits beyond those of other nucleic acid detection methods
(Table 2).

3.3. CRISPR-Cas12a Has Been Applied to Parasite Detection

The technique's application to diagnose parasitic diseases, like malaria, has undergone a
thorough evaluation. Asymptomatic carriers considerably hinder controlling and eradicating the
parasite. Achieving malaria eradication mandates a hyper-sensitive diagnosis of infections with a low
parasitic load [4]. Unfortunately, resource-limited areas experience frequent malaria outbreaks,
posing a challenge to screening parasite carriers. Lee and colleagues developed a nucleic acid
diagnostic method to detect Plasmodium falciparum by combining CRISPR-Casl2a with RT-RPA
[56].

The method involves heating human serum, whole blood, or dried blood spots in buffer at 95
°C for 10 minutes, followed by the transfer of the suspended sample to a pre-mixed Casl2a-RPA
system. The mixture is then incubated at 40 °C for 30 minutes. The reaction outcomes can be observed
using a plate reader or a handheld fluorometer, facilitating on-site detection. This technique
significantly lowers the LOD to 0.36 parasites per microliter, which is well under the WHO's rapid
diagnostic test threshold of 200 parasites per microliter [57].

Additionally, the CRISPR-Casl2a combination with RPA has been successfully utilized for
detecting Toxoplasma gondii [58]. The detection system achieved a sensitivity of 3.3 genome copies
per microliter, surpassing real-time fluorescent RPA (33 genome copies per microliter) and other
comparable methods [59]. Furthermore, this system was utilized to examine a range of parasites,
including Cryptosporidium parvum [60,61], Enterocytozoon hepatopenaei [62], and Heterodera
schachtii [63] (Table 4).

Table 4. Application of the CRISPR/CASI12 system to parasite detection.

Time
Species Method . LOD Specificity Refs
(min)
0.36
Plasmodium falciparum Casl2a-RPA 30 (+10)a ) 100%
parasites/uL
[56]
Plasmodium vivax Casl2a-RPA 30 (+10)a 1.2 parasites/pL 100%
. 99~115
Toxoplasma gondii Casl2a-RPA 35 (+20) = ) 100% [58]
copies/uL ®
Casl2a-RPA (two 30+ 60
o 10 oocysts 100% [60]
Cryptosporidium steps) (+20) =
parvum
Casl2a-RPA 90 1 oocyst 100% [61]
Enterocytozoon
Casl2a-RPA 60 50 copies/uL b 100% [62]

hepatopenaei
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Heterodera schachtii Casl2a-RPA 60 10single cysts 100% [63]

a, The time in parentheses is the time required for sample preparation or DNA extraction. b, Copy numbers
indicate the copies of target genes rather than the genomes.

It is estimated that 47% of the worldwide population lacks adequate access to medical diagnostic
tools, particularly in underdeveloped areas [64]. Cas12a and RPA-based diagnostic technologies are
anticipated to resolve this problem since the method satisfies almost all of the POCT requirements
[65]. Nevertheless, many concerns still need to be addressed because of the brief time of research and
limited large-scale clinical trials. The sensitivity of these assays for POCT, particularly concerning
specific sample preparation, ought to be enhanced. Furthermore, the time required to attain results
should be decreased.

4. Optimization of the CRISPR-Cas12a One-Pot Detection Assay

Due to the low initial concentration of the target gene in a sample and the kinetic rates that result
in an amplification-free LOD in the picomolar range under standard assay conditions [66], Cas12a
detection often requires an amplification process prior to application. That means that signal
amplification usually involves two processes. Target genes were initially amplified using RPA or
LAMP techniques. The resulting amplified products were subsequently transferred to the Casl2a
system for cleavage, followed by fluorescence signal generation. To streamline operations and
prevent cross-contamination during field tests, the one-pot method is now predominantly utilized.
This assay allows the amplification and cleavage of Cas12a to occur simultaneously. However, this
leads to the cis-cleavage of Cas12a, which reduces the concentration of the target genes while RPA
enhances it. Therefore, it is crucial to optimize amplification in the initial phase of the reaction.

4.1. One-Pot and One Step

4.1.1. Determinants of Cas12a Enzyme Kinetics

Several studies have reported rapid single-turnaround, cis-cleavage reactions at low target
concentrations, with typical reaction times of approximately 100 seconds [67]. A Michaelis-Menten
model for Casl2a trans-cleavage activity was established and validated by a team from Stanford
University. This was achieved through the utilization of varying concentrations of substrates, targets,
and crRNAs [66,67]. The authors suggest that the concentration of trans-cleavage product formed
over time can be described using the following scaling equation:

B2~ (1 —exp(=1)) [67]

The production efficiency of trans-cleavage product P is influenced by both reaction time and .
To refer to the target-activated Cas12-crRNA-target DNA complex, use E, and subsequently, [E]
represents the concentration of this complex. The characteristic time to complete trans-cleavage is
governed by the time scale t, which is proportional to Km and inversely proportional to kcat and [E]
[67]. The rate constant kcat/Km of enzymatic reactions is affected by the Cas type, crRNA, incubation
time, pH, and temperature [66]. During the early stages of the reaction, [E] equals the concentration
of the target molecule (c), which depends on co, amplification, and cis-cleavage. Therefore, one could
use a suboptimal crRNA to weaken cis-cleavage or employ other methods to ensure that
amplification dominates the pre-reaction period, resulting in a rapid increase of [E] (Figure 1).

4.1.2. Reduced crRNA Efficiency by PAM

In the CRISPR-Cas system, the effector nuclease must identify the PAM neighboring the target
site to initiate target recognition [68]. Studies of the crystal structure of the LbCas12a-crRNA binary
complex [69] and the AsCas12a-crRNA-target DNA ternary complex [70,71] disclose the mechanisms
involved in Casl2a and crRNA recognition, as well as the operations of crRNA-directed DNA
targeting and PAM recognition. These findings suggest that the PAM-binding channel of Cas12a is
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flexible in conformation, allowing for the identification of both canonical and non-canonical PAMs
[72]. LbCas12a and AsCas12a identify TTTV and CTTV/TCTV/TTCV as canonical and non-canonical
PAM, respectively [72,73].

In 2022, a Chinese team conducted a one-pot test called SPAMC, which refers to a suboptimal
PAM of Casl2a-based test [74]. In comparing collateral activity, crRNAs utilizing suboptimal PAMs
demonstrated lower potency and slower kinetics in comparison to those utilizing canonical PAMs.
Nevertheless, over 80% of 120 suboptimal PAMs displayed quicker reactions than those of canonical
PAMs in the one-pot reactions.

Initial

:
\

Y N

Cis-cleavage Amplication Trans-cleavage

Suboptimal PAM
Amplicate tandem repeat
Suboptimal structure

<«

Figure 1. Effect of amplification and cleavage on detection efficiency. E is the target-activated
Cas12-crRNA-target DNA complex. During the initial stage of the one-pot procedure, cis-cleavage is
immediate, and the enzyme concentration is much greater than the target concentration. As
amplification becomes more dominant, such as when amplification efficiency is increased and cis-
cleavage speed is reduced, the amount of [E] is substantially larger and can be quickly increased,
resulting in a significant improvement in reaction efficiency. On the other hand, if the target is quickly
depleted in the initial stage, the emission of the fluorescent signal will decrease.

The emergence of the target amplicon occurred 2 minutes after the one-pot reaction utilizing
suboptimal PAM, as opposed to 8-10 minutes for canonical PAM. Using a suboptimal PAM with
varied concentrations of Casl12a/crRNA ribonucleoprotein produced steady kinetic curves, unlike
with traditional PAMs. In one-pot reactions, numerous uncommon PAMs (such as VITV, TCTV, and
TTVV) and some TRTV, TTNT, and YYYN PAMs (excluding TTTV) outperformed canonical PAMs.
The SARS-CoV-2 diagnostic method established using suboptimal PAM yields a sensitivity
comparable to that of qPCR. The reaction time is only 15 minutes, and the variation among samples
is less than 30% [74].

4.1.3. Reduced crRNA Efficiency by Structure

Suboptimal crRNAs can be selected based on their structure while ensuring specificity. If
CRISPR-Cas9 cleavage is an energy-driven process, its efficiency relies heavily on nucleotide
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hybridization and changes in folding free energy [75]. The stability of gRNA-DNA for gRNAs
exhibiting different efficiencies significantly varies. When local sliding is examined, an energy model
accurately predicts the efficiency of gRNAs. Similar studies for Casl2a are currently unavailable.
However, it is important to consider the use of optimal crRNAs when developing a one-pot detection
method. Initial support for the feasibility of this approach is demonstrated by our recent experimental
findings.

4.2. One-Pot but Two Steps

4.2.1. Light-Activated crRNA to Initiate Cleavage

Controlling chemical reactions through photocontrolled techniques can be achieved in a non-
contact manner within seconds. This technology has been extensively used in both CRISPR-Cas9
research and practice [76-78], and it has also been progressively refined for CRISPR-Cas12a detection
[79]. Initially, the CRISPR-Cas12a system was blocked by a photo-cleaved linker containing crRNA
to ensure optimal RPA performance. After amplification, the Cas12a detection system was activated
via light to initiate trans-cleavage and produce fluorescence signals [79]. However, this approach
requires ongoing optimization of the ratio of the photo-cleaved linker to crRNA, and the lack of pre-
binding of crRNA to Cas protein negatively impacts the stability of the Cas12a-crRNA complex.

The same group then developed a novel CRISPR-Casl2a detection assay that uses 6-
nitropiperonyloxymethyl-caged thymidine (NPOM-dt) to modify crRNA [80]. This method involves
caging crRNA to prevent base pairing between it and the target, rather than binding it to the Cas
enzyme. The rapid activation can be attained by photoinduced decaying, which makes this approach
simpler, faster, and more stable. It should be noted that optimizing the irradiation time and the
number and position of NPOM may need to be reconsidered for different pathogens. In regards to
POCT, challenges persist with reagent storage conditions, actual amplification time, and the
portability of illumination devices.

4.2.2. Physically Separate the Two Processes

In addition to performing two reactions simultaneously in one tube, it is also possible to
physically separate the two reaction systems in one tube to allow for sequential progression [43,81-
83]. The CRISPR/Casl2a reagents were spun down for cleavage after DNA amplification by
leveraging the physical property of the protein-containing liquid's enhanced surface tension [84].
Initially, the RPA reaction takes place at the bottom of the tube, while the CRISPR/Cas12a reaction is
located at the lid, separate from the reaction. After amplifying for 20 minutes, briefly spin the
CRISPR/Cas12a reagent into the reaction mixture without opening the tube. The reaction will
continue, and the RPA amplicon will activate the Casl2a nuclease to trans-cleave the fluorescent
ssDNA-FQ molecule, resulting in a fluorescent signal. However, this method can be cumbersome,
particularly in large-scale POCT.

In brief, cis-cleavage plays a crucial role as the rate-determining step for overall performance in
one-pot reactions [67,74]. During the initial stage, low-concentration targets are diminished due to
cis-cleavage, which results in a slow and unstable accumulation of amplicons. Consequently, the
growth of the signal decreases or may even disappear altogether (Figure 2). The kcat/Km of the
enzyme can be reduced by utilizing a suboptimal PAM or structure, which slows cis-cleavage. This
results in a balance between the two signal amplification processes of RPA and trans-cleavage.
Through careful engineering of primer design, crRNA design [74,85], reaction system [86,87],
reporter selection [88,89], and reaction conditions, isothermal amplification and CRISPR detection
can be effectively combined in a one-pot reaction. The light-activated CRISPR RNA and spatially
isolated reagents may enhance the efficiency of the one-pot (but two steps) process. The resulting
method provides a streamlined and efficient approach to detecting specific nucleic acid sequences
with high sensitivity and specificity.

doi:10.20944/preprints202312.1636.v1
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Figure 2. A schematic diagram of the relationship between amplification and cleavage in the one-
pot method. a. Comparison of amplification and cleavage efficiency over time when using suboptimal
protospacer or suboptimal crRNA to attenuate the early cleavage efficiency of Cas12a in the one-pot
method. b. Comparison of amplification and cleavage efficiency over time using optimal crRNA in
the one-pot method. c. Variation in substrate concentrations over time when using suboptimal and
optimal crRNA in the one-pot method.

5. Conclusions

Parasites are prevalent in the natural world, particularly in underdeveloped regions, and result
in high disability-adjusted life years and substantial economic losses annually. The emergence of
CRISPR, and specifically recent examinations of Casl2a, compensates for the limitations of
isothermal amplification and presents a fresh approach for POCT. With the collateral-activity of
Cas12a, results can be evaluated intuitively via the inclusion of fluorophores. Combined with RPA,
samples with even small amounts of pathogens can be quickly and accurately tested at the point of
detection.

For POCT, the one-pot method is without a doubt the best option due to its ability to prevent
cross-contamination and significantly simplify the procedure. Nonetheless, current one-pot detection
techniques come with several limitations, including extended reaction times, low sensitivity,
complicated operation, and reliance on sample pretreatment. Additionally, the utilization of RPA has
restricted the advancement of CRISPR assays somewhat. As the most commonly used partner of
CRISPR one-pot method, RPA kits are only sold by few companies, with high price and unstable
supply [90].

By balancing the two processes of amplification and cleavage with a suboptimal PAM or
structure, the detection performance of the one-pot method can be improved. With suboptimal
conditions, PAM or crRNA's limitation on target genes may be weakened, thereby expanding the
pools of target genes. In addition, light-activated crRNA and spatial isolation enable two reactions to
proceed in one-pot, one after the other, without opening the lid. Furthermore, incorporating tandem
repeats as targets can significantly enhance the detection's amplification efficiency and sensitivity,
regardless of sample preparation methods. One-pot RPA-Casl12a is significantly improved with the
use of these methods. These ways can enhance not only RPA-Cas12a but also all Cas12a detection
methods involving amplification. Furthermore, it is important to assess these concepts not only in
Casl2a, but also in other CRISPR systems, including Cas12b and even Cas13.

In the future, for the application of CRISPR-Cas12a to POCT, it is necessary to continually
optimize one-pot method detection efficiency and identify a more compatible isothermal
amplification technology. Also, the sample preparation for testing is crucial; otherwise, CRISPR
detection would remain limited to the laboratory.
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