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Abstract: In the last years, new findings and new methods (stable isotopes of oxygen, zinc and
nitrogen, 2D and 3D modelling, geometric morphometric analyses of the teeth) have enhanced our
knowledge of the Neogene shark fauna and its palaeobiology. Several papers deal with the large
Otodus (Megselachus) species, including the construction of a 3D model as well as insights into
lifestyle and diet. In addition, skeletal remains of Carcharias gustrowensis, Carcharodon hastalis, Keasius
parvus and a natural tooth set of Carcharodon hubbelli have been described in the last 13 years, and
the dentition of the Neogene species Carcharoides catticus, Megachasma applegatei and Parotodus
benedenii have been reconstructed. Stable isotope analyses of the teeth from the Neogene species of
Avaloselachus, Carcharias, Carcharodon, Galeocerdo, Hemipristris, and Mitsukurina have given insights
into the trophic position of these genera during the Neogene, and shark teeth preserved near skeletal
remains of prey animals (mammals) and shark bite traces on these remains provide direct evidence
of trophic interactions. Tooth shape, fossil locality and palaeoenvironment have been used to better
understand the taxa Carcharhinus dicelmai, Megalolamna paradoxodon, Pachyscyllium dachiardii and P.
distans. Among extant species, Galeorhinus galeus can be traced back to the Eocene. The following
taxa can be traced back to the Oligocene: ? Alopias superciliosus, and Rhincodon typus. Species already
present in the Miocene include: Alopias vulpinus, Carcharhinus amblyrhynchoides, C. amblyrhynchos, C.
albimarginatus, C. amboinensis, C. brachyurus, C. brevipinna, C. falciformis, C. glaucus, C. leucas, C.
limbatus, C. longimanus, C. macloti, C. obscurus, C. perezi, C. sealei, ?Carcharodon carcharias, Centrophorus
granulosus, Cetorhinus maximus, Dalatias licha, Deania calcea, Galeocerdo cuvier, , Glyphis glyphis,
Heptranchias perlo, Isurus paucus, Lamna nasus, Negaprion brevirostris, Odontaspis ferox, Pseudocarcharias
kamoharai, Sphyrna media, S. mokarran. First appearing in the Pliocene are: Scymmnodon ringens,
Sommiosus rostratus, Zameus squamulosus. For some extant species (Carcharias taurus, Hexanchus
griseus, Isurus oxyrinchus, Notorynchus cepedianus, Sphyrna zygaena) it is not clear if the assigned
Neogene teeth represent the same species. Applying these new methods to more fossil shark taxa,
a detailed search for shark fossils, as well as better knowledge of the dentition of extant species
(especially those with minute-sized teeth) will further enhance knowledge of the evolution and
palaeobiology of sharks.

Keywords: Neogene; teeth; fossil; Miocene; Pliocene

1. Introduction

The earliest record of elasmobranch fishes is from isolated shark scales that date back to the late

Ordovician period, about 455 million years ago (Motta et al. 2012). Apart from a different tooth
shape, Palaeozoic sharks had a different anatomy than the "modern" sharks (Neoselachii), which are
known since the beginning of the Mesozoic. The following differences were mentioned by Benton
(2005): The jaws of neoselachians open more widely than in earlier forms because of greater mobility
about the jaw joint and a highly kinetic palatoquadrate and hyomandibular. The notochord of is
enclosed in, and constricted by, calcified cartilage vertebrae, whereas the primitive chondrichthyans
had a simple notochordal sheath. The limb girdles in neoselachians are strengthened by fusion or
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firm connection in the midline, which allows more powerful muscle activity. The basal elements (the
radials) in the paired fins are reduced and most of the fin is supported by flexible collagenous rods
called ceratotrichia or actinotrichia. See also Cappetta (2012, pp. 84-89) for further details. The rise
and diversification of the Neoselachii began in the Lower Triassic, and by the Neogene the shark
fauna was similar to the Recent one. However, despite general similarities, the timing of appearance
of extant morphospecies, extinction of some Paleogene-Neogene species, and potential trophic
changes resulting from these origin and extinction dynamics can provide insights into the structure
and occupancy of higher trophic levels in Recent oceans.

The cartilaginous skeleton of sharks is normally not preserved in the fossil record, making teeth
the most abundant record of fossil sharks. Sharks replace their teeth continuously throughout their
lifetime, and this high production of potential bioclasts makes fossil shark teeth the main vertebrate
fossils in marine deposits of the Paleogene and Neogene. Therefore, the designation of species is
mostly based on a few isolated teeth. In some cases, calcified vertebral centra can be found, as well
as dermal denticles, fin spines, and gill rakers. Only under special environmental conditions (e.g.,
fast sedimentation, exclusion of oxygen), the skeleton or parts of it were fossilized. Accordingly, such
finds are very rare. Examples can be found for example in Ehret et al. (2009; 2012); Hovestadt &
Hovestadt-Euler (2010) and Hovestadt (2022).

The “classical” method to infer shark ecology from teeth is to look to extant relatives as
analogues, as well as the shape of the teeth. Cappetta (2012) divided the different tooth shapes into
eight adaptive dental types. In addition to tooth size and shape, the embedding sediment also gives
indications of habitat preferences of Neogene sharks. In the last 20 to 30 years, new findings as well
as new methods made it possible to get more detailed information on the palaeoecology of Neogene
sharks. Recently, Bazzi et al. (2021) quantified the classical method by applying 2D geometric
morphometrics to statistically discriminate diet based on tooth shape, and Cooper et al. (2023)
determined variation in tooth morphology could be partitioned into seven key variables with which
ecological roles in fossil sharks could be accurately assessed. Palaeobiology is probably best-
documented for the most famous fossil shark Otodus (Megaselachus) megalodon, simply because there
have been so many papers in the last year with this species as main subject. The aim of this paper is
to provide a detailed overview of those Neogene shark species for more research was done, excluding
taxa described from only one or a few teeth. Than it will be summarize what is known of the
palaeobiology of this Neogene shark species, as well as to examine the Neogene (or sometimes
earlier) first appearance of Recent species. The ordering of the orders and families are based on
Cappetta (2012). Genera and species are arranged in alphabetical order within higher taxonomic
groupings. Lastly, we provide an outlook on possible future developments concerning the research
on fossil sharks. This work presents the current state of the art concerning the palaeobiology of
Neogene sharks as well as the fossil record of extant species.

2. Methods used to infer the palaeobiology of fossil sharks

There are six methods commonly employed to reconstruct the palaeobiology of fossil sharks:

1. The “classical” method for inferring diet based on the teeth as mentioned above. More findings
made it possible to reconstruct complete dentitions, and infer diet with greater accuracy. Complete
dentitions, also called tooth sets (Welton & Farish 1993) are a more solid framework with which to
reconstruct the diet of the sharks than only isolated teeth. According to these authors, there are three
types of tooth sets: a) Natural tooth set: The jaw is preserved and all the teeth are on their original
positions. This the best but also the rarest condition; b) An associated tooth set is one based on the
teeth of an individual shark where the teeth were found displaced from their natural positions. This
also rare and mostly associated with skeletal remains. See e.g. Hovestadt & Hovestadt-Euler (2010);
¢) An artificial tooth set can be constructed from a number of tooth types from one locality that are
believed to belong to one species. The teeth probably come from different individuals. This is the
main type of reconstruction.
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2. The rare discovery of preserved articulated or disarticulated skeletons or parts thereof,
including body proportions, gastric contents, and data on reproductive biology (see e.g. Hovestadt
2022).

3. Bite marks on fossil bones (see e.g., Govender 2015), or shark teeth embedded next to the
fossilized skeletal remnants of prey animals (see e.g. Kent 2018) can also be used to provide direct
evidence of predation or scavenging.

4. Stable isotopes can be used to reconstruct trophic position; see Kast et al. 2022 and McCormack
et al. 2022 for details on this method.

5.2D or 3D computer modelling based on vertebral centra and morphometric comparisons with
Recent sharks (see Cooper et al. 2020; 2022) can provide information on body size and tooth shape.

6. Shape and morphology of the placoid scales can be used to reconstruct swimming abilities
(see Shimada et al. 2023).

3. Material and methods:

For this review, the literature were searched for information concerning the ecology and
palaeobiology of Neogene shark species, and referral of fossil remains to extant species. Although
this paper is about Neogene shark species, an earlier occurrence (Oligocene, Eocene) of some extant
species is nevertheless also noted. An important source for the literature research was Pollerspock &
Straube (2023) as well as the reference lists of the cited papers. Recent species and their fossil record
are described. In addition, when remarkable fossil information concerning the biology has been
discovered, e.g. dietary shift, this is mentioned in the text. Otherwise, the reader is referred to the
according literature for the biology of individual species, because details of the ecology of extant
sharks have already been often published. For the individual Neogene shark species, one fossil tooth
has been illustrated, or in the case of the extinct basking shark Keasius parvus, a gill raker. The latter
species is known since the Oligocene (Palaeogene) and the mentioned raker is from this epoch simply
because it was the best preserved one available to the authors. However, a complete preserved tooth
was not available for every taxon. Extant species are not figured because photos of them can be found
in nearly every scientific or coffee-table shark book.

Despite the large volume of research on fossil sharks during the last decades, there are
unresolved questions and different opinions, especially concerning genus-level membership of some
taxa. However, a discussion of the problems regarding Neogene taxa is beyond the scope of this
paper, and is not relevant for this review. Details to this can be found in the cited literature.

4. Results

4.1. Extinct Neogene shark species

Lamniformes Berg, 1958

Mitsukurinidae Jordan, 1898

Mitsukurina lineata (Probst, 1879).

This is possibly the ancestor to the Recent M. owstoni Jordan, 1898. Teeth of the ancient M. lineata
can be found in bathyal and neritic deposits from the Early and Middle Miocene in Europe and South
Korea (Cappetta 2012; Yun 2021). 5%Zn values for teeth from the Early Miocene of Baden-
Wiirttemberg, Germany show a lifestyle similar to that of Pseudocarcharias kamoharai (Matsubara,
1936) (see McCormack et al. 2022, Figure 2, as P. rigida). The latter species feeds on bony fishes, squids
and shrimps (Compagno 1984) which is also the case for the Recent M. owstoni (Compagno 1984).
Although M. owstoni is a mostly bathyal shark (Compagno 1984), the teeth of the ancient M. lineata
have also been found in neritic deposits as mentioned above. The species possibly came in search for
food to shallower waters or the sharks followed schools of fishes (Pfeil 1991). However, Compagno
(1984) stated that the extant species rarely occurs in shallow water close inshore.

Odontaspididae Miiller & Henle, 1839

Araloselachus cuspidatus (Agassiz, 1843)
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There are differing opinions if this species belongs to the genus Carcharias (see the extant
Carcharias taurus) or to the extinct genus Araloselachus (Cappetta 2012; Hovestadt 2020; 2022). In the
same way, its relationship to the species Araloselachus vorax (Le Hon, 1871), which had similar-shaped
teeth is not yet resolved (see De Schutter 2011; Reinecke et al. 2011; Cappetta 2012; Kent 2018 and
Hovestadt 2020). Araloselachus cuspidatus is known from Miocene neritic deposits of Europe, North
America and central Asia (Cappetta 2012) as well as also from older deposits of Oligocene age
(Reinecke et al. 2001; Hovestadt 2022). Its teeth are also very abundant. They have a grasping,
odontaspid shape but with a broader crown and often larger size than C. contortidens or C. taurus.
Following McCormack et al. (2022), %Zn values indicate that A. cuspidatus was likely a higher trophic
level piscivore than M. lineata and Pseudocarcharias kamoharai (P. rigida in McCormack et al. 2022,
Figure 2), also supported by the larger tooth size of A. cuspidatus. Hovestadt (2022) illustrated and
described a partial skeleton of A. cuspidatus including fetuses from the Oligocene of Germany. The
author estimated a body length of c. 5 m for this specimen. Cannibalism among unborn pups of the
extant Carcharias taurus is well known, so-called adelophagy or intrauterine cannibalism, which is
characterized by larger pups preying on smaller ones (Compagno, 1984; Ebert et al., 2021; Hovestadt
2022). Following Hovestadt (2022), this might also exist in A. cuspidatus and could explain the large
number of incomplete embryos recovered.

Carcharoides catticus (Philippi, 1846)

Two species of Carcharoides are known from the Neogene, C. catticus and C. totuserratus
Ameghino, 1901. From the two species of this genus, an artificial tooth set was constructed by
Reinecke et al. (2018, Figure 15) for Carcharoides catticus (Philippi, 1846). Based on the tooth
morphology of C. catticus, Purdy et al. (2001) saw this species as a synonym of Triaenodon obesus
(Riippell, 1835). All the other authors dealing with this species (e.g. Reinecke et al. 2011; 2018) didn't
share this opinion and cited this species as C. catticus. At the moment, dried jaws or Recent teeth from
T. obesus were not available to the authors for own comparisons, therefore the fossil teeth are treated
here as C. catticus. The reconstruction of the dentition by Reinecke et al. (2018, Figure 15) shows
similarities to the dentition of Carcharias and Odontaspis; therefore, a piscivorous diet can be also
assumed for C. catticus. Reinecke et al. (2018) mentioned weak ontogenetic heterodonty for members
of Carcharoides. The species C. catticus is already present by the Oligocene (Reinecke et al. (2018), and
teeth can be found up to the Middle Miocene in neritic sediments of Europe and North America
(Purdy et al. 2001; Reinecke et al. 2018). C. totuserratus is only known from South America.

Carchariidae Miiller & Henle, 1838

Carcharias contortidens (Agassiz, 1843) (syn. C. acutissima) and Carcharias gustrowensis (Winkler,
1875)

Teeth similar in shape to those of the extant Carcharias taurus Rafinesque, 1810 can be found
worldwide in Neogene neritic deposits. Teeth of this kind are the most abundant and often occur en
masse. Historically, the Miocene teeth were identified as C. contortidens, but the relationship of this
taxon to C. taurus is not completely clear (see Reinecke et al. 2011 for details). According teeth from
the Early Pliocene were named as C. taurus (see Purdy et al. 2001; McCormack et al. 2022, Figure 2).
One problem is that despite their abundance, the teeth are often not completely preserved and
therefore important details (e.g., lateral cusplets) are often missing.

Another species with similar teeth is Carcharias gustrowensis (Winkler, 1875) (see Hovestadt &
Hovestadt-Euler 2010, Figure 6; Figures 7.16-7.18), which existed from the Oligocene (Hovestadt &
Hovestadt-Euler 2010) to at least the Lower Miocene (Reinecke et al. 2011; collection material). From
the Oligocene of Baden-Wiirttemberg, Germany, Hovestadt & Hovestadt-Euler (2010) described a
partial skeleton of a gravid shark with eight fetuses along with a myliobatoid tail spine and a
chimaeroid dorsal fin spine. Following these authors, the variation in length of the fin radials in C.
gustrowensis resembles the pectoral fin skeleton of Carcharias taurus. The myliobatoid and chimaeroid
spines are likely remains of prey that have pierced the skin or cartilage of the jaw area.

Based on d%Zn values, Carcharias teeth show relatively stable trophic levels and ecological niches
through time and space (McCormack et al. 2022), so a similar lifestyle to that of the extant C. taurus
can be assumed for C. contortidens. Details of the biology of C. taurus can be found in Ebert et al.
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(2021). Today, this species is distributed in nearly all warm- and tropical waters apart from the eastern
and central Pacific (Ebert et al. 2021). During the Miocene and part of the Pliocene, members of the
genus Carcharias, (probably C. taurus) also occupied the western coast of South America, where today
it is absent (Cione et al. 2007). These authors suggested that the local extinction of Carcharias was the
consequence of a drop of global temperatures during the middle Pliocene and Pleistocene and the
coeval drop in sea level that reduced the shelf area and therefore the suitable environments for this
species. Due to the establishment of the Panamanian isthmus, a later migration of C. taurus from the
north was not possible (Cione et al. 2007).

Lamnidae Miiller & Henle, 1838

The Carcharodon complex:

The most recent systematic arrangement of tooth shape shows Carcharodon hastalis (Early
Miocene-Pleistocene) as the oldest member of this genus, which leads to Carcharodon hubbelli (Late
Miocene) and then to the extant species Carcharodon carcharias (Early Pliocene-Recent) (Ehret et al.
2009; 2012).

Carcharodon hastalis (Agassiz, 1838).

Teeth of this species are common worldwide from the Early Miocene to the Pleistocene in
temperate to tropical neritic deposits (Cappetta 2012; Ebersole et al. 2017). The generic relationship
of this species remains debated. There are also some uncertainties at the species level, with a narrower
tooth morphotype as well as a broader one. Therefore, there is a discussion if two other "broad
toothed" species (C. plicatilis and C. xiphodon) can be separated from the narrower shaped C. hastalis
teeth (see Pfeil 1991; Purdy et al. 2001; Whitenack & Gottfried 2010; Ehret et al. 2012; Cione et al.
2012; Kent 2018). Following Ehret et al (2012), this morphological difference could represent sexual
dimorphism or ontogenetic change. Assuming all the referred teeth belong to only one species, the
maximum size would have been between 6 m and 7.6 m, with anterior teeth up to 8.1 cm in height
(Purdy et al. 2001). Collareta et al. (2017b) documented a partially complete articulated skeleton of a
juvenile C. hastalis including stomach contents from the Late Miocene of Peru. The total body length
of the immature specimen was estimated at about 2.3-2.4 m. The Meckel's cartilages are very similar
to those of various extant Lamniformes (including Carcharodon carcharias and Isurus spp.). The teeth
are distinctly more slender than the adult teeth of C. hastalis, in agreement with the pronounced
ontogenetic heterodonty recognized in this species (Collareta et al. 2017). The stomach contents
consist of fishes including the pilchard Sardinops sp. cf. S. sagax. It is possible that specimens with the
narrow-toothed morphology had a piscivorous lifestyle, whereas the ones with the broader teeth had
a diet primarily consisting of small-sized marine mammals (see also Collareta et al. 2017). In the Pisco
Formation, sixteen teeth of C. hastalis were also found in close contact with a balaenopterid whale
skeleton (Takakuwa 2014). Kent (2018) illustrated a tooth of C. hastalis from the Calvert Cliffs (USA)
(Miocene, from 8 to 18 Ma) completely penetrated by a myliobatiform caudal spine early in its
development. Bianucci et al. (2010) noted bite traces on a well-preserved fossil dolphin skeleton from
the Pliocene of Italy. Most bite traces have been referred to a shark about 4 m long with unserrated
teeth, attributed to C. hastalis based on shape and general disposition on the dolphin skeleton.
Govender (2015) also described bite traces from C. hastalis on cetacean skeletons from the Zanclean
(Early Pliocene) of South Africa. In contrast to the bite trace record, Kast et al. (2022) found similar
8°Nes values in Miocene-aged C. hastalis to those of Pliocene and extant C. carcharias but lower, more
piscivore-like values in the Pliocene (see Kast et al. 2022, Figure 2). Congruently, %Zn signals that C.
hastalis from the Early Miocene of Malta had a higher trophic position than teeth from the Early
Pliocene of North Carolina. However, conspecific teeth from the Miocene of Baden-Wiirttemberg,
Germany also indicated a lower trophic position, suggesting potentially that the regional availability
of different prey types influenced diet (see McCormack et al. 2022, Figure 2). The same result is
recovered for individuals of Hemipristis serra between the two Miocene localities; lending support to
this hypothesis. However, another possibility is that the previously mentioned tooth morphotypes
were driving trophic signal ("broad" or "narrow"). Based on collections material, it seems that only
the narrower morphotype was present in the Early Miocene of Baden-Wiirttemberg (see also Holtke
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et al. 2020, P1. 4, Figures 3-8; Pl. 5, Figure 1). Reasons underlying the extinction of C. hastalis are
unknown.

Carcharodon hubbelli Ehret, MacFadden, Jones, DeVries, Foster and Salas-Gismond, 2012

A well-preserved jaw containing 222 teeth as well as a series of 45 vertebral centra were found
in the Late Miocene Pisco Formation of Peru. The teeth show similarities of those of C. carcharias and
C. hastalis, and C. hubbelli was interpreted as an intermediate species between C. hastalis and C.
carcharias (Ehret et al. 2009; 2012). C. hubbelli is also known form the Late Miocene of California, USA
and Chile (Boessenecker 2016; Hoffmeister et al. 2023).

Examination of the vertebral centra yielded an age of the shark of at least 20 years. Based on
measurements of teeth and vertebral centra, this specimen is estimated to have had a minimum total
body length of 4.80-5.07 m. The growth of C. hubbelli appears to have been slower than that of Recent
great white sharks (Ehret et al. 2009; 2012). C. hubbelli fed on marine mammals (Ehret et al. 2012).

Otodontidae Glickman, 1964

Megalolamna paradoxodon Shimada, Chandler, Lam, Tanaka & Ward, 2016 (Figure 2.1)

This newly described genus and species is known from teeth from the early Miocene of the USA
(North Carolina, California), Japan and Peru (Shimada et al. 2016; Landini et al. 2019) as well as from
Baden-Wiirttemberg, Germany (as “Lamna sp.”: Pfeil 1991, pl. 2, Figure 6). All the deposits represent
shallow-water shelf-type coastal environments (Pfeil 1991; Shimada et al. 2016; Landini et al. 2019).
The largest teeth examined by Shimada et al. (2016) came from an individual that measured at least
3.7 m in total length. Based on the shape of the anterior and lateral teeth, the diet of M. paradoxodon
could have included relatively large prey, such as medium-sized [ca. 0.5-1 m] fishes, captured by the
use of its anterior teeth and cut by the distal portion of the dentition to a size suitable for ingestion
(Shimada et al. 2016).

Otodus (Megaselachus) megalodon (Agassiz, 1835) and O. (M.) chubutensis (Ameghino, 1901)

In the past, these extinct species have been placed in diverse genera (Carcharodon, Procarcharodon,
Carcharocles, Megaselachus). Now they are placed in Otodus, and Megaselachus is used as a subgenus
(see Cappetta 2012 and Kent 2018).

The large, triangular teeth of these likely two species are surely the most known shark teeth.
Otodus spp. were top predators during the Miocene and early Pliocene. Otodus is divided into two
chronospiecies: O. (M.) chubutensis (with lateral cusplets or only traces thereof) and O. (M.) megalodon
(without lateral cusplets). In Early Miocene deposits, teeth with cusplets dominate over uncuspleted
ones. Moving upwards through the Miocene profile, uncuspleted forms increase in relative
abundance and the cuspleted ones finally disappear (pers. observ. O.H.; see also Perez et al. 2019).
Following Perez et al. (2019), a definitive separation between all the teeth of the taxa O. chubutensis
and O. megalodon is impossible, because a complex mosaic evolutionary continuum characterizes this
transformation, particularly in the loss of lateral cusplets. The cuspleted and uncuspleted teeth of
Otodus (Megaselachus) spp. are designated as chronomorphs because there is broad overlap between
them both morphologically and chronologically. For details on the O. chubutensis/megalodon problem
see Kent (1994; 2018), Perez et al. (2019), and Pollerspock et al. (2022). For the relationships of the
genus see Cappetta (2012); Ehret (2012) and Kent (2018).

Otodus teeth can be found worldwide in neritic deposits of the Neogene epoch (see Cappetta
2012). The teeth of O. (M.) chubutensis can reach a height of 13 cm; the ones from O. (M.) megalodon
can reach 17 cm (Kent 1994). Based on tooth size, the maximum body length of O. (M.) megalodon was
probably between 18 and 20 meters (Shimada et al. 2022). Following the latter authors, individuals of
O (M.) megalodon were on average larger in cooler water than those living in warmer waters. In the
shallow marine Miocene Gatun Formation of Panama, the majority of O. (M.) megalodon teeth are
very small (Pimiento et al. 2010). According to the cited authors, the individuals from Gatun were
mostly juveniles and neonates, with estimated body lengths between 2 and 10.5 meters. They
therefore proposed that the Gatun Formation represented a paleo-nursery area for O. (M.)
megalodon. However, Shimada et al. (2022) argued that while it is possible that neonatal O. (M.)
megalodon could have utilized nursery areas, the previously identified palaeo-nursery areas may
reflect temperature-dependent trends rather than inferred life history strategies.
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A viviparous reproductive strategy characterized by matrotrophy via oophagy is primitive for
crown-lamniform sharks (Blackburn, 2015), resulting in large size at birth. This is consistent with the
inferred life history of O. (M.) megalodon (Shimada et al. 2021). Incremental growth bands in fossil
vertebrae of a 9.2-m-long individual O. (M.) megalodon from the Miocene of Belgium (see below),
reveal that the shark was born large at 2 m in length, and this specimen died at age 46 (Shimada et al.
2021). The authors estimated that O. (M.) megalodon had a lifespan of at least 88-100 years and that it
had a slightly higher growth rate during the first 7 years (19-23 cm/yr) compared to the remainder of
its life (11-18 cm/yr). Shimada et al. (2023) verified tessellated calcified cartilage remains next to the
teeth of a ca. 11.7 m long individual from the Miocene of Japan. According to the authors, the
morphology of each tessera (e.g. predominantly hexagonal) and the arrangement of tesserae as a
tessellated calcified cartilage sheet in Otodus (M.) megalodon are practically identical to those of extant
chondrichthyans. Further, they found that the size range of tesserae observed in the estimated 11.7-
m-TL individual of O. (M.) megalodon is comparable to that of extant chondrichthyans suggests that
larger body size does not necessarily produce larger tesserae. Following Shimada et al. (2023), this
observation suggests that, as in extant sharks, skeletal elements sheathed by tesserae developed
through biomineralization along the margins of existing tesserae to form new tesserae in O. (M.)
megalodon, despite its gigantic body size. The first reconstruction of the skeletal anatomy of Otodus
was done by Gottfried et al. (1996). The most recent anatomical reconstructions were made by Cooper
et al. (2020; 2022). Cooper et al. (2020) made a 2D-reconstruction of O. megalodon based on
comparisons with extant members of Lamniformes. The results suggest that a 16 m O. (M.) megalodon
likely had a head ~4.65 m long, a dorsal fin ~1.62 m tall and a tail ~3.85 m high (Cooper et al. 2020).
In 2022, Cooper et al. published a 3D-model of O. megalodon. The basis was a vertebral column with
141 centra, belonging to the single, 9.2-m-long individual of O. (M.) megalodon, mentioned above
(stored in the Royal Belgian Institute of Natural Sciences in Brussels, Belgium) as well as comparisons
with the skeleton of the Recent great white shark Carcharodon carcharias. This vertebral column was
recovered from around the Antwerp basin in the 1860s; however, neither the locality nor an age has
been specified beyond a Miocene range (23 to 5.3 Ma ago) (Cooper et al. 2022). The reconstruction
yielded a total length of 15.9 m, and a body mass of 61 560 kg. The mean absolute speed for the model
was suggested to be 1.4 —4.1 m/s (= ca. 5.0-14.8 km/h) and the mean relative cruising speed as 0.09
body lengths per second. Additionally, the gape size was determined at different angles: gape
height 1.2 m at a 35° angle and 1.8 m at 75° angle. The gape width measured 1.7 m at both 35° and
75° angles. The stomach volume was estimated as 9605 liters. Prey of 8 m length could have been
completely ingested, whereas larger prey (e.g. the size of the modern humpback whale Megaptera
novaeangliae) could not (Cooper et al. 2022). The authors calculated that the modelled O. (M.)
megalodon required 98 175 kcal per day. Concerning the cruising speed, however, Shimada et al. (2023)
estimated lower values (2.0 km/h with a range of 0.9-3.0 km/h) for O. (M.) megalodon than the ones
mentioned above, based on details of the morphology of its placoid scales. The authors also found
out that the general size of placoid scales represented by the vast majority of extant pelagic
lamniforms and carcharhiniforms as well as extinct lamniform taxa such as Cretoxyrhina, Cretodus,
and Squalicorax is similar to the overall scale size of the much larger O. megalodon. This at least
demonstrates that the exceptionally large body size seen in O. (M.) megalodon did not necessarily yield
exceptionally large placoid scales. Rather, new placoid scales of similar small size were added as the
fossil shark grew through ontogeny (Shimada et al. 2023). The authors used the chronospecies name
O. megalodon, but there is no reason to assume that these data cannot be extrapolated to O. chubutensis
if of similar size.

Concerning diet, there are many finds of marine mammal bones with bite traces from Otodus
teeth, e.g., of small-sized baleen whales, cetaceans, and pinnipeds in the upper Miocene Pisco
Formation (southern Peru: Collareta et al. 2017a) or baleen whale caudal vertebra from the Pliocene
of North Carolina (Purdy 1996). Following McCormack et al. (2022), however, in the majority of cases,
it remains unclear if these feeding events on mammals document active hunting or scavenging. With
the help of enameloid-bound §'°N (5'*Nes) in Otodus teeth, Kast et al. (2022) determined that Otodus
(M.) megalodon as well as O. (M.) chubutensis occupied a higher trophic level than known for any
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marine species, extinct or extant. The 815nes values show a large range for O. (M). megalodon which
may reflect a fundamental aspect of its ecology, specifically a generalist diet, with individuals feeding
across many prey types and different trophic levels (Kast et al. 2022). Many extant apex predatory
sharks are also opportunistic in their prey selection (McCormack et al. 2022). Despite the bite traces
on baleen whale bones mentioned above, the high 8*Nes values indicate that baleen whales were not
the dominant prey of O. megalodon, as extant baleen whales have a low trophic level and a
correspondingly low 65 N (Kast et al. 2022). McCormack et al. (2022) used the 9%Zn values in the
tooth enameloid of O. megalodon and found support for the previous conclusion that Otodus spp. were
apex predators feeding at a very high trophic level. However, during the Early Pliocene, the Otodus
lineage represented by O. (M). megalodon showed a considerable increase in the mean 6%Zn value for
the Atlantic populations, hinting at a reduced trophic position for the megatooth shark lineage in the
Atlantic. This could indicate a dietary shift, specifically that lower trophic level mammalian prey such
as mysticetes (and perhaps herbivorous sirenians) may have been an important food item for Atlantic
populations of O. (M). megalodon. Now extinct small- and medium-sized mysticetes (e.g.,
Cetotheriidae and various small-sized Balaenidae and Balaenopteridae) were abundant during the
Early Pliocene and were thus available as prey (McCormack et al. 2022). As can be seen, the two
isotopes show two partly different results concerning trophic level.

Another important point concerning the palaeobiology of Neogene Ofodus spp. is
thermophysiology. Griffiths et al. (2023) examined the question of endothermy in Neogene Otodus
sharks using 6'¥Op values (P = phosphate). Their measurements show the presence of endothermy in
Otodus (M.) megalodon and O. (M.) chubutensis. Based on their lower estimation of the cruising speed,
Shimada et al. (2023) suggested that the relative importance of the functional roles of regional
endothermy possibly shifted from maintaining high cruising speeds to visceral food processing
through the evolution of gigantism in otodontids.

Regarding the extinction of Ofodus (M.) megalodon, two dates are reported in the newer literature:

1. Before c. 2.6 Ma (Pliocene/Pleistocene boundary) (Pimiento & Clements 2014); 2. Before c. 3.6
Ma (early-late Pliocene boundary) (Boessenecker et al. 2019). There are different opinions concerning
competition with great white sharks as a possible driver for the extinction, as well as the extinction
of small to mid-sized baleen whale prey species (Pimiento et al. 2016; Kast et al. 2022; McCormack
2022). Competition with carnivorous odontocetes may have also played a role in the extinction
process (see Pimiento et al. 2016; McCormack et al. 2022). Concerning the influence of climatic
changes on the extinction, Pimiento et al. (2016) found no evidence for direct effects of global
temperature. Griffiths et al. (2023) mentioned the possibility that the gigantic body size with the high
metabolic cost of maintaining a high body temperatures may have contributed to the vulnerability of
Otodus species to extinction when compared to other sympatric sharks that survived the Pliocene
epoch. To sum up, the reasons for the extinction of O. (M.) megalodon are still unknown.

Parotodus benedenii (Le Hon, 1871)

Teeth of Parotodus benedenii can be up to 6 cm high. This species has been widely reported from
early Oligocene through early Pliocene fossil beds of Europe (Belgium, Germany, Hungary, Italy,
Malta, the Netherlands, Portugal, Slovakia, and Switzerland), Africa (Angola and South Africa), the
Azores, and the United States along with Australia, Japan, and New Zealand in the western Pacific
(Kent 2018 and references therein). Despite its broad geographical distribution, this species is rare in
Neogene deposits. During the Neogene, a clear increase of size occurred, accompanied by a very
notable thickening of the root, which became very stout and globular (Cappetta 2012). Kent (1994,
Figure B.11); Kent & Powell (1999, Figure 3) and Purdy et al. (2001, Figure 23) illustrated an artificial
tooth set. Collareta et al. (2023) also dealt closely with this species. Following these authors, P.
benedenii may be reconstructed as a large-sized, carnivorous shark that inhabited pelagic settings and
fed primarily on large, soft prey and scavenged items. Thus, some ecological partitioning did likely
exist between P. benedenii and other elasmobranch apex predators of the Neogene mid-latitude seas
(including the extant species Carcharodon carcharias, Carcharhinus leucas and Galeocerdo cuvier during
the Pliocene). Collareta et al. (2023) estimated the body length of P. benedenii at over 7 m; Purdy et al.
(2001) estimated a maximum length between 6 and 7.5 m.
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Cetorhinidae Gill, 1861

Keasius parvus (Leriche, 1908)

This species was original placed in the basking shark genus Cetorhinus. In 2013, Welton placed
the species in his newly erected genus Keasius (see Welton 2013a), based on the shape of the gill rakers,
the vertebral centra as well as the dentition. K. parvus existed from the Middle Eocene to Middle
Miocene (Hovestadt & Hovestadt-Euler 2011). Remains have been found in Europe, Mexico and
Japan (see Welton 2013 and references therein). Hovestadt & Hovestadt-Euler (2011) described a
partial skeleton of K. parvus from the Oligocene (Rupelian) of Germany. Following these authors, K.
parvus possessed a filter feeding apparatus similar to that of the extant Cetorhinus maximus, and it can
be assumed that the species share the same feeding habits. The aforementioned skeleton came from
a ca. 2 m long animal (Hovestadt & Hovestadt-Euler 2011). The maximum length of K. parvus is
estimated at 4.5 - 5 m (Hovestadt & Hovestadt-Euler 2011).

Megachasmidae Taylor, Compagno & Struhsaker, 1983

Megachasma applegatei Shimada, Welton and Long, 2014

The teeth of this extinct megamouth shark are known from late Oligocene—early Miocene marine
deposits of the western USA (Krak & Shimada 2023). M. applegatei could have commonly measured
approximately 6 m in total length and likely had a broad diet, possibly including small fishes and
planktonic invertebrates. The fossil record indicates that either M. applegatei was broadly adapted to
a wide bathymetric tolerance or was a nektopelagic feeder over both deep and shallow water habitats
(Shimada et al. 2014). Krak & Shimada (2023) examined the possible dentition of this species via
landmark-based geometric morphometric analysis. The teeth were more variable in shape than those
of the extant Megachasma pelagios Taylor, Compagno & Struhsaker, 1983. The teeth of the fossil species
were probably arranged in the typical heterodont "lamnoid tooth pattern" (see Shimada 2002), as in
predatory lamniform sharks.

Carcharhiniformes Compagno, 1977

Scyliorhinidae Gill, 1862

Pachyscyllium distans (Probst, 1879) and Pachyscyllium dachiardii (Lawley, 1876)

Both catshark species lived contemporaneously and their teeth are widespread in the Miocene
and Early Pliocene of Europe (e.g. Germany, Belgium, France, Netherlands, Portugal, Italy) (see
Reinecke et al. 2011; Holtke et al. 2020 and Collareta 2020 for the different localities). The only known
information about the paleoecology of these taxa is that both were thermophilic sharks (Reinecke et
al. 2011; Collareta 2020).

Hemigaleidae Hasse 1878

Hemipristris serra (Agassiz, 1843)

The species is very widely distributed from the late Oligocene (Chattian) through Pleistocene
formations in warmer-water regions of the Atlantic Ocean, Caribbean Sea, Mediterranean Sea, Indian
Ocean, and Pacific Ocean (Kent 2018). Purdy et al. (2001, Figures 46-47) published an artificial tooth
set for this species. Whether H. serra is the direct ancestor to the Recent H. elongata (Klunzinger, 1871)
is questionable. Based on histological differences of the teeth compared to those of extant H. elongata
(Klunzinger, 1871), Ward and Bonavia (2001) suggested that generic reassignment of H. serra is
warranted.

H. serra probably reached a length of c. 6 m (Pimiento et al. 2019), whereas the Recent species
only attains lengths of 2.3-2.4 m (Ebert et al. 2021). There are some differences in tooth size through
time and space. Teeth from the Early Miocene of southern Germany have a maximum size of 31 mm
height and 25 mm width (Feichtinger & Pollerspdck 2021), but teeth from the Early Pliocene of North
Carolina, USA reached a height of 41 mm and a width of 43 mm (Purdy et al. 2001).

Based on 8%Zn composition, H. serra from the Early Miocene of Malta occupied a higher trophic
position than individuals from the Early Miocene of Baden-Wiirttemberg, Germany. This is the same
relative result recovered for individuals of Carcharodon hastalis between the two localities; different
prey availability or a shorter trophic chain in the German Molasse Basin may also be driving the
pattern in this case. The Maltese specimens have a similar trophic position to Galeocerdo aduncus (see
McCormack et al. 2022, Figure 2).
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Galeocerdonidae Poey, 1875

Galeocerdo aduncus (Agassiz, 1835)

This ancient tiger shark is found worldwide in neritic sediments of Oligocene to late Miocene
age (Tiirtscher et al. 2021). A preserved jaw fragment from the Miocene (8 to 18 Ma) of Calvert Cliffs,
USA was illustrated by Kent (2018, Figure 2.21.G). The teeth are similar to those of the extant tiger
shark G. cuvier, apart from differences concerning the serration as well as the size (Tiirtscher et al.
2021). G. aduncus teeth are smaller. However, Purdy et al. (2001) placed this species in synonymy with
the extant G. cuvier on the basis of similarities in morphology.

Feichtinger et al. (2021) found fossil evidence from the middle Miocene of the Styrian Basin
(Austria) that G. aduncus fed on a Metaxytherium carcass. Godfrey and Smith (2010) were also able to
match tooth marks on a crocodilian coprolite to this species. According to McCormack et al. (2022),
Zinc isotope values in the Galeocerdo lineage show no statistical variability with either age or locality,
suggesting tiger sharks occupied a similar trophic level and ecological role in the marine ecosystem
since at least the Early Miocene. G. aduncus likely had a similar lifestyle to that of the extant G. cuvier,
despite having smaller teeth.

Physogaleus contortus (Gibbes, 1849)

Teeth are known from the early and middle Miocene of the eastern Unites States (Maryland,
North Carolina, and Virginia),Cuba, Panama, Peru, Germany, and Hungary (Kent 2018 and
references therein). The paleobiology of P. contortus is largely unknown, although the slender twisted
tooth crowns are consistent with a largely piscivorous diet (Kent 2018). A sperm whale from the lower
Calvert Formation of Popes Creek, Maryland, USA (Early to Middle Miocene) was associated with
37 P. contortus teeth (Kent 2018). Although the teeth are exceptionally large, these sharks were far too
small to have attacked and killed such substantial prey. Typically, such an association of teeth would
be attributed to scavenging, although this is difficult to confirm. On the basis of tooth morphology, it
seems equally plausible that this tooth concentration represents Physogaleus preying on small
scavenging fishes attracted by the carcass (Kent 2018).

Carcharinidae Jordan & Evermann, 1896

Carcharhinus dicelmai Collareta, Kindlimann, Baglioni, Landini, Sarti, Altamirano, Urbina &
Bianucci, 2022

This newly described species is known from the Lower Miocene Chilcatay Formation of Peru
(type locality) and from the Lower- to mid Miocene (Burdigalian to lower Langhian) Cantaure
Formation of Venezuela. The latter locality suggests a trans-Panamanian distribution for this ancient
species (Collareta et al. 2022a). Given the dimensions of the teeth, C. dicelmai was likely a diminutive
carcharhinid and may have relied on small-sized prey items (including, e.g., small bony fishes and
invertebrates) that were individually captured and ingested through feeding actions that involved
clutching (Collareta et al. 2022a). Following the latter authors, C. dicelmai may also have been an
essentially thermophilic and very littoral shark.

Additional comments regarding fossil Carcharhinus: In the Pliocene of Tuscany, Italy Collareta
et al. (2022b) found a fossil cetacean rib pierced by a partial requiem shark tooth (Carcharhinus sp.).
Evidence for Carcharhinus sharks (mostly broad-toothed members of the genus) foraging upon
cetaceans is preserved in the Mediterranean Pliocene fossil record in the form of bite traces and teeth
associated with bones (Collareta et al. 2022b). Identifications to the species level were not provided.

4.2. Extant shark species and their fossil record:

Hexanchiformes de Buen, 1926

Hexanchidae Gray, 1851

Hexanchus griseus (Bonnaterre, 1788)

Fossils of very large Hexanchus teeth (at least 25 mm in width) have been widely, if rarely,
collected from the early Miocene to Pliocene sediments of Belgium, Chile, Italy, Japan, Malta, Peru,
Portugal, Spain as well as California and North Carolina in the USA (Kent 2018 and references
therein). These were named as Hexanchus gigas (Sismonda, 1861) by Kent (2018) or as Hexanchus sp.
by Purdy et al. (2001). Apart from the large size, they are similar to the teeth of the extant H. griseus.
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Asyetitis unclear whether they represent separate species or are conspecific. A large Hexanchus tooth
was associated with a cetacean skeleton (Cephalotropis coronatus Cope, 1896) from the Late Miocene
of Maryland, although it is uncertain whether this represents active predation or scavenging. Merella
et al. (2021; 2022) mentioned shark bite traces on a sirenian skeleton from Pliocene shoreface deposits
of Tuscany (Italy) which can probably be attributed to an immature H. griseus.

Notorynchus cepedianus (Péron, 1807)

The fossil record of this extant species is not clear. Teeth of similar shape to those of N. cepedianus
can be found from the late Oligocene (Chattian) through late Miocene of Florida(?), Maryland, North
Carolina, and Virginia, as well as Australia, Austria, Azores, Belgium, Denmark, France, Germany,
Japan, the Netherlands, Poland, Portugal, Slovakia, Spain, and Switzerland (Kent 2018 and references
therein). These fossil teeth were mostly named as Notorynchus primigenius (Agassiz, 1843) (see e.eg.
Holtke et al. 2020). There are, however, differing opinions if N. primigenius is a separate species (Kent
2018) or synonym to N. cepedianus (Purdy et al. 2001). Interestingly, the geographic distribution of
Recent N. cepedianus is quite unlike that of Notforynchus in the Neogene, with Recent members of this
species generally restricted to cool temperate waters, whereas in the Neogene the genus was also
widely distributed in warm temperate and tropical waters (Reinecke et al. 2011).

Heptranchias perlo (Bonnaterre, 1788)

Fossil record: Early Miocene: Costa Rica (Laurito et al. 2014); Middle Miocene: Italy (Abruzzo,
Parma) (Cigala-Fulgosi 1977; Carnevale 2005); Late Miocene: Panama (Northern Panama) (Carrillo-
Bricefio et al. 2015a); Portugal (Lisbone) (Antunes & Jonet 1970, as “cf”); Late Miocene to early
Pliocene: Venezuela (Northeastern Venezuela) (Aguilera & de Aguilera 2001).

Squaliformes Goodrich, 1909

Centrophoridae Bleeker, 1859

Centrophorus granulosus (Bloch & Schneider, 1801)

Fossil record: Early to Middle Miocene: France (Vaucluse) (Ledoux 1972); Pliocene: Italy
(Tuscany, Piedmont) and France (Le-Puget-sur-Argens) (Landini 1977; Cappetta & Nolf 1991; Cigala
Fulgosi et al. 2009). In the Miocene deposits of Europe and South America, a lot of teeth were named
as Centrophorus cf. granulosus (see e.g. Carrillo-Bricefo et al. 2020; Holtke et al. 2023). The reason for
this is that the according teeth show similarities with the extant C. granulosus. However, the dentition
of the other 10 extant Centrophorus species (Pollerspdck & Straube 2023) is insufficiently known.
Therefore the assignment of isolated Centrophorus teeth to species is not without problems.

Deania calcea (Lowe, 1839)

Fossil record: Early to Middle Miocene: France (Vaucluse) (Ledoux 1972), Middle Miocene: Spain
(Southeastern Spain) (Martinez-Pérez et al. 2018), Japan (Nagano Prefecture) (Suzuki 2012, as “cf”);

Early Pliocene: Italy (Parma) (Cigala Fulgosi 1986, as "cf").

Dalatiidae Gray, 1851

Dalatias licha (Bonnaterre, 1788)

Fossil record: Miocene: Italy (Sardinia) (Comaschi Caria 1973); Early to Middle Miocene: France
(Vaucluse, Southern France) (Ledoux 1972; Cappetta 1975; Brisswalter 2009), Colombia (Guajira
Peninsula) (Carrillo-Bricefio et al. 2016b; 2019, both as "cf."); Middle Miocene: South Korea (Yun 2021),
Early Miocene to early Pliocene: Japan (Itoigawa et al. 1985; Yabe & Hirayama 1998; Tanaka 2001;
Suzuki 2005), Late Miocene: Panama (Carrillo-Bricefio et al. 2015a); Pliocene: Japan (Uyeno &
Matsushima 1975); Early Pliocene: France (Le-Puget-sur-Argens) (Cappetta & Nolf 1991); Late
Pliocene: Italy (Tuscany) (Cigala Fulgosi et al. 2009).

Somniosidae Jordan, 1888

Scymnodon ringens du Bocage & Capello, 1864

Fossil record: Early Pliocene: Italy (Parma) (Cigala-Fulgosi 1996); Middle Pliocene: Italy
(Romagna Apennines) Marsili & Tabanelli 2007 as "cf").

Sommniosus rostratus (Risso, 1827)

Fossil record: Early Pliocene: Italy (Parma) (Cigala-Fulgosi 1988a).

Zameus squamulosus (Glinther, 1877)

Fossil record: Early Pliocene: Italy (Parma) (Cigala-Fulgosi 1996).


https://de.wikipedia.org/wiki/Pierre_Joseph_Bonnaterre
https://doi.org/10.20944/preprints202312.1577.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 December 2023 doi:10.20944/preprints202312.1577.v1

12

Orectolobiformes Applegate, 1974

Rhincodontidae Garman, 1913

Rhincodon typus Smith, 1829

Fossil record: Late Oligocene: USA (South Carolina) (Cicimurri & Knight 2009, as “cf.”). Early
Miocene: ?France (region Monpellier) (Cappetta 1970, as Rhincodon sp.).Early to Middle Miocene:
USA (Maryland, North Carolina) (Purdy et al. 2001; Visaggi & Godfrey 2010); Late Miocene-Early
Pliocene: Costa Rica (Laurito 1999).

Lamniformes Berg, 1958

Cetorhinidae Gill, 1862

Cetorhinus maximus (Gunnerus, 1765)

Fossil record: Following Hovestadt & Hovestadt-Euler (2010) this extant species first occurs in
the Middle Miocene, whereas Welton (2013b) cited Late Miocene as the earliest occurrence.

Fossil record: Early to Middle Miocene: Japan (Saitama) (Uyeno et al. 1983); Middle Miocene:
Czech Republic (Kienberg) (Schultz et al. 2010); Late Miocene: USA (Oregon) (Welton 2013b, as "cf"),
USA (California) (Powell et al. 2019); Late Miocene: ?Germany (Sylt, Lower Saxony) (Lienau 1987;
Menzel et al. 1994); Late Miocene to Early Pliocene: Chile (El Rincén) (Long 1993), Netherlands
(Winterswijk-Almelo) (Van den Bosch et al. 1975); Early Pliocene: Belgium (Kallo) (Herman 1979),
France (Le-Puget-sur-Argens, Anvers) (Leriche 1908; Cappetta & Nolf 1991); Late Pliocene: Italy
(Tuscany) (Cigala-Fulgosi et al. 2009).

Carchariidae Miiller & Henle, 1838

Carcharias taurus Rafinesque, 1810

See C. contortidens.

Odontaspididae Miiller & Henle, 1839

Odontaspis ferox (Risso, 1810)

Fossil record: Early Miocene: Chile (Central Chile); Middle Miocene: USA (North Carolina)
(Purdy et al. 2001), (Suarez et al. 2006); Middle Miocene-Pliocene: Chile (Northern Chile) (Hoffmeister
& Villafana 2023); Late Miocene-Early Pliocene: Venezuela (Aguilera & de Aguilera 2001); Early
Pliocene: USA (North Carolina) (Purdy et al. 2001); Late Pliocene: Italy (Tuscany) (Cigala Fulgosi
2009).

Pseudocarchariidae Taylor, Compagno & Struhsaker, 1983

Pseudocarcharias kamoharai (Matsubara, 1936)

Fossil record: Early Miocene: Germany (Baden-Wiirttemberg, Bavaria) (Schultz 2013; Holtke et
al. 2020), Austria (Upper Austria) (Schultz 2013), Hungary (Kordos & Solt 1984), Switzerland
(Schafthausen) (Schalch 1881); Middle Miocene: Italy (Parma) (Cigala-Fulgosi 1992): Late Miocene:
Portugal (Alvalade) (Antunes et al. 1999, as "cf"); Late Miocene-Early Pliocene: Venezuela (Aguilera
& de Aguilera 2001).

Alopiidae Bonaparte, 1835

Alopias superciliosus Lowe, 1841

Fossil record: Oligocene: Germany (Bavaria) (Pfeil 1981, as "cf.").

Early Miocene: USA (North Carolina) (Case 1980), : Peru (Landini et al. 2019), Colombia
(Carrillo-Bricefio et al. 2016b, as "cf"); Early Miocene to early Middle Miocene Japan (Itoigawa et al.
1985); Middle Miocene: Netherlands (Bor et al. 2012); Middle Miocene to lower Pliocene: USA
(Florida) (Boyd 2016); Late Miocene: Panama (Carrillo-Bricefio et al. 2015a; Perez et al. 2017), Portugal
(Alvalade Basin, Lisbon) (Balbino 1996; Antuness & Balbino 2003, both as "cf"); France (Luberon)
(Brisswalter 2009, as "cf"); Late Miocene-Early Pliocene: Venezuela, Costa Rica (Laurito 1999; Aguilera
& de Aguilera 2001); Pliocene: Italy (Tuscany) (Cigala-Fulgosi 1988b).

Alopias vulpinus (Bonnaterre, 1788)

Fossil record: Miocene: Myanmar (Noetling 1901), India (Orissa) (Bhalla & Dev 1975): Early
Miocene: Portugal (Algarve) (Antunes et al. 1981). There are also a lot of entries in the literature with
“ct” or “aff” for deposits dating from the Oligocene (see e.g, Balbino 1996; Reinecke et al. 2005;
Cicimurri & Knight 2009; Landini et al. 2019). Therefore, the fossil record requires reassessment.

Lamnidae Miiller & Henle, 1838
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Lamna nasus (Bonnaterre, 1788)

Fossil record: Late Miocene: Netherlands (Liessel) Mollen 2010); Early Pliocene: Belgium (Kallo)
(Herman 1979); Late Pliocene Italy (Tuscany) (Collareta et al. 2018).

Isurus oxyrinchus Rafinesque, 1810

This species is mentioned in sediments dating from the Oligocene (Reinecke et al. 2005). It is
known from many deposits in Germany, Belgium, France, Italy, Switzerland, USA, Japan, Chile, and
Africa (see Cappetta 2012 and references therein). Fossil teeth similar in shape to the extant I.
oxyrinchus were sometimes named as Isurus desori (Agassiz, 1843) (see Feichtinger & Pollerspock
2021). At the moment, it is not clear if I. desori is a valid species or synonym of Isurus oxyrinchus.

Isurus paucus Guitart-Manday, 1966

Fossil record: Early Miocene to early Middle Miocene: Japan (Central Japan) (Itoigawa et al. 1985,
as "cf"; Itoigawa 1993); Middle Miocene-Pliocene: possibly Chile (Northern Chile) (see Hoffmeister &
Villafana 2023 and references therein for details).

Carcharodon carcharias (Linnaeus, 1758)

The extant great white shark is known since the early Pliocene or Miocene (Cappetta 2012; Kent
2018). For details on the biology of extant C. carcharias see Domeier (2012). The teeth occur worldwide
in neritic sediments.

In a few cases the predatory/scavenging habits of fossil C. carcharias have been documented in
the fossil record, and as with observations on extant C. carcharias, attacks are principally on cetaceans
(Govender 2015; Kent 2018 and references therein). Cigala-Fulgosi (1990) described a skeleton of an
extinct dolphin with bite traces attributed to C. carcharias from the Pliocene of Italy (Piacenza). To
date, there are no studies documenting piscivory by C. carcharias in the fossil record (Kent 2018). The
0%Zn results indicate an increase in trophic position for C. carcharias from the Early Pliocene to Recent
(McCormack et al. 2022). In a comparison between Recent and fossil data concerning the diet of
Carcharodon carcharias, in the Pliocene both mysticetes and odontocetes are assumed to have been
equally represented. In contrast, extant great white sharks principally attack small toothed whales
and only rarely mysticete baleen whales. This change could be due to both the general reduction in
body size of the living great white shark over time, and the diminished diversity of the cetacean
assemblage (Bianucci et al. 2002).

The occurrence of fossil teeth from Spain indicate that large C. carcharias close to 7 m long or
larger were not scarce in the Early Pliocene (Adnet et al. 2010). Villafafia et al. (2020) described a
palaeo-nursery area of the great white shark in the Pliocene of Chile. Fossil teeth of C. carcharias can
often be found in the same deposits as the extinct megatooth shark Otodus (Megalselachus) megalodon,
for example in the Late Miocene/Early Pliocene of Chile (Long 1993). This suggests that both sharks
co-existed (Adnet et al. 2010). However, no interaction or competition between these two apex
predators has been documented.

Carcharhiniformes Compagno, 1977

Triakidae Gray, 1851

Galeorhinus galeus (Linnaeus, 1758)

Fossil record: Late Eocene: USA (North Carolina) (Case & Borodin 2000); Early Miocene: USA
(North Carolina) (Case 1980); Late Miocene: Panama (Carrillo-Bricefio 2015a, as “ct”); Late Miocene-
Early Pliocene: Chile (Bahia Inglesa) (Long 1993); Early Pliocene: South Australia (Pledge 1985, as
Galeorhinus cf. australis); Late? Pliocene: USA (California) (Fitch & Reimer 1967, as Galeorhinus
zyopterus); Late Pliocene: Chile (Valparaiso) (Carrillo-Bricefio et al. 2013).

Galeocerdonidae Poey, 1875

Galeocerdo cuvier (Péron & Lesueur, 1822)

Fossil record: Early Miocene: India (Gujarat) (Sharma et al. 2021), Middle Miocene: Hungary
(Nyirad) (Szabo et al. 2023), USA (Florida) (Tiirtscher et al. 2021); Middle Miocene-Middle Pliocene:
Venezuela (Carrillo-Bricefio et al. 2015b); Late Miocene: Panama (Lago Bayano), (Perez et al. 2017);
Late middle to early late Miocene: Panama (Central Panama) (Alberti & Reich 2018); Late Miocene:
Borneo (Brunei Darussalam) (Kocsis et al. 2021); Pliocene: USA (Florida, North Carolina) (Webb &
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Tessmann 1968; Maisch et al. 2018), Angola (Antunes 1978); Early Pliocene: Libya (Pawellek et al.
2012); late early/early late Pliocene: Italy (Tuscany) (Collareta et al. 2021b).

Carcharinidae Jordan & Evermann, 1896

Carcharhinus amblyrhynchoides (Whitley, 1934)

Fossil record: Late Miocene: Borneo (Brunei Darussalam) (Kocsis et al. 2019).

Carcharhinus amblyrhynchos (Bleeker, 1856)

Fossil record: Late Miocene: Borneo (Brunei Darussalam) (Kocsis et al. 2019)

Carcharhinus albimarginatus (Rippell, 1837)

Fossil record: Late Miocene-Early Pliocene: Chile (North Coast) (Long 1993), Ecuador
(Camarones River) (Carrillo-Briceno et al. 2014); Middle Miocene-Pliocene: Chile (Northern Chile)
(Hoffmeister & Villafafia 2023); Pliocene: Chile (Bahia Inglesa) (Long 1993).

Carcharhinus amboinensis (Miiller & Henle, 1839)

Fossil record: Late Miocene: Borneo (Brunei Darussalam) (Kocsis et al. 2019).

Carcharhinus brachyurus (Glinther, 1870)

Remarks and fossil record: This species can be traced back to the Early Miocene, see Landini et
al. 2020 for the large lists of Neogene and Pleistocene deposits in Europe, North and South America,
Australia and Japan. According to these authors, the species has an early Miocene East Pacific-central
West Atlantic center of origin. The present-day distributional pattern of C. brachyurus is the product
of historical biogeographic processes and likely reflects major changes in the global ocean system,
including the closure of major seaways and the emergence of new oceanic circulation patterns
(Landini et al. 2020). Landini et al. (2017a; 2019; 2020) also identified the oldest copper shark nursery
area in the East Pisco Basin of Peru, from the early Miocene of the Chilcatay Formation and in the late
Miocene of the Pisco Formation.

Carcharhinus brevipinna (Miiller & Henle, 1839)

Fossil record: Miocene: India (Orissa) (Bhalla & Dev 1975); Late Miocene: Panama (Lago Bayano)
(Perez et al. 2017); Middle Miocene to early Pliocene: USA (Florida) (Boyd 2016, as “cf”).

Carcharhinus falciformis (Bibron, 1841, in Miiller & Henle, 1838-1841)

Fossil record: Early to Late Miocene: Malta (Ward & Bonavia 2001); Middle Miocene: India
(Kutch) (Singh et al. 2022), USA (North Carolina) (Purdy et al. 2001). Middle Miocene to early
Pliocene: USA (Florida) (Boyd 2016); Late Miocene: Borneo (Brunei Darussalam) (Kocsis et al. 2019),
Panama (Northern Panama, Lago Bayano) (Pimiento et al. 2013; Perez et al. 2017); Late Miocene-Early
Pliocene: Costa Rica (Laurito 1999); Pliocene: USA (North Carolina) (Maisch et al. 2018); Early
Pliocene: Italy (Tuscany) (Carnevale et al. 2006).

Carcharhinus glaucus (Linnaeus, 1758) (syn. Prionace glauca, see da Silva Rodrigues-Filho et al.
2023).

Fossil record: Miocene: Sri Lanka (Deraniyagala 1969); Middle Miocene-Pliocene: Chile
(Northern Chile) (Hoffmeister & Villafafia 2023); Late Miocene: ?Belgium (Antwerp International
Airport) (Goolaerts et al. 2020); Late Miocene to Early Pliocene: Chile (Northern Chile) (Villafafia et
al. 2022); Early Pliocene: Italy (Parma) (Cigala Fulgosi 1986); Late Pliocene: Italy (Umbria, Tuscany)
(Bellocchio et al. 1991; Cigala-Fulgosi et al. 2009).

Carcharhinus leucas (Valenciennes, 1839, in Miiller and Henle, 1838-1841)

Fossil record: Early Miocene: Egypt (Moghra) (Cook et al. 2014), Peru (Zamaca) (Landini et al.
2019); Middle Miocene: India (Kutch) (Singh et al. 2022), USA (North Carolina) (Purdy et al. 2001);
Middle Miocene to lower Pliocene: USA (Florida) (Boyd 2016); Middle Miocene-Middle Pliocene:
Venezuela (Carrillo-Briceno et al. 2015b); Late Miocene: Panama (Northern Panama) (Pimiento et al.
2013), Portugal (Alvalade Basin) (Antunes et al. 1999, as "cf"); Late Miocene: Peru (Pisco Basin)
(Bianucci et al. 2016); Pliocene: Italy (Tuscany) (Marsili 2007), USA (Florida) (Webb & Tessmann 1968;
Early Pliocene: USA (North Carolina (Purdy et al. 2001); Canary Islands (Gran Canaria,
Fuerteventura) (Betancort et al. 2016), South Africa (Langebaanweg) (Govender & Chinsamy 2013).

Carcharhinus limbatus (Miiller & Henle, 1839)

Fossil record: Miocene: India (Orissa) (Bhalla & Dev 1975); Early Miocene: USA (Delaware)
(Purdy 1998); Early Miocene to Late Pliocene: Colombia (Guajira Peninsula) (Carrillo-Bricefio et al.
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2019, as "cf"); Middle Miocene to early Pliocene: USA (Florida) (Boyd 2016); Early Pliocene: Italy
(Tuscany) (Collareta et al. 2021a).

Carcharhinus longimanus (Poey, 1867)

Fossil record: Early Miocene: India (Kathiawar, Piram island, Orissa) (Sahni & Mehrotra 1981;
Sharma & Patnaik 2014); Pliocene: Italy (Tuscany) (Marsili 2007), Spain (Alicante) (Mora Morote
1996). Cappetta (1987:125-126, Figure 106D) identified a tooth from the Pliocene of North Carolina,
USA as Pterolamiops longimanus. Pterolamiops is a junior synonym of Carcharhinus (Compagno, 1988),
but according to Purdy et al. (2001), Cappetta's tooth may belong to C. leucas.

Carcharhinus macloti (Miller and Henle, 1839)

Fossil record: Miocene: India (Orissa) (Bhalla & Dev 1975); Early Miocene: Brazil (Northeastern
Amazonia) (Costa et al. 2009, as “cf”), Peru (East Pisco Basin) (Collareta et al. 2022); Middle Miocene:
USA (North Carolina) (Purdy et al. 2001); Late Miocene: Peru (Cerro Colorado) (Landini et al. 2017b),
Portugal (Lisbon) (Antunes & Jonet 1970).

Carcharhinus obscurus (Lesueur, 1818)

Fossil record: Early Miocene: Egypt (Moghra) (Cook et al. 2014); Mexico (Baja California)
(Applegate 1986, as “ct”); Venezuela (Sanchez-Villagra et al. 2000, as " cf"); Early to middle Miocene:
Cuba (Iturralde-Vinent et al. 1996); Middle Miocene: Grenada (Carriacou) (Portell et al. 2008), Middle
to late Miocene: Ecuador (Carretera Flavio Alfaro) (Carrillo-Briceno et al. 2014); Middle Miocene-
Middle Pliocene: Venezuela (Carrillo-Bricefio et al. 2015b); Middle Miocene-Pliocene: Chile
(Northern Chile) (Hoffmeister & Villafafia 2023); Late Miocene: Portugal (Alvalade Basin) (Antunes
et al. 1999, as "cf"), Panama (Northern Panama, Lago Bayano) (Pimiento et al. 2013; Perez et al. 2017);
Pliocene: Italy (Tuscany) (Marsili 2007); Early Pliocene: USA (North Carolina) (Purdy et al. 2001).

Carcharhinus perezi (Poey, 1876)

Fossil record: Early Miocene: Brazil (North Brazil) (Aguilera et al. 2017), USA (Delaware) (Purdy
1998); Early to ?Middle Miocene: Venezuela (Falcon Basin) (Carrillo-Bricefio et al. 2016a); Early
Miocene to Late Pliocene: Colombia (Guajira Peninsula) (Carrillo-Bricefo et al. 2019 as "cf"); Middle
Miocene: USA (North Carolina) (Purdy et al. 2001); Early to middle Miocene: Cuba (Iturralde-Vinent
et al. 1996), Late Miocene: Panama (Northern Panama) (Pimiento et al. 2013), Portugal (Alvalade
Basin) (Antunes et al. 1999, as "cf"); Pliocene: Italy (Tuscany) (Marsili 2007); Early Pliocene: USA
(North Carolina) (Purdy et al. 2001).

Carcharhinus plumbeus (Nardo, 1827)

Fossil record: Early Miocene: Italy (Piedmont) (Caretto 1972); Middle Miocene: USA (North
Carolina) (Purdy et al. 2001); Middle Miocene to early Pliocene: USA (Florida) (Boyd 2016); Middle
Miocene-Middle Pliocene: Venezuela (Carrillo-Bricefio et al. 2015b); Late Miocene: Panama (Pimiento
et al. 2013), Portugal (Alvalade Basin) (Antunes et al. 1999, as "cf"); Pliocene: Italy (Tuscany) (Marsili
2007); Early Pliocene: USA (North Carolina) (Purdy et al. 2001).

Carcharhinus sealei (Pietschmann, 1913)

Fossil record: Late Miocene: Borneo (Brunei Darussalam) (Kocsis et al. 2019).

Glyphis glyphis (Miiller & Henle, 1839)

Fossil record: Early Miocene to Pliocene: Portugal (Fialho et al. 2021); Late Miocene: Borneo
(Brunei Darussalam) (Kocsis et al. 2019, as “cf.”); Pliocene: Italy (Toscana) (de Stefano 1909).

Negaprion brevirostris (Poey, 1868)

Fossil record: Early Miocene: India (Orissa) (Sharma & Patnaik 2014); Peru (Zamaca) (Landini et
al. 2019); Early to middle Miocene: Cuba (Iturralde-Vinent et al. 1996); Middle to late Miocene:
Ecuador (Carrillo-Briceno et al. 2014); Middle Miocene -Middle Pliocene: Venezuela (Carrillo-Bricefio
et al. 2015b); Middle Miocene to early Pliocene: USA (Florida) (Boyd 2016); Late Miocene: Panama
(Northern Panama, Lago Bayano) (Pimiento et al. 2013; Perez et al. 2017), Peru (Cerro Colorado,)
(Landini et al. 2017b); Pliocene: Angola (Antunes 1978, as “cf”), USA (Florida, North Carolina) (Webb
& Tessmann 1968; Maisch et al. 2018).

Sphyrnidae Gill, 1872

Sphyrna media (Linnaeus, 1758)
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Fossil record: Early Miocene: Brazil (Northeastern Amazonia) (Costa et al. 2009, as “ct”), Middle
Miocene: USA (North Carolina) (Purdy et al. 2001, as “ct”); Late Miocene: Peru (Cerro Colorado)
(Landini et al. 2017b).

Pliocene: USA (North Carolina) (Purdy et al. 2001, as “ct”), Ecuador (Carrillo-Briceno et al. 2014)

Late Pliocene-Pleistocene: Ecuador (Punta Canoa) (Carrillo-Briceno et al. 2014).

Sphyrna mokarran (Riippell, 1837)

Fossil record: Early Miocene: Cuba (Domo de Zaza) (Macphee et al. 2003); Middle Miocene to
early Pliocene: USA (Florida) (Boyd 2016); Late Miocene: Panama (Lago Alajuela, Northern Panama,
Lago Bayano) (Pimiento et al. 2013; Macfadden et al. 2017; Perez et al. 2017; Alberti & Reich 2018),
Borneo (Brunei Darussalam) (Kocsis et al. 2019, as "cf").

Sphyrna zygaena (Linnaeus, 1758)

Teeth similar to this species can be found since the Early Miocene (see Reinecke et al. 2011).
However, there is debate as to whether these teeth belong to S. zygaena or to Sphyrna laevissima (Cope,
1867), described from the Miocene of Maryland, USA (see Purdy et al. 2001 and Reinecke et al. 2011).

5. Outlook and Conclusions

Despite a fossil record consisting mostly of teeth, new finds and methods have increased our
knowledge of fossil species and the fossil record of extant species. In particular, isotopic analyses as
well as computer-based 2D and 3D reconstructions are valuable tools for examining fossil shark teeth.
In total, more is known than only the descriptions of the teeth for a total of 19 extinct Neogene shark
species, with the most focus on the famous large O. megalodon. Apart from the latter taxon, there are
no theories to date as to what caused the extinctions of these sharks, however climate change and
habitat loss have been suggested (Villafana et al. 2023). Concerning the fossil record of the more than
500 extant shark species, 38 could be verified in the Neogene record. Four species of these 38 (11%)
(Alopias superciliosus Alopias vulpinus, Galeorhinus galeus, Rhincodon typus) were also verified from the
Palaeogene. For five extant species (Carcharias taurus, Hexanchus griseus, Isurus oxyrinchus,
Notorynchus cepedianus, Sphyrna zygaena), the relationship of the extant and fossil forms is not clear.
Figures 4-5 show the phylogenetic relationships and summarize the stratigraphic ranges of species
discussed in the text. The separation in Charchariniformes (Figure 5) and non-Carcharhiniformes
(Figure 4) were simply done for a better clarity. Determining a concrete number of existing shark
species in the Neogene is highly speculative if not impossible, although it can be assumed that ancient
diversity was similar to extant diversity with the addition of taxa extinct today. Reasons for this lack
of knowledge are collecting bias (especially concerning minute sized teeth), incomplete preservation
of the teeth, as well as poorly known dentition of extant relatives (here also especially the small
species with minute-sized teeth and also the presence or absence of different forms of heterodonty).
Sometimes only one tooth with a different shape can be found in a sample, which is not enough for
a reliable taxonomic diagnosis (see for example “Carcharhinus sp.” in Holtke et al. 2022a).

The usage of the new methods mentioned here, extensive collecting (especially concerning
minute teeth) as well as detailed examination of the dentition of Recent species will enhance the
knowledge of shark evolution and the palaeobiology of fossil sharks.
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Legend:

Figure 1. Stratigraphic table.

Figure 2. 1. Megalolamna paradoxodon Shimada, Chandler, Lam, Tanaka & Ward, 2016. UCMP 112146,
Miocene, Jewett Sand, Kern County, California, USA. a. lingual view; b. labial view. Scale: 20 mm.
Images courtesy of K. Shimada, used with permission. 2. Otodus (Megaselachus) megalodon (Agassiz,
1835). SMINS 97266, Miocene, Malta. a. lingual view; b. labial view. Scale: 20 mm. 3. Otodus
(Megaselachus) chubutensis (Ameghino, 1901). SMINS 97267, Miocene, Lake Constance, Germany. a.
lingual view; b. labial view. Scale: 20 mm. 4. Parotodus benedenii (Le Hon, 1871). Miocene,
Rengetsweiler, Baden-Wiirttemberg, Germany. Specimen housed in a private collection. a. lingual
view; b. labial view. Scale: 20 mm. Photos courtesy of Jiirgen Pollerspdck, used with permission. 5.
Keasius parvus (Leriche, 1908). SMNS 80740/16, gill raker from the Bodenheim Formation, Oligocene.
Rauenberg, Baden-Wiirttemberg, Germany. Scale: 20 mm. 6. Mitsukurina lineata (Probst, 1879). SMNS
97016/10, Miocene, Rengetsweiler, Baden-Wiirttemberg, Germany. a. lingual view; b. labial view.
Scale: 10 mm. 7. Megachasma applegatei Shimada, Welton and Long, 2014. LACM 122190, Miocene,
Pyramid Hill Sand Quarry in southeastern San Joaquin Valley, California. Photos courtesy of Kenshu
Shimada, used with permission. a. lingual view; b. labial view. Scale: 5 mm. 8. Carcharias contortidens
(Agassiz, 1843). SMNS 17455, Miocene, Siessen near Bad Saulgau, , Baden-Wiirttemberg, Germany.
a. lingual view; b. labial view. Scale: 10 mm.

Figure 3. 1. Carcharias gustrowenis (Winkler, 1875). SMNS 97015/55, Miocene, Rengetsweiler, Baden-
Wiirttemberg, Germany. a. lingual view; b. labial view. Scale: 10 mm. 2. Araloselachus cuspidatus
(Agassiz, 1843). SMNS 97269, Miocene, Kithnring, Lower Austria. a. lingual view; b. labial view. Scale:
10 mm. 3. Carcharoides catticus (Philippi, 1846). SMNS 97015/42, Miocene, Rengetsweiler, Baden-
Wiirttemberg, Germany. a. lingual view; b. labial view. Scale: 10 mm. 4. Carcharodon hastalis
(Agassiz, 1838). “Broad toothed” morphotype. SMNS 97270, Miocene, Atacama desert, Chile. a.
lingual view; b. labial view. Scale: 20 mm. 5. Carcharodon hastalis (Agassiz, 1838). “Narrow toothed”
morphotype. SMNS 55505, Miocene, Baltringen, Baden-Wi{irttemberg, Germany. a. lingual view; b.
labial view. Scale: 20 mm. 6. Carcharodon hubbelli Ehret, MacFadden, Jones, DeVries, Foster and Salas-
Gismond, 2012. SMNS 97271, Miocene, Peru. a. lingual view; b. labial view. Scale: 20 mm. 7.
Pachyscyllium dachiardii (Lawley, 1876). SMNS 56753, Miocene, Ursendorf, Baden-Wiirttemberg,
Germany. a. lingual view; b. labial view. Scale: 5 mm. 8. Hemipristris serra (Agassiz, 1843). SMNS
85944/1, Miocene, Baltringen, Baden-Wiirttemberg, Germany. a. lingual view; b. labial view. Scale:
10 mm. 9. Carcharhinus dicelmai Collareta, Kindlimann, Baglioni, Landini, Sarti, Altamirano, Urbina &
Bianucci, 2022. MUSM 4697, Miocene, Peru. a. lingual view; b. labial view. Scale: 5 mm. Photos
courtesy of Alberto Collareta, used with permission. 10. Galeocerdo aduncus (Agassiz, 1835). SMNS
97268, Miocene, Rammingen, Baden-Wiirttemberg, Germany. a. lingual view; b. labial view. Scale: 10
mm. 11. Physogaleus contortus (Gibbes, 1849). SMNS 97272, Miocene, Will Beach, Maryland, USA. a.
lingual view; b. labial view. Scale: 15 mm.

Figure 4. Relationships and stratigraphic ranges of non-carcharhiniform species discussed in the text.
Topology derived from Stein et al. (2018) for extant species, with position of extinct taxa following the
review presented here. Branch arrows indicate phylogenetic uncertainty; range arrows indicate taxa
that appeared prior to the Late Oligocene, and dashed range lines indicate stratigraphic or taxonomic
uncertainty. Node positions not to scale. C, Carcharhiniformes; H, Hexanchiformes; L, Lamniformes;
O, Orectolobiformes; S, Squaliformes. .

Figure 5. Relationships and stratigraphic ranges of carcharhiniform species discussed in the text.
Topology derived from Stein et al. (2018) for extant species, with position of extinct taxa following the
review presented here. Branch arrows indicate phylogenetic uncertainty; range arrows indicate taxa
that appeared prior to the Late Oligocene, and dashed range lines indicate stratigraphic or taxonomic
uncertainty. Node positions not to scale. C, Carcharhiniformes; H, Hexanchiformes; L, Lamniformes;
O, Orectolobiformes; S, Squaliformes.
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