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Abstract: An addition sequence is an important operation in many applications of computer science, 

such as multi-modular exponentiation and outsourcing protocols. Finding an addition sequence for 

a set of positive integers with the shortest length is challenging due to the high computational time 

required to find the solution. In this paper, a new metaheuristic algorithm is designed based on the 

simulated annealing strategy to generate a short addition sequence. The efficiency of the proposed 

algorithm was proved experimentally by comparing it with the previous exact and heuristic 

algorithms in terms of running time and the length of the addition sequence. 
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1. Introduction 

Given a set of numbers 𝑁 = {𝑛ଵ, 𝑛ଶ, … , 𝑛௞}  such that  1 < 𝑛ଵ < 𝑛ଶ < ⋯ < 𝑛௞. An addition 

sequence [1,2] for the set N, denoted by ASeq(N), is an increasing sequence of numbers 𝑎𝑠଴, 𝑎𝑠ଵ, 𝑎𝑠ଶ, … , 𝑎𝑠௟ such that (1) 𝑎𝑠଴ = 1, (2) 𝑎𝑠௟ = 𝑛௞, (3) 𝑎𝑠௜ =  𝑎𝑠௝ + 𝑎𝑠௛, 0 ≤ 𝑗, ℎ ≤ 𝑖 − 1, and (4) 𝑁 ⊆ {𝑎𝑠଴, 𝑎𝑠ଵ, 𝑎𝑠ଶ, … , 𝑎𝑠௟}, i.e., each number 𝑛௜ should appear in the sequence 𝑎𝑠଴, 𝑎𝑠ଵ, 𝑎𝑠ଶ, … , 𝑎𝑠௟ .  

The number l is called the length of ASeq(N). The minimal length of an ASeq(N) is denoted by ℓ(𝑁). In the case of 𝑘 = 1, the sequence is called addition chain [1,2].  

The problem of generating a shortest ASeq(N) is equivalent to the simultaneous evaluation of k 

power monomials 𝑔௡భ , 𝑔௡మ , … , 𝑔௡ೖ  with a minimum number of multiplications. 

For example, let 𝑁 = {53, 163, 203, 363}.  The following are two ASeqs with lengths 15 and 13, 

respectively.  

The elements of the first ASeq are: 1, 2=1+1, 3=2+1, 6=3+3, 12=6+6, 13=12+1, 26=13+13, 39=26+13, 

40=39+1, 53=40+13, 106=53+53, 159=106+53, 160=159+1, 163=160+3, 203=163+40, 363=203+160. 

The elements of the second ASeq are: 1, 2=1+1, 3=2+1, 5=3+2, 10=5+5, 13=10+3, 20=10+10, 40=20+20, 

53=40+13, 80=40+40, 160=80+80, 163=160+3, 203=163+40, 363=203+160 

The evaluation of 𝑔ହଷ, 𝑔ଵ଺ଷ, 𝑔ଶ଴ଷ, 𝑔ଷ଺ଷ, using the first sequence is  𝑔, 𝑔ଶ, 𝑔ଷ, 𝑔଺, 𝑔ଵଶ, 𝑔ଵଷ, 𝑔ଶ଺, 𝑔ଷଽ, 𝑔ସ଴, 𝑔ହଷ, 𝑔ଵ଴଺, 𝑔ଵହଽ, 𝑔ଵ଺଴, 𝑔ଵ଺ଷ, 𝑔ଶ଴ଷ, 𝑔ଷ଺ଷ 

while the evaluation of the same powers 𝑔ହଷ, 𝑔ଵ଺ଷ, 𝑔ଶ଴ଷ, 𝑔ଷ଺ଷ using the second sequence is 𝑔, 𝑔ଶ, 𝑔ଷ, 𝑔ହ, 𝑔ଵ଴, 𝑔ଵଷ, 𝑔ଶ଴, 𝑔ସ଴, 𝑔ହଷ, 𝑔଼଴, 𝑔ଵ଺଴, 𝑔ଵ଺ଷ, 𝑔ଶ଴ଷ, 𝑔ଷ଺ଷ 

A step i is called star if  𝑎𝑠௜ =  𝑎𝑠௜ିଵ + 𝑎𝑠௛, 0 ≤ ℎ ≤ 𝑖 − 1; and non-star if 𝑎𝑠௜ =  𝑎𝑠௝ + 𝑎𝑠௛, 0 ≤𝑗, ℎ ≤ 𝑖 − 2 . In case of 𝑗 = ℎ = 𝑖 − 1, 𝑎𝑠௜ = 2𝑎𝑠௜ିଵ,  the step is called doubling. If all steps in the 

sequence are stars, then the sequence is called star. If ℓ∗(𝑁) denotes to the minimal length of star 

ASeq(N), then we have  ℓ(𝑁) ≤ ℓ∗(𝑁)                                        (1) 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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Yao [3] showed that: ℓ(𝑁) ≤ log 𝑛௞ + (𝑐 𝑘) log 𝑛௞ log log 𝑛௞⁄ ,                     (2) 

for some constant 𝑐 = 2 + 4 ඥlog 𝑛௞⁄ . 
Bleichenbacher [4] computed the lower bound  ℓ(𝑁 ∪ {𝑛௞ାଵ}) ≥ ℓ(𝑁) + 𝛼 + 1,          (3) 

where 𝑛௞ାଵ >  2ఈ𝑛௞, 𝛼 ≥ 0 

ASeqs have received a lot of consideration among mathematicians and computer scientists for 

the following reasons: 

The first reason is that one of the fundamental operations that play an important role in the 

efficiency of many public key cryptosystems and protocols is group exponentiation (sometimes it is 

called multi-modular exponentiation [2,5]),  i.e., computing  𝑔௡భ , 𝑔௡మ , … , 𝑔௡ೖ  simultaneously with a 

minimal number of operations, where g is an element in a group. Designing a fast algorithm for 

generating a shortest  (or short) ASeq increases the  efficiency of such public key cryptosystems and 

protocols since evaluating 𝑔௡భ , 𝑔௡మ , … , 𝑔௡ೖ  with a minimal number of multiplications is equivalent 

to finding a shortest ASeq(N). 
The second reason is that ASeqs (including addition chains) are generalized to the following:  

(i) B-chains [7], where every element in the B-chain has the form  𝑎௜ =  𝑎௝  𝑜 𝑎௛, 0 ≤ 𝑗, ℎ ≤ 𝑖 − 1, and 

the binary operation o belongs to a finite set of binary operations over the set of natural numbers 

B, i.e. 𝑜 ∈ 𝐵 = {+, −,∗,÷}. Guzmán-Trampe et. al. [8] proposed a method for generating addition-

subtraction, 𝐵 = {+, −},  sequence for the Kachisa–Schaefer–Scott family of pairing-friendly 

elliptic curves.  

(ii) Vectorial addition chain [9,10]: it is a sequence of k-dimensional vectors of nonnegative 

integers 𝑣௜ , −𝑘 + 1 ≤ 𝑖 ≤ 𝑙 , such that (1) 𝑣ି௞ାଵ = [1,0,0 … ,0,0], 𝑣ି௞ାଶ = [0,1,0 … ,0,0], …, 𝑣଴ =[0,0,0 … ,0,1] ,  (2) 𝑣௜ = 𝑣௝ + 𝑣௛, 1 ≤ 𝑖 ≤ 𝑙 , −𝑘 + 1 ≤ 𝑗, ℎ ≤ 𝑖 − 1 , and (3) 𝑣௟ = [𝑛ଵ, 𝑛ଶ, … , 𝑛௞]. 
Finding a shortest vectorial addition chain is equivalent to evaluating, multi-exponentiation, i.e., 

the product ∏ 𝑔௜௡೔௞௜ୀଵ  with the minimal number of multiplications. 

The third reason is that in Internet of Things, IoT, devices with limited resources have a problem 

when they perform some public-key primitives, such as decryption and signature, because most 

public-key primitives are (i) time-consuming compared with symmetric-key cryptosystems; and (ii) 

using private information. One of the common solutions to this problem is to use what is called 

“server aided secret computation protocols”, denoted by SASCP [11], or sometimes it is called 

outsourcing protocols [12].  

In SASCP, devices with limited power and resources, such as smart cards, can execute public-

key primitives efficiently with the aid of an untrusted powerful server without revealing the private 

information. Examples of such protocols that used ASeqs are [6,11,13]. Other protocols and their 

security analysis are [12,14]. Another and similar solution to the problem is to define a delegation 

protocol. It is a protocol that satisfies two security objectives: (i) privacy: the private information 

should not be recovered by a passive attacker; and (ii) verifiability: the untrusted server should not 

be able to make the devices accept an invalid value as the result of the delegated computation. 

Examples of such protocols and their security analysis are [12,15–17]. 

The main challenge of finding a shortest ASeq, i.e., the minimal number of additions needed to 

compute all elements of N, that it is NP-complete [4]. Additionally, when the size of N is large and 

the size of exponents is large, the running time for finding ASeq is very large [18]. Therefore, 

designing a fast algorithm for generating a short (not necessarily shortest) ASeq is interesting using 

metaheuristics techniques such as simulated annulling, ant colony and evolutionary algorithms. 

In this paper, a new metaheuristic algorithm based on simulated annealing strategy is proposed 

to find a short ASeq for the set N. The proposed simulated annulling algorithm for ASeq has three 

advantages over the previous ASeq algorithms. The first advantage is the designed algorithm has 

running time less than the exact algorithm. The second advantage is the length of ASeq generated by 

the proposed algorithm is shorter than the ASeq generated by previous heuristic algorithms. The 
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third advantage is that there is no comparative study between suboptimal algorithms and the exact 

algorithm in terms of the length of ASeq.   
The remainder of this paper is organized as follows.  Section 2 includes the related works of 

ASeq. In Section 3, the details of the proposed algorithm is given. Section 4 includes the dataset used 

in the experiments, and the results and analysis of the experimental studies for the proposed 

simulated annulling algorithm and other algorithms. Finally, Section 5 includes the conclusion of this 

paper and the future works.  

2. Related Works 

Algorithms for generating ASeq, i.e. 𝑘 ≥ 1,  can be classified into two categories. The first 

category is to find a shortest ASeq. In fact, there are a few papers that discussed a generation of 

shortest ASeqs. Bleichenbacher [4] suggested an algorithm  to find  a shortest ASeq(N) with length 

r provided that we previously computed ℓ(𝑦) for all numbers 𝑦 < 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝑁), and ℓ(𝑦) < 𝑟. He 

used the suggested algorithm to generate a shortest addition chain up to a certain number.  

The authors in [18] suggested a branch and bound depth-first search algorithm to generate a 

shortest ASeq for any set N. The algorithm starts by computing a lower bound, Eq(3), and looking 

for an addition chain for the first element 𝑛ଵ in the set N. Then, it extends the chain to addition 

sequence for  {𝑛ଵ, 𝑛ଶ}, and so on until it generates ASeq(N). The algorithm uses different strategies 

to speed up the generation as follows. (i) Using bounding sequences to prune some branches in the 

search tree, which cannot lead to a shortest ASeq. (ii) Determining an upper bound of   ℓ(𝑛ଵ, 𝑛ଶ, … , 𝑛௜), 1 ≤ 𝑖 ≤ 𝑘.  (iii) Using some sufficient conditions for star steps to skip the generation 

of non-star steps. (vi) If no ASeq(N) of length l is found, then the algorithm increases l by one and 

repeats the process until either l is equal to the length of the  generated short ASeq produced by 

continued fraction (CF) method [19] or the algorithms finds a shortest ASeq. Recently, the authors in 

[20] used multicore systems to improve the generation of a shortest ASeq. 

The second category is to find a short ASeq. Yao [3] presented an algorithm to compute 𝑔௡భ ,𝑔௡మ , … , 𝑔௡ೖ in 𝑂(lg 𝑛௞ + 𝑐 ∑ (log 𝑛௜ 𝑙𝑜𝑔𝑙𝑜𝑔(𝑛௜ + 2))⁄௞௜ୀଵ  multiplications for some constant c.  Bos and 

Coster [21] proposed four methods to generate a short ASeq to use it in the window method [21]. The 

upper bound of the length of generated an ASeq, by the four methods, could be estimated, 

experimentally, by  ℓ(𝑛ଵ, 𝑛ଶ, … , 𝑛௞) ≤ ଷଶ log 𝑛௞ + 𝑘 + 1,                               (4) 

for 𝑛௞ ≤ 1000. 
Bergeron et al. [19] proposed an efficient method based on CF. The suggested method can be 

considered as an extension and unifying approach of some previously known methods (such as 

binary and k-ary methods [1]) for generating a short addition chain, i.e., ASeq with k=1.   
Recall that the CF expansion of 𝑛 𝑑⁄ , denoted by [𝑐ଵ, …, 𝑐௧],  is  𝑛𝑑 = 𝑐௧ + 1𝑐௧ିଵ + 1  ⋱                          + 1𝑐ଶ + 1𝑐ଵ  

                                                                    (5) 

where d is an integer in the range [2. . 𝑛 − 1]. 
Bergeron et al. [19] suggested different strategies for choosing the value of d. One of the efficient 

strategies that produces a good suboptimal ASeq is dichotomic strategy, where  𝑑 = ቔ ௡ଶ⌈⌊೗೚೒మ೙⌋/మ⌉ቕ.                          (6) 

Let 𝑁′ = {𝑛୩, 𝑛୩ିଵ, … , 𝑛ଵ}, and ℒ(𝑁′) denotes the length of the ASeq(𝑁′) generated by CF using 

dichotomic strategy. Then  
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ℒ(𝑁′) = ቐ ℒ(𝑁′ ∖ {𝑛௞}) + ℓ(𝑞),                     𝑖𝑓 𝑟𝑒𝑚 = 0;ℒ(𝑁′ ∖ {𝑛௞}) + ℓ(𝑞) + 1,                  𝑖𝑓 𝑟𝑒𝑚 = 1,2ℒ(𝑁′ ∪ {𝑟𝑒𝑚} ∖ {𝑛௞}) + ℓ(𝑞) + 1,             otherwise;        (7) 

where 𝑛௞ = 𝑞 𝑛௞ିଵ + 𝑟𝑒𝑚,  and 

ℓ(𝑛) = ቐ 𝛼,                           𝑖𝑓 𝑛 = 2ఈ;3,                           𝑖𝑓 𝑛 = 3;ℒ({𝑛, 𝑑}),                      otherwise                                                (8) 

where d is defined by Eq. (6). 

Enge et. al. [22] proposed a special method to construct a short ASeq to find the first k nonzero 

terms in the sparse q-series belonging to the Dedekind eta function or the Jacobi  theta constants. 

Nadia and Mourelle [23] used Anti Colony strategy to find a short ASeq. They tested the strategy for 

a small set of numbers. Abbas and Gustafsson [24] proposed a method based on integer linear 

programming to generate a short ASeq for a small set of numbers. 

In all previous studies, there was not enough experimental study for generating a short ASeq 

with different sizes of the set N, or with different range values of each number in the set N.   Also, 

there is no comparative study between suboptimal algorithms and the exact algorithm in terms of 

the length of ASeq.   

3. The Proposed Method 

In this section, we first present a brief description of the proposed algorithm that is based on 

simulated annealing strategy to find short ASeq, and then we present its details. The algorithm is 

named SAAS for simulated annealing addition sequence. 

Initially, the algorithm starts by generating the initial state, 𝐴𝑆଴, using the CF method [19], and 

its energy is equal to the length of 𝐴𝑆଴, 𝑙஺ௌబ. Then, the algorithm assigns these two values to the best 

state and the best energy, respectively. After that, the algorithm repeats the following steps based on 

the number of Metropolis cycles, m, for a fixed temperature. In each iteration of this loop, the 

algorithm performs the following steps: 

The first step is generating a new state, 𝐴𝑆௡௘௪ , and its energy, 𝑙௡௘௪ . The second step is 

determining whether the algorithm accepts this new state or not. The algorithm accepts the new state 

and its energy, and then assigns these values to the best state and best energy if either of the following 

conditions is true. (1) if the energy of the new state is lower than the energy of the best state. (2) If the 

Boltzmann distribution is greater than a random real number in the range [0,1]. 
After completing the number of Metropolis cycles for a fixed temperature, the algorithm updates 

the temperature using the Kirkpatrick quenching method and repeats this process until it reaches the 

maximum number of annealing iterations.  

The details of the algorithm steps are as follows. 

Step 1: Generate the initial state, 𝐴𝑆 , using CF method for the set of exponents 𝑁 ={𝑛ଵ, 𝑛ଶ, … , 𝑛௞}, where 𝐴𝑆 = {𝑎𝑠଴, 𝑎𝑠ଵ, 𝑎𝑠ଶ, … , 𝑎𝑠௟} such that (1) 𝑎𝑠଴ = 1 and 𝑎𝑠ଵ = 2, (2) ∃ 𝑖, 𝑙௜  s.t. 𝑛௜ = 𝑎𝑠௟೔  and 1 ≤ 𝑖 ≤ 𝑘, (3) 𝐿 = {𝑙ଵ, 𝑙ଶ, … , 𝑙௞} such that 𝑙௜ < 𝑙௜ାଵ and 𝑙 = 𝑙௞.  

Step 2: Repeat the following m times: 

Step 2.1: Generate a random integer number, r, from the range [0, 𝑘 − 1]. This number will be 

used as a start point of mutation based on the elements of N. 

Step 2.2: Generate a new state, 𝐴𝑆௡௘௪ , by mutate 𝐴𝑆 , from the location 𝑙௥ . If r=0, then the 

algorithm mutates 𝐴𝑆  from the element 𝑎𝑠ଵ = 2 . Otherwise, the algorithm mutates the state 𝐴𝑆 from 𝑎𝑠௟ೝ = 𝑛௥ to 𝑛௞. The process of generating the new elements from 𝑛௜ to 𝑛௜ାଵ is based on 

the following rules. 
• Rule # 1: Doubling the current element, 𝑎𝑠௝ା1 = 2 𝑎𝑠௝. 

• Rule # 2: Summing the last two elements, 𝑎𝑠௝ା1 = 𝑎𝑠௝ + 𝑎𝑠௝ି1. 

• Rule # 3: Summing the last element with any other random element in the sequence, 𝑎𝑠௝ା1 =𝑎𝑠௝+𝑎𝑠ℎ,  0 ≤ ℎ < 𝑗. 

This step can be done as follows (Steps 2.2.1-2.2.3). 
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Step 2.2.1 (Generate one element in the sequence): If the current goal is 𝑛௜ାଵ and the current 

ASeq is ൛𝑎𝑠଴, 𝑎𝑠ଵ, … , 𝑎𝑠௟೔ = 𝑛௜ , 𝑎𝑠௟೔ାଵ, … , 𝑎𝑠௟೔ା௝ൟ, 𝑗 ≥ 0, then the steps of generating a new element in 

the chain are as follows. 
• 𝑑 = 𝑛௜ାଵ − 𝑎𝑠௟೔ା௝ 

• If 𝑑 = 𝑎𝑠௟೔ା௝ then apply rule # 1 

• Else if 𝑑 = 𝑎𝑠௟೔ା௝ି1 then apply rule # 2 

•     Else if 𝑑 > 𝑎𝑠௟೔ା௝ then  

•             Generate a random real number 𝛼 ∈ [0,1] 
•             If 𝛼 ≥ 0.5 then apply the rule # 1 

•             Else  

•                Generate a random real number 𝛼 ∈ [0,1] 
•                If 𝛼 ≥ 0.5 then apply the rule # 2 

•                Else  

•                   Generate a random integer number 𝑟 ∈ [0, 𝑙௜ + 𝑗 − 2] 
•                   Apply the rule # 3, where h=r. 

•        Else // 𝑑 < 𝑎𝑠௟೔ା௝   

•           Generate a random integer number 𝑟 ∈ [0, 𝑙௜ + 𝑗 − 2] 
•           Apply the rule # 3, where h=r. 

•            If the new element is less than or equal to 𝑛௜ା1 then the element is 

•           accepted. Otherwise, decrease the value of r and apply rule #3 until      

•           we found a certain value of h such that the new element is less than or  

•           equal to 𝑛௜ା1. 

Step 2.2.2 (Generate all elements between 𝑛௜ and 𝑛௜ାଵ): Repeat Step 2.2.1 starting from 𝑗 = 0, 

and 𝑎𝑠௟೔ = 𝑛௜, until the algorithm finds 𝑎𝑠௟೔ା௝೔ = 𝑛௜ାଵ. In this case, the algorithm updates the value of 𝑙௜ାଵ = 𝑙௜ + 𝑗௜ , 1 ≤ 𝑗௜ . 
Step 2.3.3 (Generate the ASeq from 𝑛௥  to 𝑛௞ ): Repeat Steps 2.2.1 and 2.2.2 until generate 𝑛௞ . 

Therefore,  𝐴𝑆௡௘௪ = ൛𝑎𝑠଴, 𝑎𝑠ଵ, … , 𝑛௥ = 𝑎𝑠௟ೝ , 𝑎𝑠௟ೝାଵᇱ , … , 𝑛௜ାଵ = 𝑎𝑠௟೔ା௝೔ᇱ , … , 𝑛௞ = 𝑎𝑠௟ೖషభା௝ೖషభᇱ = 𝑎𝑠௝ೖషభᇱ ൟ, 𝑗௜ ≥ 1 ; 
and 𝐿௡௘௪ = {𝑙ଵ, 𝑙ଶ, … , 𝑙௥ , 𝑙௥ାଵᇱ , 𝑙௥ାଶᇱ , … , 𝑙௞ᇱ }. 

Step 3 : Test the acceptance of the new state by the following substeps. 

• If 𝑙௞ᇱ < 𝑙 then 𝐴𝑆 = 𝐴𝑆௡௘௪ and 𝑙 = 𝑙௞ᇱ  

• Else generate a random real number 𝑟. 

•     𝑑௘ = 𝑙௞ᇱ − 𝑙 
•     If 𝑒ିௗ೐/் > 𝑟 then 𝐴𝑆 = 𝐴𝑆௡௘௪ and 𝑙 = 𝑙௞ᇱ  

Step 4: Decrease the temperature using Kirkpatrick quenching method: 𝑇 = 𝛾 𝑇 , where 𝛾 =0.99. 

Step 5: Repeat Steps 2, 3, and 4 until reach the maximum number of annealing iterations. 

The complete pseudocodes for the new proposed SAAS is given in Algorithms 1 and 2.  

Algorithm 1: SAAS 

Input: 𝑁 = {𝑛1, 𝑛2, … , 𝑛௞}, 𝑇0, 𝛾, succNo, mterropolisNo  

Output: 𝐴𝑆 = {𝑎𝑠0, 𝑎𝑠1, … , 𝑎𝑠௟ೖ} 

1. 𝑇 = 𝑇0 

2. CFAS(𝑁, 𝐴𝑆, 𝐿, 𝑙)                  // 𝐿 = {𝑙1, … , 𝑙௥ , … 𝑙௞}, 𝑙 = 𝑙௞. 
3. for 𝑠𝑢𝑐 = 0  to 𝑠𝑢𝑐 < 𝑠𝑢𝑐𝑁𝑜 do 

4.  for 𝑚 = 1 to 𝑚𝑒𝑡𝑒𝑟𝑜𝑝𝑜𝑙𝑖𝑠𝑁 do 

5.   Generate a random integer number 𝑟 ∈ [0, 𝑘 − 1] 
6.   MutateAS(𝐴𝑆, 𝐿, 𝑟, 𝐴𝑆௡௘௪ , 𝐿௡௘௪) 
7.   𝑑௟ = 𝑙௡௘௪ − 𝑙 
8.   if 𝑑௟ < 0 then 
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9.    𝐴𝑆 = 𝐴𝑆௡௘௪ 

10.    𝐿 = 𝐿௡௘௪ 

11.    𝑙 = 𝑙௡௘௪ 

12.   Else 

13.    Generate a random real number 𝑟′ ∈ [0,1] 
14.    if 𝑒ିௗ೗/் >  𝑟′ then  

15.     𝐴𝑆 = 𝐴𝑆௡௘௪ 

16.     𝑙 = 𝑙௡௘௪ 

17.     𝐿 = 𝐿௡௘௪ 

18.  𝑇 = 𝛾 𝑇 

 
Algorithm 2: MutateAS 

Input: 𝐴𝑆 = {𝑎𝑠0, 𝑎𝑠1, … , 𝑎𝑠௟ೖ},  𝐿 = {𝑙1, … , 𝑙௥ , … 𝑙௞}, 1 ≤ 𝑟 < 𝑘. 
Output: 𝐴𝑆௡௘௪ = {𝑎𝑠0

′ , 𝑎𝑠1
′ , … , 𝑎𝑠௟ೖ′′ } , 𝐿௡௘௪ = {𝑙1

′ , 𝑙2
′ , … , 𝑙௞′′ }. 

1. for 𝑖 = 1  to  𝑟 do 

2.  𝑙௜′ = 𝑙௜ 
3. for 𝑖 = 0  to 𝑙௥ do 

4.  𝑎𝑠௜′ = 𝑎𝑠௜ 
5. for 𝑖 = 𝑟  to  𝑘 − 1 do   // from 𝑛௜ we generate 𝑛௜ା1 

6.  𝑗 = 0 

7.  while 𝑎𝑠௟೔ା௝′  ≠ 𝑎𝑠௟೔శ1
 (= 𝑁௜ା1)do 

8.   𝑑 = 𝑎𝑠௟೔శ1
− 𝑎𝑠௟೔ା௝′  

9.   if 𝑑 = 𝑎𝑠௟೔ା௝′  then 𝑎𝑠௟೔ା௝ା1
′ = 2 𝑎𝑠௟೔ା௝′  , 𝑗 = 𝑗 + 1 

10.   else if  𝑑 = 𝑎𝑠௟೔ା௝ି1
′   then 𝑎𝑠௟೔ା௝ା1

′ = 𝑎𝑠௟೔ା௝′ − 𝑎𝑠௟೔ା௝ି1
′  ,  𝑗 = 𝑗 + 1 

11.    else if  𝑑 > 𝑎𝑠௟೔ା௝′  then 

12.    Generate a real random number between 0 and 1, say 𝑥. 

13.    if 𝑥 > 0.5 then 𝑎𝑠௟೔ା௝ା1
′ = 2 𝑎𝑠௟೔ା௝′  , 𝑗 = 𝑗 + 1 

14.    else  

15.     Generate a real random number between 0 and 1, say 𝑥 

16.     if 𝑥 > 0.5 then 𝑎𝑠௟೔ା௝ା1
′ = 𝑎𝑠௟೔ା௝′ + 𝑎𝑠௟೔ା௝ି1

′  ,  𝑗 = 𝑗 + 1 

17.     else  

18.      Generate an integer random number between 0 and 𝑙௜ + 𝑗 − 2, say 𝑥. 
19.      𝑎𝑠௟೔ା௝ା1

′ = 𝑎𝑠௟೔ା௝′ + 𝑎𝑠௫′  ,  𝑗 = 𝑗 + 1 

20.    else //𝑑௔௦ < 𝑎𝑠௟೔ା௝ 
21.    Generate an integer random number between 0 and 𝑙௜ + 𝑗 − 2, say 𝑥. 
22.    𝑎𝑠௟೔ା௝ା1

′ = 𝑎𝑠௟೔ା௝′ + 𝑎𝑠௫′  ,  𝑗 = 𝑗 + 1 

23.    while 𝑎𝑠௟೔ା௝′ >  𝑎𝑠௟೔శ1
 do 

24.     𝑥 = 𝑥 − 1 

25.     𝑎𝑠௟೔ା௝′ = 𝑎𝑠௟೔ା௝ି1
′ + 𝑎𝑠௫′  

26.  𝑙௜ା1
′ = 𝑖 + 𝑗 
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3. Results and Discussions 

This section demonstrates the experimental study and its analysis for measuring the 

performance of the SAAS algorithm compared to the exact and heuristic solutions, ExAS and CFAS, 

respectively. The three algorithms were programmed using the C language and run on a machine 

with a processor of speed of 2.5 GHz and a memory of 16 GB. Also, the three algorithms were 

compared by measuring the execution time in milliseconds and the length of the short/shortest 

sequence. The section consists of two subsections: data generation and results. 

3.1. Data Generation 

The data used in the experimental study is based on two factors. The first factor is the number 

of elements k in the set of exponents 𝑁. The experimental values of k are 2, 4, 6, 8, and 10. The second 

factor is the domain of each exponent in the set N. According to the window method and its 

variations, the range of exponents is the integer interval [1, 2௘ − 1], where e is the window length (of 

size e-bits). Also, according to the performance of the window method, the value of each exponent 

should be odd. The experimental values of e are equal to 7, 8, 9, and 10. The reason for starting the 

values of e with 7, the running times for all compared algorithms are fast when 𝑒 < 7. 
The methodology of generating the ASeq is based on fixing the size of the window, i.e., e-bits, 

say e=7, and then generating different sets 𝑁௞,௘ with lengths k= 2, 4, 6, 8, and 10.  For each value of k, 

the algorithm generates 25 sets of exponents in the range  [1, 2௘ − 1] . The process of generating 

different sets of exponents is as follows. 

1. Set e to the maximum number of bits in the exponents, i.e., the window size. 

2. Set the set 𝑁଴,௘ = ∅ and i=2.  

3. While 𝑖 ≤ 𝑘 = 10  do the following 

4. Construct a new set 𝑁௜,௘ , by adding two randomly odd numbers, in the range [1. . 2௘ − 1], to the 

set 𝑁௜ିଶ,௘ , 𝑖. 𝑒., 𝑁௜,௘ = 𝑁௜ିଶ,௘ ∪ { the two generated randomly odd numbers} 

5. Set i=i+2. 

6. Make sure that 𝑁௜,௘ is sorted. 

7. Repeat Steps 2-4, 25 times to generate 25 sets of exponents with at most e-bits. 

8. Repeat Steps 1-5 for different size of exponents e=7, 8, 9, and 10. 

The following example illustrates the generation of five sets with different values of k and fixed 

size of exponents e=8. 
• 𝑁ଶ,଼ = {177, 241}.  
• 𝑁ସ,଼ = {65, 125, 177, 241}.  
• 𝑁଺,଼ = {65, 89, 125, 177, 189, 241}.  
• 𝑁଼,଼ = {43, 65, 89, 125, 177, 189, 221, 241}.  
• 𝑁ଵ଴,଼ = {43, 65, 89, 103, 125, 177, 189, 203, 221, 241} 

3.2. Results 

The results of implementing the three algorithms on the generated data in terms of the length of 

the output are shown in Table 1. The first two columns represent the two factors e and k, while the 

three last columns represent the percentage of differences in the lengths of the output for the 

following cases: (1) ExAS and SAAS algorithms, (2) ExAS and CFAS algorithms, and (3) SAAS and 

CFAS algorithms. Since the exact algorithm always produces the shortest ASeq, the methodology for 

analyzing the results is computing the number of cases in which the lengths of ASeqs generated by 

the SAAS and CFAS algorithms are greater than the shortest ASeq generated by the ExAs algorithm. 

The percentages of these cases represent the third and fourth columns.  Also, Table 1 presents the 

difference between the lengths of the ASeqs generated by the SAAS algorithm and those generated 

by the CFAS algorithm, see the, the last column in Table 1.  
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Table 1. Comparison between three algorithms in terms of the length of ASeq. 

  Percentage of cases when 

e k |𝑨𝑺𝑺𝑨𝑨𝑺| > |𝑨𝑺𝑬𝒙𝑨𝑺| |𝑨𝑺𝑪𝑭𝑨𝑺| > |𝑨𝑺𝑬𝒙𝑨𝑺| |𝑨𝑺𝑪𝑭𝑨𝑺| > |𝑨𝑺𝑺𝑨𝑨𝑺| 
7 

2 12 % 28 % 16 % 

4 40 % 64 % 36 % 

6 56 % 76 % 44 % 

8 76 % 84 % 20 % 

10 88 % 92 % 20 % 

8 

2 20 % 56 % 44 % 

4 32 % 68 % 52 % 

6 80 % 92 % 40 % 

8 82 % 92 % 36 % 

10 92 % 96 % 32 % 

9 

2 16 % 56 % 44 % 

4 44 % 80 % 56 % 

6 84 % 88 % 36 % 

8 92 % 96 % 32 % 

10 96 % 100 % 28 % 

10 

2 16 % 72 % 60 % 

4 52 % 80 % 32 % 

6 88 % 100 % 24 % 

8 92 % 100 % 16 % 

10 100 % 100 % 16 % 

The analysis of data results shows the following observations. 

First, as in Table 1, the percentage of the difference between the lengths of the ASeq generated 

by the exact algorithm, ExAS, and the heuristic algorithms, SAAS and CFAS, increases with the 

increase in the number of elements in the set N. For example, for fixed e=7  and k=2, 4, 6, 8, and 10, the 

percentages of cases that the exact algorithm generates ASeq with a length less than that generated 

by the SAAS algorithm are 12%, 40%, 56%, 76%, and 88%. Similarly, for the CFAS algorithm, the 

differences are 28%, 64%, 76%, 84%, and 92%. 

Second, as in Table 1, the comparison between the lengths of ASeqs generated by the SAAS and 

CFAS algorithms, independent of the ExAS algorithm, , is presented in the last column. The data 

shows that the SAAS algorithm outperforms the CFAS algorithm in terms of the short ASeq for all 

studied cases. 

Third, the length of the output generated by the SAAS algorithm is near to the shortest length 

compared to that generated by the CFAS algorithm. Figure 1 shows the distribution of difference 

between the length of the output for the SAAS algorithm (similarly the CFAS algorithm) and the 

output of the exact algorithm. It is clear that the SAAS algorithm generates short ASeq with lengths 

that are near to the shortest ASeq than that generated by the CFAS algorithm. For example, when e=8 

and k=2, there are 20% of the instances where the length of ASeq generated by the SAAS algorithm is 

greater by one than the length of ASeq generated by the ExAS algorithm. On the other side, using the 

CFAS algorithm, there are 44% and 20% of instances have lengths greater than the shortest by one 

and two, respectively.   
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(a) e=7 (b) e=8 

(c) e=9 (d) e=10 

Figure 1. Percentage of differences in terms of the length of ASeq for the cases: (i) ExASt & SAAS, and 

(ii) ExaAS & CFAS. The bar in the figure contains four colors at maximum. The gold, green, blue and 

red colors represent the percentage of cases that have difference equal to 1, 2, 3, and 4, respectively. 

The figure includes four subfigures in case of (a) e=7, (b) e=8, (c) e=9, and (d) e=10. Each subfigure 

contains five pairs of bars, one bar for SAAS algorithm and the other for CFAS algorithm. The five 

pairs of bars represent the five cases k=2,4, 6, 8, and 10. 

The comparison between the three algorithms, ExAS, SAAS, and CFAS, in terms of execution 

time is shown in Table 2. The analysis of data in the table demonstrates the following observations. 

(1) The fastest running time for all compared algorithms is CFAS algorithm. (2) The CFAS algorithm 

is not affected by the values of e and k in general. On the other side, the SAAS algorithm is slightly 

affected by increasing e and k, whereas the ExAS algorithm is significantly affected by increasing e 

and k. (3) The running time for the SAAS algorithm is affected by the two parameters, succNo and 

metropolis. The increase in the values of two parameters leads to a slight increase in the running time. 

(4) The running time for SAAS algorithm is faster than the exact algorithm, and the difference 

between the two algorithms in running time increases with increase in e and k. (5) The last column of 

Table 2 shows the percentage improvement for the SAAS algorithm compared to the exact algorithm. 

Table 2. Comparison between different algorithms in terms of running time in milliseconds. 

e 

 
k 

 
Exact Alg. 

 

SAAS Alg. 

 

CF Alg. 

 

% of improvement   

SAAS & ExAS 

7 

2 10 65 1 --- 

4 12 76 1 --- 

6 14 89 1 --- 

8 16 95 2 --- 

10 17 99.4 2 --- 

8 

2 12.44 81.84  1 --- 

4 107 101.1  2 5.51% 

6 175 112.2  2 35.89% 

8 245 114.52  3 53.26% 
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10 307 116.3 4 62.12% 

9 

2 13 107.24  2 --- 

4 423 131.23  2 68.98% 

6 4375.64 144.52  3 96.70% 

8 14782.28 158.24  4 98.93% 

10 46592.12 162.2  4 99.65% 

10 

2 14.92 147.36 4 --- 

4 57827.28 166.6 4 99.71% 

6 805166.32 177.56 16 99.98% 

8 15878846.4 185.7 16  100% 

10 58645310 197.2  18 100% 

5. Conclusion and Future Works 

In this paper, finding a short addition sequence for a set of positive integers was studied. A new 

metaheuristic algorithm was proposed to find an addition sequence with short length. The proposed 

algorithm starts with generating sequence using continued fraction and then apply the simulated 

annealing strategy to improve the length of the sequence. The proposed algorithm is fast compared 

to the exact algorithm and able to generate addition sequence with length less than the previous 

heuristic algorithm. 

The efficiency of the proposed algorithm was conducted with considering different parameters 

such as the number of elements in the set and the size of positive integer. 

There are many research directions related to addition sequence such as (1) extend the concept 

of B-chains and verctorial chain to ASeq, (2) use high-performance system to accelerate the 

computation of ASeq, and (3) accelerating the multi-modular exponentiation used ASeq. 
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