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Abstract: In this study, we present a federated learning approach that combines a multi-branch network and
the Oort client selection algorithm to improve the performance of federated learning systems. This method
successfully addresses the significant issue of non-iid data, a challenge not adequately tackled by the commonly
used MFedAvg method. Additionally, one of the key innovations of this research is the introduction of
uniformity, a metric that quantifies the disparity in training time amongst participants in a federated learning
setup. This novel concept not only aids in identifying stragglers but also provides valuable insights into
assessing the fairness and efficiency of the system. Experimental results underscore the merits of the integrated
multi-branch network with the Oort client selection algorithm and highlight the crucial role of uniformity in
designing and evaluating federated learning systems.

Keywords: federated learning; uniformity; communication-efficiency; client selection; multi-branch
network

1. Introduction

Federated learning (FL) [1] has emerged as a powerful approach for training machine learning
models on decentralized data without compromising data privacy. It allows multiple clients to
collaboratively train a shared global model while keeping their data locally. This distributed learning
paradigm has gained significant attention and has been applied to various domains, including
healthcare, finance, and the Internet of Things (IoT).

The primary objective of federated learning is to improve communication efficiency and ensure
uniform training times among clients; however, the heterogeneity of data and systems in federated
learning challenges client selection and training processes. Selecting appropriate clients to participate
in training becomes crucial to achieving accurate and efficient model updates.

In this context, the Oort algorithm has been proposed as a client selection method that considers
the heterogeneity of data and systems. However, implementing the Oort algorithm (detailed in
Section 3.3) has revealed temporal discrepancies in training and communication, leading to inefficient
federated learning.

We propose integrating the Multi-Branch Network (MBN) into the existing Oort architecture to
address this issue and enhance communication efficiency and training uniformity. The MBN
construction is inspired by BranchyNet [2] and Triplewins [3], where additional branch classifiers are
incorporated at equidistant points within a given neural network. This modification allows for model
averaging and improved performance without needing multiple convolutional layers in each branch.

Furthermore, we introduce a Model Distributor component to allocate different model branches
to clients based on their computational capabilities and communication bandwidth. This clustering-
based approach ensures that clients receive models tailored to their specific training requirements,
optimizing the effectiveness and efficiency of the federated learning process.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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This work presents the construction of the MBN and the Model Distributor in detail. We evaluate
the performance of our proposed method on benchmark datasets, including CIFAR-10 and
FEMNIST, using the ResNet34 model and the MBN. We measure the training time to achieve specific
accuracy levels and the number of rounds required to reach the desired performance. Additionally,
we analyze the uniformity of the training process and investigate the impact of different
hyperparameters.

The rest of this paper is organized as follows: Section 2 provides background information on
federated learning and MBN. Section 3 explores the related work in federated learning. Section 4
describes the construction of the MBN and the Model Distributor. Section 5 presents the experimental
results and discusses the findings. Finally, Section 6 concludes the thesis and outlines potential
directions for future research.

2. Preliminary

2.1. Federated Learning

Federated Learning has emerged as a promising approach in machine learning, enabling
decentralized training while addressing privacy and data ownership concerns. The Federated
Averaging (Fed Avg) algorithm proposed by McMahan et al. [1] is widely used for global aggregation
in FL.

FL leverages the power of local devices such as smartphones and tablets to perform model
training while a central server aggregates the locally computed updates [4]. This distribution of the
learning process brings several advantages [5] [6]. Firstly, it mitigates privacy risks by avoiding
transferring sensitive data to a central location. Secondly, FL allows the utilization of device-specific
data that would otherwise be challenging to access due to privacy or logistical constraints [7] [8] [9].

However, FL also presents its inherent challenges [6][10]. One such challenge is data
heterogeneity, where the data distribution across different devices may vary significantly. This
heterogeneity can affect the convergence and performance of FL models.

Another challenge is the heterogeneity of computing resources among client devices. Some
clients may have limited computational capabilities or unreliable network connections, which can
lead to stragglers, slowing down the overall FL process.

Moreover, Communication efficiency is another crucial factor in FL. Since clients must
frequently communicate with the central server to obtain the latest model updates, efficient
communication protocols and strategies are necessary to reduce communication overhead.

In the upcoming Section, we will delve into various research works that aim to tackle these
challenges, including data and computing resource heterogeneity and communication efficiency.

2.2. Multi-Branch Networks

The concept of multi-branch networks was first introduced in [2] and further developed in [3].
In contrast to traditional neural networks, which only have a single exit point, multi-branch networks
are designed to incorporate multiple exit points. This architecture features numerous early-branch
output layers and the standard final output layer, enhancing the network's capability to capture and
leverage diverse intermediate representations from various branches. As a result, it enhances
performance and versatility in handling intricate tasks.

The early-branch output layers within a multi-branch network facilitate extracting specific
features or representations at intermediary stages of network processing. By offering auxiliary
outputs or intermediate predictions, these layers contribute significantly to guiding the network's
learning process and provide additional regularization to fortify the network's stability and
generalization.

Considering the benefits of multi-branch networks, it is advantageous to employ them as the
training model in Federated Learning environments [11]. Their architectural features lend to
enhanced learning and adaptability, making them a suitable choice for the diverse and distributed
nature of FL systems.
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3. Related Work

Several academic papers have put forth various methodologies to address the challenges
mentioned in the preliminary section regarding Federated Learning. These approaches can be
broadly categorized into homogeneous model FL and heterogeneous model FL. Table 1 summarizes
the characteristics and limitations of each considered related work. Moreover, a comparison of the
reduction in Non-iid Impacts, Alleviation in Communication Bandwidth, Alleviation in
Computational Capability, and Improvement in Transferring Speed among the benchmarking works
is presented in Table 2.

Table 1. Summarizations of the characteristics and Limitations of the Benchmarked Federated
Learning Techniques.

Name of Characteristics Limitations
the Method
FedProx [12] Add a proximal term to ensure that the local models of It is challenging to select an appropriate

participants stay close to the global model. center point w, for the proximal term.

A gradient correction is added to further suppress the data

The computation cost increases with the
FedYogi [13] heterogeneity and performance variations among P

calculation of gradient corrections, A, .

participants
. 1 i h i

1.  Grouping clients by resources, 3 Only consider the computing
FedTCR [14] . . resources

2. Only the group leader communicates with the server . . .

4.  Privacy issues arise
FedTiny [15] Select pruned models by evaluating client datasets and ~ The pruning procedure incurs additional
Y further sparsify the update parameters computation and transmission costs

FedDF [16] Utilize knowledge distillation to share information across Need a public dataset that is unrealistic for

different types of models real-world scenarios

Distribute models of different sizes to clients, allowing

. . . Doesn’t consider the scenario of non-iid
MFedAvg [11] each client to receive and accommodate a suitable model

data

Table 2. Comparisons of Benchmarked Federated Learning Techniques (in which the symbol “O”
denotes the issue that has been addressed in the method).

Reduce Alleviate Alleviate Improve Transferring
Method//Issues Non-iid Communication Computational
. o Speed
Impact Bandwidth Capability
FedProx [12] o
FedYogi [13] (6) (0)
FedTCR [14] (0) [0)
FedTiny [15] 8] [0)
FedDF [16] (6] [0) [0)
MFedAvg [11] (0] (0] (0]
Oort [18] o (0] O

3.1. Homogeneous Model FL

To address the challenge of non-iid (non-independent and identically distributed) data in FL, Li
et al. propose FedProx [12]. It introduces a proximal term to the FedAvg algorithm, a commonly used
algorithm in FL for aggregating local model updates from participant devices. The proximal term in
FedProx aims to keep the local models of participants close to the global model by imposing a penalty
if the local data are biased. This penalty encourages participants to contribute updates that align with
the global model. Building upon FedProx, Reddi et al. proposed FedYogi [13]. FedYogi enhances
FedProx by introducing gradient corrections. These corrections consider the performance variations
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among participants and adaptively adjust the importance of each participant's parameter updates to
the server. By considering the individual participants' performance, FedYogi aims to better use the
updates from participants with higher reliability or accurate data while reducing the impact of
updates from participants with less reliable data. However, calculating the gradient corrections in
FedYogi can introduce additional computation overhead, potentially procrastinating the training
time.

By minimizing the variability in total computing resources within each group, Fed-TCR [14]
aims to tackle the challenge of resource heterogeneity among participants in federated learning. This
approach helps ensure that every group can collectively contribute to the training process without
significant discrepancies in computing capabilities. Only the client with the most substantial
computing resources in each group can directly communicate with the server. At the same time, the
remaining participants exchange the model update with the cluster head to alleviate the
communication overhead on the server. While this architecture can reduce communication costs and
address the heterogeneity of computing resources, it may introduce privacy concerns as the
trustworthiness of the cluster head is not guaranteed.

As an intuitive approach to reducing communication costs, FedTiny [15] introduces a unique
method to address the challenge of non-iid data. It achieves this by employing model pruning
techniques. FedTiny creates multiple pruned models and allows participants to update the batch
normalization layer to analyze their data distribution indirectly. The server can select a model with a
minimum bias for each participant from the candidate model pool. However, this approach still
suffers from a decrease in overall accuracy due to discarding specific parameters during the pruning
process.

3.2. Heterogeneous Model FL

In contrast to federated learning with homogeneous models, FedDF [16] employs knowledge
distillation to extract logits from participants [17]. By obtaining the logits, the server can update
prototype models on the server side, eliminating the need for participants to update the parameters
of their local models. This approach allows FedDF to accommodate the heterogeneity of model
settings, enabling variations in model architectures among participants. However, it should be noted
that FedDF requires a proxy dataset to perform the distillation process, which may be unrealistic in
real-world scenarios.

On the other hand, MFed Avg [11] utilizes a multi-branch network to leverage federated learning
with heterogeneous models. By assigning the early exit branch to weak clients and the whole model
to substantial clients, MFed Avg effectively mitigates the discrepancy in computation capability and
communication bandwidth among clients. Unfortunately, MFed Avg does not address the impact of
non-iid data, which is a limitation.

3.3. Oort—Clients Selection for FL

Unlike previous works that address specific challenges, Oort [18] proposes a client selection
framework to select high-quality clients for effective participation in the training job. It utilizes a
utility function to measure clients' priority based on three dimensions: data distribution, computing
resources, and communication bandwidth. The system architecture of Oort is depicted in Figure 1.

However, even if the Oort framework selects preferable clients, there may still be a significant
training time gap among the selected clients. According to our experimental results, as the green
numbers in Figure 2 show, the fastest client needs to wait for the slowest client for nearly 1400 seconds
to complete the whole training, which significantly burdens the overall training performance. This
surprising observation inspires us to investigate ways to enhance the overall efficacy of FML.


https://doi.org/10.20944/preprints202312.1544.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 December 2023 doi:10.20944/preprints202312.1544.v1

o @ Job Execution @ Info update Oort
M " bmission Driver clients | o | selector
(B selection info

(® Aggregation
@ dispatch model (® Upload status

® Local training ﬁ
A—l

o «w )

Client I
\ lens poo j \ Selected clients /

Figure 1. The System Architecture of Oort (the indicated numbers represent the sequence order of the
Oort’s execution).
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Figure 2. The Overall Training Time Gap among Selected Clients by Oort (in which the experiment is
conducted follows the environment settings presented in Section 5.1).

4. The Proposed Method

The primary objective of our proposed method is to improve communication efficiency and
ensure as uniform training times as possible during the client selection process described in [18]. The
Oort algorithm accounts for the heterogeneity of data and systems to identify appropriate
participants. However, implementing the Oort algorithm revealed significant temporal discrepancies
in training and communication. We propose integrating the Multi-branch Network into the existing
Oort architecture to rectify this issue and promote enhanced communication efficiency along with
uniform training times. As mentioned in Section 3, the MFedAvg method [11] does not explicitly
address the impact of non-iid data, which is considered a limitation of the approach. On the other
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hand, combining the Oort algorithm and the multi-branch network, as proposed in this work, can
effectively alleviate the impact of non-iid data suffering [11].

In the rest of this Section, we will first explain the construction of a Multi-Branch network
derived from the original neural network. We will then introduce the model distributor and receiver
we added to the original Oort system.

4.1. Construction of a Multi-Branch Network

Based on the findings of BranchyNet [2] and Triple wins [3], a multi-branch network can be
constructed by incorporating additional branch classifiers at equidistant points within a given
network, thereby facilitating model averaging. Furthermore, it has been observed that achieving
satisfactory performance can be done without the addition of multiple convolutional layers to each
branch. For example, we can consider the ResNet34 architecture, a classical neural network (depicted
in Figure 3). Our approach incorporates several additional convolutional layers into the residual
blocks at every two blocks (as illustrated in Figure 4). This modification enhances the architecture by
introducing branch classifiers at equidistant points, allowing for model averaging and improved
performance.

—_ || — — — —_—

Input data L ) L | L )

Residual block group 1 Residual block group 2 Residual block group 3

Residual block
Conv layer

Fully connected layer
Figure 3. The Architecture of the Original ResNet34 Network.

Branch1l Branch2 Branch3
Branch4 Branch5 Branch6

Branch7 Branch8 Branch9

t t t 1 1 1
R T R e T R B A
Input data \ J J J

\
f f f
Residual block group 1 Residual block group 2 Residual block group 3

Residual block
Conv layer

Fully connected layer

Figure 4. The Architecture of the Proposed Nine-Branch ResNet34 Network.

4.2. Model Distributor

Our method presents an alternative to the conventional federated learning paradigm, wherein
clients are served identical models from the server. Our strategy allocates distinct model branches to
various clients based on their computational capabilities and communication bandwidth. To facilitate
this, we introduce a clustering algorithm that groups the clients into K + 1 clusters, where
K denotes the number of additional branches incorporated into the model.
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The initial step in the tiers clustering algorithm (Algorithm 1) involves assigning the overall
training capability by considering each client’s computation capability and communication
bandwidth. It is worth noting that a coefficient p is introduced to the computation capability (Line
3), where u represents the ratio of computation capability to communication bandwidth. This
coefficient determines the relative importance of computation capability concerning communication
bandwidth, with p > 1 indicating a higher emphasis on computation capability and p <1 indicating
a higher emphasis on communication bandwidth. When i is equal to 1, both factors are considered
equally important. Section 5 will explore the diverse outcomes achieved by employing different
values of L. Furthermore, clients are sorted (Line 5 in Algorithm 1) based on their training capability
after assigning the overall training ability. They are subsequently grouped (Line 8 in Algorithm 1)
into K+1 groups, arranged in ascending order according to their training times, starting from the
clients with the lower training capability and progressing towards those with more substantial
training capability.

With the clustering set in place, the model distributor can assign different models based on the
individual training capabilities of clients. The branch models {M;}}! represent the initial neural
network architecture's early exit points. Each M; signifies a specific model configuration, where i =
1 corresponds to the most miniature model denoting the earliest exit of the network. Conversely, i =
k + 1 represents the complete network without any early exits.

The model distributor systematically dispatches the corresponding model M; to the clients
within cluster G; to optimize the training process. This sequential assignment ensures that clients
receive a model tailored to their specific training requirements, ultimately maximizing the
effectiveness and efficiency of the federated learning process.

Algorithm 1 Tiers Clustering Algorithm

Require: Clients set & = {k;}Y,, computation capability set P = {P;}¥,, communica-
tion bandwidth set S = {S;}¥,, clustering set G = (), ratio of computation capability
to communication bandwidth y, number of additional branches K
Ensure: Clustering set G
1: Training capability set T < ()
2: fori=1to N do
3: Update Training capability set T; = p x P, + .S;
4: end for

5: Sort the set 7" and obtain the sorted set 7" = {T] < T, ..., < T\ } and corresponding
clients set k' = {k;},

fort=1to K +1do
forj=ttot+ N/(K + 1) do
Sequential assign & to G}
end for
10: end for

W eem R

4.3. Overall System Architecture

We implemented our work using FedScale [19], an open-source evaluation platform and
benchmark designed explicitly for federated learning. Figure 5 illustrates the overall system
architecture of our implementation. In this architecture, the user first submits the job, which includes
the hyperparameter settings (e.g., clients per round and p), to the Parameter Aggregator (acting as
the primary server) 1. Additionally, the Parameter Aggregator receives feedback from the clients
regarding the previous training round, updates the global model with the clients' updates, and
collects relevant information from the clients 2. Afterward, the Oort Client Selector will select a
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certain percentage (k%) of preferable clients based on their computing capability, communication
bandwidth, and data distribution.

The remaining quota will be randomly selected from the pool of unselected clients 3. The Model
Distributor receives the aforementioned information, including the updated global model, client
information, and the selected clients. It utilizes the Tiers Clustering Algorithm to group the selected
clients into several clusters based on their characteristics. Then, it dispatches the suitable model to
each client within their respective cluster, ensuring an efficient and tailored training process 4. The
clients receive the assigned models through the Model Receiver and train with their local data in
Model Trainer 5. After completing the training process, the Client Collector collects the local model
parameters and captures their corresponding status 6. Finally, the collected data, including the model
parameters and their status, is transmitted and updated on server 7. The entire process is executed
iteratively, with periodic testing every few rounds until the desired number of target rounds is

reached.
[ ]
[
@ i @D New job
@ Upload model updates
Collect the client satus and parameter @
Compute - Update .
Resource | Client | Parameter | info Client
Network Collector l | Aggregator Info
Bandwidth \
Train model with local data @
Model global :
Trainer mode! Qlelis
'y 1y Client Selector

— Model | ( Model

- - Receiver ) Distributor @ Select k% preferable cli.ents and

Local data 1-k% randomly from client pool
@
. Dispatch different models
Cllent based on their capabilities Server

Figure 5. The Overall System Architecture and the Functional Block Diagram of Our Proposed
Framework.

5. Experiments

In this Section, we perform experiments on well-known benchmark datasets, including CIFAR-
10, CIFAR-100 [20], and FEMNIST [21], with the ResNet-34 model [22] and the multi-branch ResNet-
34 (MB_ResNet-34). We present the experimental results in terms of two metrics: the time taken to
achieve a specific accuracy (time to accuracy) and the number of rounds required to reach a certain
level of accuracy (rounds to accuracy).

5.1. Experimental Setup

5.1.1. Environment Settings

Our experiments were conducted using the FedScale [19] platform, and we ensured a consistent
environment setting across different dataset experiments. The client pool consisted of 2800 clients,
with 100 clients selected in each round of training. We performed a total of 1000 training rounds. The
datasets were divided into non-iid partitions. The computation capability of clients was
predetermined prior to the training process, while the communication bandwidth of clients varied
during the training process. Furthermore, the client’s online/offline status also fluctuated throughout
training.


https://doi.org/10.20944/preprints202312.1544.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 December 2023 doi:10.20944/preprints202312.1544.v1

5.1.2. Model Settings

To construct the multi-branch ResNet-34 architecture, we followed the methodology described
in the works of [3] and [4]. In our implementation, we incorporated additional branches into the
original ResNet-34 architecture. Specifically, we added three extra branches for the first group of
residual blocks. Each branch consisted of two convolutional layers followed by a fully-connected
layer. These additional branches were inserted at regular intervals of every two consecutive blocks
within the first group.

Similarly, we added branches combining one convolutional layer and a fully connected layer for
the second group of residual blocks, following the same pattern of regular intervals. Finally, we
added a single fully connected layer without any convolutional layers for the last group of residual
blocks. The complete network structure, including the additional branches, is illustrated in Figure 4.

5.2. Training Details

We want to clarify that the 5.1.1 section does not explicitly mention the specific hyperparameter
settings such as local training steps, batch size, and learning rate. However, it should be noted that
these hyperparameters are consistent with the settings specified in the Oort [18].

We follow the training process outlined in [18] for training with the ResNet-34 model. However,
there is a crucial difference in the training of the multi-branch ResNet-34 model. After selecting clients
using the Oort selection algorithm, we cluster them into ten groups, corresponding to the nine
additional branches and the main branch. We then assign the respective branch models to each client
group for training. The detailed training process, including the Tiers Clustering Algorithm, can be
found in Section 4.3.

5.3. Experimental Results

To evaluate the effectiveness of our approach, we conducted experiments on the FEMNIST and
CIFAR-10 datasets using different model settings. We assessed the performance using two primary
metrics: time-to-accuracy and rounds-to-accuracy. These metrics provide insights into the efficiency
and effectiveness of our approach in achieving accurate results within a given time frame and number
of training rounds.

5.3.1. Time-to-Accuracy Performance

Our experiments evaluated the time taken to achieve accuracy levels of 60%, 70%, and 80%.
Table 3 presents the experimental results concerning the FEMNIST dataset. The first row represents
the performance of the ResNet34 model without the Oort selection algorithm. It took approximately
66,761 seconds to achieve 60% accuracy and 101,072 seconds to achieve 70% accuracy. In contrast, the
MB_ResNet34 model achieved the same level of accuracy in significantly less time than the original
ResNet34 model.

However, it should be noted that the scenarios without the client selection algorithm faced poor
overall accuracy due to the impact of non-iid data. To address this issue, we integrated the selection
algorithm, as shown in the third and fourth rows of the table. It is evident that compared to the
random selection method, the time to accuracy decreased, and the overall accuracy exceeded 80%.

For the CIFAR-10 dataset, as shown in Table 4, we observe similar trends to those in Table 3.
This observation further supports the effectiveness of our proposed method in alleviating the
negative impact of non-iid data on the MB_ResNet34 model in [11] (rows 2 and 4) and reducing the
training time compared to the original ResNet34 model in [18] (rows 3 and 4).
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Table 3. Training Time versus Accuracy for Different Models on the FEMNIST Dataset (in which the

symbol “—" means that accuracy is not achievable due to the impact of non-iid data during the
experiment).
Model Accuracy 60% Accuracy 70% Accuracy 80%
ResNet34 66,761 101,072 -
MB_ResNet34 6,799 13,097 -
ResNet34 + oort 47,701 68,869 286,324
MB ResNet34 + oort 5,555 10,113 36,854

Table 4. Training Time versus Accuracy for Different Models on the CIFAR-10 Dataset (in which the

symbol “—" means that accuracy is not achievable due to the impact of non-iid data during the
experiment).
Model Accuracy 60% Accuracy 70% Accuracy 80%
ResNet34 246,102 837,236 -
MB_ResNet34 23,036 48,558 -
ResNet34 + oort 225,743 811,432 2,432,746
MB_ResNet34 + oort 20,365 43,812 124,677

5.3.2. Rounds-to-Accuracy Performance

Figure 6 and Figure 7 display the rounds to accuracy curves during 1000 rounds. These curves
provide a more precise visualization of the overall accuracy trends. It is evident that the red line,
representing the MB_ResNet34 + Oort model, achieves the highest accuracy compared to the other
curves. On the other hand, the blue and orange lines, which correspond to models trained without
the selection algorithm, exhibit lower accuracy levels.
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5.3.3. Uniformity

We also evaluate the uniformity, as defined in Equation (1), of the original ResNet34 and
MB_ResNet34 models. The physical meaning of Eq. (1) is similar to that of the variance but slightly
modified to better capture the concept of uniformity.

=

N 2
Uniformity £ (%Z(timei - minT)2> €))
i=1

In Equation (1), time; refers to the time the i-th client takes during the training process, and
minT represents the minimum time spent by any client. By calculating the squared deviation of each
client's time from the minimum time and then averaging them, we measure the uniformity of the
training process across selected clients. Taking the result’s square root further helps provide a more
interpretable value for the uniformity metric.

By utilizing the formula mentioned above, we can gain valuable insights into the consistency
and uniformity of the training process for the original ResNet34 and MB_ResNet34 models, as
depicted in Figure 8 and Figure 9, respectively. As a reference, we also include the variance in total
training time and the uniformity of computation time and communication time. Evidently, the
uniformity significantly decreases from approximately 532 to 313 when implementing the multi-
branch network. This fact demonstrates the effectiveness of the multi-branch network in improving
the uniformity and consistency of the training process.

1400 4 == computation time
B communication time
1200 -
Total uniformity: 532.64
1000 -
_ Total variance: 313.79
< 800 -
& . ! mm : 167.44
£ Uniformity:
" 600 y mm : 443.35
400 -
200 A
0_
0 20 40 60 80 100
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Figure 8. The Uniformity of the Original ResNet34.
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Figure 9. The Uniformity of the MB_ResNet34.
5.4. Ablation Studies

5.4.1. Integration with Other Methods

In addition to conducting experiments with ResNet34 and MB_ResNet34 on CIFAR-10 and
FEMNIST datasets, we also explored their performance in combination with the FedProx method [12]
and FedYogi method [13]. These methods were employed to address the impact of non-iid data,
reducing the time required to achieve the desired accuracy. Table 5 presents the training time-to-
accuracy performance for the two models combined with different gradient policies. It is important
to note that all experiments in the ablation study were performed with Oort client selection.

The results indicate that integrating MB_ResNet34 with the FedProx method yielded the best
performance. However, when combined with the FedYogi method, MB_ResNet34 required more
time than its standalone version. This additional time can be attributed to the computation overhead
in calculating the gradient corrections. Furthermore, we extended our experiments to the CIFAR-100
dataset, and the results in Table 6 demonstrate a reduction in training time due to better uniformity
among selected clients.
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Table 5. Training Time versus A Certain Amount of Accuracy for Different Models on CIFAR-10 and

FEMNIST Datasets.

Model CIFAR-10 FEMNIST
60% 70% 80% 60% 70% 80%

ResNet34 225,743 811,432 2,432,746 47,701 68,869 286,324
MB ResNet34 23,036 48,558 131,692 5,555 10,113 36,854
ResNet34 + Prox 217,693 824,295 2,142,973 29,639 48,454 168,844
MB ResNet34 + Prox 20,365 43,812 124,677 4,563 6,224 25,192
ResNet34 + Yogi 223,420 803,822 2,342,924 44,845 74,458 253,798
MB_ ResNet34 + Yogi 55,222 98,168 200,200 4,013 5942 16,530
MobileNet v2 56,950,432 - -
MB MobileNet v2 33,457 60,464 138418

Table 6. Training Time versus A Certain Amount of Accuracy for Different Models on CIFAR-100
Dataset.

Model CIFAR-100
40% 50%
ResNet34 1,432,736 -

MB_ ResNet34 122,351 256,291

5.4.2. The Effects of Different Communication Bandwidth Ratios ()

To better understand the impact of uniformity by different u values, we conducted experiments
using extreme values in our clustering algorithm. The results are depicted in Figure 10.

By testing these extreme values, we observed that the uniformity performance improved when
the computation capability and communication bandwidth were more balanced. Specifically, the
extreme values represented by the bottom left and bottom right in Figure 10 demonstrated poorer
uniformity performance than both on the top. The worst performance case occurred when there was
an overindulgence in computation capability. In most federated learning scenarios, the straggler
spent significant time in transit, transferring data rather than actively performing computations. This
imbalance between computation and communication resulted in a decrease in uniformity
performance.


https://doi.org/10.20944/preprints202312.1544.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 December 2023 doi:10.20944/preprints202312.1544.v1

15

p=1/1 u=3/7

1400 - M computation time 1400 - WM computation time

B communication time B communication time

"7 Total uniformity: 313.08 “*7 Total uniformity: 316.95
) | Total variance: 138.28 ) | Total variance: 139.25
£ 800 = < 800 =
: mm :111.05 t mm  124.95
= wo 4 Uniformity: s Uniformity:

mm :287.55 9 mm 28250

400 =

400 =

200 = 200 =

0 = [
0 20 40 60 80 100 0 20 40 60 80 100

Clients ID Clients ID

p=1/9 p=9/1

1400 —| MEE computation time 1400 —| EEE computation time

EEm communication time BN communication time

“7 Total uniformity: 322.56 "7 Total uniformity: 372.21
- Total variance: 144.43 - Total variance: 221.72
£ 800 = <2 800 =
¢ o :133.90 t S :68.44
- wo 4 Uniformity: — : w 4 Uniformity: —

mm : 281.52 mm : 362.15

400 = 400 =

200 = 200 =

0 20 40 60 80 100 20 40 60 80 100

Clients ID Clients ID

Figure 10. The Uniformity Measures Under Different Values of p.

6. Conclusions

This paper presents an approach integrating a multi-branch network with the Oort client
selection algorithm. Our proposed method includes incorporating a Model Distributor module,
which efficiently clusters clients and dispatches appropriate models to them. Through extensive
experimentation, we have demonstrated the effectiveness of our approach in mitigating the impact
of non-iid data, which is not considered in the MFedAvg method. Furthermore, our approach
surpasses the performance of the original Oort paper.

Additionally, we have introduced the concept of uniformity, which provides a straightforward
measure of the training time gap among participants and identifies the presence of stragglers. The
concept of uniformity offers valuable insights into the distribution of training time and facilitates the
assessment of fairness and efficiency in the federated learning process.

Our results have showcased the benefits of integrating a multi-branch network and the Oort
client selection algorithm. Furthermore, we have emphasized the significance of considering
uniformity in designing and evaluating federated learning frameworks.

In the future, we will conduct further investigations to enhance the overall accuracy of our
approach. We plan to explore various techniques, including model architecture modifications,
optimization algorithms, and the incorporation of additional data preprocessing methods. Moreover,
we will conduct experiments on larger datasets to gain insights into the scalability and
generalizability of our approach. We aim to refine and optimize our approach by undertaking these
efforts, ultimately achieving higher accuracy and better performance in federated learning.
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