
Article

Not peer-reviewed version

Enhancing Communication Efficiency

and Training Time Uniformity in

Federated Learning through Multi-

Branch Networks and the Oort

Algorithm

Pin-Hung Juan and Ja-Ling Wu

*

Posted Date: 20 December 2023

doi: 10.20944/preprints202312.1544.v1

Keywords: Federated Learning, Uniformity, Communication-efficiency, Client selection, Multi-Branch

Network

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/208360

Article

Enhancing Communication Efficiency and Training
Time Uniformity in Federated Learning through
Multi-Branch Networks and the Oort Algorithm

Pin-Hung Juan 1 and Ja-Ling Wu 1,2,3,*

1 Department of Computer Science and Information Engineering; r10922103@ntu.edu.tw
2 Graduate Institute of Networking and Multimedia
3 Center for Data Intelligence: Technologies, Applications, and Systems

* Correspondence: wjl@cmlab.csie.ntu.edu.tw

Abstract: In this study, we present a federated learning approach that combines a multi-branch network and

the Oort client selection algorithm to improve the performance of federated learning systems. This method

successfully addresses the significant issue of non-iid data, a challenge not adequately tackled by the commonly

used MFedAvg method. Additionally, one of the key innovations of this research is the introduction of

uniformity, a metric that quantifies the disparity in training time amongst participants in a federated learning

setup. This novel concept not only aids in identifying stragglers but also provides valuable insights into

assessing the fairness and efficiency of the system. Experimental results underscore the merits of the integrated

multi-branch network with the Oort client selection algorithm and highlight the crucial role of uniformity in

designing and evaluating federated learning systems.

Keywords: federated learning; uniformity; communication-efficiency; client selection; multi-branch

network

1. Introduction

Federated learning (FL) [1] has emerged as a powerful approach for training machine learning

models on decentralized data without compromising data privacy. It allows multiple clients to

collaboratively train a shared global model while keeping their data locally. This distributed learning

paradigm has gained significant attention and has been applied to various domains, including

healthcare, finance, and the Internet of Things (IoT).

The primary objective of federated learning is to improve communication efficiency and ensure

uniform training times among clients; however, the heterogeneity of data and systems in federated

learning challenges client selection and training processes. Selecting appropriate clients to participate

in training becomes crucial to achieving accurate and efficient model updates.

In this context, the Oort algorithm has been proposed as a client selection method that considers

the heterogeneity of data and systems. However, implementing the Oort algorithm (detailed in

Section 3.3) has revealed temporal discrepancies in training and communication, leading to inefficient

federated learning.

We propose integrating the Multi-Branch Network (MBN) into the existing Oort architecture to

address this issue and enhance communication efficiency and training uniformity. The MBN

construction is inspired by BranchyNet [2] and Triplewins [3], where additional branch classifiers are

incorporated at equidistant points within a given neural network. This modification allows for model

averaging and improved performance without needing multiple convolutional layers in each branch.

Furthermore, we introduce a Model Distributor component to allocate different model branches

to clients based on their computational capabilities and communication bandwidth. This clustering-

based approach ensures that clients receive models tailored to their specific training requirements,

optimizing the effectiveness and efficiency of the federated learning process.

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 December 2023 doi:10.20944/preprints202312.1544.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202312.1544.v1
http://creativecommons.org/licenses/by/4.0/

 2

This work presents the construction of the MBN and the Model Distributor in detail. We evaluate

the performance of our proposed method on benchmark datasets, including CIFAR-10 and

FEMNIST, using the ResNet34 model and the MBN. We measure the training time to achieve specific

accuracy levels and the number of rounds required to reach the desired performance. Additionally,

we analyze the uniformity of the training process and investigate the impact of different

hyperparameters.

The rest of this paper is organized as follows: Section 2 provides background information on

federated learning and MBN. Section 3 explores the related work in federated learning. Section 4

describes the construction of the MBN and the Model Distributor. Section 5 presents the experimental

results and discusses the findings. Finally, Section 6 concludes the thesis and outlines potential

directions for future research.

2. Preliminary

2.1. Federated Learning

Federated Learning has emerged as a promising approach in machine learning, enabling

decentralized training while addressing privacy and data ownership concerns. The Federated

Averaging (FedAvg) algorithm proposed by McMahan et al. [1] is widely used for global aggregation

in FL.

FL leverages the power of local devices such as smartphones and tablets to perform model

training while a central server aggregates the locally computed updates [4]. This distribution of the

learning process brings several advantages [5] [6]. Firstly, it mitigates privacy risks by avoiding

transferring sensitive data to a central location. Secondly, FL allows the utilization of device-specific

data that would otherwise be challenging to access due to privacy or logistical constraints [7] [8] [9].

However, FL also presents its inherent challenges [6][10]. One such challenge is data

heterogeneity, where the data distribution across different devices may vary significantly. This

heterogeneity can affect the convergence and performance of FL models.

Another challenge is the heterogeneity of computing resources among client devices. Some

clients may have limited computational capabilities or unreliable network connections, which can

lead to stragglers, slowing down the overall FL process.

Moreover, Communication efficiency is another crucial factor in FL. Since clients must

frequently communicate with the central server to obtain the latest model updates, efficient

communication protocols and strategies are necessary to reduce communication overhead.

In the upcoming Section, we will delve into various research works that aim to tackle these

challenges, including data and computing resource heterogeneity and communication efficiency.

2.2. Multi-Branch Networks

The concept of multi-branch networks was first introduced in [2] and further developed in [3].

In contrast to traditional neural networks, which only have a single exit point, multi-branch networks

are designed to incorporate multiple exit points. This architecture features numerous early-branch

output layers and the standard final output layer, enhancing the network's capability to capture and

leverage diverse intermediate representations from various branches. As a result, it enhances

performance and versatility in handling intricate tasks.

The early-branch output layers within a multi-branch network facilitate extracting specific

features or representations at intermediary stages of network processing. By offering auxiliary

outputs or intermediate predictions, these layers contribute significantly to guiding the network's

learning process and provide additional regularization to fortify the network's stability and

generalization.

Considering the benefits of multi-branch networks, it is advantageous to employ them as the

training model in Federated Learning environments [11]. Their architectural features lend to

enhanced learning and adaptability, making them a suitable choice for the diverse and distributed

nature of FL systems.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 December 2023 doi:10.20944/preprints202312.1544.v1

https://doi.org/10.20944/preprints202312.1544.v1

 3

3. Related Work

Several academic papers have put forth various methodologies to address the challenges

mentioned in the preliminary section regarding Federated Learning. These approaches can be

broadly categorized into homogeneous model FL and heterogeneous model FL. Table 1 summarizes

the characteristics and limitations of each considered related work. Moreover, a comparison of the

reduction in Non-iid Impacts, Alleviation in Communication Bandwidth, Alleviation in

Computational Capability, and Improvement in Transferring Speed among the benchmarking works

is presented in Table 2.

Table 1. Summarizations of the characteristics and Limitations of the Benchmarked Federated

Learning Techniques.

Name of

the Method
Characteristics Limitations

FedProx [12]
Add a proximal term to ensure that the local models of

participants stay close to the global model.

It is challenging to select an appropriate

center point 𝜔௖ for the proximal term.

FedYogi [13]

A gradient correction is added to further suppress the data

heterogeneity and performance variations among

participants

The computation cost increases with the

calculation of gradient corrections, Δఠೖ.

FedTCR [14]
1. Grouping clients by resources,

2. Only the group leader communicates with the server

3. Only consider the computing

resources

4. Privacy issues arise

FedTiny [15]
Select pruned models by evaluating client datasets and

further sparsify the update parameters

The pruning procedure incurs additional

computation and transmission costs

FedDF [16]
Utilize knowledge distillation to share information across

different types of models

Need a public dataset that is unrealistic for

real-world scenarios

MFedAvg [11]

Distribute models of different sizes to clients, allowing

each client to receive and accommodate a suitable model

Doesn’t consider the scenario of non-iid

data

Table 2. Comparisons of Benchmarked Federated Learning Techniques (in which the symbol “O”

denotes the issue that has been addressed in the method).

Method//Issues

Reduce

Non-iid

Impact

Alleviate

Communication

Bandwidth

Alleviate

Computational

Capability

Improve Transferring

Speed

FedProx [12] O

FedYogi [13] O O

FedTCR [14] O O

FedTiny [15] O O

FedDF [16] O O O

MFedAvg [11] O O O

Oort [18] O O O

3.1. Homogeneous Model FL

To address the challenge of non-iid (non-independent and identically distributed) data in FL, Li

et al. propose FedProx [12]. It introduces a proximal term to the FedAvg algorithm, a commonly used

algorithm in FL for aggregating local model updates from participant devices. The proximal term in

FedProx aims to keep the local models of participants close to the global model by imposing a penalty

if the local data are biased. This penalty encourages participants to contribute updates that align with

the global model. Building upon FedProx, Reddi et al. proposed FedYogi [13]. FedYogi enhances

FedProx by introducing gradient corrections. These corrections consider the performance variations

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 December 2023 doi:10.20944/preprints202312.1544.v1

https://doi.org/10.20944/preprints202312.1544.v1

 4

among participants and adaptively adjust the importance of each participant's parameter updates to

the server. By considering the individual participants' performance, FedYogi aims to better use the

updates from participants with higher reliability or accurate data while reducing the impact of

updates from participants with less reliable data. However, calculating the gradient corrections in

FedYogi can introduce additional computation overhead, potentially procrastinating the training

time.

By minimizing the variability in total computing resources within each group, Fed-TCR [14]

aims to tackle the challenge of resource heterogeneity among participants in federated learning. This

approach helps ensure that every group can collectively contribute to the training process without

significant discrepancies in computing capabilities. Only the client with the most substantial

computing resources in each group can directly communicate with the server. At the same time, the

remaining participants exchange the model update with the cluster head to alleviate the

communication overhead on the server. While this architecture can reduce communication costs and

address the heterogeneity of computing resources, it may introduce privacy concerns as the

trustworthiness of the cluster head is not guaranteed.

As an intuitive approach to reducing communication costs, FedTiny [15] introduces a unique

method to address the challenge of non-iid data. It achieves this by employing model pruning

techniques. FedTiny creates multiple pruned models and allows participants to update the batch

normalization layer to analyze their data distribution indirectly. The server can select a model with a

minimum bias for each participant from the candidate model pool. However, this approach still

suffers from a decrease in overall accuracy due to discarding specific parameters during the pruning

process.

3.2. Heterogeneous Model FL

In contrast to federated learning with homogeneous models, FedDF [16] employs knowledge

distillation to extract logits from participants [17]. By obtaining the logits, the server can update

prototype models on the server side, eliminating the need for participants to update the parameters

of their local models. This approach allows FedDF to accommodate the heterogeneity of model

settings, enabling variations in model architectures among participants. However, it should be noted

that FedDF requires a proxy dataset to perform the distillation process, which may be unrealistic in

real-world scenarios.

On the other hand, MFedAvg [11] utilizes a multi-branch network to leverage federated learning

with heterogeneous models. By assigning the early exit branch to weak clients and the whole model

to substantial clients, MFedAvg effectively mitigates the discrepancy in computation capability and

communication bandwidth among clients. Unfortunately, MFedAvg does not address the impact of

non-iid data, which is a limitation.

3.3. Oort—Clients Selection for FL

Unlike previous works that address specific challenges, Oort [18] proposes a client selection

framework to select high-quality clients for effective participation in the training job. It utilizes a

utility function to measure clients' priority based on three dimensions: data distribution, computing

resources, and communication bandwidth. The system architecture of Oort is depicted in Figure 1.

However, even if the Oort framework selects preferable clients, there may still be a significant

training time gap among the selected clients. According to our experimental results, as the green

numbers in Figure 2 show, the fastest client needs to wait for the slowest client for nearly 1400 seconds

to complete the whole training, which significantly burdens the overall training performance. This

surprising observation inspires us to investigate ways to enhance the overall efficacy of FML.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 December 2023 doi:10.20944/preprints202312.1544.v1

https://doi.org/10.20944/preprints202312.1544.v1

 5

Figure 1. The System Architecture of Oort (the indicated numbers represent the sequence order of the

Oort’s execution).

Figure 2. The Overall Training Time Gap among Selected Clients by Oort (in which the experiment is

conducted follows the environment settings presented in Section 5.1).

4. The Proposed Method

The primary objective of our proposed method is to improve communication efficiency and

ensure as uniform training times as possible during the client selection process described in [18]. The

Oort algorithm accounts for the heterogeneity of data and systems to identify appropriate

participants. However, implementing the Oort algorithm revealed significant temporal discrepancies

in training and communication. We propose integrating the Multi-branch Network into the existing

Oort architecture to rectify this issue and promote enhanced communication efficiency along with

uniform training times. As mentioned in Section 3, the MFedAvg method [11] does not explicitly

address the impact of non-iid data, which is considered a limitation of the approach. On the other

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 December 2023 doi:10.20944/preprints202312.1544.v1

https://doi.org/10.20944/preprints202312.1544.v1

 6

hand, combining the Oort algorithm and the multi-branch network, as proposed in this work, can

effectively alleviate the impact of non-iid data suffering [11].

In the rest of this Section, we will first explain the construction of a Multi-Branch network

derived from the original neural network. We will then introduce the model distributor and receiver

we added to the original Oort system.

4.1. Construction of a Multi-Branch Network

Based on the findings of BranchyNet [2] and Triple wins [3], a multi-branch network can be

constructed by incorporating additional branch classifiers at equidistant points within a given

network, thereby facilitating model averaging. Furthermore, it has been observed that achieving

satisfactory performance can be done without the addition of multiple convolutional layers to each

branch. For example, we can consider the ResNet34 architecture, a classical neural network (depicted

in Figure 3). Our approach incorporates several additional convolutional layers into the residual

blocks at every two blocks (as illustrated in Figure 4). This modification enhances the architecture by

introducing branch classifiers at equidistant points, allowing for model averaging and improved

performance.

Figure 3. The Architecture of the Original ResNet34 Network.

Figure 4. The Architecture of the Proposed Nine-Branch ResNet34 Network.

4.2. Model Distributor

Our method presents an alternative to the conventional federated learning paradigm, wherein

clients are served identical models from the server. Our strategy allocates distinct model branches to

various clients based on their computational capabilities and communication bandwidth. To facilitate

this, we introduce a clustering algorithm that groups the clients into 𝐾 ൅ 1 clusters, where 𝐾 denotes the number of additional branches incorporated into the model.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 December 2023 doi:10.20944/preprints202312.1544.v1

https://doi.org/10.20944/preprints202312.1544.v1

 7

The initial step in the tiers clustering algorithm (Algorithm 1) involves assigning the overall

training capability by considering each client’s computation capability and communication

bandwidth. It is worth noting that a coefficient μ is introduced to the computation capability (Line

3), where μ represents the ratio of computation capability to communication bandwidth. This

coefficient determines the relative importance of computation capability concerning communication

bandwidth, with μ > 1 indicating a higher emphasis on computation capability and μ < 1 indicating

a higher emphasis on communication bandwidth. When μ is equal to 1, both factors are considered

equally important. Section 5 will explore the diverse outcomes achieved by employing different

values of μ. Furthermore, clients are sorted (Line 5 in Algorithm 1) based on their training capability

after assigning the overall training ability. They are subsequently grouped (Line 8 in Algorithm 1)

into K+1 groups, arranged in ascending order according to their training times, starting from the

clients with the lower training capability and progressing towards those with more substantial

training capability.

With the clustering set in place, the model distributor can assign different models based on the

individual training capabilities of clients. The branch models ሼ𝑀௜ሽ௜ୀଵ௄ାଵ represent the initial neural

network architecture's early exit points. Each 𝑀௜ signifies a specific model configuration, where 𝑖 ൌ1 corresponds to the most miniature model denoting the earliest exit of the network. Conversely, 𝑖 ൌ𝑘 ൅ 1 represents the complete network without any early exits.

The model distributor systematically dispatches the corresponding model 𝑀௜ to the clients

within cluster 𝐺௜ to optimize the training process. This sequential assignment ensures that clients

receive a model tailored to their specific training requirements, ultimately maximizing the

effectiveness and efficiency of the federated learning process.

4.3. Overall System Architecture

We implemented our work using FedScale [19], an open-source evaluation platform and

benchmark designed explicitly for federated learning. Figure 5 illustrates the overall system

architecture of our implementation. In this architecture, the user first submits the job, which includes

the hyperparameter settings (e.g., clients per round and μ), to the Parameter Aggregator (acting as

the primary server) 1. Additionally, the Parameter Aggregator receives feedback from the clients

regarding the previous training round, updates the global model with the clients' updates, and

collects relevant information from the clients 2. Afterward, the Oort Client Selector will select a

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 December 2023 doi:10.20944/preprints202312.1544.v1

https://doi.org/10.20944/preprints202312.1544.v1

 8

certain percentage (k%) of preferable clients based on their computing capability, communication

bandwidth, and data distribution.

The remaining quota will be randomly selected from the pool of unselected clients 3. The Model

Distributor receives the aforementioned information, including the updated global model, client

information, and the selected clients. It utilizes the Tiers Clustering Algorithm to group the selected

clients into several clusters based on their characteristics. Then, it dispatches the suitable model to

each client within their respective cluster, ensuring an efficient and tailored training process 4. The

clients receive the assigned models through the Model Receiver and train with their local data in

Model Trainer 5. After completing the training process, the Client Collector collects the local model

parameters and captures their corresponding status 6. Finally, the collected data, including the model

parameters and their status, is transmitted and updated on server 7. The entire process is executed

iteratively, with periodic testing every few rounds until the desired number of target rounds is

reached.

Figure 5. The Overall System Architecture and the Functional Block Diagram of Our Proposed

Framework.

5. Experiments

In this Section, we perform experiments on well-known benchmark datasets, including CIFAR-

10, CIFAR-100 [20], and FEMNIST [21], with the ResNet-34 model [22] and the multi-branch ResNet-

34 (MB_ResNet-34). We present the experimental results in terms of two metrics: the time taken to

achieve a specific accuracy (time to accuracy) and the number of rounds required to reach a certain

level of accuracy (rounds to accuracy).

5.1. Experimental Setup

5.1.1. Environment Settings

Our experiments were conducted using the FedScale [19] platform, and we ensured a consistent

environment setting across different dataset experiments. The client pool consisted of 2800 clients,

with 100 clients selected in each round of training. We performed a total of 1000 training rounds. The

datasets were divided into non-iid partitions. The computation capability of clients was

predetermined prior to the training process, while the communication bandwidth of clients varied

during the training process. Furthermore, the client’s online/offline status also fluctuated throughout

training.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 December 2023 doi:10.20944/preprints202312.1544.v1

https://doi.org/10.20944/preprints202312.1544.v1

 9

5.1.2. Model Settings

To construct the multi-branch ResNet-34 architecture, we followed the methodology described

in the works of [3] and [4]. In our implementation, we incorporated additional branches into the

original ResNet-34 architecture. Specifically, we added three extra branches for the first group of

residual blocks. Each branch consisted of two convolutional layers followed by a fully-connected

layer. These additional branches were inserted at regular intervals of every two consecutive blocks

within the first group.

Similarly, we added branches combining one convolutional layer and a fully connected layer for

the second group of residual blocks, following the same pattern of regular intervals. Finally, we

added a single fully connected layer without any convolutional layers for the last group of residual

blocks. The complete network structure, including the additional branches, is illustrated in Figure 4.

5.2. Training Details

We want to clarify that the 5.1.1 section does not explicitly mention the specific hyperparameter

settings such as local training steps, batch size, and learning rate. However, it should be noted that

these hyperparameters are consistent with the settings specified in the Oort [18].

We follow the training process outlined in [18] for training with the ResNet-34 model. However,

there is a crucial difference in the training of the multi-branch ResNet-34 model. After selecting clients

using the Oort selection algorithm, we cluster them into ten groups, corresponding to the nine

additional branches and the main branch. We then assign the respective branch models to each client

group for training. The detailed training process, including the Tiers Clustering Algorithm, can be

found in Section 4.3.

5.3. Experimental Results

To evaluate the effectiveness of our approach, we conducted experiments on the FEMNIST and

CIFAR-10 datasets using different model settings. We assessed the performance using two primary

metrics: time-to-accuracy and rounds-to-accuracy. These metrics provide insights into the efficiency

and effectiveness of our approach in achieving accurate results within a given time frame and number

of training rounds.

5.3.1. Time-to-Accuracy Performance

Our experiments evaluated the time taken to achieve accuracy levels of 60%, 70%, and 80%.

Table 3 presents the experimental results concerning the FEMNIST dataset. The first row represents

the performance of the ResNet34 model without the Oort selection algorithm. It took approximately

66,761 seconds to achieve 60% accuracy and 101,072 seconds to achieve 70% accuracy. In contrast, the

MB_ResNet34 model achieved the same level of accuracy in significantly less time than the original

ResNet34 model.

However, it should be noted that the scenarios without the client selection algorithm faced poor

overall accuracy due to the impact of non-iid data. To address this issue, we integrated the selection

algorithm, as shown in the third and fourth rows of the table. It is evident that compared to the

random selection method, the time to accuracy decreased, and the overall accuracy exceeded 80%.

For the CIFAR-10 dataset, as shown in Table 4, we observe similar trends to those in Table 3.

This observation further supports the effectiveness of our proposed method in alleviating the

negative impact of non-iid data on the MB_ResNet34 model in [11] (rows 2 and 4) and reducing the

training time compared to the original ResNet34 model in [18] (rows 3 and 4).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 December 2023 doi:10.20944/preprints202312.1544.v1

https://doi.org/10.20944/preprints202312.1544.v1

 10

Table 3. Training Time versus Accuracy for Different Models on the FEMNIST Dataset (in which the

symbol “െ" means that accuracy is not achievable due to the impact of non-iid data during the

experiment).

Table 4. Training Time versus Accuracy for Different Models on the CIFAR-10 Dataset (in which the

symbol “െ" means that accuracy is not achievable due to the impact of non-iid data during the

experiment).

5.3.2. Rounds-to-Accuracy Performance

Figure 6 and Figure 7 display the rounds to accuracy curves during 1000 rounds. These curves

provide a more precise visualization of the overall accuracy trends. It is evident that the red line,

representing the MB_ResNet34 + Oort model, achieves the highest accuracy compared to the other

curves. On the other hand, the blue and orange lines, which correspond to models trained without

the selection algorithm, exhibit lower accuracy levels.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 December 2023 doi:10.20944/preprints202312.1544.v1

https://doi.org/10.20944/preprints202312.1544.v1

 11

Figure 6. Rounds versus Accuracy for Different Models on the FEMNIST Dataset.

Figure 7. Rounds versus Accuracy for Different Models on the CIFAR-10 Dataset.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 December 2023 doi:10.20944/preprints202312.1544.v1

https://doi.org/10.20944/preprints202312.1544.v1

 12

5.3.3. Uniformity

We also evaluate the uniformity, as defined in Equation (1), of the original ResNet34 and

MB_ResNet34 models. The physical meaning of Eq. (1) is similar to that of the variance but slightly

modified to better capture the concept of uniformity.

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 ≜ ൭1𝑁 ෍ሺ𝑡𝑖𝑚𝑒௜ െ 𝑚𝑖𝑛𝑇ሻଶே
௜ୀଵ ൱ଵଶ ሺ1ሻ

In Equation (1), 𝑡𝑖𝑚𝑒௜ refers to the time the i-th client takes during the training process, and 𝑚𝑖𝑛𝑇 represents the minimum time spent by any client. By calculating the squared deviation of each

client's time from the minimum time and then averaging them, we measure the uniformity of the

training process across selected clients. Taking the result’s square root further helps provide a more

interpretable value for the uniformity metric.

By utilizing the formula mentioned above, we can gain valuable insights into the consistency

and uniformity of the training process for the original ResNet34 and MB_ResNet34 models, as

depicted in Figure 8 and Figure 9, respectively. As a reference, we also include the variance in total

training time and the uniformity of computation time and communication time. Evidently, the

uniformity significantly decreases from approximately 532 to 313 when implementing the multi-

branch network. This fact demonstrates the effectiveness of the multi-branch network in improving

the uniformity and consistency of the training process.

Figure 8. The Uniformity of the Original ResNet34.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 December 2023 doi:10.20944/preprints202312.1544.v1

https://doi.org/10.20944/preprints202312.1544.v1

 13

Figure 9. The Uniformity of the MB_ResNet34.

5.4. Ablation Studies

5.4.1. Integration with Other Methods

In addition to conducting experiments with ResNet34 and MB_ResNet34 on CIFAR-10 and

FEMNIST datasets, we also explored their performance in combination with the FedProx method [12]

and FedYogi method [13]. These methods were employed to address the impact of non-iid data,

reducing the time required to achieve the desired accuracy. Table 5 presents the training time-to-

accuracy performance for the two models combined with different gradient policies. It is important

to note that all experiments in the ablation study were performed with Oort client selection.

The results indicate that integrating MB_ResNet34 with the FedProx method yielded the best

performance. However, when combined with the FedYogi method, MB_ResNet34 required more

time than its standalone version. This additional time can be attributed to the computation overhead

in calculating the gradient corrections. Furthermore, we extended our experiments to the CIFAR-100

dataset, and the results in Table 6 demonstrate a reduction in training time due to better uniformity

among selected clients.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 December 2023 doi:10.20944/preprints202312.1544.v1

https://doi.org/10.20944/preprints202312.1544.v1

 14

Table 5. Training Time versus A Certain Amount of Accuracy for Different Models on CIFAR-10 and

FEMNIST Datasets.

Table 6. Training Time versus A Certain Amount of Accuracy for Different Models on CIFAR-100

Dataset.

5.4.2. The Effects of Different Communication Bandwidth Ratios (μ)

To better understand the impact of uniformity by different μ values, we conducted experiments

using extreme values in our clustering algorithm. The results are depicted in Figure 10.

By testing these extreme values, we observed that the uniformity performance improved when

the computation capability and communication bandwidth were more balanced. Specifically, the

extreme values represented by the bottom left and bottom right in Figure 10 demonstrated poorer

uniformity performance than both on the top. The worst performance case occurred when there was

an overindulgence in computation capability. In most federated learning scenarios, the straggler

spent significant time in transit, transferring data rather than actively performing computations. This

imbalance between computation and communication resulted in a decrease in uniformity

performance.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 December 2023 doi:10.20944/preprints202312.1544.v1

https://doi.org/10.20944/preprints202312.1544.v1

 15

Figure 10. The Uniformity Measures Under Different Values of μ.

6. Conclusions

This paper presents an approach integrating a multi-branch network with the Oort client

selection algorithm. Our proposed method includes incorporating a Model Distributor module,

which efficiently clusters clients and dispatches appropriate models to them. Through extensive

experimentation, we have demonstrated the effectiveness of our approach in mitigating the impact

of non-iid data, which is not considered in the MFedAvg method. Furthermore, our approach

surpasses the performance of the original Oort paper.

Additionally, we have introduced the concept of uniformity, which provides a straightforward

measure of the training time gap among participants and identifies the presence of stragglers. The

concept of uniformity offers valuable insights into the distribution of training time and facilitates the

assessment of fairness and efficiency in the federated learning process.

Our results have showcased the benefits of integrating a multi-branch network and the Oort

client selection algorithm. Furthermore, we have emphasized the significance of considering

uniformity in designing and evaluating federated learning frameworks.

In the future, we will conduct further investigations to enhance the overall accuracy of our

approach. We plan to explore various techniques, including model architecture modifications,

optimization algorithms, and the incorporation of additional data preprocessing methods. Moreover,

we will conduct experiments on larger datasets to gain insights into the scalability and

generalizability of our approach. We aim to refine and optimize our approach by undertaking these

efforts, ultimately achieving higher accuracy and better performance in federated learning.

Acknowledgments: This research is partially supported by the Minister of Science and Technology, Taiwan:

MOST 111-2221-E-002-134-MY3, National Taiwan University: NTU-112L900902, and Taiwan Semiconductor

Manufacturing: TSMC 112H1002-D.

References

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 December 2023 doi:10.20944/preprints202312.1544.v1

https://doi.org/10.20944/preprints202312.1544.v1

 16

1. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agueray Arcas.

Communication-efficient Learning of Deep Networks from Decentralized Data. In Artificial Intelligence

and Statistics, pp. 1273–1282. PMLR, 2017.

2. Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast Inference via Early

Exiting from Deep Neural Networks. In the 23rd International Conference on Pattern Recognition (ICPR),

pp. 2464–2469. IEEE, 2016.

3. Ting-Kuei Hu, Tianlong Chen, Haotao Wang, and Zhangyang Wang. Triple Wins: Boosting Accuracy,

Robustness and Efficiency Together by Enabling Input-Adaptive Inference. arXiv preprint

arXiv:2002.10025, 2020. Available at: https://doi.org/10.48550/arXiv.2002.10025

4. Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao, Ying- Chang Liang, Qiang Yang,

Dusit Niyato, and Chunyan Miao. Federated Learning in Mobile Edge Networks: A Comprehensive

Survey. IEEE Communications Surveys & Tutorials, 22(3):2031–2063, 2020.

DOI: 10.1109/COMST.2020.2986024

5. Syreen Banabilah, Moayad Aloqaily, Eitaa Alsayed, Nida Malik, and Yaser Jarar-weh. Federated Learning

Review: Fundamentals, Enabling Technologies, and Future Applications. Information Processing &

Management, 59(6):103061, 2022. Available at: https://doi.org/10.1016/j.ipm.2022.103061

6. Tuo Zhang, Lei Gao, Chaoyang He, Mi Zhang, Bhaskar Krishnamachari, and A Salman Avestimehr.

Federated Learning for the Internet of Things: Applications, Challenges, and Opportunities. IEEE Internet

of Things Magazine, 5(1): 24–29, 2022.

7. Rodolfo Stoffel Antunes, Cristiano André da Costa, Arne Küderle, Imrana Abdullahi Yari, and Björn

Eskofier. Federated Learning for Healthcare: Systematic Review and Architecture Proposal. ACM

Transactions on Intelligent Systems and Technology (TIST), 13(4):1–23, 2022.

8. Linlin Tu, Xiaomin Ouyang, Jiayu Zhou, Yuze He, and Guoliang Xing. Feddl: Federated Learning via

Dynamic Layer Sharing for Human Activity Recognition. In Proceedings of the 19th ACM Conference on

Embedded Networked Sensor Systems, pp. 15–28, 2021.

9. Qiong Wu, Kaiwen He, and Xu Chen. Personalized Federated Learning for Intelligent IoT Applications: A

Cloud-edge based Framework. IEEE Open Journal of the Computer Society, 1:35–44, 2020.

DOI: 10.1109/OJCS.2020.2993259

10. Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,

Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and Open

Problems in Federated Learning. Vol. 14, No. 1–2, pp. 1–210. DOI: 10.1561/2200000083

11. Ching-Hao Wang, Kang-Yang Huang, Jun-Cheng Chen, Hong-Han Shuai, and Wen-Huang Cheng.

Heterogeneous Federated Learning through Multi-Branch Network. In 2021 IEEE International Conference

on Multimedia and Expo (ICME), pp. 1–6. IEEE, 2021.

12. Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated

Optimization in Heterogeneous Networks. Proceedings of the 3rd MLSys Conference, 2:429–450, 2020.Austin,

TX, USA. Available at: https://arxiv.org/pdf/1812.06127

13. Ashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ, Sanjiv

Kumar, and H Brendan McMahan. Adaptive Federated Optimization. arXiv preprint arXiv:2003.00295,

2020.

14. Kaiju Li, Hao Wang, and Qinghua Zhang. FEDTCR: Communication-Efficient Federated Learning via

Taming Computing Resources. Complex & Intelligent Systems, pp. 1–21, Pub Date: 2023-03-13,

DOI: 10.1007/s40747-023-01006-6.

15. Hong Huang, Lan Zhang, Chaoyue Sun, Ruogu Fang, Xiaoyong Yuan, and Dapeng Wu. FEDTiny: Pruned

Federated Learning towards Specialized Tiny Models. arXiv preprint arXiv:2212.01977, 2022. Available at:

https://doi.org/10.48550/arXiv.2212.01977

16. Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble Distillation for Robust Model Fusion

in Federated Learning. 34th Conference on Neural Information Processing Systems (NeurIPS), Vancouver,

Canada, 33:2351–2363, 2020.

17. Daliang Li and Junpu Wang. FEDMD: Heterogenous Federated Learning via Model Distillation. arXiv

preprint arXiv:1910.03581, 2019.

18. Fan Lai, Xiangfeng Zhu, Harsha V Madhyastha, and Mosharaf Chowdhury. Oort: Efficient Federated

Learning via Guided Participant Selection. In the Proceedings of the 15th USENIX Symposium on

Operating Systems Design and Implementation (OSDI), pp. 19–35, 2021.

19. Fan Lai, Yinwei Dai, Sanjay Singapuram, Jiachen Liu, Xiangfeng Zhu, Harsha Madhyastha, and Mosharaf

Chowdhury. FedScale: Benchmarking Model and System Performance of Federated Learning at Scale. In

International Conference on Machine Learning, pp. 11814–11827. PMLR, 2022. Available at:

https://proceedings.mlr.press/v162/lai22a/lai22a.pdf

20. Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. PhD thesis, University of

Toronto, 2009. Available at: https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 December 2023 doi:10.20944/preprints202312.1544.v1

https://doi.org/10.20944/preprints202312.1544.v1

 17

21. Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: an Extension of MNIST

to Handwritten Letters. Available at: https://arxiv.org/pdf/1702.05373.pdf

22. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778,

2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 December 2023 doi:10.20944/preprints202312.1544.v1

https://doi.org/10.20944/preprints202312.1544.v1

