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Abstract: In this study, we present a federated learning approach that combines a multi-branch network and 

the Oort client selection algorithm to improve the performance of federated learning systems. This method 

successfully addresses the significant issue of non-iid data, a challenge not adequately tackled by the commonly 

used MFedAvg method. Additionally, one of the key innovations of this research is the introduction of 

uniformity, a metric that quantifies the disparity in training time amongst participants in a federated learning 

setup. This novel concept not only aids in identifying stragglers but also provides valuable insights into 

assessing the fairness and efficiency of the system. Experimental results underscore the merits of the integrated 

multi-branch network with the Oort client selection algorithm and highlight the crucial role of uniformity in 

designing and evaluating federated learning systems. 

Keywords: federated learning; uniformity; communication-efficiency; client selection; multi-branch 

network 

 

1. Introduction 

Federated learning (FL) [1] has emerged as a powerful approach for training machine learning 

models on decentralized data without compromising data privacy. It allows multiple clients to 

collaboratively train a shared global model while keeping their data locally. This distributed learning 

paradigm has gained significant attention and has been applied to various domains, including 

healthcare, finance, and the Internet of Things (IoT).  

The primary objective of federated learning is to improve communication efficiency and ensure 

uniform training times among clients; however, the heterogeneity of data and systems in federated 

learning challenges client selection and training processes. Selecting appropriate clients to participate 

in training becomes crucial to achieving accurate and efficient model updates. 

In this context, the Oort algorithm has been proposed as a client selection method that considers 

the heterogeneity of data and systems. However, implementing the Oort algorithm (detailed in 

Section 3.3) has revealed temporal discrepancies in training and communication, leading to inefficient 

federated learning.   

We propose integrating the Multi-Branch Network (MBN) into the existing Oort architecture to 

address this issue and enhance communication efficiency and training uniformity. The MBN 

construction is inspired by BranchyNet [2] and Triplewins [3], where additional branch classifiers are 

incorporated at equidistant points within a given neural network. This modification allows for model 

averaging and improved performance without needing multiple convolutional layers in each branch. 

Furthermore, we introduce a Model Distributor component to allocate different model branches 

to clients based on their computational capabilities and communication bandwidth. This clustering-

based approach ensures that clients receive models tailored to their specific training requirements, 

optimizing the effectiveness and efficiency of the federated learning process. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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This work presents the construction of the MBN and the Model Distributor in detail. We evaluate 

the performance of our proposed method on benchmark datasets, including CIFAR-10 and 

FEMNIST, using the ResNet34 model and the MBN. We measure the training time to achieve specific 

accuracy levels and the number of rounds required to reach the desired performance. Additionally, 

we analyze the uniformity of the training process and investigate the impact of different 

hyperparameters. 

The rest of this paper is organized as follows: Section 2 provides background information on 

federated learning and MBN. Section 3 explores the related work in federated learning. Section 4 

describes the construction of the MBN and the Model Distributor. Section 5 presents the experimental 

results and discusses the findings. Finally, Section 6 concludes the thesis and outlines potential 

directions for future research. 

2. Preliminary 

2.1. Federated Learning 

Federated Learning has emerged as a promising approach in machine learning, enabling 

decentralized training while addressing privacy and data ownership concerns. The Federated 

Averaging (FedAvg) algorithm proposed by McMahan et al. [1] is widely used for global aggregation 

in FL. 

FL leverages the power of local devices such as smartphones and tablets to perform model 

training while a central server aggregates the locally computed updates [4]. This distribution of the 

learning process brings several advantages [5] [6]. Firstly, it mitigates privacy risks by avoiding 

transferring sensitive data to a central location. Secondly, FL allows the utilization of device-specific 

data that would otherwise be challenging to access due to privacy or logistical constraints [7] [8] [9]. 

However, FL also presents its inherent challenges [6][10]. One such challenge is data 

heterogeneity, where the data distribution across different devices may vary significantly. This 

heterogeneity can affect the convergence and performance of FL models.  

Another challenge is the heterogeneity of computing resources among client devices. Some 

clients may have limited computational capabilities or unreliable network connections, which can 

lead to stragglers, slowing down the overall FL process.  

Moreover, Communication efficiency is another crucial factor in FL. Since clients must 

frequently communicate with the central server to obtain the latest model updates, efficient 

communication protocols and strategies are necessary to reduce communication overhead.  

In the upcoming Section, we will delve into various research works that aim to tackle these 

challenges, including data and computing resource heterogeneity and communication efficiency. 

2.2. Multi-Branch Networks 

The concept of multi-branch networks was first introduced in [2] and further developed in [3]. 

In contrast to traditional neural networks, which only have a single exit point, multi-branch networks 

are designed to incorporate multiple exit points. This architecture features numerous early-branch 

output layers and the standard final output layer, enhancing the network's capability to capture and 

leverage diverse intermediate representations from various branches. As a result, it enhances 

performance and versatility in handling intricate tasks. 

The early-branch output layers within a multi-branch network facilitate extracting specific 

features or representations at intermediary stages of network processing. By offering auxiliary 

outputs or intermediate predictions, these layers contribute significantly to guiding the network's 

learning process and provide additional regularization to fortify the network's stability and 

generalization. 

Considering the benefits of multi-branch networks, it is advantageous to employ them as the 

training model in Federated Learning environments [11]. Their architectural features lend to 

enhanced learning and adaptability, making them a suitable choice for the diverse and distributed 

nature of FL systems. 
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3. Related Work 

Several academic papers have put forth various methodologies to address the challenges 

mentioned in the preliminary section regarding Federated Learning. These approaches can be 

broadly categorized into homogeneous model FL and heterogeneous model FL. Table 1 summarizes 

the characteristics and limitations of each considered related work. Moreover, a comparison of the 

reduction in Non-iid Impacts, Alleviation in Communication Bandwidth, Alleviation in 

Computational Capability, and Improvement in Transferring Speed among the benchmarking works 

is presented in Table 2.  

Table 1. Summarizations of the characteristics and Limitations of the Benchmarked Federated 

Learning Techniques. 

Name of 

the Method 
Characteristics Limitations 

FedProx [12] 
Add a proximal term to ensure that the local models of 

participants stay close to the global model. 

It is challenging to select an appropriate 

center point 𝜔௖ for the proximal term. 

FedYogi [13] 

A gradient correction is added to further suppress the data 

heterogeneity and performance variations among 

participants 

The computation cost increases with the 

calculation of gradient corrections, Δఠೖ. 

FedTCR [14] 
1. Grouping clients by resources,  

2. Only the group leader communicates with the server 

3. Only consider the computing 

resources 

4. Privacy issues arise 

FedTiny [15] 
Select pruned models by evaluating client datasets and 

further sparsify the update parameters 

The pruning procedure incurs additional 

computation and transmission costs 

FedDF [16] 
Utilize knowledge distillation to share information across 

different types of models 

Need a public dataset that is unrealistic for 

real-world scenarios 

MFedAvg [11]  

Distribute models of different sizes to clients, allowing 

each client to receive and accommodate a suitable model 

 

Doesn’t consider the scenario of non-iid 

data 

Table 2. Comparisons of Benchmarked Federated Learning Techniques (in which the symbol “O” 

denotes the issue that has been addressed in the method). 

Method//Issues 

Reduce 

Non-iid 

Impact 

Alleviate 

Communication 

Bandwidth 

Alleviate 

Computational 

Capability 

Improve Transferring 

Speed 

FedProx [12] O    

FedYogi [13] O  O  

FedTCR [14]   O O 

FedTiny [15] O   O 

FedDF [16] O O O  

MFedAvg [11]  O O O 

Oort [18] O O O  

3.1. Homogeneous Model FL 

To address the challenge of non-iid (non-independent and identically distributed) data in FL, Li 

et al. propose FedProx [12]. It introduces a proximal term to the FedAvg algorithm, a commonly used 

algorithm in FL for aggregating local model updates from participant devices. The proximal term in 

FedProx aims to keep the local models of participants close to the global model by imposing a penalty 

if the local data are biased. This penalty encourages participants to contribute updates that align with 

the global model. Building upon FedProx, Reddi et al. proposed FedYogi [13]. FedYogi enhances 

FedProx by introducing gradient corrections. These corrections consider the performance variations 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 December 2023                   doi:10.20944/preprints202312.1544.v1

https://doi.org/10.20944/preprints202312.1544.v1


 4 

 

among participants and adaptively adjust the importance of each participant's parameter updates to 

the server. By considering the individual participants' performance, FedYogi aims to better use the 

updates from participants with higher reliability or accurate data while reducing the impact of 

updates from participants with less reliable data. However, calculating the gradient corrections in 

FedYogi can introduce additional computation overhead, potentially procrastinating the training 

time. 

By minimizing the variability in total computing resources within each group, Fed-TCR [14] 

aims to tackle the challenge of resource heterogeneity among participants in federated learning. This 

approach helps ensure that every group can collectively contribute to the training process without 

significant discrepancies in computing capabilities. Only the client with the most substantial 

computing resources in each group can directly communicate with the server. At the same time, the 

remaining participants exchange the model update with the cluster head to alleviate the 

communication overhead on the server. While this architecture can reduce communication costs and 

address the heterogeneity of computing resources, it may introduce privacy concerns as the 

trustworthiness of the cluster head is not guaranteed. 

As an intuitive approach to reducing communication costs, FedTiny [15] introduces a unique 

method to address the challenge of non-iid data. It achieves this by employing model pruning 

techniques. FedTiny creates multiple pruned models and allows participants to update the batch 

normalization layer to analyze their data distribution indirectly. The server can select a model with a 

minimum bias for each participant from the candidate model pool. However, this approach still 

suffers from a decrease in overall accuracy due to discarding specific parameters during the pruning 

process. 

3.2. Heterogeneous Model FL 

In contrast to federated learning with homogeneous models, FedDF [16] employs knowledge 

distillation to extract logits from participants [17]. By obtaining the logits, the server can update 

prototype models on the server side, eliminating the need for participants to update the parameters 

of their local models. This approach allows FedDF to accommodate the heterogeneity of model 

settings, enabling variations in model architectures among participants. However, it should be noted 

that FedDF requires a proxy dataset to perform the distillation process, which may be unrealistic in 

real-world scenarios. 

On the other hand, MFedAvg [11] utilizes a multi-branch network to leverage federated learning 

with heterogeneous models. By assigning the early exit branch to weak clients and the whole model 

to substantial clients, MFedAvg effectively mitigates the discrepancy in computation capability and 

communication bandwidth among clients. Unfortunately, MFedAvg does not address the impact of 

non-iid data, which is a limitation. 

3.3. Oort—Clients Selection for FL 

Unlike previous works that address specific challenges, Oort [18] proposes a client selection 

framework to select high-quality clients for effective participation in the training job. It utilizes a 

utility function to measure clients' priority based on three dimensions: data distribution, computing 

resources, and communication bandwidth. The system architecture of Oort is depicted in Figure 1. 

However, even if the Oort framework selects preferable clients, there may still be a significant 

training time gap among the selected clients. According to our experimental results, as the green 

numbers in Figure 2 show, the fastest client needs to wait for the slowest client for nearly 1400 seconds 

to complete the whole training, which significantly burdens the overall training performance. This 

surprising observation inspires us to investigate ways to enhance the overall efficacy of FML. 
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Figure 1. The System Architecture of Oort (the indicated numbers represent the sequence order of the 

Oort’s execution). 

 

Figure 2. The Overall Training Time Gap among Selected Clients by Oort (in which the experiment is 

conducted follows the environment settings presented in Section 5.1). 

4. The Proposed Method 

The primary objective of our proposed method is to improve communication efficiency and 

ensure as uniform training times as possible during the client selection process described in [18]. The 

Oort algorithm accounts for the heterogeneity of data and systems to identify appropriate 

participants. However, implementing the Oort algorithm revealed significant temporal discrepancies 

in training and communication. We propose integrating the Multi-branch Network into the existing 

Oort architecture to rectify this issue and promote enhanced communication efficiency along with 

uniform training times. As mentioned in Section 3, the MFedAvg method [11] does not explicitly 

address the impact of non-iid data, which is considered a limitation of the approach. On the other 
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hand, combining the Oort algorithm and the multi-branch network, as proposed in this work, can 

effectively alleviate the impact of non-iid data suffering [11]. 

In the rest of this Section, we will first explain the construction of a Multi-Branch network 

derived from the original neural network. We will then introduce the model distributor and receiver 

we added to the original Oort system. 

4.1. Construction of a Multi-Branch Network 

Based on the findings of BranchyNet [2] and Triple wins [3], a multi-branch network can be 

constructed by incorporating additional branch classifiers at equidistant points within a given 

network, thereby facilitating model averaging. Furthermore, it has been observed that achieving 

satisfactory performance can be done without the addition of multiple convolutional layers to each 

branch. For example, we can consider the ResNet34 architecture, a classical neural network (depicted 

in Figure 3). Our approach incorporates several additional convolutional layers into the residual 

blocks at every two blocks (as illustrated in Figure 4). This modification enhances the architecture by 

introducing branch classifiers at equidistant points, allowing for model averaging and improved 

performance. 

 

Figure 3. The Architecture of the Original ResNet34 Network. 

 

Figure 4. The Architecture of the Proposed Nine-Branch ResNet34 Network. 

4.2. Model Distributor 

Our method presents an alternative to the conventional federated learning paradigm, wherein 

clients are served identical models from the server. Our strategy allocates distinct model branches to 

various clients based on their computational capabilities and communication bandwidth. To facilitate 

this, we introduce a clustering algorithm that groups the clients into 𝐾 ൅ 1  clusters, where 𝐾 denotes the number of additional branches incorporated into the model. 
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The initial step in the tiers clustering algorithm (Algorithm 1) involves assigning the overall 

training capability by considering each client’s computation capability and communication 

bandwidth. It is worth noting that a coefficient μ is introduced to the computation capability (Line 

3), where μ represents the ratio of computation capability to communication bandwidth. This 

coefficient determines the relative importance of computation capability concerning communication 

bandwidth, with μ > 1 indicating a higher emphasis on computation capability and μ < 1 indicating 

a higher emphasis on communication bandwidth. When μ is equal to 1, both factors are considered 

equally important. Section 5 will explore the diverse outcomes achieved by employing different 

values of μ. Furthermore, clients are sorted (Line 5 in Algorithm 1) based on their training capability 

after assigning the overall training ability. They are subsequently grouped (Line 8 in Algorithm 1) 

into K+1 groups, arranged in ascending order according to their training times, starting from the 

clients with the lower training capability and progressing towards those with more substantial 

training capability. 

With the clustering set in place, the model distributor can assign different models based on the 

individual training capabilities of clients. The branch models ሼ𝑀௜ሽ௜ୀଵ௄ାଵ represent the initial neural 

network architecture's early exit points. Each 𝑀௜ signifies a specific model configuration, where 𝑖 ൌ1 corresponds to the most miniature model denoting the earliest exit of the network. Conversely, 𝑖 ൌ𝑘 ൅ 1 represents the complete network without any early exits. 

The model distributor systematically dispatches the corresponding model 𝑀௜  to the clients 

within cluster 𝐺௜ to optimize the training process. This sequential assignment ensures that clients 

receive a model tailored to their specific training requirements, ultimately maximizing the 

effectiveness and efficiency of the federated learning process. 

 

4.3. Overall System Architecture 

We implemented our work using FedScale [19], an open-source evaluation platform and 

benchmark designed explicitly for federated learning. Figure 5 illustrates the overall system 

architecture of our implementation. In this architecture, the user first submits the job, which includes 

the hyperparameter settings (e.g., clients per round and μ), to the Parameter Aggregator (acting as 

the primary server) 1. Additionally, the Parameter Aggregator receives feedback from the clients 

regarding the previous training round, updates the global model with the clients' updates, and 

collects relevant information from the clients 2. Afterward, the Oort Client Selector will select a 
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certain percentage (k%) of preferable clients based on their computing capability, communication 

bandwidth, and data distribution. 

The remaining quota will be randomly selected from the pool of unselected clients 3. The Model 

Distributor receives the aforementioned information, including the updated global model, client 

information, and the selected clients. It utilizes the Tiers Clustering Algorithm to group the selected 

clients into several clusters based on their characteristics. Then, it dispatches the suitable model to 

each client within their respective cluster, ensuring an efficient and tailored training process 4. The 

clients receive the assigned models through the Model Receiver and train with their local data in 

Model Trainer 5. After completing the training process, the Client Collector collects the local model 

parameters and captures their corresponding status 6. Finally, the collected data, including the model 

parameters and their status, is transmitted and updated on server 7. The entire process is executed 

iteratively, with periodic testing every few rounds until the desired number of target rounds is 

reached. 

 

Figure 5. The Overall System Architecture and the Functional Block Diagram of Our Proposed 

Framework. 

5. Experiments 

In this Section, we perform experiments on well-known benchmark datasets, including CIFAR-

10, CIFAR-100 [20], and FEMNIST [21], with the ResNet-34 model [22] and the multi-branch ResNet-

34 (MB_ResNet-34). We present the experimental results in terms of two metrics: the time taken to 

achieve a specific accuracy (time to accuracy) and the number of rounds required to reach a certain 

level of accuracy (rounds to accuracy). 

5.1. Experimental Setup 

5.1.1. Environment Settings 

Our experiments were conducted using the FedScale [19] platform, and we ensured a consistent 

environment setting across different dataset experiments. The client pool consisted of 2800 clients, 

with 100 clients selected in each round of training. We performed a total of 1000 training rounds. The 

datasets were divided into non-iid partitions. The computation capability of clients was 

predetermined prior to the training process, while the communication bandwidth of clients varied 

during the training process. Furthermore, the client’s online/offline status also fluctuated throughout 

training. 
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5.1.2. Model Settings 

To construct the multi-branch ResNet-34 architecture, we followed the methodology described 

in the works of [3] and [4]. In our implementation, we incorporated additional branches into the 

original ResNet-34 architecture. Specifically, we added three extra branches for the first group of 

residual blocks. Each branch consisted of two convolutional layers followed by a fully-connected 

layer. These additional branches were inserted at regular intervals of every two consecutive blocks 

within the first group.  

Similarly, we added branches combining one convolutional layer and a fully connected layer for 

the second group of residual blocks, following the same pattern of regular intervals. Finally, we 

added a single fully connected layer without any convolutional layers for the last group of residual 

blocks. The complete network structure, including the additional branches, is illustrated in Figure 4. 

5.2. Training Details 

We want to clarify that the 5.1.1 section does not explicitly mention the specific hyperparameter 

settings such as local training steps, batch size, and learning rate. However, it should be noted that 

these hyperparameters are consistent with the settings specified in the Oort [18].  

We follow the training process outlined in [18] for training with the ResNet-34 model. However, 

there is a crucial difference in the training of the multi-branch ResNet-34 model. After selecting clients 

using the Oort selection algorithm, we cluster them into ten groups, corresponding to the nine 

additional branches and the main branch. We then assign the respective branch models to each client 

group for training. The detailed training process, including the Tiers Clustering Algorithm, can be 

found in Section 4.3. 

5.3. Experimental Results 

To evaluate the effectiveness of our approach, we conducted experiments on the FEMNIST and 

CIFAR-10 datasets using different model settings. We assessed the performance using two primary 

metrics: time-to-accuracy and rounds-to-accuracy. These metrics provide insights into the efficiency 

and effectiveness of our approach in achieving accurate results within a given time frame and number 

of training rounds. 

5.3.1. Time-to-Accuracy Performance 

Our experiments evaluated the time taken to achieve accuracy levels of 60%, 70%, and 80%. 

Table 3 presents the experimental results concerning the FEMNIST dataset. The first row represents 

the performance of the ResNet34 model without the Oort selection algorithm. It took approximately 

66,761 seconds to achieve 60% accuracy and 101,072 seconds to achieve 70% accuracy. In contrast, the 

MB_ResNet34 model achieved the same level of accuracy in significantly less time than the original 

ResNet34 model. 

However, it should be noted that the scenarios without the client selection algorithm faced poor 

overall accuracy due to the impact of non-iid data. To address this issue, we integrated the selection 

algorithm, as shown in the third and fourth rows of the table. It is evident that compared to the 

random selection method, the time to accuracy decreased, and the overall accuracy exceeded 80%. 

For the CIFAR-10 dataset, as shown in Table 4, we observe similar trends to those in Table 3. 

This observation further supports the effectiveness of our proposed method in alleviating the 

negative impact of non-iid data on the MB_ResNet34 model in [11] (rows 2 and 4) and reducing the 

training time compared to the original ResNet34 model in [18] (rows 3 and 4). 
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Table 3. Training Time versus Accuracy for Different Models on the FEMNIST Dataset (in which the 

symbol “െ" means that accuracy is not achievable due to the impact of non-iid data during the 

experiment). 

 

Table 4. Training Time versus Accuracy for Different Models on the CIFAR-10 Dataset (in which the 

symbol “െ" means that accuracy is not achievable due to the impact of non-iid data during the 

experiment). 

 

5.3.2. Rounds-to-Accuracy Performance 

Figure 6 and Figure 7 display the rounds to accuracy curves during 1000 rounds. These curves 

provide a more precise visualization of the overall accuracy trends. It is evident that the red line, 

representing the MB_ResNet34 + Oort model, achieves the highest accuracy compared to the other 

curves. On the other hand, the blue and orange lines, which correspond to models trained without 

the selection algorithm, exhibit lower accuracy levels. 
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Figure 6. Rounds versus Accuracy for Different Models on the FEMNIST Dataset. 

 

Figure 7. Rounds versus Accuracy for Different Models on the CIFAR-10 Dataset. 
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5.3.3. Uniformity 

We also evaluate the uniformity, as defined in Equation (1), of the original ResNet34 and 

MB_ResNet34 models. The physical meaning of Eq. (1) is similar to that of the variance but slightly 

modified to better capture the concept of uniformity. 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 ≜ ൭1𝑁 ෍ሺ𝑡𝑖𝑚𝑒௜ െ 𝑚𝑖𝑛𝑇ሻଶே
௜ୀଵ ൱ଵଶ                           ሺ1ሻ 

In Equation (1), 𝑡𝑖𝑚𝑒௜ refers to the time the i-th client takes during the training process, and 𝑚𝑖𝑛𝑇 represents the minimum time spent by any client. By calculating the squared deviation of each 

client's time from the minimum time and then averaging them, we measure the uniformity of the 

training process across selected clients. Taking the result’s square root further helps provide a more 

interpretable value for the uniformity metric. 

By utilizing the formula mentioned above, we can gain valuable insights into the consistency 

and uniformity of the training process for the original ResNet34 and MB_ResNet34 models, as 

depicted in Figure 8 and Figure 9, respectively. As a reference, we also include the variance in total 

training time and the uniformity of computation time and communication time. Evidently, the 

uniformity significantly decreases from approximately 532 to 313 when implementing the multi-

branch network. This fact demonstrates the effectiveness of the multi-branch network in improving 

the uniformity and consistency of the training process. 

 

Figure 8. The Uniformity of the Original ResNet34. 
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Figure 9. The Uniformity of the MB_ResNet34. 

5.4. Ablation Studies 

5.4.1. Integration with Other Methods 

In addition to conducting experiments with ResNet34 and MB_ResNet34 on CIFAR-10 and 

FEMNIST datasets, we also explored their performance in combination with the FedProx method [12] 

and FedYogi method [13]. These methods were employed to address the impact of non-iid data, 

reducing the time required to achieve the desired accuracy. Table 5 presents the training time-to-

accuracy performance for the two models combined with different gradient policies. It is important 

to note that all experiments in the ablation study were performed with Oort client selection. 

The results indicate that integrating MB_ResNet34 with the FedProx method yielded the best 

performance. However, when combined with the FedYogi method, MB_ResNet34 required more 

time than its standalone version. This additional time can be attributed to the computation overhead 

in calculating the gradient corrections. Furthermore, we extended our experiments to the CIFAR-100 

dataset, and the results in Table 6 demonstrate a reduction in training time due to better uniformity 

among selected clients. 
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Table 5. Training Time versus A Certain Amount of Accuracy for Different Models on CIFAR-10 and 

FEMNIST Datasets. 

 

Table 6. Training Time versus A Certain Amount of Accuracy for Different Models on CIFAR-100 

Dataset. 

 

5.4.2. The Effects of Different Communication Bandwidth Ratios (μ) 

To better understand the impact of uniformity by different μ values, we conducted experiments 

using extreme values in our clustering algorithm. The results are depicted in Figure 10. 

By testing these extreme values, we observed that the uniformity performance improved when 

the computation capability and communication bandwidth were more balanced. Specifically, the 

extreme values represented by the bottom left and bottom right in Figure 10 demonstrated poorer 

uniformity performance than both on the top. The worst performance case occurred when there was 

an overindulgence in computation capability. In most federated learning scenarios, the straggler 

spent significant time in transit, transferring data rather than actively performing computations. This 

imbalance between computation and communication resulted in a decrease in uniformity 

performance. 
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Figure 10. The Uniformity Measures Under Different Values of μ. 

6. Conclusions 

This paper presents an approach integrating a multi-branch network with the Oort client 

selection algorithm. Our proposed method includes incorporating a Model Distributor module, 

which efficiently clusters clients and dispatches appropriate models to them. Through extensive 

experimentation, we have demonstrated the effectiveness of our approach in mitigating the impact 

of non-iid data, which is not considered in the MFedAvg method. Furthermore, our approach 

surpasses the performance of the original Oort paper. 

Additionally, we have introduced the concept of uniformity, which provides a straightforward 

measure of the training time gap among participants and identifies the presence of stragglers. The 

concept of uniformity offers valuable insights into the distribution of training time and facilitates the 

assessment of fairness and efficiency in the federated learning process. 

Our results have showcased the benefits of integrating a multi-branch network and the Oort 

client selection algorithm. Furthermore, we have emphasized the significance of considering 

uniformity in designing and evaluating federated learning frameworks. 

In the future, we will conduct further investigations to enhance the overall accuracy of our 

approach. We plan to explore various techniques, including model architecture modifications, 

optimization algorithms, and the incorporation of additional data preprocessing methods. Moreover, 

we will conduct experiments on larger datasets to gain insights into the scalability and 

generalizability of our approach. We aim to refine and optimize our approach by undertaking these 

efforts, ultimately achieving higher accuracy and better performance in federated learning. 
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