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Article 
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Abstract: The development of modern genomic tools has helped accelerate genetic gains in the 
breeding program of food crops. More recently, genomic resources have been developed for tropical 
forages, providing key resources for developing new climate resilient high yielding forage varieties. 
In this study, we present a genome-wide association study for biomass yield and feed quality traits 
in buffel grass (Cenchrus ciliaris L. aka Pennisetum ciliare L.,). Genome-wide markers, generated using 
the DArTSeq platform and mapped onto the Setaria italica reference genome, were used for the 
genome-wide association study. The results revealed several markers associated with biomass yield 
and feed quality traits. A total of 78 marker trait associations were identified with R2 values ranging 
from 0.138 to 0.236. The marker trait associations were distributed across different chromosomes. 
Of these associations, the most marker trait associations (23) were observed on Chr9, followed by 
Chr5 with 12. The fewest number of marker trait associations were observed on Chr4 with 2. In 
terms of traits, 17 markers were associated with biomass yield, 24 with crude protein, 26 with TDN, 
14 with ADF, 10 with NDF and six with DMI. Twenty of the identified markers were associated with 
at least two traits. The identified marker trait associations provide a useful genomic resource for 
future improvement and breeding of buffel grass.  

Keywords: climate change; marker assisted breeding; tropical forage; forage improvement; genetic 
resources; drought tolerance 

 

1. Introduction 

Achieving improved livelihoods, reduced poverty and malnutrition in the world would be very 
difficult without addressing the challenges of sustainable livestock production in low- and middle-
income countries (LMIC). Livestock play multiple crucial roles in rural livelihoods and the economy 
of LMIC [1–3] where smallholder farmers account for most of the crop-livestock production. Under 
smallholder farmers’ conditions, natural pasture is the main source of feeds for livestock animals and, 
among others, feed resources are the major limiting factor for livestock production and productivity 
[4]. Hence, there is a strong need to increase feed resource availability through the development of 
climate resilient, low-input forage varieties that provide better yields of quality forage in the current 
trend of climate change and enables expanding livestock production to marginally suitable areas and 
agroecological conditions.  

Among agricultural technologies, plant breeding has played a considerable role in crop yield 
improvements over the last several decades [5]. In the past few years, the development and 
integration of modern genomic tools has benefited plant breeding programs [6] and contributed to 
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the development of new varieties of major food crops. In more recent years, genomic resources have 
also been developed for a limited number of important species of tropical forages. For example, 
during the last few years, in our institute genome-wide markers were generated for Napier grass, 
buffel grass, Rhodes grass, lablab and Sesbania sesban [7–12] and are being developed for Urochlao 

spp. and Megathyrus maximus (unpublished data). Similarly, high throughput genome-wide markers 
have also been developed for tropical forages elsewhere[13–15]. Reference genomes have also been 
developed for a few of the key tropical forage crops [16–23]. These genomic resources have been used 
for the analysis of genetic diversity, subsetting, genome-wide association and population genetic 
studies, and will continue to be useful tools and resources for tropical forage research and 
development. The integration of these genomic tools into field screening and evaluation will enable 
efficient and accelerated forage breeding programs to develop adaptive and climate resilient varieties 
to transform livestock production in the tropical regions.  

Among the tropical forages, buffel grass is an important drought tolerant perennial species [24] 
grown throughout the tropical and subtropical regions of the world [24,25]. It is an apomictic species 
with a basic chromosome number of nine and three ploidy levels: tetraploid (2n=4x=36), pentaploid 
(2n=5x=45) and hexaploid (2n=6x=54) [26,27]. It is an important grass cultivated as a pasture or for 
hay production [28]. Under no input production conditions, it can produce up to 18 t DM (dry 
matter)/ha/annum [28] and forage with a crude protein content of 6-16% [25]. Buffel grass has been 
reported to produce DM yields  of up to 12 t/ha in Kenya [29,30], 8 t/ha in USA [31], 7 t/ha in Pakistan 
[32] and 21 t/ha in Ethiopia [33]. Improved forage varieties that are better adapted to produce more 
quality biomass across a range of agroecologies and production systems are a prerequisite, and 
required more than ever, for supporting enhanced livestock production in a sustainable manner [34]. 
Despite limited improvement efforts, conventional tropical forage breeding programs have 
contributed to the development of improved forage cultivars with a number of buffel grass cultivars 
developed over the last few decades [25]. However, genetic gains from conventional tropical forage 
breeding programs have been low, particularly in view of the growing demand for animal source 
foods globally, and breeding programs should leverage the combination of phenotyping, genotyping, 
and envirotyping strategies in order to increase genetic gains and help secure the future of livestock 
production in the tropics [34]. The International Livestock Research Institute (ILRI) holds a large 
collection of buffel grass germplasm collected from different countries in Africa and Asia [9]. Agro-
morphological studies have revealed the diversity embedded in the buffel grass collection 
maintained in the forage genebank at ILRI [35,36]. Facultative apomictic lines, that could offer a 
potential resource for forage breeding programs to generate new and improved varieties, have also 
been identified in the collection [37]. Recently, we generated a large set of genome-wide markers 
using a next generation sequencing approach and reported on the large amount of genetic diversity 
held in the collection [9]. To our knowledge, there have been no genomic studies in buffel grass that 
combine phenotypic and genotypic data analysis to investigate the crops genetic architecture. Thus, 
in the current study, we envisage filling this gap by employing a genome-wide association study for 
biomass yield and feed quality traits. Here we leveraged the data generated from previous agro-
morphological [36] and genotyping studies [9], and present a genome-wide association study 
(GWAS) for biomass yield and feed quality traits in buffel grass.   

2. Materials and Methods 

2.1. High-density genome-wide markers 

Genome-wide SNP and SilicoDArT markers, generated using the DArTSeq platform [38], were 
used in this study. The markers were mapped onto the Setaria italica reference genome [39] as 
described previously [9].  

2.2. Phenotypic data 

The phenotypic data reported in an earlier study [36] were used for this GWAS. The experiment 
was established in 2014 during the main rainy season at the Bishoftu field genebank, Bishoftu, 
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Ethiopia [36]. All the accessions evaluated in the experiment were obtained from the Zwai field 
genebank, Zwai, Ethiopia. Passport data of the accessions is provided in Supplementary Table S1. 
The experiment was conducted using a randomized complete block design with three replications 
and data were collected during the main growing seasons (August-September) of 2015 and 2016. 
During both growing seasons, the plants were clean cut at 10 cm above ground, and the data were 
collected 45 days after the clean cut. The data collected include biomass yield (YLD, kg/ha/annum), 
plant height (PH, cm), crude protein (CP, % of dry matter (DM)), Neutral Detergent Fibre (NDF, % 
of DM), Acid Detergent Fibre (ADF, % of DM), total digestible nutrients (TDN, % of DM) and dry 
matter intake (DMI, % of body weight). For biomass yield estimation, the plants within a quadrat 
with an area of one square metre were harvested at 10 cm above the ground, weighed immediately 
and the weight converted to yield per hectare. For plant height, three plants per plot were measured 
from the ground to the tip of the tallest inflorescence and the average was used for further analysis. 
For feed quality analysis, 300 grams of freshly harvested material was oven dried (72 hours at 55 °C), 
ground to pass through a one mm sieve and used for NIRS scanning as described previously [40]. 
TDN and DMI were estimated using ADF and NDF values from the NIRS data using the equations 
TDN= 88.9 –(0.779*ADF), and DMI=1.2/NDF*100 [41]. 

2.3. Data analysis 

A normality test analysis was conducted using the R package nortest in R software [42]. 
Statistical analysis was conducted using analysis of variance (ANOVA) in R software to determine 
the significance of the main effects and the interactions using the model:                   𝒀𝒊𝒋𝒌  = 𝛍 + 𝑮𝒊 + 𝑩𝒋 + 𝑻𝒌 + ሺ𝑮𝒊 × 𝑻𝒊𝒌ሻ + 𝜺𝒊𝒋𝒌  (1) 

where Yijk is the response, μ = overall mean, Gi = effect of the ith Buffel grass genotype, Bj = effect of 
the jth Block effect, Tk = effect of the kth growing season, G * Tij = the interaction of ith genotype and 
jth growing season and εijk = the residual error. The least significant difference (LSD), for comparison 
of mean values of traits, was employed to compare genotypes for traits with significant differences. 
Genetic parameters, genotypic coefficient of variation (GCV) and phenotypic coefficient of variation 
(PCV) were estimated using the formulae[43] 

                  𝑮𝑪𝑽 = ට𝝈𝒈𝟐𝑿 × 𝟏  (2) 

                  𝑷𝑪𝑽 = ඥ𝝈𝒑𝟐𝑿 × 𝟏𝟎𝟎  (3) 

where GCV = genotypic coefficient of variation, PCV = phenotypic coefficient of variation, σ2g = 
genotypic variance, σ2p = phenotypic variance, and X = grand mean. The Broad-sense heritability (H2) 
for the traits were captured using the equation:                    𝑯𝟐 = 𝝈𝒈𝟐൫𝝈𝒈𝟐ା𝝈𝒆𝟐൯  (4) 

where σ2g and σ2e are the variance components for the genotype effect and the residual error, 
respectively. 

2.4. Marker trait association analysis  

A Barlet test, using the barlett.test() function of the R package Stats [44], was used to assess the 
homogeneity of error variance prior to pooling the data for the GWAS. The GWAS were performed 
as described by Muktar et al. [7] using fixed and random model circulating probability unification 
(FarmCPU) [45], Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway 
(BLINK) [46], and General linear model (GLM) algorithms [47], implemented in the R package 
Genomic Association and Prediction integrated tool version 3(GAPIT3) [48]. Linkage maps of the 
markers associated with traits of interest were generated using the R package LinkageMapView [49]. 
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To assess the putative functional genes underlying the genomic regions of the identified marker trait 
associations, an NCBI blast search was conducted using the sequence of the markers.  

3. Results 

Genotyping data were available for 205 accessions [9] while phenotypic evaluation data were 
available for 126 accessions [36]. When these resources were combined, 120 accessions had both 
genotypic and phenotypic data and hence, data from these 120 accessions were considered for the 
marker trait association studies. The normality test analysis showed that the agronomic and feed 
nutrition trait data were normally distributed. Following a normality test, outliers were removed 
resulting in 110 and 114 accessions being used for the GWAS for the 2015 and 2016 growing seasons, 
respectively. The homogeneity of variance test showed that there was a significant difference between 
the 2015 and 2016 seasons’ data for all traits except for CP and NDF, hence the GWAS analysis was 
conducted for the 2015 and 2016 seasons separately as well as after combining the two growing 
seasons’ data.  

3.1. Variation in biomass yield, plant height and feed quality traits of buffel grass accessions  

The average biomass yield per annum in 2015 and 2016 was 3,231.47 and 5,926.96 kg/ha, 
respectively, whereas the two seasons combined mean biomass yield per annum was 4,562.22 kg/ha. 
Figure 1 shows the boxplot visualization of the distribution and outliers of the data for biomass yield, 
plant height and feed quality traits by growing seasons. The mean performance of each accession 
over the two growing seasons for agronomic and feed quality traits are presented in Supplementary 
information (Supplementary Table S2 and S3). The mean plant height was 85.58 cm, 121.18 cm and 
103.31 cm for 2015, 2016 and the combined seasons, respectively. The mean value for crude protein 
(CP) was 12.49 %, 8.33 % and 10.02 % for 2015, 2016 and the combined data, respectively. The mean 
value for NDF and ADF for the combined seasons was 72.37 % (70.42 % for 2015 and 73.78 % for 2016) 
and 43.77 % (40.31% for 2015 and 47.78% for 2016), respectively.  Similarly, the mean value for TDN 
and DMI over the two seasons was 48.03 % (52.54 % for 2015 and 44.72 % for 2016) and 1.66 % (1.71 
% for 2015 and 1.63 % for 2016), respectively.  
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Figure 1. Boxplot visualization showing the distribution and outliers of the data for biomass yield 
(YLD, kg/ha/annum), plant height (PH, cm), and feed quality traits by growing seasons. The red, 
green and blue boxes are for replications 1, 2 and 3, respectively. CP=Crude protein, NDF= Neutral 
Detergent Fibre, ADF= Acid Detergent Fibre, TDN= total digestible nutrients, and DMI= dry matter 
intake. 

3.2. Correlation of phenotypic and feed quality traits 

There was a positive and significant correlation among biomass yield, plant height, NDF and 
ADF. Similarly, a positive and significant correlation was observed among CP, TDN and DMI. On 
the other hand, CP and DMI had a negative and significant correlation with biomass yield, plant 
height, NDF, and ADF. Supplementary Figure S1 shows correlation coefficients between yield, plant 
height and nutritional quality traits among the buffel grass accessions for the two growing seasons 
and the combined data. 

3.3. Effect of genotype and seasonality on buffel grass forage performance  

ANOVA results for all of the traits revealed highly significant (<0.001) differences among 
genotypes, blocks and season except for interaction effects of genotype: season (Table 1). Overall, the 
results showed that the performance of buffel grass was primarily affected by the genotype and 
season of production. The significant difference for Block effect shows that blocking was effective in 
reducing the soil heterogeneity.  

Table 1. ANOVA summary for agronomic and feed quality traits from 126 Buffel grass accessions in 
2015 and 2016 growing at Bishoftu, Ethiopia. 

Traits /Sources of 

variation 
YLD PH NDF ADF CP TND DMI 

Genotype <.001 <.001 <.001 <.001 <.001 <.001 <.001 

Replication <.001 <.001 <.001 <.001 <.001 <.001 <.001 

Season <.001 <.001 <.001 <.001 <.001 <.001 <.001 

Genotype: Season NS NS NS 0.001 NS NS NS 

CV% 34.9 17.9 2.3 4.7 13.4 4.1 2.3 

R-square % 73 73 77 88 85 89 78 

Coefficient of variation (CV), Yield=Biomass yield, PH=Plant height, CP=Crude protein, NDF= 
Neutral Detergent Fibre, ADF= Acid Detergent Fibre, TDN= total digestible nutrients, and DMI= dry 
matter intake and NS= non-significant. 

3.4. Quantitative genetic variation  

The phenotypic coefficient of variation (PCV), the genotypic coefficient of variation (GCV) and 
broad sense heritability (H2) were calculated to assess the contribution of the factors to the respective 
traits (Table 2). The PCV value for biomass yield was equivalent to the GCV values. PCV values for 
plant height and feed quality traits were higher than the corresponding GCV values. The broad sense 
heritability estimates were higher for biomass yield (99%) and plant height (71%), while the 
heritability estimates were lowest for DMI (2%) and NDF (10%). 

Table 2. Variations and heritability for biomass yield, plant height and feed quality traits of 126 Buffel 
grass accessions for 2015 and 2016 growing seasons at Bishoftu Ethiopia. 

Traits/statistics Minimum Maximum Mean PCV GCV H2 (%) 

YLD (Kg/ha) 1609.65 9097.54 4562.22 28.1 28.1 99.9 

PH (cm) 71.50 135.22 103.31 13.9 9.9 70.9 
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CP (%) 6.11 12.21 10.02 32.8 8.9 27.0 

NDF (%) 69.98 75.68 72.37 11.8 1.2 10.2 

ADF (%) 40.40 48.69 44.62 15.2 2.8 18.5 

TND (%) 43.10 51.73 48.03 14.7 2.9 19.7 

DMI (%) 1.59 1.72 1.66 77.6 1.2 1.6 

Yield=Biomass yield, PH=Plant height, CP=Crude protein, NDF= Neutral Detergent Fibre, ADF= Acid 
Detergent Fibre, TDN= total digestible nutrients, and DMI= dry matter intake, GCV=genotypic 
coefficient of variation; PCV= Phenotypic coefficient of variation, and H2 =Heritability in broad sense. 

3.5. Buffel grass accession clustering based on phenotypic and feed quality traits 

Principal component analysis was used to group the buffel grass accessions based on phenotypic 
and feed quality trait data from individual growing seasons and the combined seasons. 
Supplementary Figure S2 shows the clustering of buffel grass accessions based on phenotypic and 
feed quality traits from the two growing seasons. The first two principal components accounted for 
87.2 % of the total variation for the combined seasons’ data. The PCA grouped the accessions into 
those with better biomass yield, better feed quality and poor feed quality accessions. For example, 
accessions such as 19369, 13406, 19425, 19467 and 12884 are among the group of accessions with high 
crude protein content during both growing seasons. Accessions 19459, 19448 and 19439 had the 
lowest CP content. Accessions 19442, 6646 and 19459 are among those with high biomass yield while 
accessions 15688, 13121 and 12769 produced the lowest biomass yield. The tallest accessions were 
13461, 16609 and 19414 while the shortest accessions were 6645, 19470 and 19371. NDF contents were 
highest in accessions 13461, 16609 and 19442 while accessions 6645, 19420 and 19367 contained the 
lowest NDF. Accessions 13461, 19462, 19442, 19448, and 16609 are a few of those with high ADF (poor 
feed quality accessions) while accessions 12769, 19367 and 13284 are among those with lowest ADF. 
Highest values for TDN and DMI was observed in accessions 12769, 18094 and 19467 and lowest 
values were obtained from accessions 19442, 13461 and 19448. Accessions 19367, 12769, 18094, 19425 
and 19420 were among the accessions with the highest DMI while accessions 13461, 16609, 19442, and 
19442 were among those with the lowest DMI.  

3.6. Performance of genetic clusters identified using DArTSeq genome-wide markers  

The performance of clusters identified using DArTSeq markers [9] were assessed. Figure 2 shows 
the performance of the different clusters (Supplementary Table S4). Cluster IV had the highest 
biomass yield followed by cluster VIII. Cluster II had the lowest biomass yield. Similarly, cluster IV 
had the tallest plants while cluster II had the shortest plants. In terms of feed quality, clusters I, II and 
III were a higher quality than the rest of the clusters. These three clusters had the highest CP (10.69-
10.78 %) and TDN (48.90-49.06 %). Cluster IV had the lowest CP (9.95 %) and TDN (46.82 %). Cluster 
II had the highest TDN and DMI values.  
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Figure 2. Performance of the clusters reported using DArTSeq markers [9]. The clusters are indicated 
on the x-axis while the different traits are indicated on the y-axis. YLD=Biomass yield, PH=Plant 
height, CP=Crude protein, NDF= Neutral Detergent Fibre, ADF= Acid Detergent Fibre, TDN= total 
digestible nutrients, and DMI= Dry matter intake. 

3.7. Genome-wide distribution and density of markers 

The DArTSeq markers were mapped onto the Setaria italica reference genome [39].  Figure 3 
shows the genome-wide distribution and density of the markers on the reference genome. These 
mapped markers were used for genome-wide association studies for the different traits. Accordingly, 
the total number of SNP and SilicoDArT markers used for GWAS was 7,206 and 8,342, respectively 
(Supplementary Table S5).   
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Figure 3. Chromosome wide distribution and density of DArTSeq markers on the Setaria italica 
genome: A) SNP markers and B) SilicoDArT markers. 

3.8. Data filtering for association studies 

For association studies, markers with known genomic positions were used. The markers were 
also filtered for missing data (≤20%), polymorphic information content (≥ 0.2) and minor allele 
frequency (MAF, 0.05). The phenotypic and feed quality data were checked for normality distribution 
(Supplementary Figure S3), and outliers were removed from the genome-wide association studies.  

3.9. Markers associated with biomass yield and plant height 

Using combined data from the two growing seasons, eight SilicoDArt markers were found to be 
associated with biomass yield. Of these markers, two were detected by three of the models 
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(FarmCPU, BLINK and GLM) while one was detected by both Blink and GLM models (Figure 4 and 
Table 3). In 2015, one SilicoDArT marker on Chr1 and one on Chr8 was associated with biomass yield 
and plant height, respectively, using the BLINK model (Supplementary Figure S4a, Supplementary 
Table S6), while no SNP marker was found to be associated with biomass yield or plant height. In 
2016, six silicoDArT markers were found to be associated with biomass yield (Supplementary Figure 
S4b, Supplementary Table S6). Of these markers, one marker on Chr8 was detected by all three of the 
models (FarmCPU, BLINK and GLM).  

Using the combined data, three SNP markers were found to be associated with biomass yield 
(Figure 5 and Table 4). Two of these markers were detected with the GLM model while the other one 
was detected using the FarmCPU model. Using 2016 data, three SNP markers were associated with 
biomass yield (Supplementary Figure S5, Supplementary Table S7), of which one, on Chr1, was 
detected using both BLINK and GLM models. The other two SNP markers associated with biomass 
yield were located on Chr3.  

 

Figure 4. SilicoDArT markers associated with biomass yield using the combined data from 2015 and 
2016 growing seasons. On the Manhattan plots, the x-axis is the code of the chromosomes, and the y-
axis is the negative log base 10 of the p-values. The green horizontal line indicates the significance 
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level. QQ plot: the y-axis is the observed negative base 10 logarithm of the p-values, and the x-axis is 
the expected observed negative base 10 logarithm of the p-values. 

 

Figure 5. SNP markers associated with biomass yield using the combined data from 2015 and 2016 
growing seasons. On the Manhattan plots, the x-axis is the code of the chromosomes, and the y-axis 
is the negative log base 10 of the p-values. The green horizontal line indicates the significance level. 
QQ plot: the y-axis is the observed negative base 10 logarithm of the p-values, and the x-axis is the 
expected observed negative base 10 logarithm of the p-values. 
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Table 3. List of SilicoDArT markers associated with biomass yield using the combined data from 2015 and 2016 growing seasons. 

N

o. 

Mod

el 

Mark

er ID 

Marker sequence RefSeq 

sequenc

e 

C

hr 

pos P.valu

e 

maf R2.witho

ut.SNP 

R2.with.

SNP 

R2* FDR_Adjuste

d_P-values 

Effect 

1 GLM 
30838

261 

TGCAGGTTTGAGGCTTGTCAGTGTGCTCGTCCC

CTTGTGCCGACCTTTCCCAGGCGTCCCTGTCCG

AGA 

NC_028

450.1 
1 

3274

4739 

4.60E-

06 

0.078

9 
0.296 0.445 

0.149 

0.0059 2009.3639 

2 
Farm

CPU 

30921

428 

TGCAGCAAATACTTACCAGAGCACAGGTTGCC

AGAAAATATTGTTGCAACAACAAGTGCTGCTG

ATGCT 

NC_028

451.1 
2 

8049

803 

1.65E-

06 

0.096

5 
NA NA 

NA 

0.0054 -969.2590 

3 GLM 
30912

865 

TGCAGAGAGTTGCAAAACGTATCGAAACAAA

TGTTGGAGACTTGCCGTGGGGTGAGGTGAAGA

CGGACT 

NC_028

451.1 
2 

3074

9442 

2.45E-

06 

0.096

5 
0.296 0.455 

0.158 

0.0053 1608.4054 

4 GLM 
30829

864 

TGCAGGCCGATCACGCTGTACGCCATGTGACC

CAGCCGCGACGCCACCTGCACCGCGAACCGC

AAAATG 

NC_028

452.1 
3 

3213

526 

6.32E-

06 

0.118

4 
0.296 0.441 

0.144 

0.0059 
-

1985.8887 

5 GLM 
30944

290 

TGCAGCTGCTCCACTGTTTTCGCACTGCTGAAC

TGTTCTTCTCTAACTGAAGAATATTTGTGGGCA

ACC 

NC_028

453.1 
4 

7437

264 

6.10E-

07 

0.074

6 
0.296 0.476 

0.180 

0.0029 1779.3729 

6 Blink 
30944

290 

TGCAGCTGCTCCACTGTTTTCGCACTGCTGAAC

TGTTCTTCTCTAACTGAAGAATATTTGTGGGCA

ACC 

NC_028

453.1 
4 

7437

264 

3.27E-

08 

0.074

6 
NA NA 

NA 

0.0001 NA 

7 GLM 
30846

885 

TGCAGAGAGAGGGAGAGAGAGGCTATCCTAC

TATGCAACGGTCAAAAGGCTTCAAAGGAGGA

GAAATCA 

NC_028

455.1 
6 

3304

1360 

4.25E-

06 

0.105

3 
0.296 0.447 

0.150 

0.0059 
-

1877.6778 
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8 GLM 
30838

332 

TGCAGTCCTAAACACCAGCACAGCACTCTCCT

CTCCTTCCATCCCTAACATACATCATCAGCGAT

ACAG 

NC_028

456.1 
7 

2841

1310 

8.87E-

07 

0.078

9 
0.296 0.470 

0.174 

0.0029 1764.3647 

9 
Farm

CPU 

30838

332 

TGCAGTCCTAAACACCAGCACAGCACTCTCCT

CTCCTTCCATCCCTAACATACATCATCAGCGAT

ACAG 

NC_028

456.1 
7 

2841

1310 

1.08E-

08 

0.078

9 
NA NA 

NA 

0.0001 1528.8742 

10 Blink 
30838

332 

TGCAGTCCTAAACACCAGCACAGCACTCTCCT

CTCCTTCCATCCCTAACATACATCATCAGCGAT

ACAG 

NC_028

456.1 
7 

2841

1310 

5.72E-

10 

0.078

9 
NA NA 

NA 

0.0000 NA 

11 GLM 
30846

154 

TGCAGTCTCCCAATCTCCCGTGGGAGCTCTGTG

ATTTGATCGCAGTCCTTGAGATCCAGATACCT

AAGC 

NC_028

457.1 
8 

2644

2566 

6.10E-

06 

0.087

7 
0.296 0.441 

0.145 

0.0059 
-

1463.6930 

12 
Farm

CPU 

30846

154 

TGCAGTCTCCCAATCTCCCGTGGGAGCTCTGTG

ATTTGATCGCAGTCCTTGAGATCCAGATACCT

AAGC 

NC_028

457.1 
8 

2644

2566 

3.30E-

06 

0.087

7 
NA NA 

NA 

0.0072 -853.8910 

13 Blink 
30846

154 

TGCAGTCTCCCAATCTCCCGTGGGAGCTCTGTG

ATTTGATCGCAGTCCTTGAGATCCAGATACCT

AAGC 

NC_028

457.1 
8 

2644

2566 

3.91E-

09 

0.087

7 
NA NA 

NA 

0.0000 NA 

R2*= R2.with.SNP- R2without.SNP. 
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Table 4. List of SNP markers associated with biomass yield using the combined data from 2015 and 2016 growing seasons. 

No. Model Marker ID Marker sequence Allele

s 

RefSeq 

sequen

ce 

C

h

r 

pos P.value maf R2withou

t.SNP 

R2.with.SN

P 

R2* FDR_Adjust

ed_P-values 

Effect 

1 GLM 
30964292-

59-G/A 

TGCAGCTCAGAGCAGTACGACGCCATGG

CGATCTCGGCGCCCTTGAACCCGTAGTCC

AGGCTCGGGTTG 

G/A 
NC_028

450.1 
1 

31786

540 
7.11E-07 0.179 0.437 0.571 

0.314 

0.0017 -1149.0389 

2 
FarmC

PU 

30935961-

51-C/T 

TGCAGATCTACTAAAATCTAGCCGCGCCA

GCAGCGACGCGAACCGCTAAATCCACCC

AAACCTAGCACC 

C/T 
NC_028

454.1 
5 

34508

94 
1.12E-06 0.058 NA NA 

NA 

0.0055 992.5899 

3 GLM 
30882610-

38-G/A 

TGCAGCGTGCGGCAGCAGACCAGATCCG

TCGGGTTGAAGTTCACCG 
G/A 

NC_028

458.1 
9 

94280

69 
4.99E-07 0.079 0.437 0.575 

0.138 
0.0017 1629.3846 

R2*= R2.with.SNP- R2without.SNP. 
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3.10. Markers associated with feed quality traits   

Using the combined data from the two growing seasons, four SilicoDArT markers were found 
to be associated with feed quality traits. Of these markers, two were associated with both ADF and 
TDN (Figure 6 and Table 5). In addition, some additional markers were also found to be associated 
with feed quality traits using the individual season data. In the 2015 season, four SilicoDArT markers 
were associated with CP using the BLINK model (Supplementary Figure S6a, Supplementary Table 
S8) while no other SNP marker was found to be associated with any of the feed quality traits in 2015. 
In 2016, two and three SilicoDArT markers were associated with CP and TDN, respectively 
(Supplementary Figure S6b, Supplementary Table S8).  

Using the combined data, 19 SNP markers were found to be associated with CP, 11 with NDF, 
six with ADF, 19 with TDN and seven with DMI (Figure 7 and Supplementary Table S9). In addition, 
using the 2016 season data, four SNP markers were found to be associated with TDN, two with CP 
and seven with ADF (Supplementary Figure S7 and Supplementary Table S10). One of the SNP 
markers associated with CP was detected using both BLINK and GLM models and one marker 
associated with TDN was detected using both FarmCPU and BLINK models.  
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Figure 6. SilicoDArT markers associated with feed quality traits using the combined data from 2015 
and 2016 growing seasons. On the Manhattan plots, the x-axis is the code of the chromosomes, and 
the y-axis is the negative log base 10 of the p-values. The green horizontal line indicates the 
significance level. QQ plot: the y-axis is the observed negative base 10 logarithm of the p-values, and 
the x-axis is the expected observed negative base 10 logarithm of the p-values. 
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Figure 7. SNP markers associated with feed quality traits using the combined data from 2015 and 2016 
growing seasons. On the Manhattan plots, the x-axis is the code of the chromosomes, and the y-axis 
is the negative log base 10 of the p-values. The green horizontal line indicates the significance level. 
QQ plot: the y-axis is the observed negative base 10 logarithm of the p-values, and the x-axis is the 
expected observed negative base 10 logarithm of the p-values. 
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Table 5. List of SilicoDArT markers associated with feed quality traits using combined data from 2015 and 2015 growing seasons. 

N

o. 
Trait Model 

Marker 

ID 
Marker sequence 

RefSeq 

sequence 

Ch

r 
pos P.value maf 

R2.withou

t.SNP 

R2.with.

SNP 

R2* FDR_Adjust

ed_P-values 

Effec

t 

1 TDN FarmCPU 30930072 
TGCAGCTGGCGTCGGCGACGGCGTGCGTCGC

GCTGTCGGCGGCGCGGCTCGCCCG 

NC_028452.

1 
3 44894692 1.64E-06 0.32 NA NA 

NA 

0.0054 

-

0.818

4 

2 

  

  

  

ADF Blink 30879386 

TGCAGTAGTGGCGGTGGACTACGACGCCTCC

CCCTGCGAGCACATCATATCCCAGACGCCTG

CTCGACG 

NC_028454.

1 
5 1406759 1.64E-10 0.272 NA NA 

NA 

1.07E-06 NA 

TDN GLM 30879386 

TGCAGTAGTGGCGGTGGACTACGACGCCTCC

CCCTGCGAGCACATCATATCCCAGACGCCTG

CTCGACG 

NC_028454.

1 
5 1406759 5.22E-06 0.272 0.202 0.368 

0.167 

0.0341 
1.463

5 

TDN Blink 30879386 

TGCAGTAGTGGCGGTGGACTACGACGCCTCC

CCCTGCGAGCACATCATATCCCAGACGCCTG

CTCGACG 

NC_028454.

1 
5 1406759 1.74E-10 0.272 NA NA 

NA 

0.0000 NA 

ADF GLM 30879386 

TGCAGTAGTGGCGGTGGACTACGACGCCTCC

CCCTGCGAGCACATCATATCCCAGACGCCTG

CTCGACG 

NC_028454.

1 
5 1406759 3.65E-06 0.272 0.169 0.349 

0.180 

0.0238 

-

1.509

4 

3 TDN FarmCPU 30841580 

TGCAGAACGTTCAGACTTCAAACCACATGCT

GCCGTGCGCATCAGCACATGTGCTTGACTTG

TGACCTG 

NC_028454.

1 
5 6158000 1.47E-06 0.145 NA NA 

NA 

0.0054 

-

1.129

6 

4 

  

ADF Blink 30930612 
TGCAGCTCCCGCCGTGGCAGCACTCCAGCGC

GTCCCAGCCG 

NC_028456.

1 
7 25606103 1.06E-06 0.18 NA NA 

NA 
0.0034 NA 

TDN Blink 30930612 
TGCAGCTCCCGCCGTGGCAGCACTCCAGCGC

GTCCCAGCCG 

NC_028456.

1 
7 25606103 1.40E-07 0.18 NA NA 

NA 
0.0005 NA 

R2*= R2.with.SNP- R2without.SNP. 
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4. Discussion 

4.1. Markers associated with feed quality traits   

Buffel grass is an important forage grass in the tropical and subtropical regions of the world 
[24,25]. Substantial variation in agronomic and nutritional quality traits was observed in the buffel 
grass accessions which shows the rich genetic variation embedded in the collection from which to 
select lines with superior performance. Genotypes × season interaction was also significant for all 
traits indicating that multiyear evaluation of buffel grass is essential to determine consistent 
performance of the genotypes. However, the maximum biomass yield recorded in the current report 
is less than the biomass yield reported elsewhere [25,28,33]. The relatively lower biomass yield 
observed at Bishoftu could be related to the environmental conditions and difference in management 
practices. On the other hand, the range of CP content of the studied accessions was wider than what 
has been reported elsewhere for the grass [28,50]. Based on genome-wide DArTSeq markers, the 
collection was clustered into eight clusters [9]. The accessions in clusters I, II and III showed low 
biomass yield but a relatively higher feed quality (CP, TDN and DMI) than the rest of the clusters. 
Cluster IV had the highest biomass yield and the tallest plants compared to the other clusters. 
Similarly, Jorge and colleagues [35] also studied 68 accessions and classified them based on the 
robustness of the plant, flowering characters and growth forms. Accordingly, some of the accessions 
with the highest biomass yield and tallest plants belong to the most robust and leafiness cluster group 
while accessions with the lowest biomass yield belong to the cluster with short leaves and thin stems. 

The present study also revealed different levels of variability and heritability (H2) among 
genotypes. Biomass yield and plant height recorded the highest value for PCV and GCV indicating 
the presence of high genetic variability for the traits. The PCV value for biomass yield was equivalent 
to the corresponding GCV value while the PCV value for plant height was close to GCV value. The 
heritability estimates were high for both biomass yield and plant height. This shows the substantial 
contribution of genetic factors to the observed performance for both traits. Thus, directional selection 
might be effective to improve these two traits. On the other hand, NDF, TDN, CP, ADF and DMI 
showed low PCV, GCV and H2 estimates indicating low genetic variability. PCV values for feed 
quality traits were greater than the corresponding GCV values, indicating the significant effect of 
environmental factors on the expression of these traits. This is in line with the observed low 
heritability estimates for the feed quality traits. In general, the evaluated accessions showed 
significant variation in performance. Hence, given the observed genetic and phenotypic performance 
variation in the collection [9,35,51], there is a potential improvement opportunity in the buffel grass 
germplasm to develop high yielding climate resilient varieties.  

4.2. Correlation of biomass yield, plant height and feed quality traits in buffel grass  

Biomass yield and feed quality traits are important parameters in forage improvement. 
Understanding the relationship between biomass yield and feed quality traits and the genetic basis 
of their relationship would be of great importance to breeding programs. A positive correlation was 
observed between biomass yield and plant height (0.64**). Biomass yield had a positive correlation 
with NDF (0.48***) and ADF (0.60**), and a negative correlation with CP (-0.51***), TDN (-0.59***), 
DMI (-0.48***). Plant height also had a similar trend in correlation with feed quality traits. It is also 
worth noting that DMI and TDN had a strong negative correlation with NDF (-0.999***, and -0.870***, 
respectively). NDF also had a similar correlation with DMI (-0.981***) and TDN (-0.885***). The 
observed relationship between the traits was very similar during the two growing seasons. The 
correlation observed between biomass yield and plant height, and biomass yield and feed quality 
traits have implications for the improvement programs. For example, plant height could be used a 
good indicator for biomass yield under field conditions. However, the negative correlation between 
biomass yield and the feed quality traits (CP, TDN and DMI) needs special attention in the 
improvement programs as varieties with higher biomass yield might be poor in feed quality. Thus, 
the high biomass yielding accessions and accessions that produce high CP contents would be the 
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candidate accessions for further field performance evaluation in different tropical agroecologies and 
seasons. 

4.3. Marker trait associations in buffel grass  

In the present study, we used a buffelgrass germplasm collection in the forage genebank at ILRI 
and conducted GWAS to identify marker trait associations. Several marker trait associations were 
identified. Using the combined data from the two seasons, three SNP and eight SilicoDArT markers 
were found to be associated with biomass yield. A total of nine markers (six SilicoDArT and three 
SNP) were found to be associated with biomass yield in the 2016 growing season. One of the SNP 
and two of the SilicoDArT markers were detected both using the 2016 season and the combined data. 
In the 2015 growing season, one SilicoDArT marker was associated with biomass yield. One 
SilicoDArT marker was associated with plant height in 2015. No marker was associated with plant 
height using the 2016 season and the combined data. 

Using the combined data, four SilicoDArT markers were found to be associated with ADF and 
TDN, while no marker was found to be associated with the other feed quality traits (CP, NDF and 
DMI). One of the four markers was also detected using individual season data and it was associated 
with CP in 2015 and TDN in 2016. A total of eight SilicoDArT markers (four in 2015 associated with 
CP, two in 2016 associated with CP, three in 2016 associated with TDN) were found associated with 
feed quality traits.  

Using the combined data, a total 42 SNP markers were associated with feed quality traits, of 
which four were also detected using the 2016 season data. Of the four markers detected using both 
combined and 2016 season data, two were associated with the same trait (one with ADF and the other 
with TDN). The other two markers were associated with different traits depending on the dataset. 
Seven SNP markers were associated with DMI using the combined data while no marker was found 
to be associated with the trait using the individual season data. Thirteen SNP markers were found to 
be associated with feed quality using data from the 2016 growing season. Of these markers, four were 
associated with TDN, two with CP and seven with ADF. The different marker trait associations 
identified between the two growing seasons (2015 and 2016) could be related to the difference in 
weather conditions (Supplementary Table S11). For example, the average monthly rainfall of the 
location during the months of July to September was 117 mm in 2015 and 142 mm in 2016. In addition, 
in 2015, the minimum and maximum daily temperature during July to August was 12°C and 26°C 
while it was 13°C and 28°C, respectively, during the same months in 2016. The variation in growing 
conditions would affect the performance of the genotypes and result in variation in the marker trait 
associations for the different years. Another reason could be that the plants were well established 
during the second season and therefore more able to reach a performance towards the crops genetic 
potential. 

4.4. Genome wide distribution and co-localization of the marker trait associations  

Except for a few studies with conventional molecular markers[52], genomic studies are limited 
in buffel grass. A reference genome has not been developed to date. The lack of its own reference 
genome has hindered mapping and selection of genome wide representative markers for further 
molecular studies. As a result, the reference genome of Setaria italica [39] was used to map the 
generated markers. However, only a small percentage of the total markers were successfully mapped 
[9]. Despite this challenge, we conducted a GWAS using the mapped markers and identified several 
marker trait associations with R2 values ranging from 0.138 to 0.236. The identified marker trait 
associations were distributed across the different chromosomes of the Setaria italica genome (Figure 
8). On Chr1, three SilicoDArT markers (one for CP and two for biomass yield) and four SNPs (one 
associated with CP and TDN, and one each for biomass yield, CP and ADF) were identified. The SNP 
associated with ADF was detected using the 2016 season while the SNPs with biomass yield, CP and 
TDN were identified using the combined data. Three SilicoDArT markers (one for CP and three for 
biomass yield using the 2016 season data) and two SNP markers (one each for CP and NDF using 
combined data) were identified on Chr2. Five SNP markers (two associated with biomass yield, one 
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with TDN, one with both NDF and TDN and one with both CP and TDN) and two SilicoDArT 
markers (one each for yield and TDN) were located on Chr3. On Chr4, one SilicoDArT marker 
associated with biomass yield and one SNP marker associated with multiple traits (ADF, TDN and 
DMI) were identified using the combined data. No marker on this chromosome was found to be 
associated with these traits using individual season data. 

 

Figure 8. Genomic map position of the marker trait associations. The labels on the right of the linkage 
groups indicate the marker code, followed by the growing season of the data used for GWAS (2015, 
2016 or combined) and the traits (Yld= Biomass Yield, Ph=Plant height, CP=Crude Protein, 
NDF=Neutral Detergent Fibre, ADF=Acid Detergent Fibre, TDN=Total Digestible Nutrients, 
DMI=Dry Matter Intake). The number on the left of the linkage groups indicates the physical genomic 
position of the markers in base pairs. * Indicates markers associated with two traits and ** indicates 
markers associated with three traits. 

On Chr5, 13 markers were associated with different traits. One SilicoDArT marker was 
associated with both CP (2015 season data) and TDN (2016 season data) while it was associated with 
ADF and TDN using the combined data. Another two SilicoDArT markers associated with CP (2016 
season) and TDN (combined data) were also located on this chromosome. In addition to the 
SilicoDArT markers, ten SNP markers associated with different traits (one with biomass yield, three 
with TDN, three with DMI, three with CP, two with ADF and two with NDF) were also found on this 
chromosome. Four of these SNP markers were associated with two different traits. 

On Chr6, there were two SilicoDArT markers (one each associated with CP and biomass yield) 
and six SNP markers (two with TDN, two with ADF, one with both TDN and ADF, and one with 
TDN and DMI) associated with different traits. One of the SNP markers was associated with three 
feed quality traits (NDF, TDN and DMI) while one was associated with both ADF and TDN. Six SNP 
and two SilicoDArT markers associated with different traits were located on Chr7.  One of these 
markers was associated with three feed quality traits (CP, ADF and TDN) while the other three 
markers were associated with two different traits. Three SilicoDArT markers (one each for plant 
height, biomass yield, and TDN) and one SNP marker associated with CP were located on Chr8. A 
total of 23 markers associated with traits (18 SNP and 5 SilicoDArT) were located on Chr9. Of these 
markers, nine were associated with CP, five with ADF, two with NDF, one with biomass yield and 
five with TDN. Among the SilicoDArT markers, one is associated with both biomass yield and TDN, 
two with CP and three with biomass yield. One of the SNP markers was associated with three feed 
quality traits (CP, ADF and TDN) while four SNP markers were associated with two of the traits.  
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In a few cases, a single marker was associated with two and three traits or markers associated 
with two different traits were closely located on the same chromosome. Markers associated with three 
traits were found on Chr4, Chr5, Chr6, Chr7 and Chr9. The markers on Chr4 and Chr6 were 
associated with ADF, TDN and DMI while the markers on Chr5, Chr7 and Chr9 were associated CP, 
ADF and TDN. In addition, several markers associated with two traits were also found on Chr1, Chr3, 
Chr5, Chr6, Chr7 and Chr9. For example, a SilicoDArT marker on Chr5 was associated with both CP 
and TDN while another SilicoDArT marker on Chr9 was associated with both biomass yield and 
TDN.  Closely located marker trait associations were also found on six of the nine chromosomes. On 
Chr1, a SilicoDArT marker associated with CP and a SNP marker associated with biomass yield are 
located at 398,585 bp from each other. Similarly, on Chr8, markers associated with plant height and 
biomass yield have a physical distance of 565,288 bp from each other. Among the markers on Chr9, 
a SNP marker associated with CP and a SilicoDArT marker associated with biomass yield are located 
at 501,486 bp from each other. Other closely located marker trait associations are also found on Chr1 
(biomass yield and CP/TDN), Chr3 (ADF/TDN and NDF), Chr5 (TDN and NDF/DMI), Chr6 (NDF 
and ADF/TDN), Chr7 (CP and CP/ADF/TDN), and Chr9 (biomass yield and CP, CP and ADF, NDF 
and CP/TDN). In summary, a total of 78 marker-trait associations (one based on both individual 
growing season and combined data, 47 based on combined data only, 21 based on individual growing 
season data only and 9 based on both combined and 2016 growing season data) were identified in 
this study. The generated information on the genome distribution of the marker trait associations will 
be a useful resource for future improvement programs in this important tropical forage. Furthermore, 
an additional study is required to validate the associations and co-localization of the identified 
markers. In line with this suggestion, it is very important to develop a buffel grass reference genome 
to facilitate genomic studies and the development of markers for efficient marker-assisted 
selection/breeding. Developing a species specific reference genome will increase the number of 
mappable markers and thereby improve the discovery and accuracy of the marker trait associations 
in this drought tolerant tropical forage.  

4.5. Marker trait association in functional putative genomic regions 

Some of the identified marker trait associations were in genomic regions related to key enzymes 
and proteins involved in different biochemical reactions and processes in plants. Among the 
identified SNP markers associated with biomass yield, one is located on Chr1 in the genomic region 
linked to a gene encoding a Phenylalanine ammonia-lyase (PAL)-like protein. PAL catalyzes the 
deamination of phenylalanine to produce trans-cinnamic acid, a precursor of lignins, flavanoids, 
and coumarins and it is a key enzyme that  induces the synthesis of salicylic acid that causes 
systemic resistance in many plants [53,54]. A recent study has shown that PAL-knockdown plants in 
the model grass Brachypodium distachyon have exhibited delayed development, reduced root growth 
as well as increased susceptibility to diseases [55]. Another marker associated with biomass yield is 
located on Chr3 in the region related to a gene encoding a U-box domain-containing protein 1. This 
protein is in the family of ubiquitin ligase (E3) enzymes that are involved in various biological 
processes and in stress response in plants[56]. Similarly, the SilicoDArT marker associated with plant 
height is located on Chr8 in the genomic region harboring a gene annotated as a Setaria italica ankyrin-
1 protein. This protein family is conserved in plants and involved in biochemical processes in 
response to biotic and abiotic stresses [57–59]. 

Several markers were found to be associated with feed quality traits. These markers were 
distributed over the different chromosomes of the Setaria italica genome. Some of the marker trait 
associations are located in the genomic regions linked to different biophysiological processes in 
plants. One of the marker trait (CP) associations on Chr2 is close to a gene encoding a E3 ubiquitin-
protein ligase RGLG1-like in Setaria viridis.  E3 ubiquitin-protein ligase is a family of proteins that 
catalyse the ubiquitination of protein substrates for targeted degradation[60] and have been known 
as an important regulator of drought stress response in plants [61]. A SilicoDArT marker associated 
with TDN (on Chr8) is close to a gene encoding a predicted Setaria italica chlorophyll a-b binding 
protein CP26, chloroplastic. This protein is conserved in plants and green algae and plays a key role 
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in absorbing and transferring sunlight energy into chemical energy [62]. Both E3 ubiquitin-protein 
ligases and chlorophyll a-b binding proteins are involved in many other biophysiological processes 
that contribute to plant growth and development. 

Among the SNP markers associated with feed quality traits, the marker associated  with TDN  
(on Chr6) is close to genes encoding a tryptophan decarboxylase 1-like and aromatic-L-amino-acid 
decarboxylase in grass which are involved in many biochemical reactions contributing to the 
formation of many metabolites involved in biotic and abiotic stress defence in plants [63,64]. A 
marker associated with CP (on Chr9) is located in the genomic region containing a gene encoding a 
pentatricopeptide repeat (PPR)-containing protein. PPR proteins are one of the largest nuclear-
encoded protein families in higher plants and interact with RNA to affect gene expressions necessary 
for organelle development [65]. On Chr9, another SNP marker associated with ADF is found in the 
genomic region harbouring a gene encoding a Detoxification 40-like protein, which is believed to 
play a role in response to stresses in plants (e.g., detoxification of a heavy metal Cd(2+) in rice) [66]. 
In general, marker trait associations in genomic regions containing genes linked to important 
enzymes and proteins were identified. This result could be used as a starting point for a further study 
to elucidate genomic regions with genes controlling important traits such as drought tolerance, 
disease resistance and feed quality traits. 

5. Conclusions and recommendations  

Here we reported the first genome wide association study in buffel grass, an important drought 
tolerant tropical forage grass. Several markers were found to be associated with biomass yield and 
feed quality traits. The observed marker trait associations were distributed across the different 
chromosomes with the largest number of markers located on Chr9 while the lowest number of 
markers were located on Chr4. In terms of traits, the largest number of markers was associated with 
TDN followed by CP and biomass yield.  Some of the markers were associated with multiple traits: 
eight markers were associated with CP and TDN; two markers with ADF and TDN; two markers 
with CP, TDN and DMI; two markers with NDF and DMI; one marker with ADF, TDN and DMI; 
one marker with NDF, TDN and DMI and one marker with biomass yield and TDN. Some of the 
associated markers are located in the genomic regions containing genes related to key biochemical 
processes that affect yield, stress responses and feed quality traits in plants. In general, the identified 
marker trait associations will be a useful genomic resource for buffel grass genomic studies and will 
have a significant implication on future buffel grass improvement programs.  

One of the challenges in the genomic studies of tropical forages such as buffel grass is the lack 
of a reference genome. In this study, we used the reference genome of Setaria italica, a model grass 
species, to map the generated buffel grass DArTSeq markers which enabled us to map only a small 
percentage of the generated markers. On several occasions, developing and using the species-specific 
reference genome have increased the efficiency of mappable markers. Similarly, we believe that 
developing the buffel grass reference genome would be of paramount importance to the genomic 
studies and improvement of this important forage grass. Hence, we recommend the following as 
future lines of research in buffel grass: 

• Developing a reference genome that can be used for marker mapping and genome wide 
association studies to identify major QTL for traits of interest with improved association 
accuracy. 

• Buffel grass has different ploidy levels. Hence, determining the ploidy level, coupled with 
identification of sexually reproducing lines, will facilitate a breeding program for developing 
new improved varieties of this economically important forage species. 

• Buffel grass is a drought tolerant grass species. Being an underutilized crop, little is known about 
the genetic basis of its drought tolerance trait. Hence, it is important to study the genetic and 
physiological basis of drought tolerance and other important traits to develop a climate resilient 
variety.  

• The results of this study can also be used as a basis to develop a set of markers for future marker 
assisted selection and breeding. 
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