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Motto: "Je suis très honoré que le CEREMADE m’ait demandé de parler du principe dont je porte le nom."
Ivar Ekeland, Paris 2018. 1

1. Introduction

A variational principle is a proposition asserting that some function, usually bounded below and
lower semi-continuous (lsc), attains its minimum. If the original function does not attain its minimum
then one looks for an appropriate perturbation such that the perturbed function has a minimum.
Variational principles have numerous applications to problems of optimization, in the study of the
differentiability properties of mappings, in fixed point theory, etc. Their origins go back to the early
stage of development of the calculus of variations and are related to the principle of least action from
physics.

Ivar Ekeland announced in 1972, [12] (the proof appeared in 1974 in [13]) a theorem asserting the
existence of the minimum of a small perturbation of a lower semicontinuous (lsc) function defined
on a complete metric space. This result, known as Ekeland Variational Principle (EkVP), proved to
be a very versatile tool in various areas of mathematics and in applications - optimization theory,
geometry of Banach spaces, optimal control theory, economics, social sciences, and others. Some of
these applications are presented by Ekeland himself in [14].

At the same time, it turned out that this principle is equivalent to a lot of results in fixed point
theory (Caristi fixed point theorem), geometry of Banach spaces (drop property), and others (see [24],
for instance).

Since then, many extensions of this principle have been published, a good record being given in
the book by Meghea [22].

A version of EkVP in T!-quasi-metric spaces was proved in [4]. The result was extended to
arbitrary quasi-metric spaces in [19], where it was shown that the validity of this principle actually
characterizes the right K-completeness of the underlying quasi-metric space. Other asymmetric
versions (meaning quasi-metric, quasi-uniform or in normed or locally convex asymmetric spaces)
were proved in [1,2,5,8,10,11], and others.

Strong versions of EkVP were proved by Georgiev [16,17] and Suzuki [33,34]. The aim of this
paper is to prove a quasi-metric version of the strong Ekeland Variational principle (see Section 2).

1 “I am very honored that CEREMADE invited me to speak about the principle whose name I bear."
CEREMADE - Centre de Recherche en Mathématiques de la Décision, Paris
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2. Ekeland and the strong Ekeland variational principles in metric and Banach spaces

2.1. Ekeland principle

Ekeland [13] proved the following result, known as Ekeland Variational Principle (EkVP).

Theorem 2.1 (Ekeland Variational Principle). Let (X, d) be a complete metric space and f : X → R∪ {+∞}

a lsc bounded below function. Let ε > 0 and x0 ∈ dom f .
Then given λ > 0 there exists z = zε,λ ∈ X such that

(a) f (z) +
ε

λ
d(z, x0) ≤ f (x0);

(b) f (z) < f (x) +
ε

λ
d(z, x) for all x ∈ X ∖ {z}..

(2.1)

If, further, f (x0) ≤ inf f (X) + ε, then

(c) d(z, x0) ≤ λ.

The Ekeland Variational Principle is sometimes written in the following form (see, for instance, [24]
or [25, Lemma 3.13]).

Theorem 2.2. Let (X, d) be a complete metric space and f : X → R ∪ {+∞} a lsc bounded below function.

Let ε > 0 and x0 ∈ dom f .
Then given λ′

> 0 there exists z = zλ′ ∈ X such that

(a′) f (z) + λ′d(z, x0) ≤ f (x0);

(b′) f (z) < f (x) + λ′d(z, x) for all x ∈ X ∖ {z}.
(2.2)

If, further, f (x0) ≤ inf f (X) + ε, then

(c′) d(z, x0) ≤ ε/λ′ .

The equivalence of Theorems 2.1 and 2.2 follows by the substitution

λ′ =
ε

λ
⇐⇒ λ =

ε

λ′
. (2.3)

2.2. The strong Ekeland variational principle

Let X be a Banach space and f : X → R∪ {∞} a function. A point x0 ∈ dom f is called

• a minimum point for f if f (x0) ≤ f (x) for all x ∈ X;
• a strict minimum point for f if f (x0) < f (x) for all x ∈ X \ {x0};
• a strong minimum point for if f (x0) = inf f (X) and every sequence (xn) in X such that limn f (xn) =

infX f is norm-convergent to x0.

A sequence (xn) satisfying limn f (xn) = inf f (X) is called a minimizing sequence for f .

Remark 2.3. A strong minimum point is a strict minimum point, but the converse is not true.

Indeed, if there exist z ̸= z′ such that f (z) = m = f (z′), where m = inf f (X), then the sequence
x2k−1 = z, x2k = z′, k ∈ N, satisfies limn f (xn) = m, but it is not convergent. Also, the function
f : R → R, f (x) = x2e−x, has a strict minimum at 0, f (0) = 0, f (n) → 0, but the sequence (n)n∈N

does not converge to 0.
Condition (b′) in Theorem 2.2 asserts that, in fact, z is strict minimum point for the perturbed

function f̃ := f + λ′d(z, ·). Georgiev [16,17] proved a stronger variant of Ekeland variational principle,
guaranteeing the existence of a strong minimum point z for f̃ .
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Theorem 2.4 (Strong Ekeland Variational Principle). Let (X, d) be a complete metric space and f : X →

R ∪ {+∞} a lsc function bounded from below on X. Then for every γ, δ > 0 and x0 ∈ dom f there exists

z ∈ X such that

(a) f (z) + γd(x0, z) < f (x0) + δ;

(b) f (z) < f (x) + λd(z, x) for all x ∈ X \ {z} ;

(c) f (xn) + λd(z, xn) → f (z) ⇒ xn → z, for every sequence (xn) in X.

(2.4)

Geogiev, loc. cit., also showed the equivalence of this strong form of EkVP with stronger forms
of Danes’ drop theorem, flower petal theorem, Phelps lemma, and others, extending so the results
obtained by Penot [24]. He gave a direct proof to the strong drop theorem, the strong EkVP being a
consequence of the equivalence mentioned above. Later Turinici [35] has shown that this strong form
can be deduced from Theorem 2.2.

Observe that there is a discrepancy between the conditions (a′) in Theorem 2.2 and condition
(a) in Theorem 2.4, condition (a′) being stronger than (a). As was remarked by Suzuki [33,34], a
strong version of the Ekeland variational principle with condition (a′) instead of (a) can be proved by
imposing supplementary conditions on the underlying metric (or Banach) space X, which are, in some
sense, also necessary.

Let f : X → (−∞,+∞] be a proper function defined on a metric space (X, ρ). For x0 ∈ dom f and
λ > 0 consider an element z = zx0,λ satisfying the following conditions:

(i) f (z) + λρ(z, x0) ≤ f (x0) ;

(ii) f (z) < f (x) + λρ(z, x) for all x ∈ X \ {z} ;

(iii) f (xn) + λρ(z, xn) → f (z) ⇒ xn → z, for every sequence (xn) in X.

(2.5)

If (X, ∥ · ∥) is a normed space, then ρ(x, y) is replaced by ∥y − x∥.
A metric space (X, ρ) is called boundedly compact if every bounded closed subset of X is compact,

or equivalently, if every bounded sequence in X contains a convergent subsequence.

Remark 2.5. It is obvious that a boundedly compact metric space is complete, and that a normed space
is boundedly compact if and only if it is finite dimensional.

Theorem 2.6 ([33]). Let (X, ρ) be a boundedly compact metric space, f : X → (−∞,+∞] a lsc bounded from

below function, x0 ∈ dom f and λ > 0.
Then there exists a point z ∈ X satisfying the conditions (2.5).

Remark 2.7. 1. Let X be a vector space. A function f : X → R∪ {∞} is called quasi-convex if

f ((1 − t)x + ty) ≤ max{ f (x), f (y)} ,

for all x, y ∈ X and t ∈ [0, 1]. This is equivalent to the fact that the sublevel sets {x ∈ X : f (x) ≤ α} are
convex for all α ∈ R (see [23]).

2. One says that a Banach space X is a dual Banach space if there exists a Banach space Y such that
Y∗ = X. Obviously, a reflexive Banach space is a dual Banach space with X = (X∗)∗ and, in this case,
the weak (i.e. σ(X∗, X∗∗)) and the weak∗ (i.e. σ(X∗, X)) topologies on X agree.

In the Banach space case the following results can be proved.

Theorem 2.8 ([33]). Let X be a Banach space, f : X → (−∞,+∞] a bounded from below function, x0 ∈ dom f

and λ > 0.

1. If X is a dual Banach space and f is w∗-lsc, then there exists a point z ∈ X satisfying (2.5) with xn
w∗

−→ x

in the condition (iii).
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2. Suppose that the Banach space X is reflexive. If f is weakly lsc, then there exists a point z ∈ X satisfying

the conditions (2.5). The same is true if f is quasi-convex and norm-lsc.

As it was shown by Suzuki [34], in some sense, the results from Theorems 2.6 and 2.8 are the best
that can be expected.

Theorem 2.9. For a metric space (X, ρ) the following are equivalent.

1. The metric space X is boundedly compact.
2. For every proper lsc bounded from below function f : X → (−∞,+∞], x0 ∈ dom f and λ > 0 there

exists a point z ∈ X satisfying the conditions (2.5).
3. For every Lipschitz function f : X → [0,+∞), x0 ∈ dom f and λ > 0 there exists a point z ∈ X

satisfying the conditions (2.5).

A similar result holds in the case of normed spaces.

Theorem 2.10. For a normed space (X, ∥ · ∥) the following are equivalent.

1. X is a reflexive Banach space.
2. For every proper lsc bounded from below quasi-convex function f : X → (−∞,+∞], x0 ∈ dom f and

λ > 0 there exists a point z ∈ X satisfying the conditions (2.5).
3. For every Lipschitz convex function f : X → [0,+∞), x0 ∈ dom f and λ > 0 there exists a point z ∈ X

satisfying the conditions (2.5).

3. The case of quasi-pseudometric spaces

We present in this section some versions of Ekeland and strong Ekeland principles in
quasi-pseudometric spaces.

3.1. Quasi-pseudometric spaces

A quasi-pseudometric on an arbitrary set X is a mapping d : X × X → [0, ∞) satisfying the following
conditions:

(QM1) d(x, y) ≥ 0, and d(x, x) = 0;

(QM2) d(x, z) ≤ d(x, y) + d(y, z),

for all x, y, z ∈ X. If further

(QM3) d(x, y) = d(y, x) = 0 ⇒ x = y,

for all x, y ∈ X, then d is called a quasi-metric. The pair (X, d) is called a quasi-pseudometric space,
respectively a quasi-metric space2 The conjugate of the quasi-pseudometric d is the quasi-pseudometric
d̄(x, y) = d(y, x), x, y ∈ X. The mapping ds(x, y) = max{d(x, y), d̄(x, y)}, x, y ∈ X, is a pseudometric
on X which is a metric if and only if d is a quasi-metric.

If (X, d) is a quasi-pseudometric space, then for x ∈ X and r > 0 we define the balls in X by the
formulae

Bd(x, r) ={y ∈ X : d(x, y) < r} - the open ball, and

Bd[x, r] ={y ∈ X : d(x, y) ≤ r} - the closed ball.

Topological properties

2 In [6] the term “quasi-semimetric" is used instead of “quasi-pseudometric", while in [18] it is called hemi-metric.
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The topology τd (or τ(d)) of a quasi-pseudometric space (X, d) can be defined starting from the
family Vd(x) of neighborhoods of an arbitrary point x ∈ X:

V ∈ Vd(x) ⇐⇒ ∃r > 0 such that Bd(x, r) ⊆ V

⇐⇒ ∃r′ > 0 such that Bd[x, r′] ⊆ V.

The convergence of a sequence (xn) to x with respect to τd, called d-convergence and denoted by

xn
d
−→ x, can be characterized in the following way

xn
d
−→ x ⇐⇒ d(x, xn) → 0. (3.1)

Also
xn

d̄
−→ x ⇐⇒ d̄(x, xn) → 0 ⇐⇒ d(xn, x) → 0 , (3.2)

and
xn

ds

−→ x ⇐⇒ ds(x, xn) → 0

⇐⇒ d(x, xn) → 0 and d
¯
(xn, x) → 0

⇐⇒ xn
d
−→ x and xn

d̄
−→ x ,

(3.3)

As a space equipped with two topologies, τd and τd̄ , a quasi-pseudometric space can be viewed
as a bitopological space in the sense of Kelly [20]. In fact, this is the main example of such a space
considered in [20] and, later on, the quasi-uniform spaces were considered as well.

The following topological properties are true for quasi-pseudometric spaces.

Proposition 3.1 (see [6]). If (X, d) is a quasi-pseudometric space, then the following hold.

1. The ball Bd(x, r) is τd-open and the ball Bd[x, r] is τd̄-closed. The ball Bd[x, r] need not be τd-closed.
2. The topology τd is T0 if and only if d is a quasi-metric.

The topology τd is T1 if and only if d(x, y) > 0 for all x ̸= y in X.
3. For every fixed x ∈ X, the mapping d(x, ·) : X → (R, | · |) is τd-usc and τd̄-lsc.

For every fixed y ∈ X, the mapping d(·, y) : X → (R, | · |) is τd-lsc and τd̄-usc.

The following remarks show that imposing too many conditions on a quasi-pseudometric space it
becomes pseudometrizable.

Remark 3.2 ([20]). Let (X, d) be a quasi-metric space. Then

(a) if the mapping d(x, ·) : X → (R, | · |) is τd-continuous for every x ∈ X, then the topology τd is
regular;

(b) if τd ⊆ τd̄, then the topology τd̄ is pseudometrizable;
(c) if d(x, ·) : X → (R, | · |) is τd̄-continuous for every x ∈ X, then the topology τd̄ is

pseudometrizable.

Remark 3.3. The characterization of Hausdorff property (or T2) of quasi-metric spaces can be given in
terms of uniqueness of the limits, as in the metric case. The topology of a quasi-pseudometric space
(X, d) is Hasudorff if and only if every sequence in X has at most one d-limit if and only if every
sequence in X has at most one d̄-limit (see [36]).

In the case of an asymmetric normed space there exists a characterization in terms of the
quasi-norm (see [6], Proposition 1.1.40).

Recall that a topological space (X, τ) is called:

• T0 if for every pair of distinct points in X, at least one of them has a neighborhood not containing
the other;
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• T1 if for every pair of distinct points in X, each of them has a neighborhood not containing the
other;

• T2 (or Hausdorff) if every two distinct points in X admit disjoint neighborhoods;
• regular if for every point x ∈ X and closed set A not containing x there exist the disjoint open sets

U, V such that x ∈ U and A ⊆ V.

Completeness in quasi-pseudometric spaces

The lack of symmetry in the definition of quasi-metric spaces causes a lot of troubles, mainly
concerning completeness, compactness and total boundedness in such spaces. There are a lot of
completeness notions in quasi-metric spaces, all agreeing with the usual notion of completeness in the
metric case, each of them having its advantages and weaknesses (see [26], or [6]).

As in what follows we shall work only with two of these notions, we shall present only them,
referring to [6] for others.

We use the notation

N = {1, 2, . . . } – the set of natural numbers,

N0 = N∪ {0} – the set of non-negative integers.

Definition 3.4. Let (X, d) be a quasi-pseudometric space. A sequence (xn) in (X, d) is called:

• left d-K-Cauchy if for every ε > 0 there exists nε ∈ N such that

∀n, m, with nε ≤ n < m, d(xn, xm) < ε

⇐⇒ ∀n ≥ nε, ∀k ∈ N, d(xn, xn+k) < ε;
(3.4)

• right d-K-Cauchy if for every ε > 0 there exists nε ∈ N such that

∀n, m, with nε ≤ n < m, d(xm, xn) < ε

⇐⇒ ∀n ≥ nε, ∀k ∈ N, d(xn+k, xn) < ε.
(3.5)

The quasi-pseudometric space (X, d) is called:

• sequentially left d-K-complete if every left d-K-Cauchy sequence is d-convergent;
• sequentially right d-K-complete if every right d-K-Cauchy sequence is d-convergent;
• sequentially left (right) Smyth complete if every left (right) d-K-Cauchy sequence is ds-convergent.

Remark 3.5.

1. It is obvious that a sequence is left d-K-Cauchy if and only if it is right d̄-K-Cauchy. Also a left
(right) Smyth complete quasi-pseudometric space is left (right) K-complete and the space (X, d) is
right Smyth complete if and only if (X, d̄) is left Smyth complete. For this reason, some authors
call a Smyth complete space a left Smyth complete.

2. The notion of Smyth completeness, introduced by Smyth in [30] (see also [31]), is an important
notion in quasi-metric and quasi-uniform spaces as well as for the applications to theoretical
computer science (see, for instance, [27,29]). A good presentation of this notion is given in Section
7.1 of the book [18].

3. There are examples showing that a d-convergent sequence need not be left d-K-Cauchy, showing
that in the asymmetric case the situation is far more complicated than in the symmetric one
(see [26]).

4. If each convergent sequence in a regular quasi-metric space (X, d) admits a left K-Cauchy
subsequence, then X is metrizable ([21]).

Remark 3.6.
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1. One can define more general notions of completeness by replacing in Definition 3.4 the sequences
with nets. Stoltenberg [32, Example 2.4] gave an example of a sequentially right K-complete T1

quasi-metric space which is not right K-complete (i.e., not right K-complete by nets). See [9] for
some further specifications.

2. In the case of Smyth completeness, the completeness by nets is equivalent to the completeness
by sequences (see [28]). Also, the left (or right) Smyth completeness implies the completeness of
the pseudometric space (X, ds). In this case one says that the quasi-pseudometric space (X, d) is
bicomplete.

The following result is the quasi-pseudometric analog of a well-known property in metric spaces.

Proposition 3.7 (see [6], Section 1.2). Let (X, d) be a quasi-pseudometric space. If a right K-Cauchy sequence

(xn) contains a subsequence d-convergent (d̄-convergent, ds-convergent) to some x ∈ X, then the sequence (xn)

is d-convergent (d̄-convergent, ds-convergent) to x.

3.2. Ekeland principle in quasi-pseudometric spaces

The following version of Ekeland variational principle in quasi-pseudometric spaces was proved
in [8]. For a quasi-pseudometric space X, a function f : X → R∪ {∞}, α > 0 and x ∈ X put

Sα(x) = {y ∈ X : f (y) + αd(y, x) ≤ f (x)} . (3.6)

Theorem 3.8. Let (X, d) be a sequentially right K-complete quasi-pseudometric space and f : X → R∪ {∞}

a proper bounded below lsc function. Given ε, λ > 0 and x0 ∈ dom f there exists z ∈ X such that

(i) f (z) +
ε

λ
d(z, x0) ≤ f (x0);

(ii) f (y) = f (z) for all y ∈ Sγ(z);

(iii) f (z) < f (x) +
ε

λ
d(x, z) for all x ∈ X ∖ Sγ(z) ,

(3.7)

where γ = ε/λ.

If, further, f (x0) ≤ ε + inf f (X), then

(iv) d(z, x0) ≤ λ.

Obviously, an analog of Theorem 2.2 holds in this case too.

Theorem 3.9. Let (X, d) be a sequentially right K-complete quasi-pseudometric space and f : X → R∪ {∞}

a proper bounded below lsc function. Given ε, λ′
> 0 and x0 ∈ dom f there exists z ∈ X such that

(i′) f (z) + λ′d(z, x0) ≤ f (x0);

(ii′) f (y) = f (z) for all y ∈ Sλ′(z);

(iii′) f (z) < f (x) + λ′d(x, z) for all x ∈ X ∖ Sλ′(z) .

(3.8)

If, further, f (x0) ≤ ε + inf f (X), then

(iv′) d(z, x0) ≤ ε/λ′.

The proof of Theorem 3.8 is based on the properties of Picard sequences corresponding to the
set-valued map Sα : X ⇒ X. A sequence (xn)∞

n=0 in X is called a Picard sequence for Sα is xn+1 ∈ Sα(xn)

for all n ∈ N0, for a given x0 ∈ X. We mention some of the properties of these sets Sα(x) which will be
used in what follows.
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Let (X, d) be a quasi-pseudometric space and f : X → R∪ {∞} a proper function, i.e.,

dom f := {x ∈ X : f (x) < ∞} ̸= ∅.

It is obvious that Sα(x) = X if f (x) = ∞ and

Sβ(x) ⊆ Sα(x)

for 0 < α < β.

Proposition 3.10. Let (X, d) be a quasi-pseudometric space, f : X → R∪ {∞} a proper function, α > 0 and

x ∈ dom f . The set Sα(x) has the following properties:

(i) x ∈ Sα(x) and Sα(x) ⊆ dom f ;

(ii) y ∈ Sα(x) ⇒ f (y) ≤ f (x) and Sα(y) ⊆ Sα(x);

(iii) y ∈ Sα(x)∖ {x} ⇒ f (y) < f (x);

(iv) if f is bounded below, then

Sα(x)∖ {x} ̸= ∅ ⇒ f (x) > inf f (Sα(x));

(v) if f is lsc, then Sα(x) is closed.

(3.9)

The key result used in the proofs of various variational principles in [8] is the following.

Proposition 3.11 ([8], Prop. 2.14). If the space (X, d) is sequentially right K-complete and the function f is

bounded below and lsc, then there exists a point z ∈ X such that

(i) f (y) = f (z) = inf f (Sα(z)) and

(ii) Sα(y) ⊆ {y} ,
(3.10)

for all y ∈ Sα(z).

Remark 3.12. In fact, in [8], Proposition 3.11 is proved in a slightly more general context, namely for a
nearly lsc function f , meaning that

f (x) ≤ lim inf
n→∞

f (xn) ,

for every sequence (xn) in X with pairwise distinct terms in X such that xn
d
−→ x.

3.3. The strong Ekeland principle – Georgiev’s version

We show that Turinici proof [35] of the strong EkVP (Theorem 2.4) can be adapted to obtain a
proof of a quasi-pseudometric version of the strong Ekeland Variational Principle.

Theorem 3.13. Let (X, d) be a sequentially right K-complete quasi-pseudometric space and f : X → R∪ {∞}

a proper bounded below lsc function. Given γ, δ > 0 and x0 ∈ dom f there exists z ∈ X such that

(a) f (z) + γd(z, x0) ≤ f (x0) + δ;

(b) f (y) = f (z) for all y ∈ Sγ(z);

(c) f (z) < f (x) + γd(x, z) for all x ∈ X ∖ Sγ(z);

(d) f (xn) + γd(z, xn) → f (z) ⇒ d(xn, z) → 0,

for every sequence (xn) in X.

(3.11)
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Proof. Let
X0 = {y ∈ X : f (x) ≤ f (x0) + δ} .

Then x0 ∈ X0 and X0 is closed (because f is lsc) and so sequentially right K-complete. Also

inf f (X0) = inf f (X) . (3.12)

Indeed, if m := inf f (X) and M := inf f (X0), then m ≤ M. Let (xn) be a sequence in X such that
f (xn) → m as n → ∞. Then there exists n0 ∈ N such that f (xn) ≤ m + δ ≤ f (x0) + δ, that is, xn ∈ X0,
for all n ≥ n0. But then M ≤ f (xn), ∀n ≥ n0, which for n → ∞ yields M ≤ m, and so m = M.

Let 0 < λ < 1 be such that

λ

1 − λ
( f (x0)− inf f (X)) ≤ δ . (3.13)

By Theorem 3.9 applied to X0, f |X0 and λ′ := (1 − λ)γ, there exists z ∈ X0 such that

(i) f (z) + λ′d(z, x0) ≤ f (x0);

(ii) f (y) = f (z) for all y ∈ X0 ∩ Sλ′(z) = Sλ′(z);

(iii) f (z) < f (x) + λ′d(x, z) for all x ∈ X0 ∖ Sλ′(z) .

(3.14)

To justify the equality X0 ∩ Sλ′(z) = Sλ′(z) in (ii) above, observe that

z ∈ X0 ⇒ Sλ′(z) ⊆ X0 .

Indeed, the existence of an element x ∈ (X ∖ X0) ∩ Sλ′(z) would yield the contradiction:

f (x0) + δ < f (x) ≤ f (x) + λ′d(x, z) ≤ f (z) ≤ f (x0) + δ .

By (3.14).(i), the definition of λ′ and (3.13),

γd(x0, z) ≤
1

1 − λ
[ f (x0)− f (z)]

= f (x0)− f (z) +
λ

1 − λ
[ f (x0)− f (z)]

≤ f (x0)− f (z) +
λ

1 − λ
[ f (x0)− inf f (X)]

≤ f (x0)− f (z) + δ ,

showing that condition (3.11).(a) holds.
The inequality λ′ = (1 − λ)γ < γ implies

Sγ(z) ⊆ Sλ′(z) ,

so that, by (3.14).(ii), f (y) = f (z) for all y ∈ Sγ(z), i.e., (3.11).(b) holds too.
The inequality (3.11).(c) follows from the definition of the set Sγ(z).
Observe now that, by the definition of the set Sλ′(z),

f (z) < f (x) + (1 − λ)γd(x, z) for all x ∈ X ∖ Sλ′(z) . (3.15)

To prove (3.11).(d), let (xn) be a sequence in X such that

lim
n→∞

[ f (xn) + γd(z, xn)] = f (z) .
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If xn ∈ Sλ′(z), then, by (3.14).(ii) f (xn) = f (z) and the inequality f (xn) + λ′d(xn, z) ≤ f (z)

implies d(xn, z) = 0.
For all n such that xn ∈ X ∖ Sλ′(z) the inequality (3.15) yields

λγd(xn, z) < f (xn) + γd(xn, z)− f (z) −→ 0 as n → ∞ .

Consequently,
lim

n→∞
d(xn, z) = 0 .

Remark 3.14. Actually, condition (3.11).(d) says that the minimizing sequence (xn) is d̄-convergent to
z.

3.4. The strong Ekeland principle – Suzuki’s versions

As we have seen in Subsection 3.1 completeness in quasi-pseudometric spaces has totally different
features than that in metric spaces. The situation is the same with compactness, see [6].

In order to extend Theorem 2.6 to quasi-pseudometric spaces we consider the following notion. A
subset Y of a quasi-pseudometric space (X, d) is called d-bounded if there exist x ∈ X and r > 0 such
that

Y ⊆ Bd[x, r] ,

or, equivalently,
sup{d(x, y) : y ∈ Y} < ∞ for every x ∈ X.

We say that a sequence (xn)n∈N in X is d-bounded if the set {xn : n ∈ N} is d-bounded.
Similar definitions are given for d̄-boundedness.
We have seen (Remark 2.5) that a boundedly compact metric space is complete. In the case of

quasi-pseudometric spaces we have.

Proposition 3.15. Let (X, d) be a quasi-pseudometric space. If every d̄-bounded sequence in X contains a

ds-convergent subsequence, then the space X is right Smyth complete.

Proof. Let (xn) be a right K-Cauchy sequence in X. Then (xn) is d̄-bounded. Indeed, for ε = 1 there
exists n1 ∈ N such that

d(xn, xn1) ≤ 1 fro all n ≥ n1 ,

which implies the d̄-boundedness of (xn). It follows that (xn) contains a subsequence ds-convergent to
some x ∈ X. By Proposition 3.7 the sequence (xn) is ds-convergent to x.

The analogs of the conditions (2.5) in the quasi-pseudometric case are:

(i) f (z) + λρ(z, x0) ≤ f (x0) ;

(ii) f (y) = f (z) for all y ∈ Sλ(z);

(iii) f (z) < f (x) + λρ(x, z) for all x ∈ X \ Sλ(z) ;

(iv) f (xn) + λρ(z, xn) → f (z) ⇒ lim
n→∞

d(xn, z) = 0

for every sequence (xn) in X.

(3.16)

The quasi-pseudometric analog of Theorem 2.6 is the following.

Theorem 3.16. Let (X, d) be a quasi-pseudometric space such that every d̄-bounded sequence in X contains

a ds-convergent subsequence and f : X → R ∪ {∞} a proper bounded below d-lsc function. Then for every

x0 ∈ X and λ > 0 there exists a point z ∈ X satisfying (3.16).
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Proof. By Theorem 3.9 there exists z ∈ X such that

(a) f (z) + λd(z, x0) ≤ f (x0);

(b) f (y) = f (z) for all y ∈ Sλ(z);

(c) f (z) < f (x) + λd(x, z) for all x ∈ X ∖ Sλ(z) .

(3.17)

Let (xn) be a sequence in X such that

lim
n→∞

[ f (xn) + λd(xn, z)] = f (z) . (3.18)

Suppose that (d(xn, z))n∈N does not converge to 0. Then there exist γ > 0 and a subsequence
(xnk

)k∈N of (xn) such that d(xnk
, z) ≥ γ for all k ∈ N. Passing to this sequence we can suppose, without

restricting the generality, that the sequence (xn) satisfies (3.18) and that

d(xn, z) ≥ γ , (3.19)

for all n ∈ N.
Let n1 ∈ N be such that

f (xn) + λd(xn, z) ≤ f (z) + 1

for all n ≥ n1. Then

λd(xn, z) = f (xn) + λd(xn, z)− f (xn)

≤ f (z) + 1 − inf f (X) ,

for all n ≥ n1, which shows that the sequence (xn) is d̄-bounded. By hypothesis, it contains a
subsequence (xnk

)k∈N ds-convergent to some y ∈ X.
Observe that

y /∈ {z}
d
. (3.20)

Indeed,

y ∈ {z}
d
⇐⇒ d(y, z) = 0 ,

which would imply

d(xnk
, z) ≤ d(xnk

, y) + d(y, z) = d(xnk
, y) → 0 as k → ∞ ,

in contradiction to (3.19).

Since Sλ(z) ⊆ {z}
d

(see Proposition 3.11), (3.20) implies y /∈ Sλ(z). Taking into account (3.17).(c)
and the d-lsc of f and d(·, z), one obtains the contradiction

f (z) < f (y) + λd(y, z) ≤ lim
n→∞

[ f (xn) + λd(xn, z)] = f (z) .

Consequently, we must have limn→∞ d(xn, z) = 0.

4. Conclusions

We have proved (Theorem 3.16) a version of strong Ekeland in a quasi-pseudometric space (X, d)

having ds-compact d̄-bounded sets. As it was shown by Suzuki [34], in a metric space X the validity
of strong EkVP is equivalent to the fact all closed bounded subsets of X are compact. I do not know
whether a similar result holds in the asymmetric case - a question that deserves further investigation.
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A notion of reflexivity of normed spaces was also considered in the asymmetric case (see [15] or
[6, Section 2.5.6]), but in a more complicated way than in the classical one. The extension of Theorems
2.8 and 2.10 to the asymmetric case could be another theme of reflection.
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