Pre prints.org

Article Not peer-reviewed version

A Hardware Realization Framework for
Fuzzy Inference System Optimization

Saeid Gorgi_n* , Mohammad Sina Karvandi , Somaye Moghari , Mohammad K Fallah , Jeong-A Lee .

Posted Date: 20 December 2023
doi: 10.20944/preprints202312.1466.v1

Keywords: Embedded System; Hardware Optimization; MSDF Computing; Fuzzy Inference System

E E Preprints.org is a free multidiscipline platform providing preprint service that
¥ ; is dedicated to making early versions of research outputs permanently
a;: available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/3321385
https://sciprofiles.com/profile/3175458
https://sciprofiles.com/profile/468162

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 December 2023 doi:10.20944/preprints202312.1466.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
A Hardware Realization Framework for Fuzzy
Inference System Optimization

Saeid Gorgin ¥, Mohammad Sina Karvandi !, Somaye Moghari 2, Mohammad K Fallah !
and Jeong-A Lee *
1
2

Department of Computer Engineering, Chosun University, Gwangju, South Korea; gorgin@chosun.ac.kr
Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran;
s.moghari@shahroodut.ac.ir

*  Correspondence: gorgin@chosun.ac.kr (S.G.); jalee@chosun.ac.kr (J.-A.L.)

Abstract: The effectiveness of Fuzzy Inference Systems (FISs) in manipulating uncertainty and
nonlinearity makes them a subject of significant interest for decision-making in embedded systems.
Accordingly, optimizing FIS hardware improves its performance, efficiency, and capabilities, leading
to a better user experience, increased productivity, and cost savings. To be compatible with the limited
power budget in most embedded systems, this paper presents a framework to realize ultra-low power
FIS hardware. It supports optimizations for both conventional arithmetic as well as MSDF-computing
to be highly consistent with MSDF-based sensors. In MSDF-computing FIS all the processes of
fuzzification, inference, and defuzzification are done on serially coming data bits. To demonstrate
the efficiency of the proposed framework, we utilized Matlab, Chisel3, and Vivado to implement
it from high-level descriptions of FIS to hardware synthesis. We also developed a Scala library in
Chisel3 to establish a connection between these tools, bridging the gap, and facilitating design space
exploration at the arithmetic level. Furthermore, we realized an FIS for the navigation of autonomous
mobile robots in unknown environments. Synthesis results show the superiority of the output of our
suggested design framework in terms of resource usage as well as power and energy consumption
compared to the Matlab HDL code generator output.

Keywords: embedded system; hardware optimization; MSDF computing; fuzzy inference system

1. Introduction

Fuzzy inference systems have emerged as a crucial component of contemporary technology,
serving as a class of computational models proficient in addressing uncertainties inherent in modeling
and data [1,2]. FISs find applications in diverse domains, such as information fusion [3], pattern
recognition [4], prediction [5], decision-making [6,7], and control systems [8]. Their ability to handle
uncertain and imprecise information makes them particularly useful in these areas, where the input
data often contain noise, errors, or missing values. FISs can help to identify patterns in complex
datasets, make accurate predictions based on historical data, and make informed decisions in uncertain
and dynamic environments [9,10]. Furthermore, FISs can be integrated into control systems to regulate
the behavior of complex systems, such as robots, vehicles, or industrial processes [5,11,12]. In addition,
FISs are utilized in financial applications to predict stock prices and to analyze market trends, and
in medical diagnosis systems to help doctors interpret medical test results and to make informed
treatment decisions [13,14]. Consequently, the pivotal role and extensive utilization of FISs dictate the
need to augment their design for greater efficiency and sustainability.

The pursuit of higher efficiency and diminished processing demands and power consumption
via hardware redesign is widely embraced as a strategy for optimizing systems in the context of
sustainable computing [15]. On the other hand, as the need for high-speed computing intensifies,
FISs have migrated to VLSI, leading to a substantial improvement in their processing speed [16].
Nonetheless, the considerable expenses associated with VLSI chip redesign or modification have
necessitated the adoption of Field Programmable Gate Arrays (FPGAs) [17,18]. Therefore, FPGAs have
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emerged as a favorable choice for implementing FISs owing to their cost-effectiveness and flexibility
in hardware design modifications. This trend has been favorably received by research aimed at
optimizing the implementation of target hardware on FPGA.

To optimize hardware through its high-level description, a range of optimization techniques can
be employed across different levels of granularity, from coarse-grained levels such as task graphs to
fine-grained levels such as data flow graphs [19,20]. Computer arithmetic provides a suite of efficient
methods and tools for minimizing the processing requirements of specific tasks, particularly at the
fine-grained level [21-23]. The MSDF data processing technique is one such example that enables
early termination of computation and the utilization of compact processing elements to handle data
sequentially and at the bit level [24-26].

MSDF computing leverages the significance of digits in data to minimize the number of
processing components and operations required for computation [27,28]. The technique processes data
hierarchically, beginning with the most significant digit and advancing toward the least significant
digit. By prioritizing the most significant digits, certain computations, such as comparison, can be
terminated early [24-26,28]. Moreover, because the data bits are processed serially, the effect of early
termination can be propagated back to the processing elements that are computing the next set of bits,
resulting in reduced processing time and power consumption.

This paper introduces a hardware realization framework that leverages both conventional
arithmetic and MSDF computing techniques to conduct hyper-exploration on the design space and
optimize FISs for sustainable computing. In addition, the proposed framework serves as a connection
between high-level FIS description tools, such as Matlab, and hardware synthesis tools, such as
Synopsys Design Compiler and Xilinx Vivado Design Suite. The framework proposed in this study is
implemented and tested by realizing FIS for a robot navigation case study:.

The remainder of this paper is structured as follows. Section 2 provides an overview of the
necessary background information and foundational concepts related to FIS and MSDF computing.
The proposed framework is detailed in Section 3. Section 4 outlines the experimental design and case
study utilized to evaluate the framework’s effectiveness. Section 5 presents the experimental results
and corresponding discussions. Finally, Section 6 concludes the paper.

2. Background and Preliminaries

2.1. Fuzzy Set Theory
Fuzzy sets are an extension of the classical notion of the set that each element has a degree of

membership in [0, 1].

Definition 1. Let X be the universe of discourse. Then, a fuzzy set A on X is characterized by membership
function py = X — [0,1].

Definition 2. Let A and B be two fuzzy sets defined on set X. The standard form of the set operations
intersection and union calculate the membership of each x € X by Equation (1) and (2), respectively.

panp(x) = min{pa(x),up(x)}. @

paup(x) = max{pa(x), pp(x)}. &)
2.2. Fuzzy Inference System (FIS)

A FIS is an artificial intelligence framework that utilizes fuzzy logic for inference. A FIS consists
of three main building blocks namely, fuzzification, inference, and defuzzification.

Fuzzification is the process of associating each crisp input value with a set of fuzzy values based
on the corresponding linguistic terms defined for that input.
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By inference, the fuzzy set operations are used to evaluate predefined rules that specify how the
input variables should be combined to generate the output. Each rule is a combination of antecedent
(if) and consequent (then) clauses, where the antecedent specifies the conditions under which the rule
applies, and the consequent specifies the action to be taken. In the inference, the process of composing
fuzzy relations is generally accomplished using either max-min or max-product compositions.

The process of defuzzification involves the conversion of each fuzzy output to a crisp numerical
value. This numerical value is then sent to the control system, where it is used to adjust the system’s
behavior. There are several defuzzification methods available to accomplish this task, including the
centroid method, the max or mean-max membership principles, and the weighted average method.

2.3. MSDF Computing

In MSDF arithmetic, also known as Left to Right Arithmetic, the computation commences from
the Most Significant Digit (MSD) for all arithmetic operations, unlike conventional arithmetic where
addition and multiplication are performed from the least significant digit to the most significant
positions. As a result, in the serial fashion of MSDF (also referred to as Online arithmetic), the result
digits can be generated upon receiving a limited number of digits from the operands, even as the
remaining input digits are being received. This computational approach offers advantages in terms of
lower latency and power consumption by terminating unnecessary computations. The serial nature of
MSDF computing further contributes to a reduced area for the arithmetic unit, resulting in a smaller
memory footprint and fewer interconnects. Furthermore, dependent operations can be executed nearly
simultaneously by considering a delay parameter.

By employing MSDF arithmetic, computations can be terminated once the desired precision is
achieved, eliminating the need for additional computations [24,29]. In contrast, conventional arithmetic
requires the generation of the least significant part of the result, which is subsequently discarded based
on the required precision. Furthermore, in specific operations, such as finding the maximum and
minimum values, the result becomes evident upon encountering the first unequal digits among the
operands.

In the context of MSDF computing, the online delay is defined as the time interval required for
generating the output digits while the input digits are sequentially received. It signifies the duration
between the arrival of input data and the corresponding production of output digits in a serial fashion.
Due to the prioritization of the most significant digits in MSDF computing, result digits are generated
only after receiving a limited number of operand digits. Consequently, there is a gradual accumulation
of delay until the final result is achieved. This characteristic is crucial to consider when assessing
the computational efficiency and performance of MSDF computing. Figure 1 depicts the progressive
accumulation of online delay in MSDF computing. In this context, each operation i contributes an
online delay J; to the overall online delay &;,,; of the chained operations.

Time
>

»

MSD - — —n digits— — —»LSD
Input X3 X3 X3 . X,
operation 1 }‘T’{ol 0, 0; .. O
operation 2 FT'( 0] 05 03 «ec Op =+

MSD- — — arbitrary digits— — —»

Y1 Y2 Y3 -

Output |
O S total= 61+ B2+ .

Figure 1. The progressive accumulation of online delay (J) in chained operations.
3. Proposed Framework

Hardware design space exploration can be conducted across various dimensions such as
architecture, memory hierarchy, data path and pipeline, communication interfaces, arithmetic, and
optimization metrics. The proposed framework aligns with the productivity approach of diverse
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Computer Arithmetic systems, aiming to optimize the final product in terms of power and area
goals. Moreover, it effectively utilizes available tools from high-level descriptions of FIS to hardware
synthesis. Figure 2 depicts the overarching structure of this framework, showcasing the processes
involved and their corresponding outputs, spanning from the high-level description of FIS to its
hardware representation. Additionally, a Scala library is developed in Chisel3 to establish a connection
between these tools, bridging the gap. It facilitates design space exploration encompassing both
conventional arithmetic and MSDF computing. Also, it comprises four primary modules to construct a
FIS, namely the Fuzzifier, Optimizer, Inferer, and Defuzzifier.

High-Level ]

Language

v

FIS Description Fuzzifier

G R
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Intermediate
Representation
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Figure 2. The proposed hardware realization framework for fuzzy inference systems.

3.1. Fuzzifier

The Fuzzifier module incorporates a collection of procedures designed to represent membership
functions within the structure of a FIS. Also, to facilitate support for MSDF computing as well as
data processing in a serial bit arrangement, there are potential options available for implementing
membership functions. These options include the utilization of Lookup Tables (LUT) or adopting
unconventional methods such as online arithmetic. The LUT-based implementations on FPGAs
provide a favorable equilibrium among flexibility, efficiency, programmability, and speed, rendering
them a highly recommended option for function implementation on FPGA platforms [30,31].
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(a)The original membership function.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 X

(b)The scaled membership function.

Figure 3. A sample trapezoidal membership function and its discretized counterpart with a scale factor
of S=10.

As hardware platforms typically have finite precision arithmetic capabilities, the quantization and
scaling techniques are applied to represent the fuzzy values and intermediate computations accurately
within the hardware constraints. Here, the output value of membership functions can be scaled using
an S factor. A higher value of S corresponds to increased precision, necessitating a greater number of
bits for the membership function output. Figure 3(a) illustrates a trapezoidal membership function,
while Figure 3(b) depicts the same function scaled with a factor of S = 10, resulting in a precision of 0.1.
Also, the value of ji(x) is rounded to the nearest value indicated by the blue numbers on the vertical
axis. Table 1 presents the corresponding truth table, which could be used for deriving the equivalent
Finite State Machine (FSM) as well as calculating the online delay ¢.

Table 1. The LUT corresponding to Figure 3(b).

X \ fi(x)
X|x x x5 x|y y2 y3 valY
TR RRIE
3 \ ) Y 13
5 § 0 8
4 9 1 10
7 1 1 1 10
8 9 1 1 10
31 S § 1 E 1 E 10
IR AR I A
SERRIEREL
15| 1 9 0 8138

Figure 4 presents the mealy FSM corresponding to the most significant digit of the output. This
pseudo-tree structure is the same for all outputs and only the output on the edges related to the
transition rules are different. Furthermore, the online delay J is 4, indicating that the determination of
the output’s fourth bit from the left directly corresponds to the determination of the value of y;.
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Figure 4. The FSM corresponds to y; (the MSD of ﬂ(x)).

Also, if the number of input bits is #, the considered FSM has 2" states, where we define the initial
state as 1, and the state change formula is based on Equation (3).
2Si4+x; 0< S <2t
St41 = { Z . 3)

0.w.

3.2. Optimizer

In this research, we have devised an approximate computing approach to manipulate specific bits
within the LUTs systematically. This technique effectively reduces the online delay é associated with
serial processing in MSDF computing. For example, if the controller is tolerant enough so that we can
increase the value of the membership function i for X = 4 and X = 11 by 0.1, it results in Table 2. In
this table, ¢ of producing MSD is reduced to 2.

Table 2. The y;-optimized LUT corresponding to Table 1.

X ‘ fi(x)
X \ X1 Xp X3 X4 ‘ Viova vy Y ‘ Y
2 1 9 0 0 1 3
5 § ? 1 § 8
7 1 1 1 10
8 § ? 1 1 10
9 1 8 1 1 10
911 1Y 0 5
12 | 1 Q 0 0 9 8 9 5
13| 1 0 1 Q Q 1 1 3
14| 1 1 0 Q Q 1 0 2
15| 1 1 1 0o 0 0 0 0

Figure 5 presents the mealy FSM corresponding to i/} which is MSD of the output for the optimized

LUT.
S o

C : )

Figure 5. The optimized FSM corresponds to ;.
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3.3. Inferer

The Inferer module encompasses the implementation of specific reductions necessary for min-max
operations associated with FIS rules. Additionally, it handles the aggregation of rules that possess
output with the same linguistic value.

3.4. Defuzzifier

In this research, our focus is on evaluating the efficiency of MSDF computing using conventional
number representation. Therefore, we implemented the Maximum Membership defuzzification
method, identifying the fuzzy set with the highest membership degree. This fuzzy set represents
the strongest influence on the output. The crisp output value is then determined based on the
representative value of the selected fuzzy set, considering the shape and characteristics of its
membership function. This crisp output value, obtained through defuzzification, provides a definitive
and usable value for further processing, decision-making, or control actions.

4. Evaluation Methodology

4.1. Case Study

Path planning of mobile robots in unknown environments is one of the most common problems
for robot navigation. The extent of the desired environment is assumed as a rectangle, where several
obstacles are located inside it. The problem is that a robot has to move from a starting point to a
target point by avoiding obstacles. The fact that the environment is unknown to the robot means that
it is unfamiliar with its surroundings, it can solely detect obstacles within its visual range. Figure 6
illustrates an environment including a robot, an obstacle, and two gates to move the robot to the
target point. Here, the robot confronts an obstacle that obstructs its direct path toward the destination.
Consequently, it is presented with two alternatives; either passing through gate a or gate b. In this
situation, FIS calculates a rank value r for each gate, and the gate with the lowest r value is selected to
pass. Since the space behind the obstacle is unknown to the robot, the robot assumes that there is no
obstacle behind it and considers the promising distance values d, = d;; + dgt and dy, = d,, + dy; for
gates a and b, respectively. Then, it sends the values of (d,, 6,) and (d;, 6,) to the FIS to calculate the
rank of the corresponding gates.

Gate a Q
dra L\\.\\\e\\\\dat Target
‘ \\\\\\a % \x\\:‘:\\\ t
N\ =0
Robot r ‘ 0, % .
‘% : dyt
drb \ \
Gate b O

Figure 6. A simple problem with one obstacle.
4.2. Experimental Design

In this section, the experimental design of a FIS is described in two steps. The first step
demonstrates the desired robot navigation algorithm, as well as the components of the corresponding
FIS. The second step presents the hardware realization of the proposed FIS that supports MSDF
computing.
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4.2.1. Step 1 (Software Implementation)

A simple FIS-based algorithm is developed for the navigation of a robot in an unknown
environment. We implemented it in MATLAB, where the input contains information about the
start points and target points of the robots as well as the specification of the environment and the
obstacles inside it. Algorithm 1 presents the navigation subroutine for a robot. The main loop is
repeated until the robot reaches the target point. In each iteration, the robot scans all the visible gates
and calculates their ranks. In this stage, an FIS calculates the rank of each gate. Then, the gate with the
best (least) rank is selected for passing.

Algorithm 1 The navigation subroutine for a robot r.
Data: Robot Position (x,,y,), Target Point (xt,y;)
Result: Robot Navigation Path
while (x;,yr) # (xt,y¢) do
G <« visible_gates()
forg € Gdo
| rankg < FIS(dg,6g)
end
b « best_rank_gate()
(xr,yr) (X6, Yp)

end

The FIS ranked each gate according to two input parameters; the promising distance d in meters,
and the deviation angle 0 in degrees. The distance parameter d indicates the (promising) distance of the
robot to the target point by passing through the desired gate. Since the most promising distance in the
defined environment is related to moving from one corner to the opposite corner from the path close
to the sides, this parameter can be in the range of [0,1023] for a 700 x 700 rectangular environment.
Also, five linguistic values of So Near (SN), Near (N), Medium (M), Far (F) and So Far (SF) are defined
for the fuzzification of this parameter. Figure 7 shows the trapezoidal membership functions of these

linguistic values.
N \ N M F SF

0.8
0.6
0.4
0.2 \

0 T T

o

distance d

membership degree

Figure 7. The fuzzy membership functions for distance d.

The angle parameter 6 indicates the deviation (to the right or left) of the robot from the straight
path to the target point. This deviation can be in the range of [0, 180] degrees. Also, five linguistic
values of Very Small (VS), Small (S), Medium (M), Large (L) and Very Large (VL) are defined for the

fuzzification of the angle parameter. Figure 8 displays the trapezoidal membership functions of these
linguistic values.
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Figure 8. The fuzzy membership functions for angle 6.

The FIS inference component maps the fuzzified input values to fuzzy rank values according to
predefined IF-THEN rules. Table 3 presents the set of 25 defined inference rules. Here, each column
indicates the set of rules on an angle linguistic value and each column indicates the set of rules on a
distance linguistic value, where the output is a rank value r € {0,1,2,3,4} pointed in the junction. For
example, the rule (IF angle IS Very-Large AND distance IS So-Far THEN rank IS 4) is presented by
the cell placed in the junction of the last column and last row. It should be stated that the order of
ranks from best to worst is 0, 1, 2, 3, and 4. Therefore, when the angle is Very Small and the distance
is Medium or less, and also when the angle is Small and the distance is So Near, the rank is O (the
best possible rank). Also, inference rules with similar output are aggregated together using the max
operator.

Table 3. The FIS inference rules.

angle 6
Vs § M L VL
SN 0 0 1 2 3
N o 1 2 3 3
distance d M 0 1 2 3 4
F 1 1 3 4 4
SF 1 2 3 4 4

As well, the SOM (smallest value for which the output fuzzy set is maximum) is used for the
defuzzification. In other words, the output rank value is the best rank with the maximum degree of
membership.

4.2.2. Step 2 (Hardware Realization)

Figure 9 illustrates the structure of the fuzzy inference system described in the previous section.
In the fuzzification component, membership functions are implemented as lookup tables and map the
two inputs d and 6 to values in the integer interval [0, 100].
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Figure 9. Architecture of the fuzzy inference system.

5. Experimental Results

In this section, we elaborate on the experimental results of hardware design using the proposed
framework (conventional arithmetic and MSDF computing) with MATLAB’s HDL coder (conventional
arithmetic).

5.1. Experiment and Evaluation Method

Since for the design of FIS hardware, we have discretized it and adopted the lookup table approach,
at first we compared it with the continuous implementation approach to show the equivalence of the
outputs. Therefore, we applied the Monte Carlo approach for validation.

For hardware evaluation, the experiments were conducted on a standard Avnet ZedBoard 7020
baseboard with a Zyng-7000 All Programmable SoC XC7Z020-CLG484-1. We evaluated our design
using the Xilinx Vivado design suite and downloaded the synthesized bitstream to the target board.
Furthermore, we undertook a comprehensive evaluation by focusing on the assessment of Worst
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Negative Slack (WNS), Maximum Clock Frequency, resource utilization, and power consumption
across identical benchmarks.

It is imperative to emphasize that WNS, as the maximum allowable delay by which a signal can
be extended without infringing upon the circuit’s specified clock period, holds paramount significance.
Ensuring that WNS remains within predefined tolerances serves as a pivotal safeguard against potential
timing violations, the ramifications of which could manifest as critical inaccuracies in circuit operation.

5.2. Availability

The source code of the proposed Fuzzy Inference System (FIS) along with generated verilog codes
(Chisel) and files for each of the phases (Fuzzification, Inference, Defuzzification) for both conventional
and MSDF-based computing systems as well as MATLAB Simulink models for HDL code generation
and Monte Carlo simulation are available at:

https:/ / github.com/ cslab-chosun/online-fuzzy-chisel

5.3. Validation

We initiated a Monte Carlo simulation involving the generation of 100,000 random inputs to
validate the functionality of the modified FIS model. This allowed us to perform a comparative analysis
between the outputs of the hardware model, where the membership functions are implemented using
LUT, and the original FIS software implementation, characterized by continuous membership functions.
Remarkably, throughout this experiment, the outputs of both models remained identical for all input
scenarios. Figure 10 illustrates the output graphs of both models using a subset of 200 randomly
selected input samples. In this context, both graphs are identical, demonstrating consistent FIS output
across two implementations, the first one utilizes continuous function membership functions, and the
other employs their discrete counterparts.

|
Original Robot FIS ( Continuous MF )

I

Figure 10. Monte Carlo simulation results with T = 200 for comparing the original robot FIS
(trapezoidal membership functions) and the synthesized FIS (lookup table membership functions
with a scale factor of S = 100).

5.4. Discussion

In this section, our initial focus is on the discrete examination of the outcomes of the primary
subsystems within the fuzzy inference system. Table 4 presents the distinct results associated with the
Fuzzification, Inference, and Defuzzification subsystems.
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Table 4. Comparing hardware components designed by MATLAB versus the proposed framework.

Proposed Framework

MATLAB
Conventional MSDF
. BRAM (RAMB18) 25 1 0
% Worst Negative Slack  3.660 3.912 5:557
& Max Clock (MHz) 157 164 225
N FF 35 273 328
= Resource
LUT 63 218 274
o Worst Negative Slack  5.210 4314 7.733
£ Max Clock (MHz) 208 175 441
8 FF 56 420 253
£ Resource
LUT 564 378 320
§ Worst Negative Slack 5.780 5.865 6.986
®  Max Clock (MHz) 236 241 331
b FF 64 28 27
N
2 Resource
2 LUT 41 33 16

In the Fuzzification subsystem, the WNS in both the conventional and MSDF-based designs of the
proposed framework demonstrates substantial improvements. Specifically, the WNS values in these
configurations are 7% and 52% superior, respectively, in comparison to the MATLAB design. Moreover,
the maximum clock frequencies in both the conventional and MSDF-based designs within the
proposed framework exhibit notable advancements. Specifically, these clock frequencies demonstrate
improvements of 4% and 43%, respectively, in contrast to the corresponding MATLAB design. In
terms of resource consumption, the designs within the proposed framework make efficient use of
Flip Flops and LUTs, resulting in a net gain in performance when compared to the corresponding
MATLAB design, which consumes 2.5 blocks of RAM. Furthermore, in the MSDF-based design mode,
the proposed framework excels in inferring LUTs and Flip-Flops, outperforming the conventional
design mode, which necessitates the inclusion of an entire Block RAM (RAMB18) for LUT formation.
As a result, the collective utilization of LUTs and Flip Flops in the MSDF-based design remains lower
than that in the conventional design, all while preserving the advantageous reduction of block RAM
usage. This optimized resource allocation highlights the effectiveness of the proposed framework in
achieving enhanced efficiency and performance in the Fuzzification subsystem.

Within the Inference subsystem, the WNS in the conventional design configuration lags by 17%,
while the MSDF-based design excels by 48% when compared to the MATLAB design. Also, the
maximum clock frequencies in the conventional design exhibit a 16% decrement in performance,
whereas the MSDF-based design showcases a noteworthy 112% improvement in comparison to the
MATLAB design. Regarding the allocation of essential resources, it is noteworthy that in the proposed
framework designs, there is an increased count of inferred Flip-Flops, while the quantity of LUTs is
reduced when compared to the MATLAB design. Additionally, the count of both FFs and LUTs in the
MSDF-based design is notably diminished in contrast to the conventional design. These outcomes
unequivocally demonstrate the superior performance of the MSDF-based design.

In the defuzzification subsystem, a comprehensive evaluation across all compared criteria affirms
that our conventional design surpasses the hardware generated by MATLAB, and notably, the
MSDEF-based design excels over both of these alternatives.
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Table 5 provides a comprehensive overview of the comparative assessment between the fuzzy
inference system hardware designed by MATLAB and the framework proposed in this study. It
demonstrates a higher clock speed and lower WNS path as well as reduced resource and block
RAM consumption for the proposed framework. It is worth noting that the integration of all three
FIS subsystems in a cohesive manner holds the potential for enhanced results. This integration
not only offers greater optimization opportunities but also ensures the accurate interpretation
of interconnections within the subsystems categorized as 1/0O, leading to improved outcomes.
Furthermore, when compared to MATLAB HDL Coder, our conventional and MSDF approaches
exhibit a substantial reduction in power consumption, with figures of 44% and 67%, respectively. These
results underscore the remarkable advancements in power efficiency achieved through our design

methodology.
Table 5. The overall comparison of FIS hardware designed by MATLAB versus the proposed
framework.
Proposed Framework
MATLAB
Conventional MSDF
BRAM (RAMB18) 25 1 0
Worst Negative Slack  3.660 3.912 5.557
Max Clock (MH) 157 164 225
FF 155 721 608
Resource
LUT 668 629 610
Power (W) 0.018 0.010 0.006

6. Conclusions and Future Work

The proposed method exhibited exceptional compatibility with MSDF-based sensors, facilitating
the execution of fuzzification, inference, and defuzzification processes on serially arriving data bits.
Leveraging the MSDF approach enabled early decision-making for Max and Min operations, leading to
improved performance and decreased power consumption by eliminating unnecessary computations at
an early stage. Additionally, the adoption of serial computation resulted in reduced area requirements
and a diminished memory footprint, further enhancing the overall efficiency of the approach. To
assess the efficacy of the proposed framework, an FIS was implemented for autonomous mobile robot
navigation in unknown environments. The synthesis results provided compelling evidence of the
superior performance of the design suggested by our framework with 67% improvement in power
consumption, compared with the hardware generated by MATLAB HDL coder. Also, this research
showcased the potential of leveraging MSDF computing for achieving low-power FIS hardware in
embedded systems. Future work could explore further optimizations and applications of the proposed
approach in different domains and scenarios.
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