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Abstract: Real and complex analytic functions are largely studied in the field of complex analysis
and are seen as very useful tools in solving problems in mathematics, physics and engineering. Real
and complex numbers are a subset of semi-structured complex numbers (a new number set created
to algebraically solve division by zero). Nevertheless, the properties of analytic functions made up
of semi-structured complex variables (called semi-structured complex analytic functions) is yet to
be explored. This limits the range of possible problems that can be resolved using analytic
functions). In this regard, the aim of this paper was to expound upon the properties of semi-
structured complex analytic functions and show their application in solving engineering problems.
The results of this paper included (1) developing a full set of Cauchy-Riemann Equations for the
semi-structured complex xyz-space; (2) define sufficient and necessary conditions for a semi-
structured complex function to be analytic; (3) determine the relationship between semi-structured
complex analytic functions, Laplace’s Equations and Poisson’s Equations; and (5) provide an
example of the use of these functions.

Keywords: semi-structured complex numbers; semi-structured complex analytic functions; cauchy-
riemann equations; laplace equation; poisson equation

1. Introduction

1.1. Analytic Functions and their Importance

Analytic functions, are mathematical functions that can be represented by a power series
expansion. Formally, a function is said to be an analytic function if and only if its Taylor
series expansion about some point x, converges to the function under investigation in some
neighbourhood for every x, in the function’s domain.

According to the current framework of complex analysis, analytic functions can be categorised
into two different types: (1) Real Analytic Functions and (2) Complex Analytic Functions. A function
f(x) is said to be a real analytic function in the domain D of the function on the real line if for any x, €
D, then:

oo

) =) anle = x)" = @y + (= ) + @l = x)* + - @
n=0
where the coefficients ag, ay, a,,--- are the real numbers and also the series is convergent to the
function f(x) for x in the neighbourhood of x,.
On the other hand, a function f(z) is said to be a complex analytic function in the domain D of
the function in the complex plane if for any z, € D, then:

F) = @y = 2" = ag + ay(z = 2)' + @z = 2" + = @)

n=0
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where the coefficients ag,ay,a,,--- are the real numbers and also the series is convergent to the
function f(z) for z in the neighbourhood of z,.

Complex differentiability has several important consequences, such as the existence of power
series expansions and the satisfaction of the Cauchy—Riemann equations. Power series expansions
such as the one shown in Equation (2) permits complicated complex functions to be evaluated using
the four basic operations of arithmetic. Power series representations of complex analytic functions
also allows these functions to be complex differentiable facilitating rigorous mathematical analysis,
approximations, and manipulations of complex functions. This makes complex analytic functions
valuable in many areas of mathematics and physics.

In physics, they are used to describe various phenomena, such as electromagnetic fields, fluid
flow, and quantum mechanics. In engineering, analytic functions are employed in the design and
analysis of systems, signal processing and control theory, and conformal mapping. Aside from
having a power series expansion representation, complex analytic functions also have the property
of satisfying the Cauchy-Riemann equations.

1.2. The Cauchy—Riemann Equations and Analytic Functions

The Cauchy-Riemann equations are a set of partial differential equations that establish a
necessary condition for a complex-valued function to be differentiable.

Let's consider a complex-valued function f(z) = u(x,y) + iv(x,y), where z = x + iy is a
complex variable, and u(x,y) and v(x,y) are real-valued functions of the real variables x and y.
The Cauchy-Riemann equations state that for f(z) to be differentiable at a point z = x + iy, the
following conditions must hold:

( ou 0ov

4 ox dy (3)
du _ v

lay T ox

The Cauchy-Riemann equations provide a powerful tool for studying the properties of complex
functions, such as holomorphicity, conformal mappings, and the construction of harmonic functions.
Unfortunately, Cauchy-Riemann equations can only be used in the context of complex numbers. If
they were to be applied to larger number sets (number sets for which complex numbers are a subset)
they would very likely need to be modified to accommodate analysis on these larger sets. One such
number set is semi-structured complex numbers, a new set created to algebraically solve division by
Zero.

1.3. Semi-structured Complex Numbers: a recent development in division by zero

Recently there has been a range of research involving division by zero. The problem of division
by zero can simply be stated as: What is % where “a” is any complex number. Table Al, Appendix 1,

shows sample research conducted on “division by zero”.

There have been several solutions to the problem the most recent being the invention of the semi-
structured complex number set H [1]. The first attempt at creating this number set was riddled with
issues [1], however, a second paper [2], written to reformulate and strengthen the theory of semi-
structured complex numbers, produced several grounded and profound results. Error! Reference
source not found. shows the major results (pertinent to this research) developed in paper [2].
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Table 1. Major results from paper [2].

Result 1 Semi-structured complex number set can be defined as follows:
A semi-structured complex number is a three-dimensional number of the general
form h = x + yi + zp; that is, a linear combination of real (1), imaginary (i) and
unstructured (p) units whose coefficients x,y,z are real numbers.
The number # is called semi-structured complex because it contains a structured complex

part (x + yi) and an unstructured part (zp).

Result 2 The unstructured number p was redefined as:
[ /s
pnzx/fst(zn—z) @
fr@

where f™(c) is a composite function such that f(c) =1 —c.

Integer powers of p yield the following cyclic results:

Result 3 p does not belong to the set of complex numbers C (thatis, p € C), but belongs to a higher
order number set H called the set of semi-structured complex numbers such that the set of

complex numbers is a subset of H (thatis, C c H).

Result 4 The field of semi-structured complex numbers was defined, and proof was given that this
field obeys the field axioms. This implies (1) the number set can easily be used in everyday
algebraic expressions and can be used to solve algebraic problems, (2) the number set can
be used to form more complicated structures such as vector spaces and hence solve more

complex problems that may involve “division by zero”.

Result 5 Semi-structured complex number set H does not form an ordered field. For the objects in
a field to have an order, operations such as greater than or less than can be applied to these
objects. This is because in an ordered field the square of any non-zero number is greater

than 0; this is not the case with semi-structured complex numbers.

Result 6 Semi-structured complex numbers can be represented by points in a 3-dimensional
Euclidean xyz-space. The xyz-space consist of three perpendicular axes: the real x-axis, the
imaginary y-axis, and the unstructured z-axis. These axes form three perpendicular planes:
the real-imaginary xy -plane, the real-unstructured xz -plane, and the imaginary-

unstructured yz-plane.

Result 7 The unit p was used to find a viable solution to the logarithm of zero. The logarithm of

zero was found to be:

log0 = —p (g + an) (5)

where k is some integer value.

Result 8
The new definition of p provided an unambiguous understanding that g= n simply
represents 90  clockwise rotation of the vector np from the positive unstructured z-axis
to n on the positive real x-axis along the real-unstructured xz-plane. Note that n is any
real number.

Result 9 Semi-structured complex numbers have both a 3D and 4D representation in the form:

h=x+yi+zp (3D form)
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h= A+ Bi+ Cp+ Dip (4D form)

where: x,y,z,A,B,C,D arereal numbered scalars and i,p are semi-structured basis units.

Result 10 ~ Two new Euler formulas were developed.

Plane Euler formula

Real imaginary xy-plane e =cos@ +isinf

Real unstructured xz-plane eP? = cos O + psin6
Imaginary unstructured yz-plane e™?% = cosh § — ip sinh 8

When combined with the original Euler formula describes the relationship between
trigonometric, hyperbolic, and exponential functions for the entire semi-structured

complex Euclidean xyz-space.

Result11  Semi-structured complex numbers can be used to resolve singularities that may arise in
engineering and science equations (because of division by zero) to develop reasonable

conclusions in the absence of experimental data.

Result 12 From Result 10 semi-structured complex numbers can present in four forms as given below:

Semi-structured complex number along Number
Real-imaginary xy-plane hyy = x + iy
Real-unstructured xz-plane hy, = x +pz
Imaginary-unstructured yz-plane hy, =iy + pz
xyz-space h=x+iy+pz

Result13  The zeroth root of a number h can be found using the equation

Vn= nP = eP"h = cos(Inh) + p sin(In /)

Result 14
est Since p! = % this implies that % = 0 which further implies that —p =0

Result 15  Any real number with the semi-structured unit p attached to it is not a physically
measurable quantity. That is, kp where k is a real number is not physically measurable

(however, k can be calculated given enough information)

Result16  If a and b measure different (but quantitatively related) aspects of the same object, where
a is physically measurable but b is not, then a and b can be combined into one equation

in the form a + bp

The foundational results found in Table 1 potentially pave the way to understanding the
properties of analytic functions constructed from semi-structured complex numbers and variables. It
has already been shown in complex analysis the profound importance of complex analytic functions
(made from complex numbers and variables). It has also been shown (from Table 1) that complex
numbers form a subset of semi-structured complex numbers. It only stands to reason that if the
framework of complex analysis was expanded to examine the properties of functions made from
semi-structured complex numbers and variables, this would potentially yield results that could be
used to tackle a wide range of mathematical problems. From this standpoint the idea of semi-
structured complex analysis to examine semi-structured complex analytic functions cannot be
ignored.

1.4. Major contributions
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Given the potential importance of developing an understanding of the properties of semi-
structured analytic functions, the aim of this paper was:

To use the features of semi-structured complex numbers and the characteristics of analytic functions
to develop the properties and explore the applications of semi-structured complex analytic functions.

In the process of fulfilling the stated aim, this paper makes five major contributions:

1. Develop an extension to the Cauchy-Riemann equations to include three other conditions for a
semi-structured complex function to be analytic in the semi-structured complex xyz-space.

2.  Used the extension to the Cauchy-Riemann equations to define a semi-structured complex
analytic function along the real-imaginary xy -plane, the real-unstructured xz-plane, the
imaginary-unstructured yz-plane and within the semi-structured complex xyz-space.

3. Defined sufficient and necessary conditions for a semi-structured complex function to be
analytic along the real-imaginary xy-plane, the real-unstructured xz-plane, the imaginary-
unstructured yz-plane and within the semi-structured complex xyz-space.

4. Determined the relationship between semi-structured complex analytic functions, Laplace’s
equations and Poisson’s equations.

5. Provided a simple example where semi-structured complex analytic functions can be used to
solve problems in engineering.

The rest of this paper is devoted to showing how achieving the main aim of the paper led to
these major contributions.

2. Extensions to the Cauchy-Riemann Equations

Before the properties of semi-structured complex analytic functions can be defined, the Cauchy—
Riemann equations (the basis for defining analytic functions) needed to be modified so that it can be
used in the context of semi-structured complex functions.

To do this, the semi-structured complex xyz-space was divided into three planes, real-
imaginary plane (xy-plane), real-unstructured plane (xz-plane) and the imaginary-unstructured
plane (yz-plane). Since, the Cauchy-Riemann equations were already derived for functions that
reside in the real-imaginary plane (xy-plane) (that is the complex plane), the same process of
derivation was used to contain a set of Cauchy—Riemann equations for the real-unstructured plane
(xz-plane), the complex-unstructured plane (yz-plane) and the entire semi-structured complex xyz-
space. Once these equations had been derived the properties of semi-structured complex analytic
functions were defined.

2.1. Cauchy—Riemann Equations for the xy-plane or complex plane

The Cauchy-Riemann Equations for the real-imaginary plane (xy-plane or complex plane) are
given in Equation (6). Incidentally, Equations (6) is the original Cauchy-Riemann equations.
Derivation of Equation (6) as well as an example on how to use these equations is provided in
Appendix 2.

Proposition 1:

Let f(hxy) be a complex function that can be written as f(4,) = u(x,y) + iv(x,y), where u(x,y)
and v(x,y) are real functions of two real inputs and % ,,, is a complex number. If f(% ,,) is complex-
differentiable at a given h,, = x + yi, then u(x,y) and v(x,y) have valid first-order partial

derivatives and these derivatives have the following relationship:
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6
Ju Ov
ax dy . .
o u (Cauchy-Riemann equations for xy-plane) (6)
ox 0y

2.2. Cauchy-Riemann Equations for the xz-plane

Additionally, the Cauchy-Riemann equations for the real-unstructured plane (xz-plane) is given
in Equations (7). Proof of Equations (7) as well as an example on how to use these equations is
provided in Appendix 3.

Proposition 2:

Let f(hy,) be a complex function that can be written as f(4,,) = u(x,z) + pw(x,z), where u(x, z)
and w(x,z) are real functions of two real inputs. If f(A,,) is complex-differentiable at a given #,, =
x + pz, then u(x,z) and w(x, z) have valid first-order partial derivatives and these derivatives have

the following relationship:

Ju ow
6(131x a(')zw (Cauchy-Riemann equations for xz-plane) (7)
0z ox

2.3. Cauchy—Riemann Equations for the yz-plane

Moreover, the Cauchy-Riemann Equations for the complex-unstructured plane (yz-plane) is
given in Equations (8). Proof of Equations (8) as well as an example on how to use these equations is
provided in Appendix 4.

Proposition 3:

Let f(hy,) be a complex function that can be written as f(h,,) = iv(y,z) + pw(y, z), where v(y, z)
and w(y,z) are real functions of two real inputs. If f(#,,) is complex-differentiable at a given #,, =
yi + zp, then u(y,z) and w(y,z) have valid first-order partial derivatives and these derivatives have

the following relationship:

dv _ ow

dy 0z . .

o ow (Cauchy-Riemann equations for yz-plane) (8)
z oy

2.4. Cauchy-Riemann Equations for the xyz-space


https://doi.org/10.20944/preprints202312.1403.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1403.v1

Finally, considering the full set of semi-structured complex numbers, an extension of the
Cauchy-Riemann equations for the xyz-space is given in Equations (9). Proof of Equations (9) as well
as an example on how to use these equations is provided in Appendix 5.

Proposition 4:

Let f(#) be a complex function that can be written as f(h) = u(x,y,z) + iv(x,y,z) + pw(x,y,z),
where u(x,y,z), v(x,y,z) and w(x,y,z) are real functions of two real inputs. If f (%) is complex-
differentiable ata given # = x + yi + pz, then u(x,y,z), v(x,y,z) and w(x,y, z) have valid first-

order partial derivatives and these derivatives have the following relationship:

(Ou 0dv _ow
ox 9y 0z
av du . .
Fiai & (Cauchy-Riemann equations for xyz-
] aw_ ou pace) ©)
ox 0z
ow 0v
dy 0z

3. Semi-structured Complex Analytic Functions

Now that the extended Cauchy-Riemann Equations for semi-structured complex functions have
been properly outlined, the next step was to use these equations to define the properties of Semi-
structured Complex Analytic Functions.

3.1. Semi-structured Complex Analytic Functions along the xy-plane

The following definitions and observations hold for semi-structured complex analytic functions
f (hxy) along the xy-plane:

Definition 1:
A function f (hxy) = u(x,y) + iv(x,y) is said to be analytic in a region R of the complex plane if

f (hyy) is single valued and has a derivative at each point of R.

From definition 1, a single valued function simply means that every input to the function
produces one and only one output (that is, a single valued function is a one-to-one function).

Definition 2:
A function f (hxy) =u(x,y) +iv(x,y) is said to be analytic at a point A,, if A, is an interior

point of some region where f(h,,) is analytic.

Hence the concept of analytic function at a point implies that the function is analytic in some
circle with center at this point.

The necessary and sufficient conditions for the function f(h,,) to be analytic are as follows:
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Necessary For the function f (hxy), the four partial derivatives of the real and

Condition: du du v o

imaginary parts 53y 95 By exist and satisfy the Cauchy-Riemann

Equations given in Equation (6).
Sufficient For the function f (hxy), the four partial derivatives of the real and

Condition: du du v v

imaginary parts —,—,—,— exist and are continuous.
& YP ax’ay’ox’ oy

3.2. Semi-structured Complex Analytic Functions along the xz-plane

The following definitions and observations hold for semi-structured complex analytic functions
f(hy,) along the xz-plane:

Definition 1:
A function f(h,,) = u(x,z) + pw(x,z) issaid to be analyticin aregion R of the xz-planeif f(%,;,)

is single valued and has a derivative at each point of R.

From definition 1, a single valued function simply means that every input to the function
produces one and only one output (that is, a single valued function is a one-to-one function).

Definition 2:

A function f(h,,) = u(x,z) + iw(x, z) is said to be analytic at a point #,, if %,, isaninterior point

of some region where f(%,,) is analytic.

Hence the concept of analytic function at a point implies that the function is analytic in some
circle with center at this point.
The necessary and sufficient conditions for the function f(h,,) to be analytic are as follows:

Necessary For the function f(k,,), the four partial derivatives of the real and

Condition: du du Aw ow

unstructured parts %5 9x 3, exist and satisfy the Cauchy-Riemann

Equations given in Equation (7).

Sufficient For the function f(h,,), the four partial derivatives of the real and
Condition: unstructured parts Ju 9u 9w OW exist and are continuous.
dx 0z 0x 0z

3.3. Semi-structured Complex Analytic Functions along the yz-plane

The following definitions and observations hold for semi-structured complex analytic functions
f (hyz) along the yz-plane:
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Definition 1:

A function f (hyz) = iv(y,z) + pw(y, z) is said to be analytic in a region R of the yz-plane if

f(hy,) is single valued and has a derivative at each point of R.

From definition 1, a single valued function simply means that every input to the function
produces one and only one output (that is, a single valued function is a one-to-one function).

Definition 2:
A function f (hyz) = w(y,z) + pw(y,z) is said to be analytic at a point #,, if A, is an interior
point of some region where f(h,,) is analytic.

Hence the concept of analytic function at a point implies that the function is analytic in some

circle with centre at this point.
The necessary and sufficient conditions for the function f (hyz) to be analytic are as follows:

Necessary For the function f(h,,), the four partial derivatives of the real and
Condition: unstructured parts a_v’a_v’a_w’a_w exist and satisfy the Cauchy-Riemann
dy 0z 0y 0z

Equations given in Equation (8).
Sufficient For the function f(h,,), the four partial derivatives of the real and

dv ov ow OJw

Condition: & @ v &y
oy’ oz’ oy’ oz

unstructured parts exist and are continuous.

3.4. Semi-structured Complex Analytic Functions within the xyz-space

The following definitions and observations hold for semi-structured complex analytic functions
f(h) within the xyz-plane:
Definition 1:
A function f(h) = u(x,y,2) +iv(x,y,z) + pw(x,y,2) is said to be analytic in a region R of the

xyz-space if f(h) is single valued and has a derivative at each point of R.

From definition 1, a single valued function simply means that every input to the function
produces one and only one output (that is, a single valued function is a one-to-one function).

Definition 2:
A function f(h) = u(x,y,z) + iv(x,y,z) + pw(x,y,z) is said to be analytic at a point % if 4 is an
interior point of some region where f (/) is analytic.

Hence the concept of analytic function at a point implies that the function is analytic in some

circle with center at this point.
The necessary and sufficient conditions for the function f(h) to be analytic are as follows:
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Necessary For the function f(#), the nine partial derivatives of the real and
Condition: GO G G0 G0 GO (07 G117 G877 g i
unstructured parts %' 3y 2 9%’ 5y 32 9%’ 8y Bz exist and satisfy the
Cauchy-Riemann Equations given in Equation (9).
Sufficient For the function f(#), the nine partial derivatives of the real and
Condition: ou 0u ou dv dv Ov ow Jow a_w

unstructured arts —,—,—,—,—,—,—,— exist and are
p ox’dy’az’ox’ay’dz’ ax’ oy’ oz

continuous.

4. Semi-structured Complex Analytic Functions, Laplace and Poisson Equations

Having defined semi-structured analytic functions along the xy-plane, xz-plane, yz-plane
and within the xyz-space, it is important to consider the relationship between semi-structured
analytic functions and the Laplace and Poisson equations.

Laplace’s equation, is a second-order partial differential equation that widely used in physics
because the solution to the equation are used to resolve problems in topic such as electric, magnetic,
and gravitational potentials, steady-state temperatures, and hydrodynamics. Laplace’s equation
takes the form shown in Equation (10).

¢ 9P
o oy T

Solutions of Laplace's equation are called harmonic functions; they are all analytic within the

0 (10)

domain where the equation is satisfied. Establishing a relationship between Laplace’s equation and
analytic functions is one of the major achievements of complex analysis. Therefore, in extending the
theory of complex analysis to semi-structured complex numbers it is necessary to establish the
relationship between Laplace’s equation and semi-structured complex analytic functions.

The same line of reasoning holds for Poisson’s equation. Poisson’s equation takes the form
shown in Equation (11).

etz =? (11)

4.1. Semi-structured Complex Analytic Functions along the xy-plane and Laplace’s Equations

The relationship between a semi-structured complex function along the xy-plane and Laplace’s
equation is given by Proposition 5. Proof of Proposition 5 is given in Appendix 6.

Proposition 5:
if f(hyy) = ulx,y)+iv(x,y), is an analytic function along the xy-plane, where u(x,y) and v(x,y)
are real functions, then the real part u(x,y) and imaginary part v(x,y) of f(h,,) satisty Laplace’s

Equations. That is:

0%u . 0%u o

ax2  ay?

v 9%v (12)
4+

0x? + 0y?
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Since the real and imaginary parts of the semi-structured complex analytic function are solutions
to Laplace equation and satisfy the Cauchy—-Riemann equations given by Equation (6), they are called
harmonic conjugate functions.

4.2. Semi-structured Complex Analytic Functions along the xz-plane and Laplace’s Equations

The relationship between a semi-structured complex function along the xz-plane and Laplace’s
Equations is given by Proposition 6. Proof of Proposition 6 is given in Appendix 7.

Proposition 6:
if f(hy) = u(x,z)+pw(x,z), is an analytic function along the xz-plane, where u(x,z) and w(x,z)
are real functions, then the real part u(x,z) and unstructured part w(x,z) of f(% ,,) satisfy Laplace’s

Equations. That is:

0%u N 0%u _o
ox2  3z2 13
’w 9w (13)
R

Since the real and unstructured parts of the semi-structured complex analytic function are
solutions to Laplace equation and satisfy the Cauchy—Riemann equations given by Equation (7), they
are called harmonic conjugate functions.

4.3. Semi-structured Complex Analytic Functions along the yz-plane and Poisson’s Equations

The relationship between a semi-structured complex function along the xz-plane and Poisson’s
Equations is given by Proposition 7. Proof of Proposition 7 is given in Appendix 8.

Proposition 7:
if f(hy,) = iv(y,z) +pw(y,z), is an analytic function along the yz-plane, where v(y,z) and w(y, z)
are real functions, then the imaginary part v(x,z) and unstructured part w(x,z) of f(h,,) satisty

Poisson’s Equations. That is:

v N v

dy?  9z2 ¢1

’w  d’w (14)
oy T o =¥

In Equation (14), ¢, and ¢, are all functions.

4.4. Semi-structured Complex Analytic Functions within the xyz-space and Poisson’s Equations
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The relationship between a semi-structured complex function within the xyz-space and
Poisson’s Equations is given by Proposition 8. Proof of Proposition 8 is given in Appendix 9.

Proposition 8:
if f(h) = u(x,y,2)+iv(x,y,z) +pw(x,y,z) , is an analytic function within the xyz -space,
where u(x,y,z), v(x,y,z) and w(x,y,z) are real functions, then the real part u(x,y,z), imaginary part

v(x,y,z) and unstructured part w(x,y,z) of f () all satisfy Poisson’s Equations. That is:

’u 0*u d%’u
ﬁ-{_a_yz-{_ﬁ:
v 0%v 0%
W'f'a—yzﬁ'ﬁ:(]h
’w  d*w 3w

W+6—3ﬂ+ﬁ=¢5

¢3

(15)

In Equation (14), ¢3, ¢, and ¢5 are all functions.

5. Applications of Semi-structured Complex Analytic Functions

Having defined semi-structured complex analytic functions and exploring some of their
properties, it is instructive to consider the application of these functions. Here one example (for
illustration) was provided.

Example 1: The position vector of a point in the fluid field of a fluid flowing around a sphere is defined by the
semi-structured complex analytic function A. Given this position vector, find the velocity field of the fluid
flowing near the surface of a sphere of radius “a” centered at the origin of the semi-structured complex xyz-

space.

. . . . al 1 ay . 1 a’
Consider the semi-structured complex analytic function: 4 = (1 + F) x +(E + F) iy + (E + F) pz

1
where r = (x*> + y? + z%)2 .

"A" represents the position vector of a point in the fluid field of a fluid flowing near the surface of

the sphere as shown in Figure 1.
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Figure 1. Fluid flowing around a sphere.

To get the velocity field v of the fluid flowing near the surface of the sphere of radius “a” cantered
at the origin of the semi-structured xyz-space simply use the nabla operator 0 on the real part of the

position vector. Hence:
3

_ oR A]_<6 0 6) Lo —1+a3 3a’x\ |
v =0lRe()] = dx l@y 0z)\* "2 ) T 2r3 25 )7
where z* = x — iy — pz.

The velocity field v of the fluid is given by v = (v, v, v,) where:

- a’  3a’x?
v, = —
* 2r3  2rd
3a’xy
v, = ———
y 25
3aixz
V=

Hence the velocity field is represented by the semi-structured complex vector v = v, + iv, + pv,

In the Example 1, semi-structured complex functions were used to represent the problem of fluid
flow in 3-dimensional space. This may seem trivial as any 3-dimensional coordinate system can be
used to solve 3-dimensional problems in engineering. However, it is important to note that semi-
structured complex analytic functions are based on semi-structured complex numbers and variables.
Some 3-dimensional problems may contain singularities because of division by zero. These
singularities can be resolved using the unstructured part of the semi-structured complex analytic
function.

6. Discussion

There are a few points to highlight in this research. First, the general definitions associated with
complex analytic functions can be applied to semi-structured complex analytic functions. For
example, a semi-structured complex analytic function is said to be analytic in a region R if it is
differentiable at each point of R, except possibly at a finite number of exceptional points called the
singularities of the function. Whilst in complex analysis these singularities may be due to division by
zero and or the fact that the function may not be complex differentiable, with semi-structured
complex analysis these singularities are due to semi-structured complex analytic functions not being
complex differentiable at a point. This is due to the fact that semi-structured complex functions are
well defined at points that result in division by zero. If no point in the region R is a singularity of the
analytic function, then the analytic function is described as a regular analytic function in R.

Additionally, a function is said to be analytic at a point if it is analytic in some neighborhood of
that point. If in the neighborhood of a point (no matter how small this neighborhood is) a function is
analytic and single-valued, then the function is said to be holomorphic at that point. An analytic
function is said to be holomorphic in a domain if it is holomorphic in each point of that domain. These
definitions apply not just to complex analytic functions but also semi-structured complex analytic
functions.

As shown previously, semi-structured complex analytic functions can be used to describe 3-
dimensional potentials and flows in physics and engineering. Beyond this, any 2-dimensional
engineering problem that uses complex numbers and has a 3-dimensional equivalent that potentially
has singularities resulting from division by zero, this 3-dimensional equivalent can potentially be
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assessed using semi-structured complex analytic functions. Singularities in such problems can be
resolved using the unstructured part of the semi-structured complex analytic function.

7. Conclusion

It was observed that there was very little literature on the properties of analytic functions made
up of semi-structured complex variables. Therefore, the aim of this research paper was to use the
features of semi-structured complex numbers and the characteristics of analytic functions to develop
the properties and explore the applications of semi-structured complex analytic functions.

Based on the stated aim, this paper made the following five major contributions: (1) developed
an extension to the Cauchy-Riemann equations to include three other conditions for a semi-
structured complex function to be analytic in the semi-structured complex xyz-space; (2) used the
extension to the Cauchy-Riemann Equations to define a semi-structured complex analytic function
along the real-imaginary xy-plane, the real-unstructured xz-plane, the imaginary-unstructured yz-
plane and within the semi-structured complex xyz-space; (3) defined sufficient and necessary
conditions for a semi-structured complex function to be analytic along the real-imaginary xy-plane,
the real-unstructured xz -plane, the imaginary-unstructured yz -plane and within the semi-
structured complex xyz-space; (4) determined the relationship between semi-structured complex
analytic functions, Laplace’s Equations and Poisson’s Equations; and, (5) provided a simple example
where semi-structured complex analytic functions can be used to solve problems in engineering.
These results provide a firm basis to explore the field of semi-structured complex analysis.

Appendix 1. Research conducted on division by zero

Table A1. Research conducted on division by zero from 2018 to 2022.

Research Research Aim

[3-5] Explores the application of division by zero in calculus and differentiation

[6] Uses classical logic and Boolean algebra to show the problem of division by zero can
be solved using today’s mathematics

[7] Develops an analogue to Pappus Chain theorem with Division by Zero

[8] This paper proposes that the quantum computation being performed by the cancer
cell at its most fundamental level is the division by zero. This is the reason for the
insane multiplication of cancer cells at its most fundamental scale.

[9] Explores evidence to suggest zero does divide zero
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[10] Considered using division by zero to compare incomparable abstract objects taken
from two distinct algebraic spaces

[11] Show recent attempts to divide by zero

[12] Generalize a problem involving four circles and a triangle and consider some limiting
cases of the problem by division by zero.

[13] Paper considers computing probabilities from zero divided by itself

[14,15] Considers how division by zero is taught on an elementary level

[16] Develops a method to avoid division by zero in Newton’s Method

[17] This work attempts to solve division by zero using a new form of optimization called

Different-level quadratic minimization (DLQM)

Appendix 2. Proof of the extended Cauchy-Riemann Equations for the xy-plane

To provide proof of the theorem which states that f being semi-structured complex-differentiable
implies the extended Cauchy-Reiman equations, let us suppose the function f is semi-structured
complex differentiable at some point h,,. Suppose there exist a derivative f'(h,,) defined as:

. . flhyy + 6hyy) — fBy
) = g [0 Oh) =)

(16)
xy

whose value is independent of the argument that we take for the infinitesimal &h,,,. If we take this
to be real, thatis, 6h = éx € R, the expression for the derivative can be written as:

flx+6x+iy)— f(x+iy)

f (hey) = gglo 8x
, o [ule+ 8x,y) + iv(x + 6x,y)] — [ulx,y) + iv(x, y)]

f (hey) = c%}glo ox a7)
: . ulx+6x,y) —ulx, )] + i[v(x + 6x,y) —v(x, y)]

f (hey) = c%}glo dx

. Coulx+ox,y) —ulx,y)| [, vix+6x,y)—vix,y)
f (hy) = Him, 5x 1] i, 5x
On the last line, the quantities in square brackets are the real partial derivatives of u and v (with
respect to x). Therefore, those partial derivatives are well-defined, and can be simplified to Equation
(18).
u  0v

. d

On the other hand, we could also take an infinitesimal displacement in the imaginary direction, by
setting §h = idy € R. Then the expression for the derivative is:

' T fx+iy+isy)—f(x+iy)
f () = Jim ==

[uCe,y + i6y) + iv(x,y + i6y)] — [ulx,y) + iv(x, y)]

f (hay) = Jim

y-0 isy
, gy +i6y) —ulx, )]+ ifv(x, y +i6y) — v(x, y)]
f(hy) = gglglo i85y

: Ny uGy +isy) —uty)| L. vy +idy) —v(xy)
f ) = | fim, isy i b, isy (19)
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On the last line, the quantities in square brackets are the real partial derivativesof u, v (with respect
to y). Therefore, those partial derivatives are well-defined, and can be simplified to Equation (20).

(h ) au v
F ) = =15, 5
Since f(h) is semi-structured complex differentiable, Equations (18) and Equations (20) must be
equal so that:

(20)

du b ov _ Odu 4 av

ax ' ox -t dy 0dy
Noting that u, and v, we can take the real and imaginary parts of the equations separately. This
yields as a set of real equations as shown Equations (22).

21)

du Jdv
ax  dy
Jv Ju
lox ~ "oy (22)

Example of application of Equations (22):
Problem: Prove that f(hy,) = x + iy issemi-structured complex differentiable in along the xy-plane.

Solution: It is sufficient to show that the function satisfies the Cauchy-Riemann equations for the xy-
plane. Given the function the partial derivatives of the function are:

ou v _1 au av
ox ! oy ~ox ~ 9y
v du av u
dx dy Tox T ~ dy

Hence the function f(h,,) = x + iy is semi-structured complex differentiable in along the xy-plane
since it satisfies the Cauchy-Riemann equations for the xy-plane.

Appendix 3. Proof of the extended Cauchy-Riemann Equations for the xz-plane

To provide proof of the theorem which states that f being semi-structured complex-differentiable
implies the extended Cauchy-Reiman equations, let us suppose the function f is semi-structured
complex differentiable at some point h,,. Suppose there exist a derivative f’(h,,) defined as:
f(hxz + thz) - f(hxz)

Ohy,
whose value is independent of the argument that we take for the infinitesimal 8h,,. If we take this
to be real, thatis, §h,, = 6x € R, the expression for the derivative can be written as:

flx+6x+pz)—f(x+pz)

f'(h) = Jim, (23)

f (hxz) = hm

Sx—-0 636'
Gy =i [uCx + éx,2) + pw(x + 6x,2)] — [ulx,z) + pw(x, z)]
f (hee) = i) Ox

(24)
[uCx + éx,2) —u(x,2)] + plw(x + 6x,2) — w(x, 2)]

ox
u(x + 6x,z) —u(x, z) y v(x + 6x,z) — v(x, z)
sxr—r»lo ox

f (hez) = lim

f (h z) - hr_l;lo 5x

doi:10.20944/preprints202312.1403.v1


https://doi.org/10.20944/preprints202312.1403.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1403.v1

17

On the last line, the quantities in square brackets are the real partial derivatives of u and w (with
respect to x). Therefore, those partial derivatives are well-defined, and can be simplified to Equation
(25).

u ow

. d
f (hxy) = a + pa (25)

On the other hand, we could also take an infinitesimal displacement in the imaginary direction, by
setting 6h = péz € R. Then the expression for the derivative is:

f(x+pz+pdz)—f(x+pz)
péz

f () = (gl}})

[u(x,z + péz) + pw(x,z + pdz)] — [u(x,z) + pw(x, z)]
i5y

f (hxz) = (gr_l;lo

[u(x,z + péz) — u(x,z)] + plw(x, z + pdz) — w(x, z)]
péz

fl(hxz) = gr_l}o

, o ulez+ p6z) —u(x,z) o w(x,z+pdz) —w(x,z)
f () = | lim o2 P fm, po7 (26)

On the last line, the quantities in square brackets are the real partial derivatives of u, w (with

2
respect to y). It is also important to note that % = % = —p. Therefore, those partial derivatives are

well-defined, and can be simplified to Equation (27).
) = ou 4 ow
flheg) = =Pt

Since f(h) is semi-structured complex differentiable, Equations (25) and Equations (27) must be
equal so that:

27)

ou N ow  Ou N ow
ox ' Pox~ Poz" oz
Noting that u, and v, we can take the real and imaginary parts of the equations separately. This

(28)

yields as a set of real equations as shown in Equations (29).

ou _ ow

ox 0z
ow __Ou (29)
ox 0z

Example of application of Equations (29):

Problem: Prove that f(hy,) = fpz is semi-structured complex differentiable in along the xz-plane.

Solution: It is sufficient to show that the function satisfies the Cauchy-Riemann equations for the xz-

1 z . . . . .
plane. Now f(h,,) = vior — e P Given the function the partial derivatives of the
function are:
ou —-x>+z2 | ow —x>+ 272 ou ow
_———— _——— - — =
ox x2+ 22 0z  x2+ 22 ox 0z
ow 2xz ou  —2xz R Ju  dw
ox  x2+ 22 0z x>+ 22 dy ox

Hence the function f(h,,) = fpz is semi-structured complex differentiable in along the xz-plane

since it satisfies the Cauchy-Riemann equations for the xz-plane.

Appendix 4. Proof of the extended Cauchy-Riemann Equations for the yz-plane
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To provide proof of the theorem which states that f being semi-structured complex-differentiable
implies the extended Cauchy-Reiman equations, let us suppose the function f is semi-structured
complex differentiable at some point hy,. Suppose there exist a derivative f’(h,,) defined as:

f (h ) - lim f(hyz + 5hy2) — f(hyZ)
vz

30
Sho0 Shy, (30)

whose value is independent of the argument that we take for the infinitesimal §h,,. If we take this
to be real, thatis, 6h,, = iy € R, the expression for the derivative can be written as:

f(iy + i8y + pz) — f(iy + pz)

! (hyz) B }}_)o idy
_ vy +i6y,z) + pw(y +idy,2)] — [v(y,2z) + pw(x, z)]
f () = lim, 5
F (1) = g 2D 200 D) Py 1002) 00
' | vy +idy,z) —v(y, Z) w(y +i6y,z) —w(y, z)
Flisa) = i fim, i6y Ly—»o i6y (31)

On the last line, the quantities in square brackets are the real partial derivatives of v and w (with
respect to y). Therefore, those partial derivatives are well-defined, and can be simplified to Equation
(32).

av 14 ow

T3y (32)

f (hy;) =
On the other hand, we could also take an infinitesimal displacement in the imaginary direction, by
setting 6h = pdz € R. Then the expression for the derivative is:

’ _ 1. fliy+pz+pdz)—f(iy+p2)
f (hyz) = lim oz

[v(y,z +pdz) + pw(y,z + pdz)] — [v(y,2) + pw(y,2)]

f (hyz) = 12_)0

péz
£ (hyy) = lim [v(y,z + pdz) — v(x,2)] + p[w(y,z + péz) — w(y,2)]
yz) = 62—)0 p5z
£ () =i |1im 220D 200D | w0z +pOZ) = Wy 2)
yz) = 5750 p5Z 520 p6z (33)

On the last line, the quantities in square brackets are the real partial derivatives of v, w (with
respect to z). It is also important to note that i= % Therefore, those partial derivatives are well-
defined, and can be simplified to Equation (34).

pav aw
flhe) =5t = (34)

Since f(h) is semi-structured complex dlfferentlable, Equations (32) and Equations (34) must be
equal so that:

wT iy et (35)
Noting that u, and w, we can take the real and imaginary parts of the equations separately. This
yields as a set of real equations as shown Equations (36).

av_c')w
dy 0z
6w_6v

ay oz (36)
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Example of application of Equations (36):
Problem: Prove that f(h) = (i.siny.cosz + p.sinz.cosy) is semi-structured complex differentiable
in along the yz-plane.

Solution: It is sufficient to show that the function satisfies the Cauchy-Riemann equations for the yz-
plane. Given the function the partial derivatives of the function are:

v ow v ow
_—= . _ —_— = —
3y COS Z.COSy % COS Z.COSy 3y 9z
dv ) ) ow . . dv  Jdw
_—— _—= = . _—_— = —
57 siny.sinz 3y sinz.siny 5z~ 3y

Hence the function f(h) = (i.siny.cosz + p.sinz.cosy) is semi-structured complex differentiable
in along the xz-plane since it satisfies the Cauchy-Reimann equations for the yz-plane.

Appendix 5. Proof of the extended Cauchy-Riemann Equations for the xyz-space

To provide proof of the theorem which states that f being semi-structured complex-differentiable
implies the extended Cauchy-Reiman equations, let us suppose the function f is semi-structured
complex differentiable at some point h. Suppose there exist a derivative f'(h) defined as:
, . fh+8n)—f(h)
f) = fim, 8h
whose value is independent of the argument that we take for the infinitesimal §h. If we take this to
be real, thatis, §h = dx € R, the expression for the derivative can be written as:

fx+déx+iy+pz) — f(x+iy+pz)

(37)

£ = tim RO H YD) + xt 80y, 2) +pwle + 8%y, )] — [uln y,2) + wxy,2) +pw iy, 2)]
T sx—0 5x
, . [utx+6x,y,2) —ulx,y,2)] + i[v(x + 6x,,2) — v(x,y,2)] + plw(x + 6x,y,2) —w(x,y,2)]
f (h) = lim 38)
8x—0 5x
£ = [lim u(x +6x,y,z) —u(x,y, Z)] L [lim v(x + 6x,v,2) —v(x,y,2)
S5x—0 6x 5x—0 6x

[ o owx+6x,v,2) —w(x,y,2)

+p|lim

5x-0 ox

On the last line, the quantities in square brackets are the real partial derivatives of u, v and w (with
respect to x). Therefore, those partial derivatives are well-defined, and can be simplified to Equation
(39).

. ou
=t i —tp— 39
Fy = +is+ (39)
On the other hand, we could also take an infinitesimal displacement in the imaginary direction, by
setting 6h = idy € R. Then the expression for the derivative is:

fx+iy+idy+pz)—f(x+iy+pz)
isy

f=fm,

: . ulx,y +i8y,2) + iv(x,y +i8y,z) + pw(x,y +i6y,2)] — [u(x,y,2) + iv(x,y,2) + pw(x,y,2)]
f (h) = lim - 40
5y-0 isy (40)
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[uCx,y + idy,z) —ulx,y,z)1 + i[v(x,y + i6y,z) —v(x,y,z)] + plw(x,y + idy,z) —w(x,y, 2)]
isy

Fo=5m,

. v,y +idy,z) —v(x,y,2)
lim -
5y—-0 idy

S ulx,y +i6y,z) —u(x,y, z) )
fm = [(%To i85y ] * l[

w(x,y + i6y,z) —w(x,y,2)

TP [(%To isy
On the last line, the quantities in square brackets are the real partial derivatives of u, v and w (with
respect to y). Therefore, those partial derivatives are well-defined, and can be simplified to Equation
(41).
Odu Jdv p ow

)= —z@+—+

5ty (41)

Finally, we could also take an infinitesimal displacement in the imaginary direction, by setting 6h =
pdz € R. Then the expression for the derivative is:

f'(h) - lim fx+iy+pz+pdz) — f(x+ iy +pz)
6z-0 pdz

[uCx,y,z+pdz) + iv(x,y,z+ pdz) + pw(x,y,z + pdz)] — [ulx,y,z) + iv(x,y,z) + pw(x,y, z)]
péz

£ = Jim,

, o (ulx,y,z+pbéz) —ulx,y,2)] +ilvix,y,z + pdz) —v(x,y,z)] + plw(x,y,z + pdz) —w(x,y, z)]
£ = lim —
Z >

, u(x,y,z+pdéz) —ulx,y,z v(x,y,z+pdz) —v(x,y,z
f(h)z[hm(y pdz) (y)]+l.[hm(y péz) —v(x,y,2)
§z-0 pdéz 6z-0 péz

. wx,y,z+pdéz) —w(x,y,2)
+p [é?lb 57 (42)
On the last line, the quantities in square brackets are the real partial derivatives of u, v and w (with
respect to y). Therefore, those partial derivatives are well-defined, and can be simplified to Equation
(43).
. ou [ dv ow
f )= QL PRI PR
Since f(h) is semi-structured complex differentiable, Equations (39), Equations (41) and Equations
(43) must be equal so that:

(43)

6u+.6v+ ow _6u+6v+p ow 6u+i 6v+6w m
ox " 'ox " Pox T lay dy i'dy P32 p 9z 0z (44)

Noting that u, v and w are real functions, and ?= é, we can take the real, imaginary, and

unstructured parts of the equations separately. This yields as a set of real equations as shown

Equations (45).
Ju OJdv ow
ax 0y o0z
dav ou
{ ox @
w ou
ox oz
dw dv
Ay oz (45)

Example of application of Equations (45):
Problem: Prove that f(h) = e**¥*P? jssemi-structured complex differentiable in along the yz-plane.
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Solution: It is sufficient to show that the function satisfies the Cauchy-Riemann equations for the xyz-
plane. Firstly, f(h) = e***PZ = ¢* (cosy + i.siny).(cos z + p.sin z)

=e*.cosy.cosz +ie*.siny.cosz + pe*.cosy.sinz

The partial derivatives of the given function are:

ou ou X ou x .
— =e*.cosy.cosz — = —e*.siny.cosz — = —e*.cosy.sinz
0x dy 0z

v . av x v . .
— =e*.siny.cosz ——=e*.cosy.cosz — = —e*.siny.sinz
0x oy 0z

ow ) ow v ) ow

— =e*.cosy.sinz ——=—e*.siny.sinz — =e*.cosy.cosz
0x dy 0z

Clearly from the partial derivatives Equations (45) holds. Hence the function f(h) = e**?*PZ is semi-
structured complex differentiable in along the xz-plane since it satisfies the Cauchy-Reimann
equations for the xyz-space.

Appendix 6. Proof of Proposition 5

Let the function f(h,,) = u(x,y) +iv(x,y) be analytic in some domain D, then the Cauchy-
Riemann Equations for this function is:
du Ov Ju v
P 9y and 9y =%
Assume that the second order partial derivatives of u(x,y) and v(x,y) exist and are continuous
functions of x and y, then from Equations (46),

(46)

9? v 92 v
A g 47)
0x2  0xdy dy? 0ydx
So that
*u  0%u
= 48
dx?2 * ay? 0 (48)
Similarly, it can be shown that:
*v  9%v
= 49
0x? + dy? 0 “9)

From Equations (48) and (49), it is clear that functions u(x,y) and v(x,y) satisfy Laplace’s Equations
which is of the form given in Equation (50):

’¢p 0’

A 50
(')x2+(')y2 0 (50)

Appendix 7. Proof of Proposition 6

Let the function f(h,,) = u(x,z)+pw(x,z) be analytic in some domain D, then the Cauchy-
Riemann Equations for this function is:
Ju Jw Ju  ow

Ju _ow u__ow 51
ox 9z ™ 9z Bz 1)
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Assume that the second order partial derivatives of u(x,z) and w(x,z) exist and are continuous
functions of x and z, then from Equations (51),

?u  ow %u ow
- = 52
ox2  oxoz T 822 0z0x (52)
So that
’u  d*u
T 53
it 3,7 0 (53)
Similarly, it can be shown that:
’w 9w
A 54
7t 5. 0 (54)

From Equations (53) and (54), it is clear that functions u(x,z) and w(x,z) satisfy Laplace’s
Equations which is of the form given in Equation (55):

02¢ 62¢
ax T2 =0 )

Appendix 8. Proof of Proposition 7

Let the function f(h,,) = v(y,z) +pw(y,z) be analytic in some domain D, then the Cauchy-
Riemann Equations for this function is:
v dw v ow
@ =35, and PP E
Assume that the second order partial derivatives of v(y,z) and w(y,z) exist and are continuous
functions of y and z, then from Equations (56),

v ow v ow

(56)

= - = 57
0y? 0yoz and 0z2  0zdy (57)
So that
*v  9%v ow
4=y 58
dy? + 022 2 0z0y ¢1 (58)
Similarly, it can be shown that:
’w  d*w v
o)) (59)

oy "9 " oy

From Equations (58) and (59), it is clear that functions v(y,z) and w(y,z) satisfy Poisson’s
Equations which is of the form given in Equation (60):

%p 3¢

ox2 ' 922

=¢ (60)

Appendix 9. Proof of Proposition 8

Let the function f(h) = u(x,y,z) +iv(x,y,z) + pw(x,y,z) be analytic in some domain D, then the
Cauchy-Riemann Equations for this function is:

au_av_aw d au_ v
ox 9y 0z an dy  ox
(61)
Jdu _ aw d v _ ow
9z ox M 977y
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Assume that the second order partial derivatives of u(x,y,z), v(x,y,z) and w(x,y,z) existand are
continuous functions of x,y and z, then from Equations (61),

’u  dv ow 0%u ov d’u ow
o oy oxoz ™ 3T ayaxr ™ 37T ozx ©2
So that
’u 0d’u d’u  Iw ov ow ov
ax? + a_y2 + 922 oxdz dyodx T 9zox dydx =% (63)
Similarly, it can be shown that:
’v d’v d*v ou ou ow ow
dx? + a_y2 + 922 dxdy + dydx + dzady - d0zdy = 4 (64)
2 2 2
o'w 0w 0w  Ou av ou av b5 (65)

922 Ty T 922 = “oxoz T oyoz T ozox  ayoz

From Equations (64) and (65), it is clear that functions u(x,y,z), v(x,y,z) and w(x,y,z) satisfy
Poisson’s Equations which is of the form given in Equation (66):

e ¢ 0’

h —_ T = 66
0x2  dy?  0z? ¢ (66)
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