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Article 

Semi-Structured Complex Numbers: Extending the 
Cauchy–Riemann Equations and developing Semi-
Structured Complex Analytic Functions 

Peter Jean-Paul 1,* and Shanaz Wahid 2 

1 Global Green Growth Institute, Morne Fortune, Saint Lucia 
2 Mathematics & Statistics, Faculty of Science and Technology, University of the West Indies, St. Augustine, 

Trinidad and Tobago 

* Correspondence: peter.jnpaulnz@gmail.com 

Abstract: Real and complex analytic functions are largely studied in the field of complex analysis 

and are seen as very useful tools in solving problems in mathematics, physics and engineering. Real 

and complex numbers are a subset of semi-structured complex numbers (a new number set created 

to algebraically solve division by zero). Nevertheless, the properties of analytic functions made up 

of semi-structured complex variables (called semi-structured complex analytic functions) is yet to 

be explored. This limits the range of possible problems that can be resolved using analytic 

functions). In this regard, the aim of this paper was to expound upon the properties of semi-

structured complex analytic functions and show their application in solving engineering problems. 

The results of this paper included (1) developing a full set of Cauchy–Riemann Equations for the 

semi-structured complex 𝑥𝑦𝑧 -space; (2) define sufficient and necessary conditions for a semi-

structured complex function to be analytic; (3) determine the relationship between semi-structured 

complex analytic functions, Laplace’s Equations and Poisson’s Equations; and (5) provide an 
example of the use of these functions.  

Keywords: semi-structured complex numbers; semi-structured complex analytic functions; cauchy–
riemann equations; laplace equation; poisson equation 

 

1. Introduction 

1.1. Analytic Functions and their Importance 

Analytic functions, are mathematical functions that can be represented by a power series 

expansion. Formally, a function is said to be an analytic function if and only if its Taylor 

series expansion about some point 𝑥0  converges to the function under investigation in some 

neighbourhood for every 𝑥0 in the function’s domain.  

According to the current framework of complex analysis, analytic functions can be categorised 

into two different types: (1) Real Analytic Functions and (2) Complex Analytic Functions. A function 𝑓(𝑥) is said to be a real analytic function in the domain D of the function on the real line if for any 𝑥0 ∈𝐷, then: 𝑓(𝑥) =∑𝑎𝑛(𝑥 − 𝑥0)𝑛∞

𝑛=0

= 𝑎0 + 𝑎1(𝑥 − 𝑥0)1 + 𝑎2(𝑥 − 𝑥0)2 +⋯ (1) 

where the coefficients 𝑎0, 𝑎1, 𝑎2, ⋯ are the real numbers and also the series is convergent to the 

function 𝑓(𝑥) for 𝑥 in the neighbourhood of 𝑥0.  

On the other hand, a function 𝑓(𝑧) is said to be a complex analytic function in the domain D of 

the function in the complex plane if for any 𝑧0 ∈ 𝐷, then: 𝑓(𝑧) =∑𝑎𝑛(𝑧 − 𝑧0)𝑛∞

𝑛=0

= 𝑎0 + 𝑎1(𝑧 − 𝑧0)1 + 𝑎2(𝑧 − 𝑧0)2 +⋯ (2) 
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where the coefficients 𝑎0, 𝑎1, 𝑎2, ⋯ are the real numbers and also the series is convergent to the 

function 𝑓(𝑧) for 𝑧 in the neighbourhood of 𝑧0. 

Complex differentiability has several important consequences, such as the existence of power 

series expansions and the satisfaction of the Cauchy–Riemann equations. Power series expansions 

such as the one shown in Equation (2) permits complicated complex functions to be evaluated using 

the four basic operations of arithmetic. Power series representations of complex analytic functions 

also allows these functions to be complex differentiable facilitating rigorous mathematical analysis, 

approximations, and manipulations of complex functions. This makes complex analytic functions 

valuable in many areas of mathematics and physics. 

In physics, they are used to describe various phenomena, such as electromagnetic fields, fluid 

flow, and quantum mechanics. In engineering, analytic functions are employed in the design and 

analysis of systems, signal processing and control theory, and conformal mapping. Aside from 

having a power series expansion representation, complex analytic functions also have the property 

of satisfying the Cauchy-Riemann equations. 

1.2. The Cauchy–Riemann Equations and Analytic Functions 

The Cauchy-Riemann equations are a set of partial differential equations that establish a 

necessary condition for a complex-valued function to be differentiable. 

Let's consider a complex-valued function 𝑓(𝑧)  =  𝑢(𝑥, 𝑦)  +  𝑖𝑣(𝑥, 𝑦), where 𝑧 =  𝑥 +  𝑖𝑦 is a 

complex variable, and 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) are real-valued functions of the real variables 𝑥 and 𝑦. 

The Cauchy-Riemann equations state that for 𝑓(𝑧) to be differentiable at a point 𝑧 =  𝑥 +  𝑖𝑦, the 

following conditions must hold: 

{  
  𝜕𝑢𝜕𝑥 = 𝜕𝑣𝜕𝑦𝜕𝑢𝜕𝑦 =  −𝜕𝑣𝜕𝑥 (3) 

The Cauchy-Riemann equations provide a powerful tool for studying the properties of complex 

functions, such as holomorphicity, conformal mappings, and the construction of harmonic functions. 

Unfortunately, Cauchy–Riemann equations can only be used in the context of complex numbers. If 

they were to be applied to larger number sets (number sets for which complex numbers are a subset) 

they would very likely need to be modified to accommodate analysis on these larger sets. One such 

number set is semi-structured complex numbers, a new set created to algebraically solve division by 

zero.  

1.3. Semi-structured Complex Numbers: a recent development in division by zero 

Recently there has been a range of research involving division by zero. The problem of division 

by zero can simply be stated as: What is 
𝑎0 where “a” is any complex number. Table A1, Appendix 1, 

shows sample research conducted on “division by zero”.   

There have been several solutions to the problem the most recent being the invention of the semi-

structured complex number set ℍ [1]. The first attempt at creating this number set was riddled with 

issues [1], however, a second paper [2], written to reformulate and strengthen the theory of semi-

structured complex numbers, produced several grounded and profound results. Error! Reference 

source not found. shows the major results (pertinent to this research) developed in paper [2].  
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Table 1. Major results from paper [2]. 

Result 1 Semi-structured complex number set can be defined as follows: 

A semi-structured complex number is a three-dimensional number of the general 

form ℎ = 𝑥 + 𝑦𝑖 + 𝑧𝑝; that is, a linear combination of real (1), imaginary (𝑖) and 

unstructured (𝑝) units whose coefficients 𝑥, 𝑦, 𝑧 are real numbers.  

The number ℎ is called semi-structured complex because it contains a structured complex 

part (𝑥 + 𝑦𝑖) and an unstructured part (𝑧𝑝). 
Result 2 The unstructured number 𝑝 was redefined as:  𝑝𝑛 = √2 × 𝑐𝑜𝑠 (𝜋2 𝑛 − 𝜋4)𝑓𝑛(1)  (4) 

where 𝑓𝑛(𝑐) is a composite function such that 𝑓(𝑐) = 1− 𝑐. 

Integer powers of 𝑝 yield the following cyclic results: 𝑝1 = 1
0

 𝑝2 = −1 𝑝3 = −𝑝 𝑝4 = 1 𝑝5 = 1
0

 𝑝6 = −1 𝑝7 = −𝑝 ⋯ 

 

Result 3 𝑝 does not belong to the set of complex numbers ℂ (that is, 𝑝 ∉ ℂ), but belongs to a higher 

order number set ℍ called the set of semi-structured complex numbers such that the set of 

complex numbers is a subset of ℍ (that is, ℂ ⊂ ℍ). 

Result 4 The field of semi-structured complex numbers was defined, and proof was given that this 

field obeys the field axioms. This implies (1) the number set can easily be used in everyday 

algebraic expressions and can be used to solve algebraic problems, (2) the number set can 

be used to form more complicated structures such as vector spaces and hence solve more 

complex problems that may involve “division by zero”. 

Result 5 Semi-structured complex number set ℍ does not form an ordered field. For the objects in 

a field to have an order, operations such as greater than or less than can be applied to these 

objects. This is because in an ordered field the square of any non-zero number is greater 

than 0; this is not the case with semi-structured complex numbers. 

Result 6 Semi-structured complex numbers can be represented by points in a 3-dimensional 

Euclidean 𝑥𝑦𝑧-space. The xyz-space consist of three perpendicular axes: the real 𝑥-axis, the 

imaginary y-axis, and the unstructured 𝑧-axis. These axes form three perpendicular planes: 

the real-imaginary 𝑥𝑦 -plane, the real-unstructured 𝑥𝑧 -plane, and the imaginary-

unstructured 𝑦𝑧-plane. 

Result 7 The unit 𝑝 was used to find a viable solution to the logarithm of zero. The logarithm of 

zero was found to be: 

log 0 = −𝑝 (𝜋
2
+ 2𝑘𝜋) (5) 

where k is some integer value. 

Result 8 
The new definition of 𝑝  provided an unambiguous understanding that 

0
0
= 𝑛  simply 

represents  90° clockwise rotation of the vector 𝑛𝑝 from the positive unstructured z-axis 

to 𝑛 on the positive real x-axis along the real-unstructured 𝑥𝑧-plane. Note that 𝑛 is any 

real number. 

Result 9 Semi-structured complex numbers have both a 3D and 4D representation in the form: 

ℎ =  𝑥 + 𝑦𝑖 + 𝑧𝑝 (3D form) 
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ℎ =  𝐴 + 𝐵𝑖 + 𝐶𝑝 + 𝐷𝑖𝑝 

 

(4D form) 

where:  𝑥, 𝑦, 𝑧, 𝐴, 𝐵, 𝐶, 𝐷 are real numbered scalars and 𝑖, 𝑝 are semi-structured basis units. 

Result 10 Two new Euler formulas were developed.  

Plane Euler formula 

Real imaginary 𝑥𝑦-plane 𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃 

Real unstructured 𝑥𝑧-plane 𝑒𝑝𝜃 = cos 𝜃 + 𝑝 sin 𝜃 

Imaginary unstructured 𝑦𝑧-plane 𝑒−𝑖𝑝𝜃 = cosh 𝜃 − 𝑖𝑝 sinh 𝜃 

When combined with the original Euler formula describes the relationship between 

trigonometric, hyperbolic, and exponential functions for the entire semi-structured 

complex Euclidean 𝑥𝑦𝑧-space. 

Result 11 Semi-structured complex numbers can be used to resolve singularities that may arise in 

engineering and science equations (because of division by zero) to develop reasonable 

conclusions in the absence of experimental data. 

Result 12 From Result 10 semi-structured complex numbers can present in four forms as given below: 

Semi-structured complex number along Number 

Real-imaginary 𝑥𝑦-plane ℎ𝑥𝑦 = 𝑥 + 𝑖𝑦 

Real-unstructured 𝑥𝑧-plane ℎ𝑥𝑧 = 𝑥 + 𝑝𝑧 

Imaginary-unstructured 𝑦𝑧-plane ℎ𝑦𝑧 = 𝑖𝑦 + 𝑝𝑧 𝑥𝑦𝑧-space ℎ = 𝑥 + 𝑖𝑦 + 𝑝𝑧 
 

Result 13 The zeroth root of a number h can be found using the equation √ℎ0 = ℎ𝑝 =  𝑒𝑝 ln ℎ = cos(ln ℎ) + 𝑝 sin(ln ℎ) 
Result 14 

Since 𝑝1 = 1
0
 this implies that 

1𝑝 = 0 which further implies that −p = 0 

Result 15 Any real number with the semi-structured unit 𝑝  attached to it is not a physically 

measurable quantity. That is, 𝑘𝑝 where 𝑘 is a real number is not physically measurable 

(however, 𝑘 can be calculated given enough information) 

Result 16 If 𝑎 and 𝑏 measure different (but quantitatively related) aspects of the same object, where 𝑎 is physically measurable but 𝑏 is not, then 𝑎 and 𝑏 can be combined into one equation 

in the form 𝑎 + 𝑏𝑝 

The foundational results found in Table 1 potentially pave the way to understanding the 

properties of analytic functions constructed from semi-structured complex numbers and variables. It 

has already been shown in complex analysis the profound importance of complex analytic functions 

(made from complex numbers and variables). It has also been shown (from Table 1) that complex 

numbers form a subset of semi-structured complex numbers.  It only stands to reason that if the 

framework of complex analysis was expanded to examine the properties of functions made from 

semi-structured complex numbers and variables, this would potentially yield results that could be 

used to tackle a wide range of mathematical problems. From this standpoint the idea of semi-

structured complex analysis to examine semi-structured complex analytic functions cannot be 

ignored.  

 

1.4. Major contributions  
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Given the potential importance of developing an understanding of the properties of semi-

structured analytic functions, the aim of this paper was:  

To use the features of semi-structured complex numbers and the characteristics of analytic functions 

to develop the properties and explore the applications of semi-structured complex analytic functions.  

In the process of fulfilling the stated aim, this paper makes five major contributions:  

1. Develop an extension to the Cauchy–Riemann equations to include three other conditions for a 

semi-structured complex function to be analytic in the semi-structured complex 𝑥𝑦𝑧-space.  

2. Used the extension to the Cauchy–Riemann equations to define a semi-structured complex 

analytic function along the real-imaginary 𝑥𝑦 -plane, the real-unstructured 𝑥𝑧 -plane, the 

imaginary-unstructured 𝑦𝑧-plane and within the semi-structured complex 𝑥𝑦𝑧-space.  

3. Defined sufficient and necessary conditions for a semi-structured complex function to be 

analytic along the real-imaginary 𝑥𝑦 -plane, the real-unstructured 𝑥𝑧 -plane, the imaginary-

unstructured 𝑦𝑧-plane and within the semi-structured complex 𝑥𝑦𝑧-space. 

4. Determined the relationship between semi-structured complex analytic functions, Laplace’s 
equations and Poisson’s equations.   

5. Provided a simple example where semi-structured complex analytic functions can be used to 

solve problems in engineering.  

The rest of this paper is devoted to showing how achieving the main aim of the paper led to 

these major contributions. 

 

2. Extensions to the Cauchy–Riemann Equations 

Before the properties of semi-structured complex analytic functions can be defined, the Cauchy–
Riemann equations (the basis for defining analytic functions) needed to be modified so that it can be 

used in the context of semi-structured complex functions.  

To do this, the semi-structured complex 𝑥𝑦𝑧 -space was divided into three planes, real-

imaginary plane (𝑥𝑦 -plane), real-unstructured plane (𝑥𝑧 -plane) and the imaginary-unstructured 

plane (𝑦𝑧-plane). Since, the Cauchy–Riemann equations were already derived for functions that 

reside in the real-imaginary plane (𝑥𝑦 -plane) (that is the complex plane), the same process of 

derivation was used to contain a set of Cauchy–Riemann equations for the real-unstructured plane 

(𝑥𝑧-plane), the complex-unstructured plane (𝑦𝑧-plane) and the entire semi-structured complex 𝑥𝑦𝑧-

space. Once these equations had been derived the properties of semi-structured complex analytic 

functions were defined.  

2.1. Cauchy–Riemann Equations for the 𝒙𝒚-plane or complex plane 

The Cauchy–Riemann Equations for the real-imaginary plane (𝑥𝑦-plane or complex plane) are 

given in Equation (6). Incidentally, Equations (6) is the original Cauchy–Riemann equations. 

Derivation of Equation (6) as well as an example on how to use these equations is provided in 

Appendix 2. 

Proposition 1:  

Let  𝑓(ℎ 𝑥𝑦) be a complex function that can be written as 𝑓(ℎ 𝑥𝑦)  =  𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦), where 𝑢(𝑥, 𝑦) 
and 𝑣(𝑥, 𝑦) are real functions of two real inputs and ℎ 𝑥𝑦 is a complex number. If 𝑓(ℎ 𝑥𝑦) is complex-

differentiable at a given ℎ 𝑥𝑦 =  𝑥 +  𝑦𝑖 , then 𝑢(𝑥, 𝑦)  and 𝑣(𝑥, 𝑦)  have valid first-order partial 

derivatives and these derivatives have the following relationship: 
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{  
  𝜕𝑢𝜕𝑥 = 𝜕𝑣𝜕𝑦𝜕𝑣𝜕𝑥 = −𝜕𝑢𝜕𝑦 (Cauchy-Riemann equations for 𝑥𝑦-plane) (6) 

 

2.2. Cauchy-Riemann Equations for the 𝒙𝒛-plane  

Additionally, the Cauchy-Riemann equations for the real-unstructured plane (𝑥𝑧-plane) is given 

in Equations (7). Proof of Equations (7) as well as an example on how to use these equations is 

provided in Appendix 3. 

Proposition 2:  

Let 𝑓(ℎ𝑥𝑧)  be a complex function that can be written as 𝑓(ℎ𝑥𝑧)  =  𝑢(𝑥, 𝑧) + 𝑝𝑤(𝑥, 𝑧), where 𝑢(𝑥, 𝑧) 
and 𝑤(𝑥, 𝑧) are real functions of two real inputs. If 𝑓(ℎ𝑥𝑧)  is complex-differentiable at a given ℎ𝑥𝑧  = 𝑥 + 𝑝𝑧, then 𝑢(𝑥, 𝑧) and w(𝑥, 𝑧) have valid first-order partial derivatives and these derivatives have 

the following relationship: 

{ 𝜕𝑢𝜕𝑥 = 𝜕𝑤𝜕𝑧𝜕𝑢𝜕𝑧 = −𝜕𝑤𝜕𝑥  (Cauchy-Riemann equations for 𝑥𝑧-plane) (7) 

 

2.3. Cauchy–Riemann Equations for the 𝒚𝒛-plane  

Moreover, the Cauchy–Riemann Equations for the complex-unstructured plane (𝑦𝑧-plane) is 

given in Equations (8). Proof of Equations (8) as well as an example on how to use these equations is 

provided in Appendix 4. 

Proposition 3:  

Let  𝑓(ℎ𝑦𝑧) be a complex function that can be written as 𝑓(ℎ𝑦𝑧)  =  𝑖𝑣(𝑦, 𝑧) + 𝑝𝑤(𝑦, 𝑧), where 𝑣(𝑦, 𝑧) 
and 𝑤(𝑦, 𝑧) are real functions of two real inputs. If 𝑓(ℎ𝑦𝑧) is complex-differentiable at a given ℎ𝑦𝑧  = 𝑦𝑖 +  𝑧𝑝, then 𝑢(𝑦, 𝑧) and 𝑤(𝑦, 𝑧) have valid first-order partial derivatives and these derivatives have 

the following relationship: 

{  
  𝜕𝑣𝜕𝑦 = 𝜕𝑤𝜕𝑧𝜕𝑣𝜕𝑧 = 𝜕𝑤𝜕𝑦  (Cauchy-Riemann equations for 𝑦𝑧-plane) (8) 

 

2.4. Cauchy-Riemann Equations for the 𝒙𝒚𝒛-space  
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Finally, considering the full set of semi-structured complex numbers, an extension of the 

Cauchy–Riemann equations for the 𝑥𝑦𝑧-space is given in Equations (9). Proof of Equations (9) as well 

as an example on how to use these equations is provided in Appendix 5. 

Proposition 4:  

Let 𝑓(ℎ) be a complex function that can be written as 𝑓(ℎ) =  𝑢(𝑥, 𝑦, 𝑧) + 𝑖𝑣(𝑥, 𝑦, 𝑧) + 𝑝𝑤(𝑥, 𝑦, 𝑧), 
where 𝑢(𝑥, 𝑦, 𝑧), 𝑣(𝑥, 𝑦, 𝑧) and 𝑤(𝑥, 𝑦, 𝑧) are real functions of two real inputs. If  𝑓(ℎ) is complex-

differentiable at a given ℎ =  𝑥 +  𝑦𝑖 + 𝑝𝑧, then 𝑢(𝑥, 𝑦, 𝑧), 𝑣(𝑥, 𝑦, 𝑧) and 𝑤(𝑥, 𝑦, 𝑧) have valid first-

order partial derivatives and these derivatives have the following relationship: 

{   
  
   𝜕𝑢𝜕𝑥 = 𝜕𝑣𝜕𝑦 = 𝜕𝑤𝜕𝑧𝜕𝑣𝜕𝑥 = −𝜕𝑢𝜕𝑦𝜕𝑤𝜕𝑥 = −𝜕𝑢𝜕𝑧𝜕𝑤𝜕𝑦 = 𝜕𝑣𝜕𝑧

 
(Cauchy-Riemann equations for 𝑥𝑦𝑧-

space) 
(9) 

 

3. Semi-structured Complex Analytic Functions 

Now that the extended Cauchy–Riemann Equations for semi-structured complex functions have 

been properly outlined, the next step was to use these equations to define the properties of Semi-

structured Complex Analytic Functions.   

3.1. Semi-structured Complex Analytic Functions along the 𝒙𝒚-plane 

The following definitions and observations hold for semi-structured complex analytic functions 𝑓(ℎ𝑥𝑦)  along the 𝑥𝑦-plane: 

Definition 1: 

A function 𝑓(ℎ𝑥𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) is said to be analytic in a region 𝑅 of the complex plane if 𝑓(ℎ𝑥𝑦) is single valued and has a derivative at each point of 𝑅.  

From definition 1, a single valued function simply means that every input to the function 

produces one and only one output (that is, a single valued function is a one-to-one function).  

Definition 2: 

A function 𝑓(ℎ𝑥𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) is said to be analytic at a point ℎ𝑥𝑦  if ℎ𝑥𝑦  is an interior 

point of some region where 𝑓(ℎ𝑥𝑦) is analytic. 

Hence the concept of analytic function at a point implies that the function is analytic in some 

circle with center at this point. 

The necessary and sufficient conditions for the function 𝑓(ℎ𝑥𝑦) to be analytic are as follows: 
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Necessary 

Condition: 

For the function 𝑓(ℎ𝑥𝑦) , the four partial derivatives of the real and 

imaginary parts 
𝜕𝑢𝜕𝑥 , 𝜕𝑢𝜕𝑦 , 𝜕𝑣𝜕𝑥 , 𝜕𝑣𝜕𝑦   exist and satisfy the Cauchy-Riemann 

Equations given in Equation (6). 

Sufficient 

Condition: 

For the function 𝑓(ℎ𝑥𝑦) , the four partial derivatives of the real and 

imaginary parts 
𝜕𝑢𝜕𝑥 , 𝜕𝑢𝜕𝑦 , 𝜕𝑣𝜕𝑥 , 𝜕𝑣𝜕𝑦  exist and are continuous. 

 

3.2. Semi-structured Complex Analytic Functions along the 𝒙𝒛-plane  

The following definitions and observations hold for semi-structured complex analytic functions 𝑓(ℎ𝑥𝑧)  along the 𝑥𝑧-plane: 

Definition 1: 

A function 𝑓(ℎ𝑥𝑧) = 𝑢(𝑥, z) + 𝑝𝑤(𝑥, 𝑧) is said to be analytic in a region 𝑅 of the 𝑥𝑧-plane if 𝑓(ℎ𝑥𝑧) 
is single valued and has a derivative at each point of 𝑅.  

From definition 1, a single valued function simply means that every input to the function 

produces one and only one output (that is, a single valued function is a one-to-one function).  

Definition 2: 

A function 𝑓(ℎ𝑥𝑧) = 𝑢(𝑥, z) + 𝑖𝑤(𝑥, z) is said to be analytic at a point ℎ𝑥𝑧 if ℎ𝑥𝑧 is an interior point 

of some region where 𝑓(ℎ𝑥𝑧) is analytic. 

Hence the concept of analytic function at a point implies that the function is analytic in some 

circle with center at this point. 

The necessary and sufficient conditions for the function 𝑓(ℎ𝑥𝑧) to be analytic are as follows: 

Necessary 

Condition: 

For the function 𝑓(ℎ𝑥𝑧) , the four partial derivatives of the real and 

unstructured parts 
𝜕𝑢𝜕𝑥 , 𝜕𝑢𝜕𝑧 , 𝜕𝑤𝜕𝑥 , 𝜕𝑤𝜕𝑧   exist and satisfy the Cauchy-Riemann 

Equations given in Equation (7). 

Sufficient 

Condition: 

For the function 𝑓(ℎ𝑥𝑧) , the four partial derivatives of the real and 

unstructured parts 
𝜕𝑢𝜕𝑥 , 𝜕𝑢𝜕𝑧 , 𝜕𝑤𝜕𝑥 , 𝜕𝑤𝜕𝑧   exist and are continuous. 

 

3.3. Semi-structured Complex Analytic Functions along the 𝒚𝒛-plane  

The following definitions and observations hold for semi-structured complex analytic functions 𝑓(ℎ𝑦𝑧)  along the 𝑦𝑧-plane: 
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Definition 1: 

A function 𝑓(ℎ𝑦𝑧) = 𝑖𝑣(𝑦, 𝑧) + 𝑝𝑤(𝑦, 𝑧)  is said to be analytic in a region 𝑅  of the 𝑦𝑧-plane if 𝑓(ℎ𝑦𝑧) is single valued and has a derivative at each point of 𝑅.  

From definition 1, a single valued function simply means that every input to the function 

produces one and only one output (that is, a single valued function is a one-to-one function).  

Definition 2: 

A function 𝑓(ℎ𝑦𝑧) = 𝑖𝑣(𝑦, 𝑧) + 𝑝𝑤(𝑦, 𝑧) is said to be analytic at a point ℎ𝑦𝑧 if ℎ𝑦𝑧 is an interior 

point of some region where 𝑓(ℎ𝑦𝑧) is analytic. 

Hence the concept of analytic function at a point implies that the function is analytic in some 

circle with centre at this point. 

The necessary and sufficient conditions for the function 𝑓(ℎ𝑦𝑧) to be analytic are as follows: 

Necessary 

Condition: 

For the function 𝑓(ℎ𝑦𝑧) , the four partial derivatives of the real and 

unstructured parts 
𝜕𝑣𝜕𝑦 , 𝜕𝑣𝜕𝑧 , 𝜕𝑤𝜕𝑦 , 𝜕𝑤𝜕𝑧   exist and satisfy the Cauchy-Riemann 

Equations given in Equation (8). 

Sufficient 

Condition: 

For the function 𝑓(ℎ𝑦𝑧) , the four partial derivatives of the real and 

unstructured parts 
𝜕𝑣𝜕𝑦 , 𝜕𝑣𝜕𝑧 , 𝜕𝑤𝜕𝑦 , 𝜕𝑤𝜕𝑧   exist and are continuous. 

 

3.4. Semi-structured Complex Analytic Functions within the 𝒙𝒚𝒛-space  

The following definitions and observations hold for semi-structured complex analytic functions 𝑓(ℎ)  within the 𝑥𝑦𝑧-plane: 

Definition 1: 

A function 𝑓(ℎ) = 𝑢(𝑥, 𝑦, 𝑧) + 𝑖𝑣(𝑥, 𝑦, 𝑧) + 𝑝𝑤(𝑥, 𝑦, 𝑧) is said to be analytic in a region 𝑅 of the 𝑥𝑦𝑧-space if 𝑓(ℎ) is single valued and has a derivative at each point of 𝑅.  

From definition 1, a single valued function simply means that every input to the function 

produces one and only one output (that is, a single valued function is a one-to-one function).  

Definition 2: 

A function 𝑓(ℎ) = 𝑢(𝑥, 𝑦, 𝑧) + 𝑖𝑣(𝑥, 𝑦, 𝑧) + 𝑝𝑤(𝑥, 𝑦, 𝑧) is said to be analytic at a point ℎ if ℎ is an 

interior point of some region where 𝑓(ℎ) is analytic. 

Hence the concept of analytic function at a point implies that the function is analytic in some 

circle with center at this point. 

The necessary and sufficient conditions for the function 𝑓(ℎ) to be analytic are as follows: 
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Necessary 

Condition: 

For the function 𝑓(ℎ) , the nine partial derivatives of the real and 

unstructured parts  
𝜕𝑢𝜕𝑥 , 𝜕𝑢𝜕𝑦 , 𝜕𝑢𝜕𝑧 , 𝜕𝑣𝜕𝑥 , 𝜕𝑣𝜕𝑦 , 𝜕𝑣𝜕𝑧 , 𝜕𝑤𝜕𝑥 , 𝜕𝑤𝜕𝑦 , 𝜕𝑤𝜕𝑧   exist and satisfy the 

Cauchy-Riemann Equations given in Equation (9). 

Sufficient 

Condition: 

For the function 𝑓(ℎ) , the nine partial derivatives of the real and 

unstructured parts 
𝜕𝑢𝜕𝑥 , 𝜕𝑢𝜕𝑦 , 𝜕𝑢𝜕𝑧 , 𝜕𝑣𝜕𝑥 , 𝜕𝑣𝜕𝑦 , 𝜕𝑣𝜕𝑧 , 𝜕𝑤𝜕𝑥 , 𝜕𝑤𝜕𝑦 , 𝜕𝑤𝜕𝑧   exist and are 

continuous. 

 

4. Semi-structured Complex Analytic Functions, Laplace and Poisson Equations 

Having defined semi-structured analytic functions along the 𝑥𝑦-plane,  𝑥𝑧-plane,  𝑦𝑧-plane 

and within the 𝑥𝑦𝑧 -space, it is important to consider the relationship between semi-structured 

analytic functions and the Laplace and Poisson equations.    

Laplace’s equation, is a second-order partial differential equation that widely used in physics 

because the solution to the equation are used to resolve problems in topic such as electric, magnetic, 

and gravitational potentials, steady-state temperatures, and hydrodynamics. Laplace’s equation 
takes the form shown in Equation (10). 𝜕2𝜙𝜕𝑥2 + 𝜕2𝜙𝜕𝑦2 = 0  (10) 

Solutions of Laplace's equation are called harmonic functions; they are all analytic within the 

domain where the equation is satisfied. Establishing a relationship between Laplace’s equation and 
analytic functions is one of the major achievements of complex analysis. Therefore, in extending the 

theory of complex analysis to semi-structured complex numbers it is necessary to establish the 

relationship between Laplace’s equation and semi-structured complex analytic functions.  

The same line of reasoning holds for Poisson’s equation. Poisson’s equation takes the form 
shown in Equation (11). 𝜕2𝜑𝜕𝑥2 + 𝜕2𝜑𝜕𝑧2 = 𝜙 (11) 

4.1. Semi-structured Complex Analytic Functions along the 𝒙𝒚-plane and Laplace’s Equations 

The relationship between a semi-structured complex function along the 𝑥𝑦-plane and Laplace’s 
equation is given by Proposition 5. Proof of Proposition 5 is given in  Appendix 6. 

Proposition 5:  

if 𝑓(ℎ 𝑥𝑦)  =  𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦), is an analytic function along the 𝑥𝑦-plane, where 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) 
are real functions, then the real part 𝑢(𝑥, 𝑦) and imaginary part 𝑣(𝑥, 𝑦) of 𝑓(ℎ 𝑥𝑦) satisfy Laplace’s 

Equations. That is: 𝜕2𝑢𝜕𝑥2 + 𝜕2𝑢𝜕𝑦2 = 0𝜕2𝑣𝜕𝑥2 + 𝜕2𝑣𝜕𝑦2 = 0
 (12) 
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Since the real and imaginary parts of the semi-structured complex analytic function are solutions 

to Laplace equation and satisfy the Cauchy–Riemann equations given by Equation (6), they are called 

harmonic conjugate functions. 

 

4.2. Semi-structured Complex Analytic Functions along the 𝒙𝒛-plane and Laplace’s Equations 

The relationship between a semi-structured complex function along the 𝑥𝑧-plane and Laplace’s 
Equations is given by Proposition 6. Proof of Proposition 6 is given in Appendix 7. 

Proposition 6:  

if 𝑓(ℎ 𝑥𝑧)  =  𝑢(𝑥, 𝑧) + 𝑝𝑤(𝑥, 𝑧), is an analytic function along the 𝑥𝑧-plane, where 𝑢(𝑥, 𝑧) and 𝑤(𝑥, 𝑧) 
are real functions, then the real part 𝑢(𝑥, 𝑧) and unstructured part 𝑤(𝑥, 𝑧) of 𝑓(ℎ 𝑥𝑧) satisfy Laplace’s 

Equations. That is: 𝜕2𝑢𝜕𝑥2 + 𝜕2𝑢𝜕𝑧2 = 0𝜕2𝑤𝜕𝑥2 + 𝜕2𝑤𝜕𝑧2 = 0
 (13) 

Since the real and unstructured parts of the semi-structured complex analytic function are 

solutions to Laplace equation and satisfy the Cauchy–Riemann equations given by Equation (7), they 

are called harmonic conjugate functions. 

 

4.3. Semi-structured Complex Analytic Functions along the 𝒚𝒛-plane and Poisson’s Equations 

The relationship between a semi-structured complex function along the 𝑥𝑧-plane and Poisson’s 
Equations is given by Proposition 7. Proof of Proposition 7 is given in Appendix 8. 

Proposition 7:  

if 𝑓(ℎ 𝑦𝑧)  =  𝑖𝑣(𝑦, 𝑧) + 𝑝𝑤(𝑦, 𝑧), is an analytic function along the 𝑦𝑧-plane, where 𝑣(𝑦, 𝑧) and 𝑤(𝑦, 𝑧) 
are real functions, then the imaginary part 𝑣(𝑥, 𝑧)  and unstructured part 𝑤(𝑥, 𝑧)  of 𝑓(ℎ 𝑦𝑧) satisfy 

Poisson’s Equations. That is: 𝜕2𝑣𝜕𝑦2 + 𝜕2𝑣𝜕𝑧2 = 𝜙1𝜕2𝑤𝜕𝑦2 + 𝜕2𝑤𝜕𝑧2 = 𝜙2

 (14) 

In Equation (14), 𝜙1 and 𝜙2 are all functions.  

 

4.4. Semi-structured Complex Analytic Functions within the 𝒙𝒚𝒛-space and Poisson’s Equations 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 December 2023                   doi:10.20944/preprints202312.1403.v1

https://doi.org/10.20944/preprints202312.1403.v1


 12 

 

The relationship between a semi-structured complex function within the 𝑥𝑦𝑧 -space and 

Poisson’s Equations is given by Proposition 8. Proof of Proposition 8 is given in Appendix 9. 

Proposition 8:  

if 𝑓(ℎ)  =  𝑢(𝑥, 𝑦, 𝑧) + 𝑖𝑣(𝑥, 𝑦, 𝑧) + 𝑝𝑤(𝑥, 𝑦, 𝑧) , is an analytic function within the 𝑥𝑦𝑧 -space, 

where 𝑢(𝑥, 𝑦, 𝑧), 𝑣(𝑥, 𝑦, 𝑧) and 𝑤(𝑥, 𝑦, 𝑧) are real functions, then the real part 𝑢(𝑥, 𝑦, 𝑧), imaginary part 𝑣(𝑥, 𝑦, 𝑧) and unstructured part 𝑤(𝑥, 𝑦, 𝑧) of 𝑓(ℎ) all satisfy Poisson’s Equations. That is: 𝜕2𝑢𝜕𝑥2 + 𝜕2𝑢𝜕𝑦2 + 𝜕2𝑢𝜕𝑧2 = 𝜙3𝜕2𝑣𝜕𝑥2 + 𝜕2𝑣𝜕𝑦2 + 𝜕2𝑣𝜕𝑧2 = 𝜙4𝜕2𝑤𝜕𝑥2 + 𝜕2𝑤𝜕𝑦2 + 𝜕2𝑤𝜕𝑧2 = 𝜙5

 (15) 

In Equation (14), 𝜙3,  𝜙4 and 𝜙5 are all functions. 

 

5. Applications of Semi-structured Complex Analytic Functions 

Having defined semi-structured complex analytic functions and exploring some of their 

properties, it is instructive to consider the application of these functions. Here one example (for 

illustration) was provided. 

Example 1: The position vector of a point in the fluid field of a fluid flowing around a sphere is defined by the 

semi-structured complex analytic function A. Given this position vector, find the velocity field of the fluid 

flowing near the surface of a sphere of radius “a” centered at the origin of the semi-structured complex 𝑥𝑦𝑧-

space.  

  

Consider the semi-structured complex analytic function: 𝐴 = (1+ 𝑎3

2𝑟3) 𝑥 +(1
2
+ 𝑎3

2𝑟3) 𝑖𝑦 + (1
2
+ 𝑎3

2𝑟3) 𝑝𝑧  

where 𝑟 = (𝑥2 + 𝑦2 + 𝑧2)1
2 . 

"𝐴" represents the position vector of a point in the fluid field of a fluid flowing near the surface of 

the sphere as shown in Figure 1. 
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Figure 1. Fluid flowing around a sphere. 

To get the velocity field 𝑣 of the fluid flowing near the surface of the sphere of radius “a” cantered 

at the origin of the semi-structured 𝑥𝑦𝑧-space simply use the nabla operator 𝜕 on the real part of the 

position vector. Hence: 𝑣 = 𝜕[𝑅𝑒(𝐴)] = ( 𝜕𝜕𝑥 − 𝑖 𝜕𝜕𝑦 − 𝑝 𝜕𝜕𝑧) (𝑥 + 𝑎3𝑥
2𝑟3) = 1+ 𝑎3

2𝑟3 − (3𝑎3𝑥
2𝑟5 ) 𝑧∗ 

where 𝑧∗ =  𝑥 − 𝑖𝑦 − 𝑝𝑧. 

The velocity field 𝑣 of the fluid is given by 𝑣 = (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧) where: 𝑣𝑥 = 1+ 𝑎3

2𝑟3 − 3𝑎3𝑥2

2𝑟5  

𝑣𝑦 = − 3𝑎3𝑥𝑦
2𝑟5  

𝑣𝑧 = − 3𝑎3𝑥𝑧
2𝑟5  

Hence the velocity field is represented by the semi-structured complex vector 𝑣 = 𝑣𝑥 + 𝑖𝑣𝑦 + 𝑝𝑣𝑧 

In the Example 1, semi-structured complex functions were used to represent the problem of fluid 

flow in 3-dimensional space. This may seem trivial as any 3-dimensional coordinate system can be 

used to solve 3-dimensional problems in engineering. However, it is important to note that semi-

structured complex analytic functions are based on semi-structured complex numbers and variables. 

Some 3-dimensional problems may contain singularities because of division by zero. These 

singularities can be resolved using the unstructured part of the semi-structured complex analytic 

function. 

 

6. Discussion 

There are a few points to highlight in this research. First, the general definitions associated with 

complex analytic functions can be applied to semi-structured complex analytic functions. For 

example, a semi-structured complex analytic function is said to be analytic in a region R if it is 

differentiable at each point of R, except possibly at a finite number of exceptional points called the 

singularities of the function. Whilst in complex analysis these singularities may be due to division by 

zero and or the fact that the function may not be complex differentiable, with semi-structured 

complex analysis these singularities are due to semi-structured complex analytic functions not being 

complex differentiable at a point. This is due to the fact that semi-structured complex functions are 

well defined at points that result in division by zero. If no point in the region R is a singularity of the 

analytic function, then the analytic function is described as a regular analytic function in R. 

Additionally, a function is said to be analytic at a point if it is analytic in some neighborhood of 

that point. If in the neighborhood of a point (no matter how small this neighborhood is) a function is 

analytic and single-valued, then the function is said to be holomorphic at that point. An analytic 

function is said to be holomorphic in a domain if it is holomorphic in each point of that domain. These 

definitions apply not just to complex analytic functions but also semi-structured complex analytic 

functions. 

As shown previously, semi-structured complex analytic functions can be used to describe 3-

dimensional potentials and flows in physics and engineering. Beyond this, any 2-dimensional 

engineering problem that uses complex numbers and has a 3-dimensional equivalent that potentially 

has singularities resulting from division by zero, this 3-dimensional equivalent can potentially be 
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assessed using semi-structured complex analytic functions. Singularities in such problems can be 

resolved using the unstructured part of the semi-structured complex analytic function. 

 

7. Conclusion 

It was observed that there was very little literature on the properties of analytic functions made 

up of semi-structured complex variables. Therefore, the aim of this research paper was to use the 

features of semi-structured complex numbers and the characteristics of analytic functions to develop 

the properties and explore the applications of semi-structured complex analytic functions.  

Based on the stated aim, this paper made the following five major contributions: (1) developed 

an extension to the Cauchy–Riemann equations to include three other conditions for a semi-

structured complex function to be analytic in the semi-structured complex 𝑥𝑦𝑧-space; (2) used the 

extension to the Cauchy–Riemann Equations to define a semi-structured complex analytic function 

along the real-imaginary 𝑥𝑦-plane, the real-unstructured 𝑥𝑧-plane, the imaginary-unstructured 𝑦𝑧-

plane and within the semi-structured complex 𝑥𝑦𝑧 -space;  (3) defined sufficient and necessary 

conditions for a semi-structured complex function to be analytic along the real-imaginary 𝑥𝑦-plane, 

the real-unstructured 𝑥𝑧 -plane, the imaginary-unstructured 𝑦𝑧 -plane and within the semi-

structured complex 𝑥𝑦𝑧-space; (4) determined the relationship between semi-structured complex 

analytic functions, Laplace’s Equations and Poisson’s Equations; and, (5) provided a simple example 
where semi-structured complex analytic functions can be used to solve problems in engineering. 

These results provide a firm basis to explore the field of semi-structured complex analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 1. Research conducted on division by zero 

Table A1. Research conducted on division by zero from 2018 to 2022. 

Research Research Aim 

[3–5]  Explores the application of division by zero in calculus and differentiation 

[6] Uses classical logic and Boolean algebra to show the problem of division by zero can 

be solved using today’s mathematics 

[7] Develops an analogue to Pappus Chain theorem with Division by Zero 

[8] This paper proposes that the quantum computation being performed by the cancer 

cell at its most fundamental level is the division by zero. This is the reason for the 

insane multiplication of cancer cells at its most fundamental scale. 

[9] Explores evidence to suggest zero does divide zero 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 December 2023                   doi:10.20944/preprints202312.1403.v1

https://doi.org/10.20944/preprints202312.1403.v1


 15 

 

[10] Considered using division by zero to compare incomparable abstract objects taken 

from two distinct algebraic spaces 

[11] Show recent attempts to divide by zero 

[12] Generalize a problem involving four circles and a triangle and consider some limiting 

cases of the problem by division by zero. 

[13] Paper considers computing probabilities from zero divided by itself 

[14,15] Considers how division by zero is taught on an elementary level 

[16] Develops a method to avoid division by zero in Newton’s Method 

[17] This work attempts to solve division by zero using a new form of optimization called 

Different-level quadratic minimization (DLQM) 

 

Appendix 2. Proof of the extended Cauchy–Riemann Equations for the 𝒙𝒚-plane 

To provide proof of the theorem which states that 𝑓 being semi-structured complex-differentiable 

implies the extended Cauchy-Reiman equations, let us suppose the function 𝑓 is semi-structured 

complex differentiable at some point ℎ𝑥𝑦 . Suppose there exist a derivative 𝑓′(ℎ𝑥𝑦) defined as: 𝑓′(ℎ𝑥𝑦) = lim𝛿ℎ→0

𝑓(ℎ𝑥𝑦 + 𝛿ℎ𝑥𝑦) − 𝑓(ℎ𝑥𝑦)𝛿ℎ𝑥𝑦  (16) 

whose value is independent of the argument that we take for the infinitesimal 𝛿ℎ𝑥𝑦 . If we take this 

to be real, that is, 𝛿ℎ = 𝛿𝑥 ∈ ℝ, the expression for the derivative can be written as: 𝑓′(ℎ𝑥𝑦) = lim𝛿𝑥→0

𝑓(𝑥 + 𝛿𝑥 + 𝑖𝑦) − 𝑓(𝑥 + 𝑖𝑦)𝛿𝑥  

𝑓′(ℎ𝑥𝑦) = lim𝛿𝑥→0

[𝑢(𝑥 + 𝛿𝑥, 𝑦) +  𝑖𝑣(𝑥 + 𝛿𝑥, 𝑦)] − [𝑢(𝑥, 𝑦) +  𝑖𝑣(𝑥, 𝑦)]𝛿𝑥  

𝑓′(ℎ𝑥𝑦) = lim𝛿𝑥→0

[𝑢(𝑥 + 𝛿𝑥, 𝑦) − 𝑢(𝑥, 𝑦)] + 𝑖[𝑣(𝑥 + 𝛿𝑥, 𝑦) − 𝑣(𝑥, 𝑦)]𝛿𝑥  

𝑓′(ℎ𝑥𝑦) = [ lim𝛿𝑥→0

𝑢(𝑥 + 𝛿𝑥, 𝑦) − 𝑢(𝑥, 𝑦)𝛿𝑥 ] + 𝑖 [ lim𝛿𝑥→0

𝑣(𝑥 + 𝛿𝑥, 𝑦) − 𝑣(𝑥, 𝑦)𝛿𝑥 ] 
(17) 

On the last line, the quantities in square brackets are the real partial derivatives of 𝑢 and 𝑣 (with 

respect to 𝑥). Therefore, those partial derivatives are well-defined, and can be simplified to Equation 

(18). 𝑓′(ℎ𝑥𝑦) = 𝜕𝑢𝜕𝑥 + 𝑖 𝜕𝑣𝜕𝑥 (18) 

On the other hand, we could also take an infinitesimal displacement in the imaginary direction, by 

setting 𝛿ℎ = 𝑖𝛿𝑦 ∈ ℝ. Then the expression for the derivative is: 

  𝑓′(ℎ𝑥𝑦) = lim𝛿𝑦→0

𝑓(𝑥+𝑖𝑦+𝑖𝛿𝑦)−𝑓(𝑥+𝑖𝑦)𝑖𝛿𝑦  

𝑓′(ℎ𝑥𝑦) = lim𝛿𝑦→0

[𝑢(𝑥, 𝑦 + 𝑖𝛿𝑦) +  𝑖𝑣(𝑥, 𝑦 + 𝑖𝛿𝑦)] − [𝑢(𝑥, 𝑦) +  𝑖𝑣(𝑥, 𝑦)]𝑖𝛿𝑦  

𝑓′(ℎ𝑥𝑦) = lim𝛿𝑦→0

[𝑢(𝑥, 𝑦 + 𝑖𝛿𝑦) − 𝑢(𝑥, 𝑦)] + 𝑖[𝑣(𝑥, 𝑦 + 𝑖𝛿𝑦) − 𝑣(𝑥, 𝑦)]𝑖𝛿𝑦  

𝑓′(ℎ𝑥𝑦) = [ lim𝛿𝑦→0

𝑢(𝑥, 𝑦 + 𝑖𝛿𝑦) − 𝑢(𝑥, 𝑦)𝑖𝛿𝑦 ] + 𝑖 [ lim𝛿𝑦→0

𝑣(𝑥, 𝑦 + 𝑖𝛿𝑦) − 𝑣(𝑥, 𝑦)𝑖𝛿𝑦 ] (19) 
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On the last line, the quantities in square brackets are the real partial derivatives of 𝑢, 𝑣  (with respect 

to y). Therefore, those partial derivatives are well-defined, and can be simplified to Equation (20).  𝑓′(ℎ𝑥𝑦) = −𝑖 𝜕𝑢𝜕𝑦 + 𝜕𝑣𝜕𝑦 (20) 

Since 𝑓(ℎ) is semi-structured complex differentiable, Equations (18) and Equations (20) must be 

equal so that: 𝜕𝑢𝜕𝑥 + 𝑖 𝜕𝑣𝜕𝑥 = −𝑖 𝜕𝑢𝜕𝑦 + 𝜕𝑣𝜕𝑦 (21) 

Noting that 𝑢, and 𝑣, we can take the real and imaginary parts of the equations separately. This 

yields as a set of real equations as shown Equations (22). 

{  
  𝜕𝑢𝜕𝑥 = 𝜕𝑣𝜕𝑦𝜕𝑣𝜕𝑥 = −𝜕𝑢𝜕𝑦 

(22) 

 

Example of application of Equations (22): 

Problem: Prove that 𝑓(ℎ𝑥𝑦) = 𝑥 + 𝑖𝑦  is semi-structured complex differentiable in along the 𝑥𝑦-plane. 

 

Solution: It is sufficient to show that the function satisfies the Cauchy-Riemann equations for the 𝑥𝑦-

plane. Given the function the partial derivatives of the function are: 𝜕𝑢𝜕𝑥 = 1 
𝜕𝑣𝜕𝑦 = 1 → 𝜕𝑢𝜕𝑥 = 𝜕𝑣𝜕𝑦 𝜕𝑣𝜕𝑥 = 0 
𝜕𝑢𝜕𝑦 = 0 → 𝜕𝑣𝜕𝑥 = −𝜕𝑢𝜕𝑦 

Hence the function 𝑓(ℎ𝑥𝑦) = 𝑥 + 𝑖𝑦 is semi-structured complex differentiable in along the 𝑥𝑦-plane 

since it satisfies the Cauchy-Riemann equations for the 𝑥𝑦-plane.  

 

 

Appendix 3. Proof of the extended Cauchy–Riemann Equations for the 𝒙𝒛-plane 

To provide proof of the theorem which states that 𝑓 being semi-structured complex-differentiable 

implies the extended Cauchy-Reiman equations, let us suppose the function 𝑓 is semi-structured 

complex differentiable at some point ℎ𝑥𝑧. Suppose there exist a derivative 𝑓′(ℎ𝑥𝑧) defined as: 𝑓′(ℎ𝑥𝑧) = lim𝛿ℎ→0

𝑓(ℎ𝑥𝑧 + 𝛿ℎ𝑥𝑧) − 𝑓(ℎ𝑥𝑧)𝛿ℎ𝑥𝑧  (23) 

whose value is independent of the argument that we take for the infinitesimal 𝛿ℎ𝑥𝑧. If we take this 

to be real, that is, 𝛿ℎ𝑥𝑧 = 𝛿𝑥 ∈ ℝ, the expression for the derivative can be written as: 𝑓′(ℎ𝑥𝑧) = lim𝛿𝑥→0

𝑓(𝑥 + 𝛿𝑥 + 𝑝𝑧) − 𝑓(𝑥 + 𝑝𝑧)𝛿𝑥  

𝑓′(ℎ𝑥𝑧) = lim𝛿𝑥→0

[𝑢(𝑥 + 𝛿𝑥, 𝑧) +  𝑝𝑤(𝑥 + 𝛿𝑥, 𝑧)] − [𝑢(𝑥, 𝑧) +  𝑝𝑤(𝑥, 𝑧)]𝛿𝑥  

𝑓′(ℎ𝑥𝑧) = lim𝛿𝑥→0

[𝑢(𝑥 + 𝛿𝑥, 𝑧) − 𝑢(𝑥, 𝑧)] + 𝑝[𝑤(𝑥 + 𝛿𝑥, 𝑧) − 𝑤(𝑥, 𝑧)]𝛿𝑥  

𝑓′(ℎ𝑥𝑧) = [ lim𝛿𝑥→0

𝑢(𝑥 + 𝛿𝑥, 𝑧) − 𝑢(𝑥, 𝑧)𝛿𝑥 ] + 𝑝 [ lim𝛿𝑥→0

𝑣(𝑥 + 𝛿𝑥, 𝑧) − 𝑣(𝑥, 𝑧)𝛿𝑥 ] 
(24) 
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On the last line, the quantities in square brackets are the real partial derivatives of 𝑢 and 𝑤 (with 

respect to 𝑥). Therefore, those partial derivatives are well-defined, and can be simplified to Equation 

(25). 𝑓′(ℎ𝑥𝑦) = 𝜕𝑢𝜕𝑥 + 𝑝 𝜕𝑤𝜕𝑥  (25) 

On the other hand, we could also take an infinitesimal displacement in the imaginary direction, by 

setting 𝛿ℎ = 𝑝𝛿𝑧 ∈ ℝ. Then the expression for the derivative is: 

  𝑓′(ℎ𝑥𝑧) = lim𝛿𝑧→0

𝑓(𝑥+𝑝𝑧+𝑝𝛿𝑧)−𝑓(𝑥+𝑝𝑧)𝑝𝛿𝑧  

𝑓′(ℎ𝑥𝑧) = lim𝛿𝑧→0

[𝑢(𝑥, 𝑧 + 𝑝𝛿𝑧) +  𝑝𝑤(𝑥, 𝑧 + 𝑝𝛿𝑧)] − [𝑢(𝑥, 𝑧) +  𝑝𝑤(𝑥, 𝑧)]𝑖𝛿𝑦  

𝑓′(ℎ𝑥𝑧) = lim𝛿𝑧→0

[𝑢(𝑥, 𝑧 + 𝑝𝛿𝑧) − 𝑢(𝑥, 𝑧)] + 𝑝[𝑤(𝑥, 𝑧 + 𝑝𝛿𝑧) − 𝑤(𝑥, 𝑧)]𝑝𝛿𝑧  

𝑓′(ℎ𝑥𝑧) = [ lim𝛿𝑧→0

𝑢(𝑥, 𝑧 + 𝑝𝛿𝑧) − 𝑢(𝑥, 𝑧)𝑝𝛿𝑧 ] + 𝑝 [ lim𝛿𝑧→0

𝑤(𝑥, 𝑧 + 𝑝𝛿𝑧) − 𝑤(𝑥, 𝑧)𝑝𝛿𝑧 ] (26) 

 

On the last line, the quantities in square brackets are the real partial derivatives of 𝑢 , 𝑤   (with 

respect to y). It is also important to note that 
1𝑝 = −𝑝2𝑝 = −𝑝. Therefore, those partial derivatives are 

well-defined, and can be simplified to Equation (27).  𝑓′(ℎ𝑥𝑧) = −𝑝 𝜕𝑢𝜕𝑧 + 𝜕𝑤𝜕𝑧  (27) 

Since 𝑓(ℎ) is semi-structured complex differentiable, Equations (25) and Equations (27) must be 

equal so that: 𝜕𝑢𝜕𝑥 + 𝑝 𝜕𝑤𝜕𝑥 = −𝑝𝜕𝑢𝜕𝑧 + 𝜕𝑤𝜕𝑧  (28) 

Noting that 𝑢, and 𝑣, we can take the real and imaginary parts of the equations separately. This 

yields as a set of real equations as shown in Equations (29). 

{ 𝜕𝑢𝜕𝑥 = 𝜕𝑤𝜕𝑧𝜕𝑤𝜕𝑥 = −𝜕𝑢𝜕𝑧 
(29) 

Example of application of Equations (29): 

Problem: Prove that 𝑓(ℎ𝑥𝑧) = 1𝑥+𝑝𝑧  is semi-structured complex differentiable in along the 𝑥𝑧-plane. 

Solution: It is sufficient to show that the function satisfies the Cauchy-Riemann equations for the 𝑥𝑧-

plane. Now 𝑓(ℎ𝑥𝑧) = 1𝑥+𝑝𝑧 = 𝑥𝑥2+𝑧2 − 𝑝 𝑧𝑥2+𝑧2  . Given the function the partial derivatives of the 

function are: 𝜕𝑢𝜕𝑥 = −𝑥2 + 𝑧2𝑥2 + 𝑧2  
𝜕𝑤𝜕𝑧 = −𝑥2 + 𝑧2𝑥2 + 𝑧2  → 𝜕𝑢𝜕𝑥 = 𝜕𝑤𝜕𝑧  

𝜕𝑤𝜕𝑥 = 2𝑥𝑧𝑥2 + 𝑧2 
𝜕𝑢𝜕𝑧 = −2𝑥𝑧𝑥2 + 𝑧2 → 𝜕𝑢𝜕𝑦 = −𝜕𝑤𝜕𝑥  

Hence the function 𝑓(ℎ𝑥𝑧) = 1𝑥+𝑝𝑧 is semi-structured complex differentiable in along the 𝑥𝑧-plane 

since it satisfies the Cauchy-Riemann equations for the 𝑥𝑧-plane. 

 

Appendix 4. Proof of the extended Cauchy–Riemann Equations for the 𝒚𝒛-plane 
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To provide proof of the theorem which states that 𝑓 being semi-structured complex-differentiable 

implies the extended Cauchy-Reiman equations, let us suppose the function 𝑓 is semi-structured 

complex differentiable at some point ℎ𝑦𝑧. Suppose there exist a derivative 𝑓′(ℎ𝑦𝑧) defined as: 𝑓′(ℎ𝑦𝑧) = lim𝛿ℎ→0

𝑓(ℎ𝑦𝑧 + 𝛿ℎ𝑦𝑧) − 𝑓(ℎ𝑦𝑧)𝛿ℎ𝑦𝑧  (30) 

whose value is independent of the argument that we take for the infinitesimal 𝛿ℎ𝑦𝑧. If we take this 

to be real, that is, 𝛿ℎ𝑦𝑧 = 𝑖𝛿𝑦 ∈ ℝ, the expression for the derivative can be written as: 𝑓′(ℎ𝑦𝑧) = lim𝛿𝑦→0

𝑓(𝑖𝑦 + 𝑖𝛿𝑦 + 𝑝𝑧) − 𝑓(𝑖𝑦 + 𝑝𝑧)𝑖𝛿𝑦  

𝑓′(ℎ𝑦𝑧) = lim𝛿𝑦→0

[𝑣(𝑦 + 𝑖𝛿𝑦, 𝑧) +  𝑝𝑤(𝑦 + 𝑖𝛿𝑦, 𝑧)] − [𝑣(𝑦, 𝑧) +  𝑝𝑤(𝑥, 𝑧)]𝑖𝛿𝑦  

𝑓′(ℎ𝑦𝑧) = lim𝛿𝑦→0

[𝑣(𝑦 + 𝑖𝛿𝑦, 𝑧) − 𝑣(𝑦, 𝑧)] + 𝑝[𝑤(𝑦 + 𝑖𝛿𝑦, 𝑧) − 𝑤(𝑦, 𝑧)]𝑖𝛿𝑦  

𝑓′(ℎ𝑦𝑧) = 𝑖 [ lim𝛿𝑦→0

𝑣(𝑦 + 𝑖𝛿𝑦, 𝑧) − 𝑣(𝑦, 𝑧)𝑖𝛿𝑦 ] + 𝑝 [ lim𝛿𝑦→0

𝑤(𝑦 + 𝑖𝛿𝑦, 𝑧) − 𝑤(𝑦, 𝑧)𝑖𝛿𝑦 ] (31) 

 

On the last line, the quantities in square brackets are the real partial derivatives of 𝑣 and 𝑤 (with 

respect to 𝑦). Therefore, those partial derivatives are well-defined, and can be simplified to Equation 

(32). 𝑓′(ℎ𝑦𝑧) = 𝜕𝑣𝜕𝑦 + 𝑝𝑖 . 𝜕𝑤𝜕𝑦  (32) 

On the other hand, we could also take an infinitesimal displacement in the imaginary direction, by 

setting 𝛿ℎ = 𝑝𝛿𝑧 ∈ ℝ. Then the expression for the derivative is: 

  𝑓′(ℎ𝑦𝑧) = lim𝛿𝑧→0

𝑓(𝑖𝑦+𝑝𝑧+𝑝𝛿𝑧)−𝑓(𝑖𝑦+𝑝𝑧)𝑝𝛿𝑧  

𝑓′(ℎ𝑦𝑧) = lim𝛿𝑧→0

[𝑣(𝑦, 𝑧 + 𝑝𝛿𝑧) +  𝑝𝑤(𝑦, 𝑧 + 𝑝𝛿𝑧)] − [𝑣(𝑦, 𝑧) +  𝑝𝑤(𝑦, 𝑧)]𝑝𝛿𝑧  

𝑓′(ℎ𝑦𝑧) = lim𝛿𝑧→0

[𝑣(𝑦, 𝑧 + 𝑝𝛿𝑧) − 𝑣(𝑥, 𝑧)] + 𝑝[𝑤(𝑦, 𝑧 + 𝑝𝛿𝑧) − 𝑤(𝑦, 𝑧)]𝑝𝛿𝑧  

𝑓′(ℎ𝑦𝑧) = 𝑖 [ lim𝛿𝑧→0

𝑣(𝑦, 𝑧 + 𝑝𝛿𝑧) − 𝑣(𝑦, 𝑧)𝑝𝛿𝑧 ] + 𝑝 [ lim𝛿𝑧→0

𝑤(𝑦, 𝑧 + 𝑝𝛿𝑧) − 𝑤(𝑦, 𝑧)𝑝𝛿𝑧 ] (33) 

On the last line, the quantities in square brackets are the real partial derivatives of 𝑣 , 𝑤   (with 

respect to 𝑧). It is also important to note that 
𝑖𝑝 = 𝑝𝑖 . Therefore, those partial derivatives are well-

defined, and can be simplified to Equation (34).  𝑓′(ℎ𝑥𝑧) = 𝑝𝑖 . 𝜕𝑣𝜕𝑧 + 𝜕𝑤𝜕𝑧  (34) 

Since 𝑓(ℎ) is semi-structured complex differentiable, Equations (32) and Equations (34) must be 

equal so that: 𝜕𝑣𝜕𝑦 + 𝑝𝑖 . 𝜕𝑤𝜕𝑦 = 𝑝𝑖 . 𝜕𝑣𝜕𝑧 + 𝜕𝑤𝜕𝑧  (35) 

Noting that 𝑢, and 𝑤, we can take the real and imaginary parts of the equations separately. This 

yields as a set of real equations as shown Equations (36). 

{  
  𝜕𝑣𝜕𝑦 = 𝜕𝑤𝜕𝑧𝜕𝑤𝜕𝑦 = 𝜕𝑣𝜕𝑧 

(36) 
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Example of application of Equations (36): 

Problem: Prove that 𝑓(ℎ) = (𝑖 . sin 𝑦 . cos 𝑧 + 𝑝. sin 𝑧 . cos 𝑦)  is semi-structured complex differentiable 

in along the 𝑦𝑧-plane. 

 

Solution: It is sufficient to show that the function satisfies the Cauchy-Riemann equations for the 𝑦𝑧-

plane. Given the function the partial derivatives of the function are: 𝜕𝑣𝜕𝑦 = cos 𝑧 . cos𝑦 
𝜕𝑤𝜕𝑧 = cos 𝑧 . cos 𝑦 → 𝜕𝑣𝜕𝑦 = 𝜕𝑤𝜕𝑧  

𝜕𝑣𝜕𝑧 = − sin 𝑦 . sin 𝑧 
𝜕𝑤𝜕𝑦 = − sin 𝑧 . sin 𝑦 → 𝜕𝑣𝜕𝑧 = 𝜕𝑤𝜕𝑦  

Hence the function 𝑓(ℎ) = (𝑖 . sin 𝑦 . cos 𝑧 + 𝑝. sin 𝑧 . cos 𝑦) is semi-structured complex differentiable 

in along the 𝑥𝑧-plane since it satisfies the Cauchy-Reimann equations for the 𝑦𝑧-plane. 

 

Appendix 5. Proof of the extended Cauchy–Riemann Equations for the 𝒙𝒚𝒛-space 

To provide proof of the theorem which states that 𝑓 being semi-structured complex-differentiable 

implies the extended Cauchy-Reiman equations, let us suppose the function 𝑓 is semi-structured 

complex differentiable at some point ℎ. Suppose there exist a derivative 𝑓′(ℎ) defined as: 𝑓′(ℎ) = lim𝛿ℎ→0

𝑓(ℎ + 𝛿ℎ) − 𝑓(ℎ)𝛿ℎ  (37) 

whose value is independent of the argument that we take for the infinitesimal 𝛿ℎ. If we take this to 

be real, that is, 𝛿ℎ = 𝛿𝑥 ∈ ℝ, the expression for the derivative can be written as: 𝑓′(ℎ) = lim𝛿𝑥→0

𝑓(𝑥 + 𝛿𝑥 + 𝑖𝑦 + 𝑝𝑧) − 𝑓(𝑥 + 𝑖𝑦 + 𝑝𝑧)𝛿𝑥  

𝑓′(ℎ) = lim𝛿𝑥→0

[𝑢(𝑥 + 𝛿𝑥, 𝑦, 𝑧) +  𝑖𝑣(𝑥 + 𝛿𝑥, 𝑦, 𝑧) + 𝑝𝑤(𝑥 + 𝛿𝑥, 𝑦, 𝑧)] − [𝑢(𝑥, 𝑦, 𝑧) +  𝑖𝑣(𝑥, 𝑦, 𝑧) + 𝑝𝑤(𝑥, 𝑦, 𝑧)]𝛿𝑥  

𝑓′(ℎ) = lim𝛿𝑥→0

[𝑢(𝑥 + 𝛿𝑥, 𝑦, 𝑧) − 𝑢(𝑥, 𝑦, 𝑧)] + 𝑖[𝑣(𝑥 + 𝛿𝑥, 𝑦, 𝑧) − 𝑣(𝑥, 𝑦, 𝑧)] + 𝑝[𝑤(𝑥 + 𝛿𝑥, 𝑦, 𝑧) − 𝑤(𝑥, 𝑦, 𝑧)]𝛿𝑥  

𝑓′(ℎ) = [ lim𝛿𝑥→0

𝑢(𝑥 + 𝛿𝑥, 𝑦, 𝑧) − 𝑢(𝑥, 𝑦, 𝑧)𝛿𝑥 ] + 𝑖 [ lim𝛿𝑥→0

𝑣(𝑥 + 𝛿𝑥, 𝑦, 𝑧) − 𝑣(𝑥, 𝑦, 𝑧)𝛿𝑥 ]
+ 𝑝 [ lim𝛿𝑥→0

𝑤(𝑥 + 𝛿𝑥, 𝑦, 𝑧) − 𝑤(𝑥, 𝑦, 𝑧)𝛿𝑥 ] 
(38) 

On the last line, the quantities in square brackets are the real partial derivatives of u, v and w (with 

respect to 𝑥). Therefore, those partial derivatives are well-defined, and can be simplified to Equation 

(39). 𝑓′(ℎ) = 𝜕𝑢𝜕𝑥 + 𝑖 𝜕𝑣𝜕𝑥 + 𝑝 𝜕𝑤𝜕𝑥  (39) 

On the other hand, we could also take an infinitesimal displacement in the imaginary direction, by 

setting 𝛿ℎ = 𝑖𝛿𝑦 ∈ ℝ. Then the expression for the derivative is: 

  𝑓′(ℎ) = lim𝛿𝑦→0

𝑓(𝑥+𝑖𝑦+𝑖𝛿𝑦+𝑝𝑧)−𝑓(𝑥+𝑖𝑦+𝑝𝑧)𝑖𝛿𝑦  

𝑓′(ℎ) = lim𝛿𝑦→0

[𝑢(𝑥, 𝑦 + 𝑖𝛿𝑦, 𝑧) +  𝑖𝑣(𝑥, 𝑦 + 𝑖𝛿𝑦, 𝑧) + 𝑝𝑤(𝑥, 𝑦 + 𝑖𝛿𝑦, 𝑧)] − [𝑢(𝑥, 𝑦, 𝑧) +  𝑖𝑣(𝑥, 𝑦, 𝑧) + 𝑝𝑤(𝑥, 𝑦, 𝑧)]𝑖𝛿𝑦  (40) 
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𝑓′(ℎ) = lim𝛿𝑦→0

[𝑢(𝑥, 𝑦 + 𝑖𝛿𝑦, 𝑧) − 𝑢(𝑥, 𝑦, 𝑧)] + 𝑖[𝑣(𝑥, 𝑦 + 𝑖𝛿𝑦, 𝑧) − 𝑣(𝑥, 𝑦, 𝑧)] + 𝑝[𝑤(𝑥, 𝑦 + 𝑖𝛿𝑦, 𝑧) − 𝑤(𝑥, 𝑦, 𝑧)]𝑖𝛿𝑦  

𝑓′(ℎ) = [ lim𝛿𝑦→0

𝑢(𝑥, 𝑦 + 𝑖𝛿𝑦, 𝑧) − 𝑢(𝑥, 𝑦, 𝑧)𝑖𝛿𝑦 ] + 𝑖 [ lim𝛿𝑦→0

𝑣(𝑥, 𝑦 + 𝑖𝛿𝑦, 𝑧) − 𝑣(𝑥, 𝑦, 𝑧)𝑖𝛿𝑦 ]
+ 𝑝 [ lim𝛿𝑦→0

𝑤(𝑥, 𝑦 + 𝑖𝛿𝑦, 𝑧) − 𝑤(𝑥, 𝑦, 𝑧)𝑖𝛿𝑦 ] 
On the last line, the quantities in square brackets are the real partial derivatives of 𝑢, 𝑣 and 𝑤 (with 

respect to 𝑦). Therefore, those partial derivatives are well-defined, and can be simplified to Equation 

(41).  𝑓′(ℎ) = −𝑖 𝜕𝑢𝜕𝑦 + 𝜕𝑣𝜕𝑦 + 𝑝𝑖 . 𝜕𝑤𝜕𝑦  (41) 

Finally, we could also take an infinitesimal displacement in the imaginary direction, by setting 𝛿ℎ =𝑝𝛿𝑧 ∈ ℝ. Then the expression for the derivative is: 𝑓′(ℎ) = lim𝛿𝑧→0

𝑓(𝑥 + 𝑖𝑦 + 𝑝𝑧 + 𝑝𝛿𝑧) − 𝑓(𝑥 + 𝑖𝑦 + 𝑝𝑧)𝑝𝛿𝑧  

𝑓′(ℎ) = lim𝛿𝑧→0

[𝑢(𝑥, 𝑦, 𝑧 + 𝑝𝛿𝑧) +  𝑖𝑣(𝑥, 𝑦, 𝑧 + 𝑝𝛿𝑧) + 𝑝𝑤(𝑥, 𝑦, 𝑧 + 𝑝𝛿𝑧)] − [𝑢(𝑥, 𝑦, 𝑧) +  𝑖𝑣(𝑥, 𝑦, 𝑧) + 𝑝𝑤(𝑥, 𝑦, 𝑧)]𝑝𝛿𝑧  

𝑓′(ℎ) = lim𝛿𝑧→0

[𝑢(𝑥, 𝑦, 𝑧 + 𝑝𝛿𝑧) − 𝑢(𝑥, 𝑦, 𝑧)] + 𝑖[𝑣(𝑥, 𝑦, 𝑧 + 𝑝𝛿𝑧) − 𝑣(𝑥, 𝑦, 𝑧)] + 𝑝[𝑤(𝑥, 𝑦, 𝑧 + 𝑝𝛿𝑧) − 𝑤(𝑥, 𝑦, 𝑧)]𝑝𝛿𝑧  

𝑓′(ℎ) = [ lim𝛿𝑧→0

𝑢(𝑥, 𝑦, 𝑧 + 𝑝𝛿𝑧) − 𝑢(𝑥, 𝑦, 𝑧)𝑝𝛿𝑧 ] + 𝑖 [ lim𝛿𝑧→0

𝑣(𝑥, 𝑦, 𝑧 + 𝑝𝛿𝑧) − 𝑣(𝑥, 𝑦, 𝑧)𝑝𝛿𝑧 ]
+ 𝑝 [ lim𝛿𝑧→0

𝑤(𝑥, 𝑦, 𝑧 + 𝑝𝛿𝑧) − 𝑤(𝑥, 𝑦, 𝑧)𝑝𝛿𝑧 ] (42) 

On the last line, the quantities in square brackets are the real partial derivatives of u, v and w (with 

respect to y). Therefore, those partial derivatives are well-defined, and can be simplified to Equation 

(43).  𝑓′(ℎ) = −𝑝 𝜕𝑢𝜕𝑧 + 𝑖𝑝 . 𝜕𝑣𝜕𝑧 + 𝜕𝑤𝜕𝑧  (43) 

Since 𝑓(ℎ) is semi-structured complex differentiable, Equations (39), Equations (41) and Equations 

(43) must be equal so that: 𝜕𝑢𝜕𝑥 + 𝑖 𝜕𝑣𝜕𝑥 + 𝑝 𝜕𝑤𝜕𝑥 = −𝑖 𝜕𝑢𝜕𝑦 + 𝜕𝑣𝜕𝑦 + 𝑝𝑖 . 𝜕𝑤𝜕𝑦 = −𝑝𝜕𝑢𝜕𝑧 + 𝑖𝑝 . 𝜕𝑣𝜕𝑧 + 𝜕𝑤𝜕𝑧  (44) 

Noting that 𝑢, 𝑣 and 𝑤 are real functions, and 
𝑝𝑖 = 𝑖𝑝, we can take the real, imaginary, and 

unstructured parts of the equations separately. This yields as a set of real equations as shown 

Equations (45). 

{   
  
   𝜕𝑢𝜕𝑥 = 𝜕𝑣𝜕𝑦 = 𝜕𝑤𝜕𝑧𝜕𝑣𝜕𝑥 = −𝜕𝑢𝜕𝑦𝜕𝑤𝜕𝑥 = −𝜕𝑢𝜕𝑧𝜕𝑤𝜕𝑦 = 𝜕𝑣𝜕𝑧

 

(45) 

 

Example of application of Equations (45): 

Problem: Prove that 𝑓(ℎ) = 𝑒𝑥+𝑖𝑦+𝑝𝑧  is semi-structured complex differentiable in along the 𝑦𝑧-plane. 
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Solution: It is sufficient to show that the function satisfies the Cauchy-Riemann equations for the 𝑥𝑦𝑧-

plane. Firstly, 𝑓(ℎ) = 𝑒𝑥+𝑖𝑦+𝑝𝑧 = 𝑒𝑥. (cos 𝑦 + 𝑖. sin 𝑦). (cos 𝑧 + 𝑝. sin 𝑧)   = 𝑒𝑥. cos 𝑦 . cos 𝑧 + 𝑖𝑒𝑥 . sin 𝑦 . cos 𝑧 + 𝑝𝑒𝑥. cos𝑦 . sin 𝑧   

 

The partial derivatives of the given function are: 𝜕𝑢𝜕𝑥 = 𝑒𝑥 . cos𝑦 . cos 𝑧 
𝜕𝑢𝜕𝑦 = −𝑒𝑥 . sin𝑦 . cos 𝑧 

𝜕𝑢𝜕𝑧 = −𝑒𝑥 . cos𝑦 . sin 𝑧 

𝜕𝑣𝜕𝑥 = 𝑒𝑥. sin 𝑦 . cos 𝑧 
𝜕𝑣𝜕𝑦 = 𝑒𝑥 . cos𝑦 . cos 𝑧 

𝜕𝑣𝜕𝑧 = −𝑒𝑥. sin 𝑦 . sin 𝑧 

𝜕𝑤𝜕𝑥 = 𝑒𝑥. cos 𝑦 . sin 𝑧 
𝜕𝑤𝜕𝑦 = −𝑒𝑥. sin 𝑦 . sin 𝑧 

𝜕𝑤𝜕𝑧 = 𝑒𝑥 . cos𝑦 . cos 𝑧 

 

Clearly from the partial derivatives Equations (45) holds. Hence the function 𝑓(ℎ) = 𝑒𝑥+𝑖𝑦+𝑝𝑧 is semi-

structured complex differentiable in along the 𝑥𝑧 -plane since it satisfies the Cauchy-Reimann 

equations for the 𝑥𝑦𝑧-space. 

 

Appendix 6. Proof of Proposition 5 

Let the function 𝑓(ℎ 𝑥𝑦)  =  𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦)  be analytic in some domain D, then the Cauchy–
Riemann Equations for this function is: 𝜕𝑢𝜕𝑥 = 𝜕𝑣𝜕𝑦 𝑎𝑛𝑑 𝜕𝑢𝜕𝑦 = −𝜕𝑣𝜕𝑥 (46) 

Assume that the second order partial derivatives of 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) exist and are continuous 

functions of 𝑥 and 𝑦, then from Equations (46),  𝜕2𝑢𝜕𝑥2 = 𝜕𝑣𝜕𝑥𝜕𝑦 𝑎𝑛𝑑 𝜕2𝑢𝜕𝑦2 = − 𝜕𝑣𝜕𝑦𝜕𝑥 (47) 

So that  𝜕2𝑢𝜕𝑥2 + 𝜕2𝑢𝜕𝑦2 = 0  (48) 

Similarly, it can be shown that: 𝜕2𝑣𝜕𝑥2 + 𝜕2𝑣𝜕𝑦2 = 0  (49) 

From Equations (48) and (49), it is clear that functions 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) satisfy Laplace’s Equations 
which is of the form given in Equation (50): 𝜕2𝜙𝜕𝑥2 + 𝜕2𝜙𝜕𝑦2 = 0  (50) 

 

Appendix 7. Proof of Proposition 6 

Let the function 𝑓(ℎ 𝑥𝑧)  =  𝑢(𝑥, 𝑧) + 𝑝𝑤(𝑥, 𝑧)  be analytic in some domain D, then the Cauchy–
Riemann Equations for this function is: 𝜕𝑢𝜕𝑥 = 𝜕𝑤𝜕𝑧 𝑎𝑛𝑑 𝜕𝑢𝜕𝑧 = −𝜕𝑤𝜕𝑧  (51) 
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Assume that the second order partial derivatives of 𝑢(𝑥, 𝑧) and 𝑤(𝑥, 𝑧) exist and are continuous 

functions of 𝑥 and 𝑧, then from Equations (51),  𝜕2𝑢𝜕𝑥2 = 𝜕𝑤𝜕𝑥𝜕𝑧 𝑎𝑛𝑑 𝜕2𝑢𝜕𝑧2 = − 𝜕𝑤𝜕𝑧𝜕𝑥 (52) 

So that  𝜕2𝑢𝜕𝑥2 + 𝜕2𝑢𝜕𝑧2 = 0  (53) 

Similarly, it can be shown that: 𝜕2𝑤𝜕𝑥2 + 𝜕2𝑤𝜕𝑧2 = 0  (54) 

From Equations (53) and (54), it is clear that functions 𝑢(𝑥, 𝑧)  and 𝑤(𝑥, 𝑧)  satisfy Laplace’s 
Equations which is of the form given in Equation (55): 𝜕2𝜙𝜕𝑥2 + 𝜕2𝜙𝜕𝑧2 = 0  (55) 

 

Appendix 8. Proof of Proposition 7 

Let the function 𝑓(ℎ 𝑦𝑧)  =  𝑖𝑣(𝑦, 𝑧) + 𝑝𝑤(𝑦, 𝑧)  be analytic in some domain D, then the Cauchy–
Riemann Equations for this function is: 𝜕𝑣𝜕𝑦 = 𝜕𝑤𝜕𝑧 𝑎𝑛𝑑 𝜕𝑣𝜕𝑧 = 𝜕𝑤𝜕𝑦  (56) 

Assume that the second order partial derivatives of 𝑣(𝑦, 𝑧) and 𝑤(𝑦, 𝑧) exist and are continuous 

functions of 𝑦 and 𝑧, then from Equations (56),  𝜕2𝑣𝜕𝑦2 = 𝜕𝑤𝜕𝑦𝜕𝑧 𝑎𝑛𝑑 𝜕2𝑣𝜕𝑧2 = 𝜕𝑤𝜕𝑧𝜕𝑦 (57) 

So that  𝜕2𝑣𝜕𝑦2 + 𝜕2𝑣𝜕𝑧2 = 2
𝜕𝑤𝜕𝑧𝜕𝑦 = 𝜙1   (58) 

Similarly, it can be shown that: 𝜕2𝑤𝜕𝑦2 + 𝜕2𝑤𝜕𝑧2 = 2
𝜕𝑣𝜕𝑧𝜕𝑦 = 𝜙2  (59) 

From Equations (58) and (59), it is clear that functions 𝑣(𝑦, 𝑧)  and 𝑤(𝑦, 𝑧)  satisfy Poisson’s 
Equations which is of the form given in Equation (60): 𝜕2𝜑𝜕𝑥2 + 𝜕2𝜑𝜕𝑧2 = 𝜙  (60) 

 

Appendix 9. Proof of Proposition 8 

Let the function  𝑓(ℎ)  =  𝑢(𝑥, 𝑦, 𝑧) + 𝑖𝑣(𝑥, 𝑦, 𝑧) + 𝑝𝑤(𝑥, 𝑦, 𝑧) be analytic in some domain D, then the 

Cauchy–Riemann Equations for this function is: 𝜕𝑢𝜕𝑥 = 𝜕𝑣𝜕𝑦 = 𝜕𝑤𝜕𝑧 𝑎𝑛𝑑 𝜕𝑢𝜕𝑦 = −𝜕𝑣𝜕𝑥 𝜕𝑢𝜕𝑧 = −𝜕𝑤𝜕𝑥 𝑎𝑛𝑑 𝜕𝑣𝜕𝑧 = 𝜕𝑤𝜕𝑦  

(61) 
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Assume that the second order partial derivatives of 𝑢(𝑥, 𝑦, 𝑧), 𝑣(𝑥, 𝑦, 𝑧) and 𝑤(𝑥, 𝑦, 𝑧)  exist and are 

continuous functions of 𝑥, 𝑦 and 𝑧, then from Equations (61),  𝜕2𝑢𝜕𝑥2 = 𝜕𝑣𝜕𝑥𝜕𝑦 = 𝜕𝑤𝜕𝑥𝜕𝑧 𝑎𝑛𝑑 𝜕2𝑢𝜕𝑦2 = − 𝜕𝑣𝜕𝑦𝜕𝑥 𝑎𝑛𝑑 𝜕2𝑢𝜕𝑧2 = − 𝜕𝑤𝜕𝑧𝜕𝑥 (62) 

So that  𝜕2𝑢𝜕𝑥2 + 𝜕2𝑢𝜕𝑦2 + 𝜕2𝑢𝜕𝑧2 = 𝜕𝑤𝜕𝑥𝜕𝑧 − 𝜕𝑣𝜕𝑦𝜕𝑥 − 𝜕𝑤𝜕𝑧𝜕𝑥 = − 𝜕𝑣𝜕𝑦𝜕𝑥 = 𝜙3   (63) 

Similarly, it can be shown that: 𝜕2𝑣𝜕𝑥2 + 𝜕2𝑣𝜕𝑦2 + 𝜕2𝑣𝜕𝑧2 = − 𝜕𝑢𝜕𝑥𝜕𝑦 + 𝜕𝑢𝜕𝑦𝜕𝑥 + 𝜕𝑤𝜕𝑧𝜕𝑦 = 𝜕𝑤𝜕𝑧𝜕𝑦 = 𝜙4  
 

(64) 

𝜕2𝑤𝜕𝑥2 + 𝜕2𝑤𝜕𝑦2 + 𝜕2𝑤𝜕𝑧2 = − 𝜕𝑢𝜕𝑥𝜕𝑧 + 𝜕𝑣𝜕𝑦𝜕𝑧 + 𝜕𝑢𝜕𝑧𝜕𝑥 = 𝜕𝑣𝜕𝑦𝜕𝑧 = 𝜙5 (65) 

From Equations (64) and (65), it is clear that functions 𝑢(𝑥, 𝑦, 𝑧), 𝑣(𝑥, 𝑦, 𝑧) and 𝑤(𝑥, 𝑦, 𝑧) satisfy 

Poisson’s Equations which is of the form given in Equation (66): 𝜕2𝜑𝜕𝑥2 + 𝜕2𝜑𝜕𝑦2 + 𝜕2𝜑𝜕𝑧2 = 𝜙  (66) 
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