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Abstract: Optimal operation of petroleum production is important in a transition from energy
systems based on fossil fuel to sustainable systems. One sub-process in petroleum production deals
with transport from the (subsea) well-bore to a topside separator. A simple model in Sharma and
Glemmestad [1] of Electric Submersible Pump [ESP] lifted production was previously streamlined
into a dynamic model suitable for illustration of the dynamics of oil transport, as well for control
studies, with some comparison of two popular modeling languages: Modelica, and ModelingToolkit
for Julia, Lie [2]. Here, the discussion on dimensionless equipment models goes into more detail,
and the comparison between Modelica and ModelingToolkit is significantly expanded upon with
code comparison, numerical performance, and more experiments. Some added possibilities with
ModelingToolkit and Julia wrt. sensitivity analysis and control design is included.

Keywords: oil production; ESP lift; dimensionless model; dynamic model; simulation tool; modelica;
ModelingToolkit

1. Introduction

1.1. Background

Petroleum products have been key energy carriers for more than a century. Current focus on
climate! implies a change towards sustainable energy carriers. To succeed in this change, a transition
period from the use of fossil fuel is necessary. In the transition, improved operation of petroleum
production through model based optimal operation will be necessary. Petroleum production entails
slow (reservoir; months) and fast (reservoir-to-separator; seconds) subsystems; this is a focus of
on-going research project “DigiWell”2. Vertical transport of petroleum from oil well to surface requires
sufficient pressure to counteract gravitational and friction forces. If the oil-well heel pressure is
insufficient for such transport, either (i) gas is injected in the vertical pipe to “blow” the petroleum
fluids to the surface [“gas lifted”], or (ii) an Electric Submersible Pump [ESP] is installed in the vertical
pipe to increase the pressure [“ESP lifted”] sufficiently. Here, the focus is on the dynamics of transport
from the reservoir formation to a surface manifold via an ESP, and further horizontal transport from
the manifold to a separator.

Industrial simulation tools typically put main emphasis on the dynamics of the reservoir (time
constant: months) and use steady state models for the reservoir-to-surface transport. This emphasis
is inadequate for daily operation and control. Here, a simplified, yet complete, dynamic model for
oil transport from reservoir to separator is discussed. The model provides an understanding of the
dynamic behavior of such systems, and is suitable for industrial control design, as well as for control
and petroleum production studies. Emphasis is put on a simple, yet stringent model development,
while avoiding variable unit complexities.

1
2

https:/ /sdgs.un.org/goals
DigiWell: see Funding.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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1.2. Previous work

Sharma and Glemmestad [1] (see also Sharma [3]) provide a dynamic model of oil transport from
reservoir to separator suitable for control design. Binder et al. [4] discuss an older model; other models
typically are CFD models, which are too complex for control design.

Sharma’s model considers a case with 4 vertical pipes from oil reservoirs to a single manifold,
with 2 horizontal pipes from the manifold to a single separator. Each vertical pipe has an ESP and a
choke valve at a common manifold entrance; the pump speeds can be manipulated individually. The
horizontal pipes have booster pumps to counteract friction effects. The original ESP model includes
induction motors, but the dynamics of the pump actuator is fast, and is neglected in later work. Sharma
and Glemmestad [1] provide a novel ESP model, a simple model for a booster pump, and use a valve
model based on on the ANSI/ISA S75.01 standard?®. The model in Sharma and Glemmestad [1] was
re-structured and simplified in Lie [2], emphasizing dimensionless equipment models, and thereby
eliminating some level of complexity in common industry models.

The model with ESP in Sharma and Glemmestad [1] is mainly relevant for the production of
heavy oil. Several papers use this model in advanced industrial control studies, Krishnamoorthy et al.
[5], Delou et al. [6], Santana et al. [7].

Mixtures of liquid oil and water form an emulsion when stirred (e.g., in a multi-stage ESP); for such
emulsions, the viscosity — and hence the friction — varies dramatically with water content, Justiniano
and Romero [8]. Sharma and Glemmestad [1] assume an unrealistic linear viscosity dependence on
water fraction.

1.3. Structure of paper

Section 2 gives an overview of the transport system from oil reservoir via manifold to a separator,
and key equipment models. Section 3 develops a simple mechanistic model of the system. Section 4
contrasts two modeling languages for simulation: Modelica and Julia’s ModelingToolkit. Section 5
illustrates model behavior and the use of modeling/simulation tools for analysis and control. Finally,
Section 6 provides some conclusions.

2. System description

Production of a mixture of water and crude oil in liquid phase is considered, where evaporation
of liquids is assumed negligible.

2.1. System topology

Oil production systems merge several boreholes from the same or different reservoirs through
vertical pipes into a manifold. Normally, more than one horizontal transport pipe is needed from the
manifold to a separator for sufficient transport capacity. Water is commonly injected into the manifold
to reduce friction loss in the horizontal pipes; the added water is typically recycled from the separator,
and is at close to production temperature. Figure 1 shows a system with n,, wells/vertical pipes via a
common manifold to n; transportation/horizontal pipes leading to the separator.

3 nttp://integrated.cc/cse/ISA_750101_SPBd.pdf
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Figure 1. Multiple well system with n,, wells — possibly coming from different reservoirs, and
transport pipes to the separator; from Lie [2] and based on Sharma and Glemmestad [1].

In Figure 1, pi is formation pressure for well j, p{1 is bore-hole heel pressure, V}]; is volumetric heel
flow rate, Ay is vertical cross sectional area below the ESP pump, £, 7 is the length of the vertical
pipe below the ESP pump, p};] is inlet pressure to the (ESP) pump, pf,’] is effluent pressure after the
(ESP) pump, AJ is vertical cross sectional area above the ESP pump, 037 is the length of the vertical
pipe above the ESP pump, V¢’ is volumetric flow rate at the inlet to the choke valve, p¢’ is pressure at

the inlet to the choke valve, pg’] is pressure at the effluent from the choke valve. Next, pn is manifold
pressure, while V;, is water added to the manifold to reduce viscosity. At the outlet from the manifold,
pg;) is the influent pressure to the booster pump (BP), pi’}]) is effluent pressure after the booster pump,

V! is volumetric flow rate in a transport pipe from manifold to separator, pis’] is pressure at the inlet to
the valve into the separator, and ps’ = pj is the separator pressure.
For simplicity, it is assumed that A, ” = AY7 = A,. All vertical pipes are assumed connected

to the same manifold pressure pm; hence effluent choke pressure satisfies pg’j = pS = pm forall j. The

influent pressure to the booster pumps, pgi) are all assumed to be equal to the outlet pressure from the

manifold, and have the same value, Pt; = p{)p = pm. Likewise, all transport pipes end up in the same

separator: pg’j = ps for all j.

2.2. Fluid properties

The petroleum fluid properties are important. Density p varies with pressure p and temperature

T, o (p, T). Neglecting temperature dependence, and assuming constant isothermal compressibility Br,*
o (p) is given as

p = poexp (Br (p — po)) @

4 Isothermal compressibility is the inverse of bulk modulus.
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where (pg, po) is some reference state.
Defining water cut Xy as xw = Vi /V: volumetric flow rate of water divided by total flow rate of
the fluid, total density p can be expressed as

0 = XwPw + (1 — xw) Po; ()

here, pw and p, are constant densities of pure water and crude oil, respectively.

In reality, water and crude oil have different isothermal compressibilities. Here, we simplify
and assume an overall value for B1. Using data in Appendix A1, density p varies ca. 10 kg/m? with
pressure variation in the range 25-225 bar, Figure 2.

Variation in liquid density with pressure

e p(p)
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1 1 1 1
50 100 150 200
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Figure 2. Typical variation in density for production fluid in the pressure range of interest.

We thus assume constant density in pipes, but a pressure-dependent density will be assumed in
the manifold.

Sharma and Glemmestad [1] propose a simple linear mixing rule for kinematic viscosity v:

V= Xwlw + (1 - Xw) Vo- 3)

With v known, dynamic viscosity p can be computed (if needed) as

u=vp.

The linear interpolation model of Eq. 3 is used here to ease comparison with results in Sharma and
Glemmestad [1], even though it is not physically realistic [8].

2.3. Well-bore production

Total production from the reservoir (formation pressure p¢) relates volumetric petroleum fluid
rate V;, at the well-bore heel as V},  p; — py,, where py, is heel pressure and the proportionality constant
Cpi is the productivity index,

Vi = Cpi - (Pt — Pn)
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Cpi is unit-dependent. Here, we instead propose a dimensionless form,
. . f —_ h
V= Ve PP 4)
ppi

where Vlgi is the productivity index capacity in the same unit as V4,, and Pf)i is scaling pressure with the
same unit as pg, p,.

2.4. Pump models

Electric Submersible Pump

Pump models are often given as

App = pghp; ®)
here, hp, = hp (V, fp) is pump head with volumetric flow rate V and control input f, — rotational
pump frequency Hz.

Sharma and Glemmestad [1] provide values for minimal, maximal, and best-efficiency-point flow
rates,

Vmin _ f7p ( 6)

Vmin,O f p.0

'Vmax — f7p (7)

Vmax,O f p.0

Vi _ S
L == (8)
Vr],O f p.0

In Sharma and Glemmestad [1], a comprehensive model for the pump head of a multi-stage ESP is
developed. To ease change of units, their model is here rewritten in dimensionless form

- 2 2-j v\
ho (V.fo) ([ fo 3 fo vy
. — +) aj | = e ) )
p.0 Jfpo j=1 foo 4
In Eq. 9, hp 0 is a nominal scaling head, f;, is the pump rotational frequency in the same unit as that
of the nominal rotational frequency fy,0, V is the actual volumetric flow rate out of the pump, V¢ a
scaling flow rate, and ay, . . ., a3 are dimensionless model parametersS. Sharma and Glemmestad [1]

include a head curve plot; the result in Figure 3 based on a dimensionless model is identical to their
plot.

5 Here, a;j is dimensionless, while in Sharma [3] his parameters a; have dimensions. This implies that the values of a; here are
different from those of 4; in Sharma and Glemmestad [1].
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head curve for different pump speeds
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Figure 3. ESP Pump head in ft as a function of volumetric flow rate in bbl/d for selected pump speeds.
Lower, best-efficiency-point, and maximum flow rates are indicated.

In addition, Sharma and Glemmestad [1] provide a model for the mechanical power requirement
WE = Wi (V, f,,) for operating the pump®, again rewritten in dimensionless form,

P

In Eq. 10, Wg/‘o is a nominal scaling power consumption to operate the pump, by,...,bs are
dimensionless model parameters, while f, and V are as above.
The actual power added to the fluid is

Wy = AppV, (11)

which gives the efficiency as
W, AppV
=B ="TE (12)
p p

where it is assumed that Wp and Wg‘ have the same units. Sharma and Glemmestad [1] include an
efficiency curve plot; the result in Figure 4 based on a dimensionless model is identical to their plot.

6 “Brake Horse Power”, BHP, in the original publication.
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efficiency curve for different pump speeds
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Figure 4. ESP Pump efficiency curve as a function of volumetric flow rate in bbl/d for selected pump
speeds. Best-efficiency-point flow rates are indicated, and they match the peaks in the 17 (V; fp) plots.

Booster pump

For the booster pump in horizontal pipes, a simpler model is suggested in Sharma and Glemmestad
[1], rewritten in dimensionless form as

Apop (fop) _ ( fop )2 -

A p bp,0 f bp,0

Here, Apy, ( fbp) is the pressure increase at the given pump frequency/speed fpp, in the same unit as
Appp,0 — which is the pressure increase at the nominal pump frequency fp,, o

Pump control input

In reality, the pump speed (fp, fpp) is not a control input. Instead, a motor is used to control the
torque applied to the aggregate of motor and pump.

In Sharma [3], a model of the induction motor driving the ESP is developed. The experience [3] is
that the motor dynamics is much faster than that of the mechanical system; hence in most of his work,
Sharma [3] neglects the motor dynamics. However, it is not clear whether Sharma [3] considers the
mechanical dynamics of accelerating the pump itself. This dynamics would be described by the kinetic
energy balance in rotational form (the “swing equation”), which can be written as

dK .
T - Wg
with kinetic energy K
L
K= E] twp/

Ji is the total moment of inertia for the pump, the motor, and a possible flywheel, while P, is the input
power from the motor (control input), and WPI,“ is as in Eq. 10.

In Sharma [3], the moment of inertia is approximately given as | ~ 71kg m?. It is not clear
whether this is the motor moment of inertia or the total moment of inertia. However, using such a
moment of inertia leads to a pump time constant which is still much faster than the dynamics of the
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flow V4, etc., hence the pump/motor dynamics is neglected here, and for simplicity, it is assumed that
fp is a control input.

2.5. Valve models

Sharma and Glemmestad [1] base their valve models on the ANSI/ISA S75.01 standard’. Here,
instead a dimensionless description is proposed with extension to a control input,

. pi [ (pi—pe) /p*
— i f (uy) EL AL Pe) TP 14
it = it f(u)pe PG (14)

where 11§ is the valve mass flow rate capacity, uy € [0,1] is the valve control signal, f : [0,1] — [0,1] is
the valve characteristics, p;, pe are influent and effluent densities, respectively, pi, pe are influent and
effluent pressures, respectively, while p°, p* are scaling density and pressure, respectively.

2.6. Friction loss

The friction drop along the pipe can be given by the Darcy-Weisbach model® as
A
' =f5p (15)

where fp is Darcy’s friction factor given by Colebrook’s’ implicit expression. One explicit approximation
to Colebrook’s expression is due to Swamee and Jain [9],

1 574 €/D
=_-2.1 -4 = 1
= 0810 (ngf +3% ) , (16)
where Ng, is the Reynolds number,
__pvD oD
Nre = B2 = =5 17)

 is dynamic viscosity, v is kinematic viscosity, and e is the “roughness height” of the pipe internal
surface. Linear velocity v is related to volumetric flow rate V by

V=0A (18)
where A is the cross-sectional area of the pipe.

2.7. Why dimensionless models?

Example: ESP pump model
As a first example, consider the ESP model in Eq. 9. In the original formulation in Sharma and
Glemmestad [1],10
_ f p.0

fp fp 2
hy, =adg=——+a V+aVe+ a3~V (19)
P fp, 1pr fP

7 nhttp://integrated.cc/cse/ISA_750101_SPBd.pdf

8 E.g., https://en.wikipedia.org/wiki/ Darcy%E2%80%93Weisbach_equation
The Colebrook equation, or sometimes known as the Colebrook-White equation.
Slight change in notation.
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where parameters a; have rather complicated units and the equation is hard-coded to assume!!

[V] = gal/min, while [hp] = ft. In practice, either the rest of the model has to be posed using these
units, or one has to operate with several copies of variables, e.g., Vg, and V, and remember to
correctly convert between these versions of the flow rate. Both of these approaches are error-prone,
and also require several versions of variables.

A much better solution is to write the model in dimensionless form. The simplest way to do this
for the model in Eq. 19, is as

hh;— ;;IT +a;;povg~l—a2( )+ j}l’)( ) (20)

If we choose hp o = 1ftand V¢ = 1gal/min, then dj = a;. Suppose we want to generate the plot in
Figure 3. Because that figure plots &, in ft (the “native” unit), while the flow rate V' is given in bbl/d
(“native” unit is gal/min), this result is produced by choosing V¢ = 1 gal/min = 34.29bbl/d, which
can easily be found using the WolframAlpha app'?, Figure 5.

= WolframAlpha

@ a 1 gal/min in bbl/d

Assuming barrels of oil per day for "bbl/d"...

Assuming gallons per minute for “gal/min"...

convert 1 gal/min (gallon per minute) to barrels of oil per day

34.29 bbloilid (barrels of oil per day
Figure 5. Converting scaling flow rate V¢ from 1 gal/min to bbl/d.

In practice, it may be better to choose a more natural scaling unit, e.g., SI units. In that case,
it is necessary to change parameters aj; for the parameters in Eq. 9, the scaling parameters are in
SI units, where aj — aj and aj is given in Table A2. To find aj, choose hp,O = 1ft = 0.3048m,
V¢ = 1gal/min = 6.309 - 10> m?/s, and write Eq. 20 as

hP~ _fe 4 Jo g +”7?2V2 a3 prV3
hpollo — fpo AV foo a (V) i (ve)® fo
e Vead —~ ————r H/—/

—hpo “ a a3

11
12

With quantity x, [x] is the unit of the quantity.
E.g., Microsoft Store
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where the new hp,O is given in unit m, 41, ap, a3 are the new, dimensionless parameters in Eq. 9, while
new scaling flow rate — VS = 1 m3/s. With this modified correlation (a1,...,a3) for hp using SI units,
the dimensionless form is as in Eq. 9.

Example: control valve

The ANSI/ISA S75.01 standard?? for compressible (i.e., i = e = 1i1, p; # Pe), non-choked fluids
without fitting is
C= _m (21)

Here, C is the valve coefficient, 1 is the mass flow rate through the valve, p; is the influent density, pe
is the effluent density, p; is the influent pressure, pe is the effluent pressure, Nj is used to handle unit
conversion. Typically, tabular values for Ny are given which are valid for different combinations of
units for 11, p, and p. This makes change of units rather complicated. A dimensionless formulation as
in Eq. 14 greatly simplifies the use of the valve model in different units, and also includes a control
valve characteristic.

3. Dynamic model

3.1. Balance laws

The model is based on the total mass balance (manifold) and the linear momentum balance (pipes).

The total mass balance is expressed as
dm

dr
where m is accumulated mass in the system, ¢ is time, 11 is mass flow rate, and indices (i, e) denote
influent and effluent, respectively.
The linear momentum balance is

= 1i1y — Hile (22)

dm

< = Wi e+ F, (23)

where m is linear momentum given as m = mv with linear velocity v, 11 is momentum flow rate given
as m = ri1v, and F is total force. With constant fluid density, m; = ., and the momentum balance
reduces to Newton’'s law, %—T =F.

3.2. Vertical pipes with ESP

We assume constant density in the pipes, causing volumetric vertical flow rate V, to be the same
everywhere: V, = V! = V,. Furthermore, Eq. 23 reduces to Newton’s law. Momentum is given as
m = 7w with 1i1 = pVy, and v related to V; by Eq. 18. The total force is F = F, + F, — Ff — Fy, with

* Pressure forces at inlet and outlet of the pipe,
Fp = phA = peA (24)
¢ Possible pressure boost due to a pump,
F, = AppA, (25)

with Ap,, given by Egs. 5, 9,

13 http://integrated.cc/cse/ISA_750101_SPBd.pdf
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¢ Friction loss,
Fr = ApsA, (26)
with Apy given by Egs. 15, 16, 17, 18,
¢ Flow against gravity, with a vertical height #,
Fy = ApgA, (27)
with
Apg = pvgh. (28)

In addition, we need information about how flow rate Vy relates to the bottom hole pressure via the
productivity index, Eq. 4, and how the flow rate V4 relates to the choke valve flow, Eq. 14.

The most structured formulation would be to pose the momentum balance (here: Newton’s law)
as the differential equation, and add all necessary algebraic equations. However, the OpenModelica
DAE solver struggles with such a formulation: the valve equation Eq. 14 is implicit in pressure
difference; in the iteration to find Apy = p; — pe, if Apy becomes negative, the square root gives a
complex number, and the simulation crashes.!® Instead, the differential variable has been changed to
V,; then the valve equation can be inverted and expressed as Apy « V2.

The following formulation is used in OpenModelica and ModelingToolkit:

dVe _ pn—pi+Bpp — Aps— Apg

dt ovl/ A (29)
P = Xwpw + (1= Xw) Po (30)
V= xwlw + (1 = xw) Vo (31)
= ppv (32)
ov = pYexp (Br (vt —1})) (33)
vy
Ph =Pt~ Ppive (34)
pi
ity = py Vy (35)
. 2
c_ ¢Pv [Ty 1
b — oo (fp>2+a1fp‘:’v (37)
P P fp,O fp,O Ve
. 2 . 3
Vy fp,o Vy
() +o fo (%) )
App = pvghp (38)

14 Tt was not tested whether ModelingToolkit can handle this implicit algebraic equation.
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Ve
Nge = 2 (40)

Vv

1
f I\S = 2 (41)
. v/ dy
4 (logw (15\[1(%7? + 63{7 ))
Ape= - e % (42)
2 d,

Apg = pvgh. (43)

If we only consider the model of a single vertical pipe, we need to specify (i) initial state (e.g., V), (ii)
all “input” variables, i.e., pg, fp, pPm, and possibly water cut x., and (iii) all parameters, i.e., pw, o, Vw,
UO’ p%’ g’ A’ pfn’ VPS]’ p\gf’ p‘g” mS/'/ hp,Or fp,Ol Vg/ al,ﬂz, a3/ g/ dV/ Vy, €y, h

3.3. Manifold

We assume a perfectly mixed manifold. Assuming constant manifold volume Vy,, and adding
water at flow rate Vi, to dilute the fluid to a specified manifold water cut Y, thus reducing friction
loss in the pipe towards separator, V;, must be approximately

m
Viy = 1W—7X$VV' (44)

Total mass balance for the manifold can then be expressed as

dpm _ 1 . . .
dt = prVpr PV oV~ pmWA) (45)
0% = xwow + (1= W) o (46)
om = pjexp (Br (pm—1})) (47)
; W~ Xw i
Vy = K —Xw 48

In practice, the water cut xw and flow rate V are not known perfectly, and it is necessary to use a
feedback control system to manipulate Vi instead of using Eq. 44.

For the manifold model, we must know (i) the initial manifold pressure, (ii) the vertical inflow V4
and the horizontal transport flow Vi from manifold to separator, as well as manifold water cut x5y, and
(iii) parameters.

3.4. Transport pipe

For simplicity, we will neglect the separator inlet valve, and assume that pis’j = ps. Itis
straightforward to reverse this assumption.

The model of the horizontal pipe from manifold to separator is almost identical to the vertical
pipe from reservoir to manifold. The essential differences are (i) no gravity pressure drop, (ii) simpler
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booster pump model, (iii) neglecting pressure drop from pipe into separator, (iv) no need for a
production index model. The complete model is

AV Pm — ps + Appp — Ap

-t 49
dt Ptgt/At ( )
Pyt = Xwpw + (1= 1) po (50)
ve = xwvw + (1 — x0) o (51)
Pt = P?;’tl/t (52)
pe = pfexp (Br (pm—1}) ) (53)
2
fbp

A =A -— 54
Pop Pop,0 ( fbp,O (54)

_V
Oy = At (55)

vid
NRet = —— (56)

Vt

" 1
fD = 2 (57)
4 (10g10 <5g7§t + eé@))
2
Pt 0

App =t fy 5 (58)

Again, we need to know the initial condition of the differential variable (V;), the inputs (2, fops Pm,
ps), and the parameters.

3.5. Combined model

For illustration, we use two vertical pipes, one manifold, and one horizontal transport pipe
from manifold to separator; Sharma and Glemmestad [1] use 4 vertical pipes, one manifold, and two
horizontal transport pipes. Both Modelica and Julia’s ModelingToolkit have support for building
classes/reusable models. Because of the similarity between the models for vertical and horizontal
pipes, it would be possible to collect these in the same class/constructor and just differentiate between
them with a function argument. The manifold model should be a separate class, though.

With re-usability of such classes/constructors, modeling of the combined system simply consists
of (i) instantiating one model per unit (2 vertical pipes, one horizontal transport pipe, and the manifold),
and (ii) connecting the various instances. Specifically, the vertical pipes should see the same manifold
pressure pn, the vertical transport pipe should have the same inlet pressure as the manifold pressure
Pm, the influent volumetric flows to the manifold should be the sum of the flows from the vertical
pipes and the viscosity diluting water feed Vi, now being

P (0 ) Ve 9
1—xw

Vi =

the effluent volumetric flow from the manifold is still V4.
For a proper re-usable implementation, connections should be done using connectors (supported
by both Modelica and ModelingToolkit). Connectors are not implemented here.

4. Simulation tools

Modelica is a mature language dating back to the 1990s; ModelingToolkit [MTK] is some 4-5
years old and is still evolving rapidly. MTK is more general than Modelica, and is also integrated in
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the larger eco-system of Julia. Currently, MTK does not support a graphical flow-sheeting tool, and
it is unclear whether MTK allows for as large models as OpenModelica. Both tools have extensive
support for building libraries.

The combined model has been solved using the free languages/tools OpenModelica [10,11] and
ModelingToolkit [12] for Julia. To illustrate the similarity between OpenModelica code and a current
formulation using ModelingToolkit, the following listing shows parts of the Modelica code for the
reservoir heel-to—manifold; to save space, description of quantities is only included for constant 7 to
illustrate how it is done:
model Reservoir_2_Manifold

// Model of Reservoir-to-Manifold

;; Model constants

constant Real PI = 3.151592654 "pi";
constant Real g = 9.81;

// Model parameters
parameter Real ell_m = 100;
parameter Real ell_p = 2000;

// Initial state parameters
parameter Real Vd_v0 = 23.15e-3;
//

// Declaring variables

// -- differential variables
Real Vd_v(start = Vd_v0, fixed = true);
// -- depending on inputs

Real rho_beta_0;

Real p_c__i;
Real p_h;

// -- input variables
input Real p_f;

// Equations constituting the model

equation

// Balance equations

der(Vd_v) = A*(p_h - p_c__i + Dp_p - Dp_f - rho_v*g+*h)/(rho_v*ell);
// Algebraic equations

// -- depending on inputs
rho_beta_0 = chi_w*rho_w + (l1-chi_w)*rho_o;
//

end Reservoir_2_Manifold;

Next, the following listing shows similar parts of the ModelingToolkit code for the reservoir
heel-to-manifold:

# Reservoir-to-manifold pipe
@mtkmodel Reservoir_2_Manifold begin
# Model of Reserwoir-to-Manifold
#
# Model "constants" and parameters
@parameters begin
# -- constants
PI=3.141592654 , [description="pi"]
g=9.81

# -- parameters
ell_m=100
ell_p=2_000
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end
# Dependent wvartiables
@variables begin

# -- differential wariable
Vd_v(t)=23.15e-3
# -- algebraic wvariables

rho_beta_0(t)

p_c__i(t)=58.5e5
p_h(t)

end
# Equations
@equations begin
# Balance equation
Dt(Vd_v) ~ Ax(p_h - p_c__i + Dp_p - Dp_f - rho_v*gxh)/(rho_v*ell)
# Algebraic equations
# -- depending on inputs
rho_beta_0 ~ chi_w*rho_w + (l1-chi_w)x*rho_o

end
end

These listings show that Modelica code and ModelingToolkit code have a high degree of similarity.
A few things to note:

1. In Modelica, the independent temporal variable has a fixed name (time), and the time
differentiation operator has a fixed name (der). In ModelingToolkit, both of these can be freely
named by the user. In order to make unit models work together (e.g., in a standard library), it is,
however, necessary to standardize on a name for time (commonly t); differentiation can be given
a name as, e.g., Dt = Differential(t) or similar.

2. In Modelica, quantities need to be specified with a type (e.g., Real), and are prepended with a
qualifier (e.g., constant, parameter) — except for variables. For Julia and ModelingToolkit, the data
type is inferred, unless explicitly stated. In the code above, quantities in MTK are grouped within
begin. . .end blocks in macros (identifiers prepended by ¢, e.g., @parameters).

3. Modelica has a simple way to handle implicit algebraic equations, and in many cases an initial
guess of the algebraic variable is not required (see variable p_c__i in the Modelica code). In
ModelingToolkit, initial values for unknowns after structural simplification (“states”) must be
provided with numeric values (see variable p_c__i in the MTK code).

4. In ModelingToolkit, initial values of differential variables can be changed outside of the code,
hence default values can be written as Vd_v(t)=23.15e-3. In Modelica, only parameters can be
changed outside of the code (after compilation), hence a parameter has been defined to hold the
default initial value Vd_v(start = Vd_v0, fixed = true.

5. Modelica uses symbol = for mathematical equality; MTK uses symbol ~ since Julia already uses
symbol = for assignment.

The default solver in OpenModelica is excellent, although here it struggled if the model is posed
as a DAE formulation with momentum as differential variable. ModelingToolkit can use solvers from
the large, high quality DifferentialEquations.jl package [13]. With ModelingToolkit, more thought
is currently required when choosing solver, accuracies, etc., compared to OpenModelica. Also,
OpenModelica handles step-changes in inputs well, while for the DifferentialEquations.jl solvers,
it is often necessary to specify the time points where step changes occur. On the other hand, the
solutions from ModelingToolkit include interpolation functions, which yields smooth solutions with
considerably fewer data points than for Modelica.

Results presented in Section 5 compare numerical solutions for the Reservoir heel-to-Manifold
system for ModelingToolkit vs. OpenModelica.
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OpenModelica’s support for linearization and plotting can be accessed from Julia via the OM]Julia
API [14]. ModelingToolkit is integrated in the Julia eco-system, with support for linearization, plotting,
control systems analysis, random variables, etc., and has overall more possibilities that OpenModelica
if further analysis is required.

OpenModelica is currently reported to handle models up to approximately 10°
variables/equations; various conference presentations indicate that ModelingToolkit currently
can solve models of up to approximately 10° variables/equations.’> The model above
(Reservoir_2_Manifold) is reported by OpenModelica to have 15 variables (differential+algebraic) and
15 equations. In ModelingToolkit, linear equations with “observed” variables are stripped off from the
model (function structural_simplify()) before solving the model. The above Reservoir_2_Manifold
model in the listing is reported to have 2 “states” and 2 equations by ModelingToolkit. It is not
clear whether the ModelingToolkit claim of 10° variables/equations is before or after the “observed”
variables are stripped off.

Other commonly used languages for scientific computing are MATLAB (commercial) and Python
(free). Compared to both of these languages, Julia (free) has a more extensive set of differential equation
solvers'®. Neither MATLAB nor Python offer equation based modeling languages with library /re-use
support such as Modelica or ModelingToolkit; MathWorks do offer Simscape!” (commercial) with
MATLAB integration for such use, though.

5. Results

5.1. Reservoir heel to manifold

Parameters, initial conditions, and system inputs are given in Appendix A. Figure 6 shows the
input variation for the Reservoir heel-to-manifold (R2M) case.

R2M: Inputs
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manifold pressure, bar
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pump speed, Hz
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Figure 6. Input variation in experiment.

A step change in the formation pressure (red curve) as in Figure 6 is not very realistic; such
changes are normally slow. The manifold pressure (blue curve) is not normally an input function,

15 On-going work on a JuliaSimCompiler.jl for a commercial extension of Julia will increase the possible system size.

16 Julia’s DifferentialEquations.jl package can be accessed from Python and R.
17" https:/ /se.mathworks.com/products/simscape.html
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but rather a dependent variable in the overall system as in Section 5.2, and thus also normally varies
slowly. The pump speed (green curve) is, however, a control variable, and can change fast. Still, the
inputs in Figure 6 will help provide useful information about time constants in the system.

Figure 7 shows the response in (vertical) volumetric flow rate V4, with comparison between Julia
(red, solid) and OpenModelica (blue, dash-dot).

R2M: Volumetric flow rate

2000
Julia
—+= OpenModelica

1900 f
=)
~
m
E
1800

1700

1 1 1 1

t [s]

Figure 7. Response in volumetric flow rate to step inputs.
An important observation is that the volumetric flow rate is continuous under the step changes in
Figure 6. This makes sense, in that the momentum of the fluid (oil-water) is substantial. Time constants

are in the range of 0.2 -0.55s.
Figure 8 shows the response in the choke valve inlet pressure, pi.

R2M: Choke valve inlet pressure

Julia
=—-=— QOpenModelica

i [bar]

1
C

p

t [s]

Figure 8. Response in choke valve inlet pressure to step inputs.

Observe that the choke valve inlet pressure normally is continuous under step changes, but that
it changes discontinuously upon a step change in manifold pressure at t = 1.5s. Again, this makes
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sense: when the manifold pressure drops, Figure 6, the choke valve inlet pressure must also drop in
proportion so that the flow through the valve changes continuously, see Eq. 14.
Figure 9 shows the response in the reservoir pressure heel, py,.

R2M: Well heel pressure

/— Julia
=—-= OpenModelica
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=
©
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t [s]

Figure 9. Response in well heel pressure to step inputs.

As noted, the formation pressure can not change in a step, but if it does, the well heel pressure
must also change in proportion (i.e., discontinuously) to maintain continuity in the flow rate.
Figure 10 shows the response in the ESP pump pressure head, App.

R2M: ESP pump pressure head

Julia

74 == OpenModelica

72

70

66

t [s]

Figure 10. Response in ESP pressure increase to step inputs.

Again, the discontinuous change in pump pressure head is due to the step change in the manifold

pressure, and the result makes sense.
So far, ModelingToolkit/Julia and OpenModelica have given (seemingly) identical simulation

results, Figures 7-10. Figure 11 shows the pipe friction loss, Apy.


https://doi.org/10.20944/preprints202312.1383.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

19 of 33

R2M: friction pressure drop
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Figure 11. Response in pipe friction pressure drop.

It is interesting to contrast the magnitude of the friction loss in Figure 11 and how much smaller
it is than the pressure boost in the ESP, Figure 10. Obviously, if a more realistic viscosity model had
been used, and in particular if emulsification occurs [8], the friction pressure drop might increase
considerable with an unfortunate mixing fraction of oil and water.

Apart from this, it is interesting to observe a slight discrepancy between the result from
ModelingToolkit/Julia and OpenModelica in this case. This discrepancy is maintained during a
multitude of tests with different solvers and accuracy for the DifferentialEquation.jl solvers [13] and
the solvers supported by OpenModelica. It seems like there is a minor discrepancy at t = 0 for Apy,
which propagates throughout the solution. Because the codes and initial conditions are the same for
both implementations, a natural suspicion is that the difference is due to different handling of the
implicit algebraic equation at initial time, and that Apy is rather sensitive to such an inaccuracy.

5.2. Reservoir heel to separator

Parameters, initial conditions, and system inputs are given in Appendix A. For vertical pipe #2,
scaling pump head h g is set to 80% of the value suggested in Appendix A. For this more complete
system (2 vertical pipes, one horizontal transport pipe), there is no observed difference between the
solution from ModelingToolkit/Julia and OpenModelica.

Figure 12 shows the input variation for the Reservoir heel-to-separator (R2S) case; because of
slower dynamics for this larger system, the locations of the step changes have been changed, and the
step change in the manifold pressure (Figure 6) has been replaced by a step change in the separator
pressure (Figure 12).
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R2S: Inputs
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Figure 12. Input variation in experiment.

For comments on formation pressure and pump speed inputs, see Section 5.1. Although the
separator pressure is not normally an input function, there may be action applied to the separator that
may create relatively quick changes in the separator pressure.

Figure 13 shows the pressures in front of the choke valves for the vertical pipes, as well as the
manifold pressure.

R2S: Choke valve inlets + manifold pressures
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Figure 13. Pressures in front of choke valve into manifold for vertical pipes (red, blue) and manifold
pressure (green).

Figure 13 demonstrates the positive pressure drop over the choke valves, and that they are
different for the two valves (Ap]; = pic’j — pm). Therefore, one should expect different flows through
the two valves. Because the manifold pressure is a dependent (dynamic) variable in this case, there is
no discontinuity in the pressures of Figure 13.

Figure 14 displays the pressure increase over the ESP pumps in the two vertical pipes.
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R2S: ESP pump pressure heads
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vertical pipe 2
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Figure 14. Electric Submersible Pump pressure heads in vertical pipes (red, blue) to compensate for

gravity and friction loss.

In this figure, the sudden drop in Ap,, is due to a sudden change in the pump speed f},, and is

thus realistic.
Figure 15 shows the friction pressure drops in the two vertical pipes and in the horizontal pipe.

R2S: friction pressure drops
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Figure 15. Friction pressure drops in vertical pipes (red, blue) from bore-well to manifold, and in

horizontal pipe (green) from manifold to separator.

Here, the interesting thing is that there is no visible difference between OpenModelica and Julia
solution of Apy for the three pipes; confer Figure 11. Of course, this could be due to the zoomed-out
view, but also on close inspection of Apy for the initial few seconds for vertical pipe 1, there is virtually
no difference.

The resulting time constants and overall behavior in Figures 13-15 are similar to those in Sharma
[3]. Particularly in Figures 13 and 14, some oscillatory behavior/overshoot is noticeable. This is to be
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expected due to the elasticity of the oil/water mixture with the given non-zero value of isothermal
compressibility Br.

Figure 16 shows vertical flow rates from reservoir to manifold in the two pipes, as well as the
flow from manifold to separator (thick, solid lines), and the effect of uncertain productivity indices
in Well 1, V;gl ~N (7 -1074, 10’4) , and uncertain isothermal compressibility in the petroleum fluid,

Br ~ Up3/151093/15.109)

.cl
R2S: Flow rates; V., ~ N(u,0),8, ~ U, .|

4500 /\
4000
—, 3500 |
ke
@ ical pipe 1
| vertical pipe
E 3000 vertical pipe 2
o horizontal pipe
= 2500 |
2000
1 1
0 5 10 15
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Figure 16. Vertical flow rates (red, blue) from bore-well into manifold, and horizontal flow rate (green)
from manifold to separator, with uncertainty productivity capacity and isothermal compressibility.

ModelingToolkit has support for efficient Monte Carlo studies; this is comparatively more
complicated using Modelica + OM]Julia.

5.3. Linearized model

ModelingToolkit.jl has good support for linearization of models. To linearize a system, it is
necessary to provide a model where the inputs have not been defined (sys_p in Figure 17), a vector
of input variables (sys_in), a vector of output variables (sys_in), and an operating point (keyword
op, value op_0). If the ModelingToolkitStandardLibrary.jl (similar to Modelica’s Standard Library) is
used, alternatively, some “virtual” inputs/outputs can be added in the form of Analysis Points which
simplifies linearization; this is not discussed further here.

In Figure 17, linearization is performed using the named_ss function in ControlSystemsMTKjl,
which has similar arguments as function linearize in ModelingToolkit jl.
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# Linearization using ControlSystemsMTK
linsys = named_ss(sys_p, sys_in, sys_out; op=op_0)

1 dampreport(linsys) ®

v/ 0.0s
| Pole |  Damping |  Frequency | Frequency | Time Constant |
| | Ratio | (rad/sec) | (Hz) | (sec) [
R Fomm Fommm Fommm - Fmmmmmm o +
| -9.77e-17 | 1 | 9.77e-17 | 1.55e-17 | 1.02e+16 |
| +4.62e-16 | -1 | 4.62e-16 | 7.35e-17 | -2.17e+15 |
| -0.518 + ©.925im | 0.489 | 1.06 | 0.169 | 1.93 |
| -6.68 | 1 | 6.68 | 1.06 | .15 |
| -7.27 | 1 | 7.27 | 1.16 | ©.138 |

1 tzeros(linsys)

v/ 0.0s

3-element Vector{Float64}:
2.4528640144466883e-16
-7.2707090955266835
-3.9948619151982376e-16

Figure 17. Use of ControlSystemsMTK.jl and ControlSystems.jl for linearization and analysis.

Figure 17 suggests 6 poles/states in the system, and 3 transmission zeros. Obviously, the
system has 4 states/differential variables (flow rates Vy for each of the vertical pipes, pressure pm
for the manifold, and flow rate V; for the horizontal transport pipe). Comparing poles and zeros,
one might suspect that two spurious/“infinitesimal” poles have been added together with two
spurious/“infinitesimal” zeros, and that canceling out the tiny poles and zeros should give the correct
transfer function. Observe also that there is a finite zero at —7.27 that cancels out one of the 4 true
eigenvalues.

It is possible to write one’s own linearization code using a (symbolic) Jacobian function applicable
to ModelingToolkit.jl models. If one assumes that the original model is a DAE of index 0 or 1, this
will indeed give the correct transfer function with 4 states (and one zero that cancels out one of the
eigenvalues). Why does ModelingToolkit.jl produce spurious additional poles/zeros? Possibly because
the linearization algorithm in ModelingToolkit.jl makes no assumption of the index of the DAE, thus
producing the two spurious “infinitesimal” poles/zeros.

Figure 18 shows the Bode plot of the transfer function from ESP rotational speed (fp)!® to flow rate
into the separator (1), as found using Julia + ModelingToolkit.jl based on the transfer function provided
by the system in Figure 17. Package ControlSystems.jl also has a function balance_statespace () which
in combination with minimal realization provides a transfer function with 3 poles or 1 time constant
and one damped resonator,

.10-3
P(s) ~ 1.094 - 10 : — (60)
(1+0.15s) (1 +2-0.489 156 + (135) )

see pale curves in Figure 18.

18 Ttis assumed that the same speed is used for both ESP:s in the vertical pipes.
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ESP speed-to-separator inflow
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Figure 18. Bode plot of linearized model from ESP speed fg to volumetric flow V¢ from manifold to
separator.

It is possible to instead use Modelica+OM]Julia for linearization, and then use ControlSystems.jl for
Julia [similar capabilities as MATLAB’s Control Toolbox] for plotting and analysis/design. However,
control analysis and design is simpler to do if a Julia set-up is used also for modeling and simulation.

5.4. Single-loop controller tuning

Figure 19 shows a unit step response for the linearized model using convenience function step()
in package ControlSystems.jl.

Unit step response
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Figure 19. Response in V{ after a unit step in fg

A crude approximation of the system is read off Figure 19 as the plant transfer function Px (s)

Pe (s) = Kexp(sﬂ (61)
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with
K~627-107°
T~ 0.5.
A PI controller 14T
iS
= 2
C(s) P T (62)
based on Skogestad’s method [15-17] is used with
T,=13-7 (63)
k=4 (64)
K, = 1 (65)
PTK(t+T))
Ti=x(t+1Tp); (66)

where tuning parameters are: Ty, closed loop time constant; x, integral time modifier.

Figure 20 shows a unit reference step response for the closed loop system [blue line]; here, utility
function feedback (P*C) has been used to construct the closed-loop system. Observe that the closed
loop time constant Ty is not achieved, and that the resulting system is rather oscillatoric.

Pl controller, delay+integrator model

1.00 +
o 075
S~
m
E
S |
N 0.50
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Double-loop, a = 0.1
Double-loop, a =5
0.00 I T
0 10 20 30
t [s]

Figure 20. Response in V¢ after a unit reference step assuming delay + integrator process model, using

Skogestad’s method: single_loop [blue], double-loop with « = 0.1 [red], and double-loop with « =5
[green].

The reason for the oscillatoric behavior is that single-loop tuning methods are not designed for
oscillatoric systems as the one in Eq. 60.

5.5. Double-loop controller tuning

In order to better handle the oscillatoric behavior of the system, which has generic form

P (s) = K - (67)

-+ 1) (14205 + (3))
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an idea of Nandong [18] is pursued, where the control signal is split into an “inner” control signal
ui=—-G(s)y (68)

and an “outer” control signal u,,
U = u;j + o (69)

where first C; is designed to reduce the oscillations in the system.
Consider the following proper inner controller

Ci (S) = Cm, (70)

Inserting controller Eq. 68 into y = P; (s) u with u as in Eq. 69 and I (s) as in Eq. 67 leads to,

y="P;(s)u =P (s)(=Ci(s)y+uo)
4
(1+P;(s)C(s))y=P(s)uo

which after some re-arrangement gives:

KKi s s\ 2 K
14— 4or > 4 (2 = .
( +1+06T15+ €WO+<Wo> >y 1—|—Tlsuo

For small values of a, x — 0:

(1+KKL) +2gwi0 + (;{))2 = (1+KKE) %

2
X <1+2gi;+<;) )

7i=10/1/1+KKi

4

where closed loop damping ; given by

2
Ké - % (71)

A design procedure could thus be:

1. Specify inner loop damping, {; > 1 to provide (over-) damping.
2. Compute inner gain K} from Eq. 71.
3. Choose a “small” value for « to make the above design valid.

We choose ; = 1, and compute K! from Eq. 71. Next, closing the loop from u, to y where we allow for
« > 0 to have a realizable controller, the step response is as in Figure 21.
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Step response, closed inner loop
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Figure 21. Response in V{ after a unit step in u,. Upper plot: effect of varying «. Lower plot: indicating
steady state and 63% rule for time constant with « = 0.1.

Based on closed inner loop with « = 0.1 as in the lower plot of Figure 21, we find model parameters
in the model of Eq. 61 to be:

K=~0.762-1073
T~ 0.5.

Tuning an outer loop PI controller with Skogestad’s method with an integrator + delay approximation,
this time with T, = 2 - 7, the result is as in Figure 20, red curve. Although the result is considerable
faster than what is achieved with the single-loop controller (same figure, blue curve), the result is
surprisingly oscillatoric.

It is interesting to observe that with the same value for T; = 2 - 7, and changing & from « = 0.1 to
« = 5, this gives a considerably better response, Figure 20, green curve.

5.6. Controller implementation with nonlinear model

The inner loop controller of Eq. 68 with C; (s) as in Eq. 70 admits the following state space

realization
dz _ 1
dt - DéTl iy
Ki Ki
U = —— (1—oc)zi—fy,

w2 T1
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where we must require & > 0. The PI controller for the outer loop as in Eq. 62 admits the following
state space realization:

e=r—y
dz, 1
— = —
s T?
uo = Kp (e+2o) .

With y + V4 as input to the controller together with a reference value r +— V{®, the controller produces
output u = u;j + o — fp and is straightforward to implement in ModelingToolkit (or Modelica) and
connect with the reservoir-to-separator model. Using the inner-outer model with « = 5, starting in
steady state and injecting a step change in V{®f gives the response as in Figure 22.

R2S: Controlled production rate
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Figure 22. Response in V; after a unit step in V!, with « = 5 in Eq. 70.
The response in Figure 22 [red curve] is similar to the corresponding response [green curve] in

Figure 20.
The response in Figure 22 is achieved with an ESP pump speed as in Figure 23.
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R2S: Controlled production rate
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Figure 23. ESP pump speed fp,, with « = 5 in Eq. 70.

In reality, it is not possible to “require” more production than the reservoir can produce. To
handle this correctly, a more complex interaction with the reservoir than the productivity index model
is required.

6. Conclusions

Sharma and Glemmestad [1], Sharma [3] provided a novel model of an ESP-lifted oil production
system from reservoir to separator. In Lie [2], the model of Sharma and Glemmestad [1] was provided
with a more structured model development, and with dimensionless equipment models. Also, some
information that is difficult to find in the original publications (e.g., ESP model parameters) was
included. A basic comparison of equation based modeling languages Modelica and ModelingToolkit
for Julia was given.

Here, the work in Lie [2] is extended in several directions: (i) a couple of model typos in [2]
are corrected, (ii) some more fluid details are given, (iii) more details of the ESP model is provided
for reference (max/min flow rates, power consumption, efficiency), (iv) an extended discussion
of pump control inputs is included, (v) a more thorough discussion is given of advantages with
dimensionless models, (vi) a more detailed comparison of model implementation in Modelica vs.
ModelingToolkit is provided, (vii) with a comparison of simulation results using OpenModelica
vs. ModelingToolkit with Julia, (viii) more simulation results are included for reference, (ix) model
linearization using ModelingToolkit with ControlSystems.jl for Julia is discussed, (x) controller tuning
for the linearized model is illustrated using Skogestad’s method applied to a simple integrator+time
delay approximation, as well as a double-loop design to dampen oscillations, (xi) the double-loop
controller is applied to the nonlinear ModelingToolkit model to confirm the controller tuning. Model
parameters, inputs, and initial states are provided in Appendix A.

A key difference between the model description here and the original one [1] is the focus on
dimensionless models, which greatly reduces the chance of errors. The inclusion of the ESP power
consumption model and flow rate constraints/best-efficiency-point for reference, makes it possible
with realistic studies of constraints in controller design. Although not implemented here, an extension
of more realistic pump control inputs by inclusion of the pump-motor aggregate moment of inertia is
discussed. For some systems, such an extension may be of interest.

Both Modelica and ModelingToolkit are suitable and free languages for structured model
development. Modelica is a mature language and a good choice, while ModelingToolkit is a more
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general language with an extensive eco-system. Model implementation is very similar for the two
languages; ModelingToolkit does support more general model classes such as distributed models,
stochastic models, etc., and has an extensive tool-set for control design, optimization, model fitting,
etc. The numeric solutions are virtually identical for the two implementations; a minor discrepancy
in friction pressure loss in one case is most likely due to a difference in handling implicit algebraic
equations.

Model linearization is provided by both OpenModelica and ModelingToolkit for Julia; in the
case of ModelingToolkit, the eco-system of Julia for further analysis and design can directly be used,
while for OpenModelica, the linearization can be carried out via a script language API (e.g., from Julia,
Python, or MATLAB) and analyzed in the host language.

For illustration purpose, linearization of the system from ESP pump speed to volumetric separator
flow using ModelingToolkit/ControlSystems.jl is carried out in Julia. Then, several linear controllers
are developed based on Skogestad’s method for an integrator+time delay model approximation, as
well for a double-loop controller to dampen oscillations in the system caused by the compressible
fluid in the manifold. A re-tuning of the double-loop controller with Skogestad’s method in the outer
loop gives best performance. Implementation of the best controller in ModelingToolkit confirms that
the linear controller works well with the nonlinear reservoir-to-separator system under the simulated
experimental conditions.

The model development and discussion indicates a number of possible extensions such as (a) more
realistic properties (density, viscosity), (b) allowing for distributed density along pipes!?, (c) adding a
more realistic system for water dilution in the manifold, (d) inclusion of valves in manifold-separator
pipes, (e) integration with reservoir models, (f) use for advanced control design with constraints, (g)
use for optimization, (h) integration with a reservoir model to study how to handle stiffness, and more
Such extensions will give more insight into the industrial usefulness of the model.

Funding: The economic support from The Research Council of Norway and Equinor ASA through Research
Council project “308817 —Digital wells for optimal production and drainage” (DigiWell) is gratefully
acknowledged.

Acknowledgments: Information/data for the original paper [1] provided by dr. Roshan Sharma and Ph.D.
student Kushila Jayamanne, both at University of South-Eastern Norway;, is gratefully acknowledged.

Conflicts of Interest: The author declares no conflict of interest. The background information for the study
predates the funded project, and is openly available. Although the study is relevant to the funded project
[DigiWell], the funders had no role in the design of the study; in the collection, analyses, or interpretation of data;
in the writing of the manuscript; or in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

CFD  Computational Fluid Dynamics
ESP  Electric Submersible Pump
MTK  ModelingToolkit

R2M  Reservoir heel-to-Manifold

R2S5  Reservoir heel-to-Separator

Appendix A. Parameters and Operating Conditions

Parameters for petroleum fluid, nominal vertical pipes, and nominal manifold+horizontal pipe
are given in Tables A1-A3. Initial states are given in Table A4, while input functions are given in
Table A5.

19 ModelingToolkit for Julia has support for automatic discretization of PDEs.
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Table A1. Parameters: petroleum liquid.

Parameter

Br = 1z ~ 66710 10Pa!
po = lbar
Po = 900kg/m3

pw = 1000kg/m?

Yw = 0.35
£0 = XwpPw + (1 = Xw) Po
Xw =0.5

o5 = xwew + (1 —xw) o
Vo = 100¢St = 100 - 10~ m? /s
Vw = 1St =10"°m?2/s

Table A2. Parameters: vertical pipe.

Parameter

/~— =100m

0+ =2000m

d = 0.1569m

€ =0.0018inch =457 m =45.7-10 ®m
Vinino = 14.43-1073m3/s
Vy0=19.83-10"3m?/s
Vimaxo = 25.24-103m3/s
hpo = 1210.6m

fpo =60Hz

Ve =1m3/s

a = —37.57

ay = 2.864 - 103

a3 = —8.668 - 10*

WX = 167.733 kW

by =52.12

by = —768.7

by = 38.544 - 103

by = —1.534 - 10°

S = 25.9-10°kg/h

0, uy < 0.05
fluy) = ¢ L0956 0,05 < uy <05
W20 05 <uy <1

p¢ = 1bar
p¢ = 1000kg/m3
Vsi=7-10"*m’/s

Table A3. Parameters: manifold+horizontal pipe.

Parameter
m = 500
dm = 0.1569
l¢ = 4000 m
dy = 0.1569 m
€ = 0.0018inch = 45.7 m = 45.7- 10 °m
Appp, = 10bar
fopo = 60Hz

Table A4. Nominal initial states.

Variable

Vy (t = 0) = 2000m3/d =~ 0.02315m3 /s
pm (t = 0) = 50bar = 50 - 10° Pa

Vi (t = 0) =2000m3/d ~ 0.02315m3 /s
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Table A5. Nominal inputs.

Variable
220 bar, t <0.5s
pe(t) =
0.95-220bar, t>0.5s
(1) = 30bar, t<3s
Pt =1097.30bar, t>3s
60 Hz, t<5s
t) =
fo (1) 095-60Hz, t>5s
uy (£) =1.0
fbp = 60HZ
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