
Article

Not peer-reviewed version

ESP Lifted Oil Field: Basic Model for

Control, and Comparison of Simulation

Tools

Bernt Lie

*

Posted Date: 19 December 2023

doi: 10.20944/preprints202312.1383.v1

Keywords: Oil Production; ESP lift; Dimensionless model; Dynamic model; Simulation tool; Modelica;

ModelingToolkit

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/1416307

Article

ESP Lifted Oil Field: Basic Model for Control, and
Comparison of Simulation Tools

Bernt Lie 1,*

1 University of South-Eastern Norway, Norway; Bernt.Lie@usn.no
* Correspondence: Bernt.Lie@usn.no

Abstract: Optimal operation of petroleum production is important in a transition from energy
systems based on fossil fuel to sustainable systems. One sub-process in petroleum production deals
with transport from the (subsea) well-bore to a topside separator. A simple model in Sharma and
Glemmestad [1] of Electric Submersible Pump [ESP] lifted production was previously streamlined
into a dynamic model suitable for illustration of the dynamics of oil transport, as well for control
studies, with some comparison of two popular modeling languages: Modelica, and ModelingToolkit
for Julia, Lie [2]. Here, the discussion on dimensionless equipment models goes into more detail,
and the comparison between Modelica and ModelingToolkit is significantly expanded upon with
code comparison, numerical performance, and more experiments. Some added possibilities with
ModelingToolkit and Julia wrt. sensitivity analysis and control design is included.

Keywords: oil production; ESP lift; dimensionless model; dynamic model; simulation tool; modelica;
ModelingToolkit

1. Introduction

1.1. Background

Petroleum products have been key energy carriers for more than a century. Current focus on
climate1 implies a change towards sustainable energy carriers. To succeed in this change, a transition
period from the use of fossil fuel is necessary. In the transition, improved operation of petroleum
production through model based optimal operation will be necessary. Petroleum production entails
slow (reservoir; months) and fast (reservoir-to-separator; seconds) subsystems; this is a focus of
on-going research project “DigiWell”2. Vertical transport of petroleum from oil well to surface requires
sufficient pressure to counteract gravitational and friction forces. If the oil-well heel pressure is
insufficient for such transport, either (i) gas is injected in the vertical pipe to “blow” the petroleum
fluids to the surface [“gas lifted”], or (ii) an Electric Submersible Pump [ESP] is installed in the vertical
pipe to increase the pressure [“ESP lifted”] sufficiently. Here, the focus is on the dynamics of transport
from the reservoir formation to a surface manifold via an ESP, and further horizontal transport from
the manifold to a separator.

Industrial simulation tools typically put main emphasis on the dynamics of the reservoir (time
constant: months) and use steady state models for the reservoir-to-surface transport. This emphasis
is inadequate for daily operation and control. Here, a simplified, yet complete, dynamic model for
oil transport from reservoir to separator is discussed. The model provides an understanding of the
dynamic behavior of such systems, and is suitable for industrial control design, as well as for control
and petroleum production studies. Emphasis is put on a simple, yet stringent model development,
while avoiding variable unit complexities.

1 https://sdgs.un.org/goals
2 DigiWell: see Funding.

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0001-5967-4411
https://doi.org/10.20944/preprints202312.1383.v1
http://creativecommons.org/licenses/by/4.0/

2 of 33

1.2. Previous work

Sharma and Glemmestad [1] (see also Sharma [3]) provide a dynamic model of oil transport from
reservoir to separator suitable for control design. Binder et al. [4] discuss an older model; other models
typically are CFD models, which are too complex for control design.

Sharma’s model considers a case with 4 vertical pipes from oil reservoirs to a single manifold,
with 2 horizontal pipes from the manifold to a single separator. Each vertical pipe has an ESP and a
choke valve at a common manifold entrance; the pump speeds can be manipulated individually. The
horizontal pipes have booster pumps to counteract friction effects. The original ESP model includes
induction motors, but the dynamics of the pump actuator is fast, and is neglected in later work. Sharma
and Glemmestad [1] provide a novel ESP model, a simple model for a booster pump, and use a valve
model based on on the ANSI/ISA S75.01 standard3. The model in Sharma and Glemmestad [1] was
re-structured and simplified in Lie [2], emphasizing dimensionless equipment models, and thereby
eliminating some level of complexity in common industry models.

The model with ESP in Sharma and Glemmestad [1] is mainly relevant for the production of
heavy oil. Several papers use this model in advanced industrial control studies, Krishnamoorthy et al.

[5], Delou et al. [6], Santana et al. [7].
Mixtures of liquid oil and water form an emulsion when stirred (e.g., in a multi-stage ESP); for such

emulsions, the viscosity — and hence the friction — varies dramatically with water content, Justiniano
and Romero [8]. Sharma and Glemmestad [1] assume an unrealistic linear viscosity dependence on
water fraction.

1.3. Structure of paper

Section 2 gives an overview of the transport system from oil reservoir via manifold to a separator,
and key equipment models. Section 3 develops a simple mechanistic model of the system. Section 4
contrasts two modeling languages for simulation: Modelica and Julia’s ModelingToolkit. Section 5
illustrates model behavior and the use of modeling/simulation tools for analysis and control. Finally,
Section 6 provides some conclusions.

2. System description

Production of a mixture of water and crude oil in liquid phase is considered, where evaporation
of liquids is assumed negligible.

2.1. System topology

Oil production systems merge several boreholes from the same or different reservoirs through
vertical pipes into a manifold. Normally, more than one horizontal transport pipe is needed from the
manifold to a separator for sufficient transport capacity. Water is commonly injected into the manifold
to reduce friction loss in the horizontal pipes; the added water is typically recycled from the separator,
and is at close to production temperature. Figure 1 shows a system with nw wells/vertical pipes via a
common manifold to nt transportation/horizontal pipes leading to the separator.

3 http://integrated.cc/cse/ISA_750101_SPBd.pdf

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

3 of 33

Figure 1. Multiple well system with nw wells — possibly coming from different reservoirs, and nt

transport pipes to the separator; from Lie [2] and based on Sharma and Glemmestad [1].

In Figure 1, p
j
f is formation pressure for well j, p

j
h is bore-hole heel pressure, V̇

j
h is volumetric heel

flow rate, A
−,j
v is vertical cross sectional area below the ESP pump, ℓ−,j

v is the length of the vertical

pipe below the ESP pump, p
i,j
p is inlet pressure to the (ESP) pump, p

e,j
p is effluent pressure after the

(ESP) pump, A
+,j
v is vertical cross sectional area above the ESP pump, ℓ+,j

v is the length of the vertical

pipe above the ESP pump, V̇
i,j
c is volumetric flow rate at the inlet to the choke valve, p

i,j
c is pressure at

the inlet to the choke valve, p
e,j
c is pressure at the effluent from the choke valve. Next, pm is manifold

pressure, while V̇w is water added to the manifold to reduce viscosity. At the outlet from the manifold,

p
i,j
bp is the influent pressure to the booster pump (BP), p

e,j
bp is effluent pressure after the booster pump,

V̇
j

t is volumetric flow rate in a transport pipe from manifold to separator, p
i,j
s is pressure at the inlet to

the valve into the separator, and p
e,j
s = ps is the separator pressure.

For simplicity, it is assumed that A
−,j
v = A

+,j
v = Av. All vertical pipes are assumed connected

to the same manifold pressure pm; hence effluent choke pressure satisfies p
e,j
c = pe

c = pm for all j. The

influent pressure to the booster pumps, p
i,j
bp are all assumed to be equal to the outlet pressure from the

manifold, and have the same value, p
i,j
bp = pi

bp = pm. Likewise, all transport pipes end up in the same

separator: p
e,j
s = ps for all j.

2.2. Fluid properties

The petroleum fluid properties are important. Density ρ varies with pressure p and temperature
T, ρ (p, T). Neglecting temperature dependence, and assuming constant isothermal compressibility βT ,4

ρ (p) is given as
ρ = ρ0 exp (βT (p− p0)) (1)

4 Isothermal compressibility is the inverse of bulk modulus.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

4 of 33

where (ρ0, p0) is some reference state.
Defining water cut χw as χw , V̇w/V̇: volumetric flow rate of water divided by total flow rate of

the fluid, total density ρ can be expressed as

ρ = χwρw + (1− χw) ρo; (2)

here, ρw and ρo are constant densities of pure water and crude oil, respectively.
In reality, water and crude oil have different isothermal compressibilities. Here, we simplify

and assume an overall value for βT. Using data in Appendix A1, density ρ varies ca. 10 kg/m3 with
pressure variation in the range 25–225 bar, Figure 2.

Figure 2. Typical variation in density for production fluid in the pressure range of interest.

We thus assume constant density in pipes, but a pressure-dependent density will be assumed in
the manifold.

Sharma and Glemmestad [1] propose a simple linear mixing rule for kinematic viscosity ν:

ν = χwνw + (1− χw) νo. (3)

With ν known, dynamic viscosity µ can be computed (if needed) as

µ = νρ.

The linear interpolation model of Eq. 3 is used here to ease comparison with results in Sharma and
Glemmestad [1], even though it is not physically realistic [8].

2.3. Well-bore production

Total production from the reservoir (formation pressure pf) relates volumetric petroleum fluid
rate V̇h at the well-bore heel as V̇h ∝ pf− ph, where ph is heel pressure and the proportionality constant
Cpi is the productivity index,

V̇h = Cpi · (pf − ph) ;

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

5 of 33

Cpi is unit-dependent. Here, we instead propose a dimensionless form,

V̇h = V̇c
pi

pf − ph

p
ς
pi

(4)

where V̇c
pi is the productivity index capacity in the same unit as V̇h, and p

ς
pi is scaling pressure with the

same unit as pf, ph.

2.4. Pump models

Electric Submersible Pump

Pump models are often given as
∆pp = ρghp; (5)

here, hp = hp
(
V̇, fp

)
is pump head with volumetric flow rate V̇ and control input fp — rotational

pump frequency Hz.
Sharma and Glemmestad [1] provide values for minimal, maximal, and best-efficiency-point flow

rates,

V̇min

V̇min,0
=

fp

fp,0
(6)

V̇max

V̇max,0
=

fp

fp,0
(7)

V̇η

V̇η,0
=

fp

fp,0
. (8)

In Sharma and Glemmestad [1], a comprehensive model for the pump head of a multi-stage ESP is
developed. To ease change of units, their model is here rewritten in dimensionless form

hp
(
V̇, fp

)

hp,0
=

(
fp

fp,0

)2

+
3

∑
j=1

aj

(
fp

fp,0

)2−j (
V̇

V̇ς

)j

. (9)

In Eq. 9, hp,0 is a nominal scaling head, fp is the pump rotational frequency in the same unit as that
of the nominal rotational frequency fp,0, V̇ is the actual volumetric flow rate out of the pump, V̇ς a
scaling flow rate, and a1, . . . , a3 are dimensionless model parameters5. Sharma and Glemmestad [1]
include a head curve plot; the result in Figure 3 based on a dimensionless model is identical to their
plot.

5 Here, aj is dimensionless, while in Sharma [3] his parameters aj have dimensions. This implies that the values of aj here are
different from those of aj in Sharma and Glemmestad [1].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

6 of 33

Figure 3. ESP Pump head in ft as a function of volumetric flow rate in bbl/d for selected pump speeds.
Lower, best-efficiency-point, and maximum flow rates are indicated.

In addition, Sharma and Glemmestad [1] provide a model for the mechanical power requirement
Ẇm

p = Ẇm
p
(
V̇, fp

)
for operating the pump6, again rewritten in dimensionless form,

Ẇm
p

Ẇm
p,0

=

(
fp

fp,0

)3

+
4

∑
j=1

bj

(
fp

fp,0

)3−j (
V̇

V̇ς

)j

. (10)

In Eq. 10, Ẇm
p,0 is a nominal scaling power consumption to operate the pump, b1, . . . , b4 are

dimensionless model parameters, while fp and V̇ are as above.
The actual power added to the fluid is

Ẇp = ∆ppV̇, (11)

which gives the efficiency as

η =
Ẇp

Ẇm
p

=
∆ppV̇

Ẇm
p

(12)

where it is assumed that Ẇp and Ẇm
p have the same units. Sharma and Glemmestad [1] include an

efficiency curve plot; the result in Figure 4 based on a dimensionless model is identical to their plot.

6 “Brake Horse Power”, BHP, in the original publication.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

7 of 33

Figure 4. ESP Pump efficiency curve as a function of volumetric flow rate in bbl/d for selected pump
speeds. Best-efficiency-point flow rates are indicated, and they match the peaks in the η

(
V̇; fp

)
plots.

Booster pump

For the booster pump in horizontal pipes, a simpler model is suggested in Sharma and Glemmestad
[1], rewritten in dimensionless form as

∆pbp

(

fbp

)

∆pbp,0
=

(

fbp

fbp,0

)2

(13)

Here, ∆pbp

(

fbp

)

is the pressure increase at the given pump frequency/speed fbp, in the same unit as

∆pbp,0 — which is the pressure increase at the nominal pump frequency fbp,0.

Pump control input

In reality, the pump speed (fp, fbp) is not a control input. Instead, a motor is used to control the
torque applied to the aggregate of motor and pump.

In Sharma [3], a model of the induction motor driving the ESP is developed. The experience [3] is
that the motor dynamics is much faster than that of the mechanical system; hence in most of his work,
Sharma [3] neglects the motor dynamics. However, it is not clear whether Sharma [3] considers the
mechanical dynamics of accelerating the pump itself. This dynamics would be described by the kinetic
energy balance in rotational form (the “swing equation”), which can be written as

dK

dt
= Pi − Ẇm

p

with kinetic energy K

K =
1
2

Jtω
2
p,

Jt is the total moment of inertia for the pump, the motor, and a possible flywheel, while Pi is the input
power from the motor (control input), and Ẇm

p is as in Eq. 10.
In Sharma [3], the moment of inertia is approximately given as J ≈ 71 kg m2. It is not clear

whether this is the motor moment of inertia or the total moment of inertia. However, using such a
moment of inertia leads to a pump time constant which is still much faster than the dynamics of the

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

8 of 33

flow V̇v, etc., hence the pump/motor dynamics is neglected here, and for simplicity, it is assumed that
fp is a control input.

2.5. Valve models

Sharma and Glemmestad [1] base their valve models on the ANSI/ISA S75.01 standard7. Here,
instead a dimensionless description is proposed with extension to a control input,

ṁ = ṁc
v · f (uv)

ρi

ρe

√

(pi − pe) /pς

ρi/ρς
(14)

where ṁc
v is the valve mass flow rate capacity, uv ∈ [0, 1] is the valve control signal, f : [0, 1]→ [0, 1] is

the valve characteristics, ρi, ρe are influent and effluent densities, respectively, pi, pe are influent and
effluent pressures, respectively, while ρς, pς are scaling density and pressure, respectively.

2.6. Friction loss

The friction drop along the pipe can be given by the Darcy-Weisbach model8 as

∆pf

ℓ
= fD

ρ

2
v2

D
(15)

where fD is Darcy’s friction factor given by Colebrook’s9 implicit expression. One explicit approximation

to Colebrook’s expression is due to Swamee and Jain [9],

1
√

fD
= −2 · log10

(

5.74

N0.9
Re

+
ǫ/D

3.7

)

, (16)

where NRe is the Reynolds number,

NRe =
ρvD

µ
=

vD

ν
, (17)

µ is dynamic viscosity, ν is kinematic viscosity, and ǫ is the “roughness height” of the pipe internal
surface. Linear velocity v is related to volumetric flow rate V̇ by

V̇ = vA (18)

where A is the cross-sectional area of the pipe.

2.7. Why dimensionless models?

Example: ESP pump model

As a first example, consider the ESP model in Eq. 9. In the original formulation in Sharma and
Glemmestad [1],10

hp = ā0
fp

fp,0
+ ā1

fp

fp,0
V̇ + ā2V̇2 + ā3

fp,0

fp
V̇3, (19)

7 http://integrated.cc/cse/ISA_750101_SPBd.pdf
8 E.g., https://en.wikipedia.org/wiki/ Darcy%E2%80%93Weisbach_equation
9 The Colebrook equation, or sometimes known as the Colebrook-White equation.
10 Slight change in notation.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

9 of 33

where parameters āj have rather complicated units and the equation is hard-coded to assume11
[
V̇
]
= gal/min, while

[
hp
]
= ft. In practice, either the rest of the model has to be posed using these

units, or one has to operate with several copies of variables, e.g., V̇g/m and V̇, and remember to
correctly convert between these versions of the flow rate. Both of these approaches are error-prone,
and also require several versions of variables.

A much better solution is to write the model in dimensionless form. The simplest way to do this
for the model in Eq. 19, is as

hp

hp,0
= ã0

fp

fp,0
+ ã1

fp

fp,0

V̇

V̇ς
+ ã2

(
V̇

V̇ς

)2

+ ã3
fp,0

fp

(
V̇

V̇ς

)3

. (20)

If we choose hp,0 ≡ 1 ft and V̇ς ≡ 1 gal/min, then ãj ≡ āj. Suppose we want to generate the plot in
Figure 3. Because that figure plots hp in ft (the “native” unit), while the flow rate V̇ is given in bbl/d
(“native” unit is gal/min), this result is produced by choosing V̇ς = 1 gal/min = 34.29 bbl/d, which
can easily be found using the WolframAlpha app12, Figure 5.

Figure 5. Converting scaling flow rate V̇ς from 1 gal/min to bbl/d.

In practice, it may be better to choose a more natural scaling unit, e.g., SI units. In that case,
it is necessary to change parameters āj; for the parameters in Eq. 9, the scaling parameters are in
SI units, where āj → aj and aj is given in Table A2. To find aj, choose hp,0 = 1 ft = 0.3048 m,
V̇ς = 1 gal/min = 6.309 · 10−5 m3/s, and write Eq. 20 as

hp

hp,0 ã0
︸ ︷︷ ︸

→hp,0

=
fp

fp,0
+

ã1

ã0V̇ς
︸ ︷︷ ︸

a1

fp

fp,0
V̇ +

ã2

ã0
(
V̇ς
)2

︸ ︷︷ ︸

a2

V̇2 +
ã3

ã0
(
V̇ς
)3

︸ ︷︷ ︸

a3

fp,0

fp
V̇3,

11 With quantity x, [x] is the unit of the quantity.
12 E.g., Microsoft Store

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

10 of 33

where the new hp,0 is given in unit m, a1, a2, a3 are the new, dimensionless parameters in Eq. 9, while
new scaling flow rate→ V̇ς = 1 m3/s. With this modified correlation (a1, . . . , a3) for hp using SI units,
the dimensionless form is as in Eq. 9.

Example: control valve

The ANSI/ISA S75.01 standard13 for compressible (i.e., ṁi = ṁe = ṁ, ρi 6= ρe), non-choked fluids
without fitting is

C =
ṁ

N6
ρi
ρe

√
pi−pe

ρi

. (21)

Here, C is the valve coefficient, ṁ is the mass flow rate through the valve, ρi is the influent density, ρe

is the effluent density, pi is the influent pressure, pe is the effluent pressure, N6 is used to handle unit
conversion. Typically, tabular values for N6 are given which are valid for different combinations of
units for ṁ, ρ, and p. This makes change of units rather complicated. A dimensionless formulation as
in Eq. 14 greatly simplifies the use of the valve model in different units, and also includes a control
valve characteristic.

3. Dynamic model

3.1. Balance laws

The model is based on the total mass balance (manifold) and the linear momentum balance (pipes).
The total mass balance is expressed as

dm

dt
= ṁi − ṁe (22)

where m is accumulated mass in the system, t is time, ṁ is mass flow rate, and indices (i, e) denote
influent and effluent, respectively.

The linear momentum balance is

dm
dt

= ṁi − ṁe + F, (23)

where m is linear momentum given as m = mv with linear velocity v, ṁ is momentum flow rate given
as ṁ = ṁv, and F is total force. With constant fluid density, ṁi = ṁe, and the momentum balance
reduces to Newton’s law, dm

dt = F.

3.2. Vertical pipes with ESP

We assume constant density in the pipes, causing volumetric vertical flow rate V̇v to be the same
everywhere: V̇h = V̇i

c = V̇v. Furthermore, Eq. 23 reduces to Newton’s law. Momentum is given as
m = ṁv with ṁ = ρV̇v, and v related to V̇v by Eq. 18. The total force is F = Fp + Fb − Ff − Fg, with

• Pressure forces at inlet and outlet of the pipe,

Fp = ph A− pi
c A (24)

• Possible pressure boost due to a pump,

Fb = ∆pp A, (25)

with ∆pp given by Eqs. 5, 9,

13 http://integrated.cc/cse/ISA_750101_SPBd.pdf

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

11 of 33

• Friction loss,
Ff = ∆pf A, (26)

with ∆pf given by Eqs. 15, 16, 17, 18,
• Flow against gravity, with a vertical height h,

Fg = ∆pg A, (27)

with
∆pg = ρvgh. (28)

In addition, we need information about how flow rate V̇v relates to the bottom hole pressure via the
productivity index, Eq. 4, and how the flow rate V̇v relates to the choke valve flow, Eq. 14.

The most structured formulation would be to pose the momentum balance (here: Newton’s law)
as the differential equation, and add all necessary algebraic equations. However, the OpenModelica
DAE solver struggles with such a formulation: the valve equation Eq. 14 is implicit in pressure
difference; in the iteration to find ∆pv = pi − pe, if ∆pv becomes negative, the square root gives a
complex number, and the simulation crashes.14 Instead, the differential variable has been changed to
V̇v; then the valve equation can be inverted and expressed as ∆pv ∝ V̇2

v .
The following formulation is used in OpenModelica and ModelingToolkit:

dV̇v

dt
=

ph − pc
i + ∆pp − ∆pf − ∆pg

ρvℓ/A
(29)

ρ0
β = χwρw + (1− χw) ρo (30)

ν = χwνw + (1− χw) νo (31)

µ = ρ0
βν (32)

ρv = ρ0
β exp

(

βT

(

pi
c − p0

β

))

(33)

ph = pf − p
ς
pi

V̇v

V̇c
pi

(34)

ṁv = ρvV̇v (35)

pc
i = pm + p

ς
v

ρv

ρ
ς
v

(
ṁv

ṁc
v

)2 1
f 2
c (uv)

(36)

hp = hp,0

((
fp

fp,0

)2

+ a1
fp

fp,0

V̇v

V̇ς
(37)

+a2

(
V̇v

V̇ς

)2

+ a3
fp,0

fp

(
V̇v

V̇ς

)3
)

∆pp = ρvghp (38)

14 It was not tested whether ModelingToolkit can handle this implicit algebraic equation.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

12 of 33

vv =
V̇v

A
(39)

NRe =
vvdv

νv
(40)

f v
D =

1

4
(

log10

(

5.74
N0.9

Re
+ ǫv/dv

3.7

))2 (41)

∆pf = ℓ · f v
D

ρv

2
v2

v

dv
(42)

∆pg = ρvgh. (43)

If we only consider the model of a single vertical pipe, we need to specify (i) initial state (e.g., V̇v), (ii)
all “input” variables, i.e., pf, fp, pm, and possibly water cut χw, and (iii) all parameters, i.e., ρw, ρo, νw,
νo, p0

β, ℓ, A, p
ς
pi, V̇c

pi, p
ς
v, ρ

ς
v, ṁc

v, hp,0, fp,0, V̇ς, a1,a2, a3, g, dv, νv, ǫv, h.

3.3. Manifold

We assume a perfectly mixed manifold. Assuming constant manifold volume Vm, and adding
water at flow rate V̇w to dilute the fluid to a specified manifold water cut χm

w , thus reducing friction
loss in the pipe towards separator, V̇w must be approximately

V̇w =
χm

w − χw

1− χm
w

V̇v. (44)

Total mass balance for the manifold can then be expressed as

dpm

dt
=

1
ρmVmβT

(
ρvV̇v + ρwV̇w − ρmV̇t

)
(45)

ρ0
β = χm

wρw + (1− χm
w) ρo (46)

ρm = ρ0
β exp

(

βT

(

pm − p0
β

))

(47)

V̇w =
χm

w − χw

1− χm
w

V̇i
c (48)

In practice, the water cut χw and flow rate V̇i
c are not known perfectly, and it is necessary to use a

feedback control system to manipulate V̇w instead of using Eq. 44.
For the manifold model, we must know (i) the initial manifold pressure, (ii) the vertical inflow V̇v

and the horizontal transport flow V̇t from manifold to separator, as well as manifold water cut χm
w , and

(iii) parameters.

3.4. Transport pipe

For simplicity, we will neglect the separator inlet valve, and assume that p
i,j
s ≡ ps. It is

straightforward to reverse this assumption.
The model of the horizontal pipe from manifold to separator is almost identical to the vertical

pipe from reservoir to manifold. The essential differences are (i) no gravity pressure drop, (ii) simpler

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

13 of 33

booster pump model, (iii) neglecting pressure drop from pipe into separator, (iv) no need for a
production index model. The complete model is

dV̇t

dt
=

pm − ps + ∆pbp − ∆pt
f

ρtℓt/At
(49)

ρ0,t
β = χm

wρw + (1− χm
w) ρo (50)

νt = χm
wνw + (1− χm

w) νo (51)

µt = ρ0,t
β νt (52)

ρt = ρ0
β exp

(

βT

(

pm − p0
β

))

(53)

∆pbp = ∆pbp,0

(

fbp

fbp,0

)2

(54)

vt =
V̇t

At
(55)

NRe,t =
vtdt

νt
(56)

f t
D =

1

4
(

log10

(

5.74
N0.9

Re,t
+ ǫt/dt

3.7

))2 (57)

∆pt
f = ℓt · f t

D
ρt

2
v2

t
dt

. (58)

Again, we need to know the initial condition of the differential variable (V̇t), the inputs (χm
w , fbp, pm,

ps), and the parameters.

3.5. Combined model

For illustration, we use two vertical pipes, one manifold, and one horizontal transport pipe
from manifold to separator; Sharma and Glemmestad [1] use 4 vertical pipes, one manifold, and two
horizontal transport pipes. Both Modelica and Julia’s ModelingToolkit have support for building
classes/reusable models. Because of the similarity between the models for vertical and horizontal
pipes, it would be possible to collect these in the same class/constructor and just differentiate between
them with a function argument. The manifold model should be a separate class, though.

With re-usability of such classes/constructors, modeling of the combined system simply consists
of (i) instantiating one model per unit (2 vertical pipes, one horizontal transport pipe, and the manifold),
and (ii) connecting the various instances. Specifically, the vertical pipes should see the same manifold
pressure pm, the vertical transport pipe should have the same inlet pressure as the manifold pressure
pm, the influent volumetric flows to the manifold should be the sum of the flows from the vertical
pipes and the viscosity diluting water feed V̇w now being

V̇w =
∑

2
i=1

(
χm

w − χi
w
)

V̇i
v

1− χm
w

; (59)

the effluent volumetric flow from the manifold is still V̇t.
For a proper re-usable implementation, connections should be done using connectors (supported

by both Modelica and ModelingToolkit). Connectors are not implemented here.

4. Simulation tools

Modelica is a mature language dating back to the 1990s; ModelingToolkit [MTK] is some 4–5
years old and is still evolving rapidly. MTK is more general than Modelica, and is also integrated in

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

14 of 33

the larger eco-system of Julia. Currently, MTK does not support a graphical flow-sheeting tool, and
it is unclear whether MTK allows for as large models as OpenModelica. Both tools have extensive
support for building libraries.

The combined model has been solved using the free languages/tools OpenModelica [10,11] and
ModelingToolkit [12] for Julia. To illustrate the similarity between OpenModelica code and a current
formulation using ModelingToolkit, the following listing shows parts of the Modelica code for the
reservoir heel–to–manifold; to save space, description of quantities is only included for constant π to
illustrate how it is done:

model Reservoir_2_Manifold

// Model of Reservoir -to -Manifold

//

// Model constants

constant Real PI = 3.151592654 "pi";

constant Real g = 9.81;

...

// Model parameters

parameter Real ell_m = 100;

parameter Real ell_p = 2000;

...

// Initial state parameters

parameter Real Vd_v0 = 23.15e-3;

//

// Declaring variables

// -- differential variables

Real Vd_v(start = Vd_v0 , fixed = true);

// -- depending on inputs

Real rho_beta_0;

...

Real p_c__i;

Real p_h;

...

// -- input variables

input Real p_f;

...

// Equations constituting the model

equation

// Balance equations

der(Vd_v) = A*(p_h - p_c__i + Dp_p - Dp_f - rho_v*g*h)/(rho_v*ell);

// Algebraic equations

// -- depending on inputs

rho_beta_0 = chi_w*rho_w + (1-chi_w)*rho_o;

...

//

end Reservoir_2_Manifold;

Next, the following listing shows similar parts of the ModelingToolkit code for the reservoir
heel–to–manifold:

Reservoir -to -manifold pipe

@mtkmodel Reservoir_2_Manifold begin

Model of Reservoir -to-Manifold

#

Model "constants" and parameters

@parameters begin

-- constants

PI =3.141592654 , [description="pi"]

g=9.81

...

-- parameters

ell_m =100

ell_p =2_000

...

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

15 of 33

end

Dependent variables

@variables begin

-- differential variable

Vd_v(t)=23.15e-3

-- algebraic variables

rho_beta_0(t)

...

p_c__i(t)=58.5e5

p_h(t)

...

end

Equations

@equations begin

Balance equation

Dt(Vd_v) ~ A*(p_h - p_c__i + Dp_p - Dp_f - rho_v*g*h)/(rho_v*ell)

Algebraic equations

-- depending on inputs

rho_beta_0 ~ chi_w*rho_w + (1-chi_w)*rho_o

...

end

end

These listings show that Modelica code and ModelingToolkit code have a high degree of similarity.
A few things to note:

1. In Modelica, the independent temporal variable has a fixed name (time), and the time
differentiation operator has a fixed name (der). In ModelingToolkit, both of these can be freely
named by the user. In order to make unit models work together (e.g., in a standard library), it is,
however, necessary to standardize on a name for time (commonly t); differentiation can be given
a name as, e.g., Dt = Differential(t) or similar.

2. In Modelica, quantities need to be specified with a type (e.g., Real), and are prepended with a
qualifier (e.g., constant, parameter) — except for variables. For Julia and ModelingToolkit, the data
type is inferred, unless explicitly stated. In the code above, quantities in MTK are grouped within
begin...end blocks in macros (identifiers prepended by @, e.g., @parameters).

3. Modelica has a simple way to handle implicit algebraic equations, and in many cases an initial
guess of the algebraic variable is not required (see variable p_c__i in the Modelica code). In
ModelingToolkit, initial values for unknowns after structural simplification (“states”) must be
provided with numeric values (see variable p_c__i in the MTK code).

4. In ModelingToolkit, initial values of differential variables can be changed outside of the code,
hence default values can be written as Vd_v(t)=23.15e-3. In Modelica, only parameters can be
changed outside of the code (after compilation), hence a parameter has been defined to hold the
default initial value Vd_v(start = Vd_v0, fixed = true.

5. Modelica uses symbol = for mathematical equality; MTK uses symbol ~ since Julia already uses
symbol = for assignment.

The default solver in OpenModelica is excellent, although here it struggled if the model is posed
as a DAE formulation with momentum as differential variable. ModelingToolkit can use solvers from
the large, high quality DifferentialEquations.jl package [13]. With ModelingToolkit, more thought
is currently required when choosing solver, accuracies, etc., compared to OpenModelica. Also,
OpenModelica handles step-changes in inputs well, while for the DifferentialEquations.jl solvers,
it is often necessary to specify the time points where step changes occur. On the other hand, the
solutions from ModelingToolkit include interpolation functions, which yields smooth solutions with
considerably fewer data points than for Modelica.

Results presented in Section 5 compare numerical solutions for the Reservoir heel–to–Manifold
system for ModelingToolkit vs. OpenModelica.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

16 of 33

OpenModelica’s support for linearization and plotting can be accessed from Julia via the OMJulia
API [14]. ModelingToolkit is integrated in the Julia eco-system, with support for linearization, plotting,
control systems analysis, random variables, etc., and has overall more possibilities that OpenModelica
if further analysis is required.

OpenModelica is currently reported to handle models up to approximately 106

variables/equations; various conference presentations indicate that ModelingToolkit currently
can solve models of up to approximately 105 variables/equations.15 The model above
(Reservoir_2_Manifold) is reported by OpenModelica to have 15 variables (differential+algebraic) and
15 equations. In ModelingToolkit, linear equations with “observed” variables are stripped off from the
model (function structural_simplify()) before solving the model. The above Reservoir_2_Manifold

model in the listing is reported to have 2 “states” and 2 equations by ModelingToolkit. It is not
clear whether the ModelingToolkit claim of 105 variables/equations is before or after the “observed”
variables are stripped off.

Other commonly used languages for scientific computing are MATLAB (commercial) and Python
(free). Compared to both of these languages, Julia (free) has a more extensive set of differential equation
solvers16. Neither MATLAB nor Python offer equation based modeling languages with library/re-use
support such as Modelica or ModelingToolkit; MathWorks do offer Simscape17 (commercial) with
MATLAB integration for such use, though.

5. Results

5.1. Reservoir heel to manifold

Parameters, initial conditions, and system inputs are given in Appendix A. Figure 6 shows the
input variation for the Reservoir heel–to–manifold (R2M) case.

Figure 6. Input variation in experiment.

A step change in the formation pressure (red curve) as in Figure 6 is not very realistic; such
changes are normally slow. The manifold pressure (blue curve) is not normally an input function,

15 On-going work on a JuliaSimCompiler.jl for a commercial extension of Julia will increase the possible system size.
16 Julia’s DifferentialEquations.jl package can be accessed from Python and R.
17 https://se.mathworks.com/products/simscape.html

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

17 of 33

but rather a dependent variable in the overall system as in Section 5.2, and thus also normally varies
slowly. The pump speed (green curve) is, however, a control variable, and can change fast. Still, the
inputs in Figure 6 will help provide useful information about time constants in the system.

Figure 7 shows the response in (vertical) volumetric flow rate V̇v, with comparison between Julia
(red, solid) and OpenModelica (blue, dash-dot).

Figure 7. Response in volumetric flow rate to step inputs.

An important observation is that the volumetric flow rate is continuous under the step changes in
Figure 6. This makes sense, in that the momentum of the fluid (oil-water) is substantial. Time constants
are in the range of 0.2 –0.5 s.

Figure 8 shows the response in the choke valve inlet pressure, pi
c.

Figure 8. Response in choke valve inlet pressure to step inputs.

Observe that the choke valve inlet pressure normally is continuous under step changes, but that
it changes discontinuously upon a step change in manifold pressure at t = 1.5 s. Again, this makes

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

18 of 33

sense: when the manifold pressure drops, Figure 6, the choke valve inlet pressure must also drop in
proportion so that the flow through the valve changes continuously, see Eq. 14.

Figure 9 shows the response in the reservoir pressure heel, ph.

Figure 9. Response in well heel pressure to step inputs.

As noted, the formation pressure can not change in a step, but if it does, the well heel pressure
must also change in proportion (i.e., discontinuously) to maintain continuity in the flow rate.

Figure 10 shows the response in the ESP pump pressure head, ∆pp.

Figure 10. Response in ESP pressure increase to step inputs.

Again, the discontinuous change in pump pressure head is due to the step change in the manifold
pressure, and the result makes sense.

So far, ModelingToolkit/Julia and OpenModelica have given (seemingly) identical simulation
results, Figures 7–10. Figure 11 shows the pipe friction loss, ∆pf.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

19 of 33

Figure 11. Response in pipe friction pressure drop.

It is interesting to contrast the magnitude of the friction loss in Figure 11 and how much smaller
it is than the pressure boost in the ESP, Figure 10. Obviously, if a more realistic viscosity model had
been used, and in particular if emulsification occurs [8], the friction pressure drop might increase
considerable with an unfortunate mixing fraction of oil and water.

Apart from this, it is interesting to observe a slight discrepancy between the result from
ModelingToolkit/Julia and OpenModelica in this case. This discrepancy is maintained during a
multitude of tests with different solvers and accuracy for the DifferentialEquation.jl solvers [13] and
the solvers supported by OpenModelica. It seems like there is a minor discrepancy at t = 0 for ∆pf,
which propagates throughout the solution. Because the codes and initial conditions are the same for
both implementations, a natural suspicion is that the difference is due to different handling of the
implicit algebraic equation at initial time, and that ∆pf is rather sensitive to such an inaccuracy.

5.2. Reservoir heel to separator

Parameters, initial conditions, and system inputs are given in Appendix A. For vertical pipe #2,
scaling pump head hp,0 is set to 80% of the value suggested in Appendix A. For this more complete
system (2 vertical pipes, one horizontal transport pipe), there is no observed difference between the
solution from ModelingToolkit/Julia and OpenModelica.

Figure 12 shows the input variation for the Reservoir heel–to–separator (R2S) case; because of
slower dynamics for this larger system, the locations of the step changes have been changed, and the
step change in the manifold pressure (Figure 6) has been replaced by a step change in the separator
pressure (Figure 12).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

20 of 33

Figure 12. Input variation in experiment.

For comments on formation pressure and pump speed inputs, see Section 5.1. Although the
separator pressure is not normally an input function, there may be action applied to the separator that
may create relatively quick changes in the separator pressure.

Figure 13 shows the pressures in front of the choke valves for the vertical pipes, as well as the
manifold pressure.

Figure 13. Pressures in front of choke valve into manifold for vertical pipes (red, blue) and manifold
pressure (green).

Figure 13 demonstrates the positive pressure drop over the choke valves, and that they are

different for the two valves (∆p
j
c = p

i,j
c − pm). Therefore, one should expect different flows through

the two valves. Because the manifold pressure is a dependent (dynamic) variable in this case, there is
no discontinuity in the pressures of Figure 13.

Figure 14 displays the pressure increase over the ESP pumps in the two vertical pipes.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

21 of 33

Figure 14. Electric Submersible Pump pressure heads in vertical pipes (red, blue) to compensate for
gravity and friction loss.

In this figure, the sudden drop in ∆pp is due to a sudden change in the pump speed fp, and is
thus realistic.

Figure 15 shows the friction pressure drops in the two vertical pipes and in the horizontal pipe.

Figure 15. Friction pressure drops in vertical pipes (red, blue) from bore-well to manifold, and in
horizontal pipe (green) from manifold to separator.

Here, the interesting thing is that there is no visible difference between OpenModelica and Julia
solution of ∆pf for the three pipes; confer Figure 11. Of course, this could be due to the zoomed-out
view, but also on close inspection of ∆pf for the initial few seconds for vertical pipe 1, there is virtually
no difference.

The resulting time constants and overall behavior in Figures 13–15 are similar to those in Sharma
[3]. Particularly in Figures 13 and 14, some oscillatory behavior/overshoot is noticeable. This is to be

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

22 of 33

expected due to the elasticity of the oil/water mixture with the given non-zero value of isothermal
compressibility βT .

Figure 16 shows vertical flow rates from reservoir to manifold in the two pipes, as well as the
flow from manifold to separator (thick, solid lines), and the effect of uncertain productivity indices
in Well 1, V̇c,1

pi ∼ N
(
7 · 10−4, 10−4

)
, and uncertain isothermal compressibility in the petroleum fluid,

βT ∼ U[0.3/1.5·109,3/1.5·109)].

Figure 16. Vertical flow rates (red, blue) from bore-well into manifold, and horizontal flow rate (green)
from manifold to separator, with uncertainty productivity capacity and isothermal compressibility.

ModelingToolkit has support for efficient Monte Carlo studies; this is comparatively more
complicated using Modelica + OMJulia.

5.3. Linearized model

ModelingToolkit.jl has good support for linearization of models. To linearize a system, it is
necessary to provide a model where the inputs have not been defined (sys_p in Figure 17), a vector
of input variables (sys_in), a vector of output variables (sys_in), and an operating point (keyword
op, value op_0). If the ModelingToolkitStandardLibrary.jl (similar to Modelica’s Standard Library) is
used, alternatively, some “virtual” inputs/outputs can be added in the form of Analysis Points which
simplifies linearization; this is not discussed further here.

In Figure 17, linearization is performed using the named_ss function in ControlSystemsMTK.jl,
which has similar arguments as function linearize in ModelingToolkit.jl.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

23 of 33

Figure 17. Use of ControlSystemsMTK.jl and ControlSystems.jl for linearization and analysis.

Figure 17 suggests 6 poles/states in the system, and 3 transmission zeros. Obviously, the
system has 4 states/differential variables (flow rates V̇v for each of the vertical pipes, pressure pm

for the manifold, and flow rate V̇t for the horizontal transport pipe). Comparing poles and zeros,
one might suspect that two spurious/“infinitesimal” poles have been added together with two
spurious/“infinitesimal” zeros, and that canceling out the tiny poles and zeros should give the correct
transfer function. Observe also that there is a finite zero at −7.27 that cancels out one of the 4 true
eigenvalues.

It is possible to write one’s own linearization code using a (symbolic) Jacobian function applicable
to ModelingToolkit.jl models. If one assumes that the original model is a DAE of index 0 or 1, this
will indeed give the correct transfer function with 4 states (and one zero that cancels out one of the
eigenvalues). Why does ModelingToolkit.jl produce spurious additional poles/zeros? Possibly because
the linearization algorithm in ModelingToolkit.jl makes no assumption of the index of the DAE, thus
producing the two spurious “infinitesimal” poles/zeros.

Figure 18 shows the Bode plot of the transfer function from ESP rotational speed (fp)18 to flow rate
into the separator (V̇t), as found using Julia + ModelingToolkit.jl based on the transfer function provided
by the system in Figure 17. Package ControlSystems.jl also has a function balance_statespace() which
in combination with minimal realization provides a transfer function with 3 poles or 1 time constant
and one damped resonator,

P (s) ≈
1.094 · 10−3

(1 + 0.15s)
(

1 + 2 · 0.489 s
1.06 +

(
s

1.06

)2
) ; (60)

see pale curves in Figure 18.

18 It is assumed that the same speed is used for both ESP:s in the vertical pipes.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

24 of 33

Figure 18. Bode plot of linearized model from ESP speed f δ
p to volumetric flow V̇δ

t from manifold to
separator.

It is possible to instead use Modelica+OMJulia for linearization, and then use ControlSystems.jl for
Julia [similar capabilities as MATLAB’s Control Toolbox] for plotting and analysis/design. However,
control analysis and design is simpler to do if a Julia set-up is used also for modeling and simulation.

5.4. Single-loop controller tuning

Figure 19 shows a unit step response for the linearized model using convenience function step()

in package ControlSystems.jl.

Figure 19. Response in V̇δ
t after a unit step in f δ

p.

A crude approximation of the system is read off Figure 19 as the plant transfer function P≈ (s)

P≈ (s) = K
exp (−τs)

s
(61)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

25 of 33

with

K ≈ 6.27 · 10−3

τ ≈ 0.5.

A PI controller

C (s) = Kp
1 + Tis

Tis
(62)

based on Skogestad’s method [15–17] is used with

Tℓ = 1.3 · τ (63)

κ = 4 (64)

Kp =
1

K (τ + Tℓ)
(65)

Ti = κ (τ + Tℓ) ; (66)

where tuning parameters are: Tℓ, closed loop time constant; κ, integral time modifier.
Figure 20 shows a unit reference step response for the closed loop system [blue line]; here, utility

function feedback(P*C) has been used to construct the closed-loop system. Observe that the closed
loop time constant Tℓ is not achieved, and that the resulting system is rather oscillatoric.

Figure 20. Response in V̇δ
t after a unit reference step assuming delay + integrator process model, using

Skogestad’s method: single_loop [blue], double-loop with α = 0.1 [red], and double-loop with α = 5
[green].

The reason for the oscillatoric behavior is that single-loop tuning methods are not designed for
oscillatoric systems as the one in Eq. 60.

5.5. Double-loop controller tuning

In order to better handle the oscillatoric behavior of the system, which has generic form

Pζ (s) =
K

(1 + T1s)

(

1 + 2ζ s
ω0

+
(

s
ω0

)2
) , (67)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

26 of 33

an idea of Nandong [18] is pursued, where the control signal is split into an “inner” control signal

ui = −Ci (s) y (68)

and an “outer” control signal uo,
u = ui + uo (69)

where first Ci is designed to reduce the oscillations in the system.
Consider the following proper inner controller

Ci (s) = Ki
c

1 + T1s

1 + αT1s
; (70)

Inserting controller Eq. 68 into y = Pζ (s) u with u as in Eq. 69 and Pζ (s) as in Eq. 67 leads to,

y = Pζ (s) u = Pζ (s) (−Ci (s) y + uo)

⇓
(
1 + Pζ (s)C (s)

)
y = P (s) uo

which after some re-arrangement gives:

(

1 +
KKi

c

1 + αT1s
+ 2ζ

s

ω0
+

(
s

ω0

)2
)

y =
K

1 + T1s
uo.

For small values of α, α→ 0:

(

1 + KKi
c

)

+ 2ζ
s

ω0
+

(
s

ω0

)2

=
(

1 + KKi
c

)

×

· · · ×

(

1 + 2ζi
s

ωi
+

(
s

ωi

)2
)

where closed loop damping ζi given by

ζi = ζ/
√

1 + KKi
c

⇓

Ki
c =

(ζ/ζi)
2 − 1

K
. (71)

A design procedure could thus be:

1. Specify inner loop damping, ζi ≥ 1 to provide (over-) damping.
2. Compute inner gain Ki

c from Eq. 71.
3. Choose a “small” value for α to make the above design valid.

We choose ζi = 1, and compute Ki
c from Eq. 71. Next, closing the loop from uo to y where we allow for

α > 0 to have a realizable controller, the step response is as in Figure 21.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

27 of 33

Figure 21. Response in V̇δ
t after a unit step in uo. Upper plot: effect of varying α. Lower plot: indicating

steady state and 63% rule for time constant with α = 0.1.

Based on closed inner loop with α = 0.1 as in the lower plot of Figure 21, we find model parameters
in the model of Eq. 61 to be:

K ≈ 0.762 · 10−3

τ ≈ 0.5.

Tuning an outer loop PI controller with Skogestad’s method with an integrator + delay approximation,
this time with Tℓ = 2 · τ , the result is as in Figure 20, red curve. Although the result is considerable
faster than what is achieved with the single-loop controller (same figure, blue curve), the result is
surprisingly oscillatoric.

It is interesting to observe that with the same value for Tℓ = 2 · τ, and changing α from α = 0.1 to
α = 5, this gives a considerably better response, Figure 20, green curve.

5.6. Controller implementation with nonlinear model

The inner loop controller of Eq. 68 with Ci (s) as in Eq. 70 admits the following state space
realization

dzi

dt
= −

1
αT1

zi + y

ui =
Ki

c

α2T1
(1− α) zi −

Ki
c

α
y,

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

28 of 33

where we must require α > 0. The PI controller for the outer loop as in Eq. 62 admits the following
state space realization:

e = r− y

dzo

dt
=

1
To

i
e

uo = Ko
p (e + zo) .

With y← V̇t as input to the controller together with a reference value r ← V̇ref
t , the controller produces

output u = ui + uo → fp and is straightforward to implement in ModelingToolkit (or Modelica) and
connect with the reservoir-to-separator model. Using the inner-outer model with α = 5, starting in
steady state and injecting a step change in V̇ref

t gives the response as in Figure 22.

Figure 22. Response in V̇t after a unit step in V̇ref
t , with α = 5 in Eq. 70.

The response in Figure 22 [red curve] is similar to the corresponding response [green curve] in
Figure 20.

The response in Figure 22 is achieved with an ESP pump speed as in Figure 23.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

29 of 33

Figure 23. ESP pump speed fp, with α = 5 in Eq. 70.

In reality, it is not possible to “require” more production than the reservoir can produce. To
handle this correctly, a more complex interaction with the reservoir than the productivity index model
is required.

6. Conclusions

Sharma and Glemmestad [1], Sharma [3] provided a novel model of an ESP-lifted oil production
system from reservoir to separator. In Lie [2], the model of Sharma and Glemmestad [1] was provided
with a more structured model development, and with dimensionless equipment models. Also, some
information that is difficult to find in the original publications (e.g., ESP model parameters) was
included. A basic comparison of equation based modeling languages Modelica and ModelingToolkit
for Julia was given.

Here, the work in Lie [2] is extended in several directions: (i) a couple of model typos in [2]
are corrected, (ii) some more fluid details are given, (iii) more details of the ESP model is provided
for reference (max/min flow rates, power consumption, efficiency), (iv) an extended discussion
of pump control inputs is included, (v) a more thorough discussion is given of advantages with
dimensionless models, (vi) a more detailed comparison of model implementation in Modelica vs.
ModelingToolkit is provided, (vii) with a comparison of simulation results using OpenModelica
vs. ModelingToolkit with Julia, (viii) more simulation results are included for reference, (ix) model
linearization using ModelingToolkit with ControlSystems.jl for Julia is discussed, (x) controller tuning
for the linearized model is illustrated using Skogestad’s method applied to a simple integrator+time
delay approximation, as well as a double-loop design to dampen oscillations, (xi) the double-loop
controller is applied to the nonlinear ModelingToolkit model to confirm the controller tuning. Model
parameters, inputs, and initial states are provided in Appendix A.

A key difference between the model description here and the original one [1] is the focus on
dimensionless models, which greatly reduces the chance of errors. The inclusion of the ESP power
consumption model and flow rate constraints/best-efficiency-point for reference, makes it possible
with realistic studies of constraints in controller design. Although not implemented here, an extension
of more realistic pump control inputs by inclusion of the pump-motor aggregate moment of inertia is
discussed. For some systems, such an extension may be of interest.

Both Modelica and ModelingToolkit are suitable and free languages for structured model
development. Modelica is a mature language and a good choice, while ModelingToolkit is a more

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

30 of 33

general language with an extensive eco-system. Model implementation is very similar for the two
languages; ModelingToolkit does support more general model classes such as distributed models,
stochastic models, etc., and has an extensive tool-set for control design, optimization, model fitting,
etc. The numeric solutions are virtually identical for the two implementations; a minor discrepancy
in friction pressure loss in one case is most likely due to a difference in handling implicit algebraic
equations.

Model linearization is provided by both OpenModelica and ModelingToolkit for Julia; in the
case of ModelingToolkit, the eco-system of Julia for further analysis and design can directly be used,
while for OpenModelica, the linearization can be carried out via a script language API (e.g., from Julia,
Python, or MATLAB) and analyzed in the host language.

For illustration purpose, linearization of the system from ESP pump speed to volumetric separator
flow using ModelingToolkit/ControlSystems.jl is carried out in Julia. Then, several linear controllers
are developed based on Skogestad’s method for an integrator+time delay model approximation, as
well for a double-loop controller to dampen oscillations in the system caused by the compressible
fluid in the manifold. A re-tuning of the double-loop controller with Skogestad’s method in the outer
loop gives best performance. Implementation of the best controller in ModelingToolkit confirms that
the linear controller works well with the nonlinear reservoir-to-separator system under the simulated
experimental conditions.

The model development and discussion indicates a number of possible extensions such as (a) more
realistic properties (density, viscosity), (b) allowing for distributed density along pipes19, (c) adding a
more realistic system for water dilution in the manifold, (d) inclusion of valves in manifold–separator
pipes, (e) integration with reservoir models, (f) use for advanced control design with constraints, (g)
use for optimization, (h) integration with a reservoir model to study how to handle stiffness, and more
Such extensions will give more insight into the industrial usefulness of the model.

Funding: The economic support from The Research Council of Norway and Equinor ASA through Research
Council project “308817 —Digital wells for optimal production and drainage” (DigiWell) is gratefully
acknowledged.

Acknowledgments: Information/data for the original paper [1] provided by dr. Roshan Sharma and Ph.D.
student Kushila Jayamanne, both at University of South-Eastern Norway, is gratefully acknowledged.

Conflicts of Interest: The author declares no conflict of interest. The background information for the study
predates the funded project, and is openly available. Although the study is relevant to the funded project
[DigiWell], the funders had no role in the design of the study; in the collection, analyses, or interpretation of data;
in the writing of the manuscript; or in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

CFD Computational Fluid Dynamics
ESP Electric Submersible Pump
MTK ModelingToolkit
R2M Reservoir heel-to-Manifold
R2S Reservoir heel-to-Separator

Appendix A. Parameters and Operating Conditions

Parameters for petroleum fluid, nominal vertical pipes, and nominal manifold+horizontal pipe
are given in Tables A1–A3. Initial states are given in Table A4, while input functions are given in
Table A5.

19 ModelingToolkit for Julia has support for automatic discretization of PDEs.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

31 of 33

Table A1. Parameters: petroleum liquid.

Parameter

βT = 1
1.5·109 ≈ 6.67 · 10−10 Pa−1

p0 = 1 bar
ρo = 900 kg/m3

ρw = 1000 kg/m3

χw = 0.35
ρ0 = χwρw + (1− χw) ρo
χm

w = 0.5
ρm

0 = χm
wρw + (1− χm

w) ρo
νo = 100 cSt = 100 · 10−6 m2/s
νw = 1 cSt = 10−6 m2/s

Table A2. Parameters: vertical pipe.

Parameter

ℓ− = 100 m
ℓ+ = 2000 m
d = 0.1569 m
ǫ = 0.0018 inch = 45.7 ¯m = 45.7 · 10−6 m
V̇min,0 = 14.43 · 10−3 m3/s
V̇η,0 = 19.83 · 10−3 m3/s
V̇max,0 = 25.24 · 10−3 m3/s
hp,0 = 1210.6 m
fp,0 = 60 Hz
V̇ς = 1 m3/s
a1 = −37.57
a2 = 2.864 · 103

a3 = −8.668 · 104

Ẇm
p,0 = 167.733 kW

b1 = 52.12
b2 = −768.7
b3 = 38.544 · 103

b4 = −1.534 · 106

ṁc
v = 25.9 · 103 kg/h

f (uv) =







0, uv ≤ 0.05
11.1uv−0.556

30 , 0.05 < uv ≤ 0.5
50uv−20

30 , 0.5 < uv ≤ 1
pς = 1 bar
ρς = 1000 kg/m3

V̇c
pi = 7 · 10−4 m3/s

Table A3. Parameters: manifold+horizontal pipe.

Parameter

ℓm = 500
dm = 0.1569
ℓt = 4000 m
dt = 0.1569 m
ǫ = 0.0018 inch = 45.7 ¯m = 45.7 · 10−6 m
∆pbp,0 = 10 bar
fbp,0 = 60 Hz

Table A4. Nominal initial states.

Variable

V̇v (t = 0) = 2000 m3/d ≈ 0.02315 m3/s
pm (t = 0) = 50 bar = 50 · 105 Pa
V̇t (t = 0) = 2000 m3/d ≈ 0.02315 m3/s

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.20944/preprints202312.1383.v1

32 of 33

Table A5. Nominal inputs.

Variable

pf (t) =

{

220 bar, t < 0.5 s

0.95 · 220 bar, t ≥ 0.5 s

ps (t) =

{

30 bar, t < 3 s

0.97 · 30 bar, t ≥ 3 s

fp (t) =

{

60 Hz, t < 5 s

0.95 · 60 Hz, t ≥ 5 s
uv (t) = 1.0
fbp = 60 Hz

References

1. Sharma, R.; Glemmestad, B. Modeling and Simulation of an Electric Submersible Pump Lifted Oil Field.

International Journal of Petroleum Science and Technology 2014, 8, 39–68.

2. Lie, B. ESP Lifted Oil Field: Core Model, and Comparison of Simulation Tools. Scandinavian Simulation

Society 2023, pp. 159–166. doi:10.3384/ecp200021.

3. Sharma, R. Optimal Operation of Gas Lifted and ESP Lifted Oil Fields: An Approach Based on Modeling,

Simulation, Optimization and Control. PhD thesis, University of South-Eastern Norway, Kjølnes Ring 56,

N-3918 Porsgrunn, Norway, 2014.

4. Binder, B.J.T.; Pavlov, A.; Johansen, T.A. Estimation of Flow Rate and Viscosity in a Well with an Electric

Submersible Pump Using Moving Horizon Estimation. IFAC-PapersOnLine 2015, 48–6, 140–146.

5. Krishnamoorthy, D.; Bergheim, E.M.; Pavlov, A.; Fredriksen, M.; Fjalestad, K. Modelling and

Robustness Analysis of Model Predictive Control for Electrical Submersible Pump Lifted Heavy Oil Wells.

IFAC-PapersOnLine 2016, 49–7, 544–549.

6. Delou, P.d.A.; de Azevedo, J.P.A.; Krishnamoorthy, D.; Jr, M.B.d.S.; Secchi, A.R. Model Predictive Control

with Adaptive Strategy Applied to an Electrical Submersible Pump in a Subsea Environment. IFAC

PapersOnLine 2019, 52–1, 784–789.

7. Santana, B.A.; Fontes, R.M.; Schnitman, L.; Martins, M.A.F. An Adaptive Infinite Horizon Model Predictive

Control Strategy Applied to an ESP-lifted Oil Well System. IFAC PapersOnLine 2021, 54–3, 176–181.

8. Justiniano, M.; Romero, O.J. Inversion Point of Emulsions as a Mechanism of Head Loss Reduction in

Onshore Pipeline Heavy Oil Flow. Brazilian Journal of Petroleum and Gas 2021, 15, 13–24.

9. Brkić, D. Review of Explicit Approximations to the Colebrook Relation for Flow Friction. Journal of Petroleum

Science and Engineering 2011, 77, 34–48.

10. Fritzson, P. Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach,

second ed.; Wiley-IEEE Press: Piscataway, NJ, 2015.

11. Fritzson, P.; Pop, A.; Asghar, A.; Bachmann, B.; Braun, W.; Braun, R.; Buffoni, L.; Casella, F.; Castro, R.; Danós,

A.; Franke, R.; Gebremedhin, M.; Lie, B.; Mengist, A.; Moudgalya, K.; Ochel, L.; Palanisamy, A.; Schamai, W.;

Sjölund, M.; Thiele, B.; Waurich, V.; Östlund, P. The OpenModelica Integrated Modeling, Simulation and

Optimization Environment. Proceedings of the 1st American Modelica Conference; LIU Electronic Press,

www.ep.liu.se: Cambridge, MA, USA, 2018.

12. Ma, Y.; Gowda, S.; Anantharaman, R.; Laughman, C.; Shah, V.; Rackauckas, C. ModelingToolkit:

A Composable Graph Transformation System For Equation-Based Modeling. arXiv 2021.

doi:10.48550/arXiv.2103.05244.

13. Rackauckas, C.; Nie, Q. DifferentialEquations.Jl — A Performant and Feature-Rich Ecosystem for Solving

Differential Equations in Julia. Journal of Open Research Software 2017, 5. doi:10.5334/jors.151.

14. Lie, B.; Palanisamy, A.; Mengist, A.; Buffoni, L.; Sjölund, M.; Asghar, A.; Pop, A.; Fritzson, P. OMJulia:

An OpenModelica API for Julia-Modelica Interaction. Proceedings of the 13th International Modelica

Conference, 2019, pp. 699–708. doi:10.3384/ecp19157.

15. Skogestad, S. Simple Analytic Rules for Model Reduction and PID Controller Tuning. Journal of Process

Control 2003, 13, 291–309. doi:10.1016/S0959-1524(02)00062-8.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.3384/ecp200021
https://doi.org/10.48550/arXiv.2103.05244
https://doi.org/10.5334/jors.151
https://doi.org/10.3384/ecp19157
https://doi.org/10.1016/S0959-1524(02)00062-8
https://doi.org/10.20944/preprints202312.1383.v1

33 of 33

16. Skogestad, S. Simple Analytic Rules for Model Reduction and PID Controller Tuning. Modeling, Identification

and Control: A Norwegian Research Bulletin 2004, 25, 85–120. doi:10.4173/mic.2004.2.2.

17. Haugen, F. Comparing PI Tuning Methods in a Real Benchmark Temperature Control System. Modeling,

Identification and Control 2010, 31, 79–91.

18. Nandong, J. Double-Loop Control Structure for Oscillatory Systems: Improved PID Tuning via Multi-Scale

Control Scheme. 2015 10th Asian Control Conference (ASCC). IEEE, 2015. doi:10.1109/ascc.2015.7244476.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1383.v1

https://doi.org/10.4173/mic.2004.2.2
https://doi.org/10.1109/ascc.2015.7244476
https://doi.org/10.20944/preprints202312.1383.v1

	Introduction
	Background
	Previous work
	Structure of paper

	System description
	System topology
	Fluid properties
	Well-bore production
	Pump models
	Valve models
	Friction loss
	Why dimensionless models?

	Dynamic model
	Balance laws
	Vertical pipes with ESP
	Manifold
	Transport pipe
	Combined model

	Simulation tools
	Results
	Reservoir heel to manifold
	Reservoir heel to separator
	Linearized model
	Single-loop controller tuning
	Double-loop controller tuning
	Controller implementation with nonlinear model

	Conclusions
	Parameters and Operating Conditions
	References

