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Abstract: The pharmaceutical industry is one of the largest pollutants and generator of toxic solvent residues 
for the environment and human beings. In the last decade, there has been a huge evolution in the design and 
development of new environmentally friendly products and processes, in response to the global environmental 
concern and the growing demand for products with quality ingredients and manufacturing processes aimed 
at achieving sustainability. Consumers are looking for products with the benefits of natural products, with 
sustainable and environmentally friendly formulations with few synthetic molecules as possible. Thus, based 
on the origins of the pharmaceutical industry, it is important to return to Nature and enjoy the benefits that 
natural products bring to us. Deep eutectic solvents appear as an alternative to toxic solvents commonly used 
to extract bioactive compounds. These solvents are considered green solvents because they are made up of 
natural compounds such as sugars, amino acids, and carboxylic acids. In addition, they are simple to prepare, 
with an atomic economy of 100%, with attractive physicochemical properties. This paper is a comprehensive 
review in which is described the main properties, characteristics, and production methods of deep eutectic 
solvents as well as its application to extract from natural sources bioactive compounds with pharmaceutical 
interest. 

keywords: green chemistry; sustainability; neoteric solvents; deep eutectic solvents; bioactive compounds; 
extraction techniques; natural products; pharmaceutical industry 
 

Abbreviation List 
Abbreviations Name 

BUT 1,2-Butanodiol 
PROP 1,2-Propanediol 
4BUT 1,4-Butanodiol 
4-MP 4-Methoxyphenol 
ACE Acetamide 
ACA Acetic Acid 
AA Acrylic Acid 
API Active Pharmaceutical Ingredient 
BENZAC Benzoic acid 
BET Betaine 
BetHCl Betaine hydrochloride 
[N1 1 16 (2OH)+][Br−] Choline Bromide Salt 
ChC l Choline chloride  
CA Citric Acid  
CAM Citric Acid Monohydrate 
COSMOS-RS Conductor like Screening Model for Real Solvents 
CE Conventional Extraction  
DES Deep Eutectic Solvent 
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DESs Deep Eutectic Solvents 
GLU D-Glucose 
DDBAC dodecyldimethylbenzylammonium chloride 
EAE Enzymatic Assisted Extraction 
EG Ethylene glycol 
FEN Fenchyl alcohol 
FAE Fermentation Assisted Extraction 
FA  Formic acid 
FRU Frutose 
Tg Glass Transition Temperature 
GLY Glycerol 
HBA Hydrogen Bond Acceptor 
HBAs  Hydrogen Bond Acceptors 
HBD Hydrogen Bond Donor 
HBDs Hydrogen Bond Donors 
IUPAC International Union of Pure and Applied Chemistry 
Ils Ionic Liquids 
LACT Lactacte  
LAC Lactic Acid 
LAU Lauric acid 
LA  Levulinic acid 
LID Lidocaine 
MA Malic acid 
MAL Maltose 
MCAE Mechanochemical Extraction 
MEN Menthol 
MAE Microwave assisted extraction  
NADESs Natural Deep Eutectic Solvents 
OA Oxalic acid  
PHE Phenol 
PDESs Polymeric Deep Eutectic Solvents 
PQDESs Poly-Quasi Deep Eutectic Solvents 
PRO Proline 
PG Propylene Glycol 
NAACE Sodium Acetate 
SWE Subcfritical Water Extraction 
SFE Supercritical Fluid Extraction 
[N4444]Cl Tetrabutylammonium chloride 
TET Tetracaíne 
THEDESs Therapeutic Deep Eutectic Solvents  
THY Thymol 
TEA Triethanolamine 
TEG Triethylene glycol 
UHE Ultrasonic Homogenizer Extraction 
URE Urea 
UAE Ultrasound liquid extraction 
β-ALA β-Alanine 

1. Introduction 

Everything around us is chemistry! From the atoms that make us up, to the food we eat and the 
clothes we wear. Chemistry extends to all industries, whether in the pharmaceutical, textile, cosmetic, 
food or agricultural areas. Thus, chemistry is one of the areas of science responsible for the 
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development of society and the quality of life as we know today. However, when misused, chemistry 
also has consequences, namely at the environmental level and for human health. Chemists are 
primarily responsible for the use and development of new materials and, consequently, to produce 
hazardous substances for the environment and humans. Thus, chemists have an increased 
responsibility in achieving sustainable development [1-6]. 

In the nineties of the last century, with a view to combating all these problems, a new branch of 
chemistry emerged: Green Chemistry. IUPAC (International Union of Pure and Applied Chemistry) 
defines green chemistry as “the invention, development and application of chemical products and 
processes to reduce or eliminate the use and formation of substances dangerous” [4]. This concept is 
based on 12 principles, which were introduced in 1998 by Paul Anastas and John Warner [7].  

With the 12 principles of green chemistry in mind, industry in general, and the pharmaceutical 
in particular, must change the way they produce to aim to a more sustainable product. One of the 
main sources of pollution of the pharmaceutical, and chemical industries are the solvents that are 
used. Solvents are chemical substances with variable constitution from natural or synthetic sources, 
which are commonly used to dissolve, dilute, or disperse other compounds [8]. Solvents determine 
the solubility of their solutes, which is a property on which several processes are based, namely, 
extractions, separations, purifications, and concentration of substances. Solvents, therefore, play a 
crucial role in each of the processes, are used abundantly [9]. 

Solvents are fundamental elements in extractions of bioactive substances from natural products, 
whether as dissolution reagents or simply to maintain proper molecular interactions in 
transformations [9]. Among the numerous solvents that can be used as extraction solvents for natural 
bioactive compounds, n-Hexane, petroleum ether, diethyl ether, ethyl acetate, chloroform 
dichloromethane, acetone, n-butanol, ethanol, methanol, and water are the most used ones. Polar 
solvents such as water, ethanol and methanol are commonly used as extraction solvents for polar 
compounds, while non-polar solvents such as hexane and petroleum ether are used as extraction 
solvents for non-polar compounds. The remaining solvents allow the extraction of bioactive 
compounds of intermediate polarity [10]. However, except for water, these solvents are harmful for 
the environment and to community health [11]. 

But what would be an ideal solvent? 
The ideal solvent would be a fully sustainable compound, an innocuous substance without any 

type of negative impact, both for the environment and for humans, that simultaneously favoured the 
process conditions, making them less complex. To obtain it, a renewable raw material would be 
necessary and the process of obtaining it would not generate waste or emit pollutants. Subsequently, 
its preparation process would have to be efficient both in economic terms and in energy terms. The 
application of the ideal solvent would be versatile and would contribute to the superior performance 
of the process. In this way, the use of an ideal solvent in a chemical process would allow reducing 
the amount used allowing an easy elimination through recycling. The ideal solvent should be 
completely biodegradable, as if it had never existed. Unfortunately, we are still far from using ideal 
solvents [12-16]. 

Water is undoubtedly the solvent that comes closest to the ideal solvent. It is nontoxic, non-
inflammable low-cost substance. But water has also some disadvantages, do not dissolve polar 
compounds due to the high dielectric constant (at room temperature and normal pressure), has a 
hight boiling point which entails high energetic cost for its removal. Additionally, the scarcity of 
water in some regions of the world and the possible contamination of the effluents due to difficulties 
during the separation processes are also problems to the use of water as a solvent [14,17-21]. 

The simplest solution to the solvent use problem would be to develop methods that do not 
require solvents, such as mechanochemical methods [22-24], however, this is not always feasible and 
therefore these compounds should be avoided or replaced by innocuous solvents for the same 
purposes [1,12,17,25-28]. 

2. Deep Eutectic Solvents 
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Neoteric solvents emerged as an alternative to organic solvents and are commonly called green 
solvents, since they have low toxicity, are biodegradable, are made with accessible and low cost 
materials, and are quite easy to make [12-16]. This class solvents follow some of the 12 principles of 
green chemistry mentioned before, as they come from a natural origin have low toxicity, are 
biodegradable, and minimize waste as much as possible. Among them are included supercritical 
fluids, thermomorphic solvents, switchable solvents, liquid polymers, solvents derived from 
biomass, fluorinated solvents, ionic liquids (ILs) and deep eutectic solvents (DESs) [16,17,20,21,28,29]. 

In this review paper we will focus on DESs, however several reviews can be found on neoteric 
solvents and their applications [13-15,20,21,29,30]. 

The first Deep Eutectic Solvent (DES) was a mixture of choline chloride (Tºm=302ºC) and urea 
(Tºm=133ºC) in a 1:2 ratio, which led to the formation of a transparent liquid with a melting point of 
12°C, much lower than that of its individual constituents, and which exhibited quite different 
properties [31-35].  

The concept of eutectic mixture is based on the word Eutectic, originating from the ancient Greek 
word eutēktos, which means “easily melted” and is interpreted as the decrease in the melting point 
after the combination of its constituents [30,36]. A eutectic mixture is defined as a mixture of two or 
more components that results in a significant decrease in the melting point compared to the initial 
pure compounds [16]. The eutectic system can be represented through a phase diagram of 
temperature as a function of the composition of the eutectic mixture (Figure 1 (a)). As the two 
compounds, A and B, mix, their respective melting temperatures (T°m (A) and T°m (B)) decrease 
until they reach a minimum point, called the eutectic temperature of the mixture. The eutectic point 
represents the composition and minimum melting temperature at which the melting curves of these 
two constituents intersect. A DES (Figure 1( b)) is a non-ideal eutectic mixture in which an abrupt 
depression of the eutectic point occurs, hence the term deep [30,36,37]. 

  

(a) (b) 

Figure 1. (a) Solid-liquid phase diagram of a binary mixture of compounds A and B. (b) Phase 
diagram of typical ideal eutectic mixture (orange) and a deep eutectic solvent (green). 

DESs are defined as a mixture of two or more pure compounds, which, when combined in an 
appropriate ratio, give rise to a eutectic mixture that deviate from the ideal thermodynamic behavior. 
This deviation is due to strong interactions between the initial components that act as hydrogen bond 
donors (HBDs) and hydrogen bonds acceptors (HBAs). The HBDs and HBAs interact in the DESs to 
form a dense network of molecules that give them remarkably interesting physical and chemical 
properties. These properties include a low melting point, low volatility, high thermal stability, and a 
high solubilizing power of a wide range of compounds, namely those poorly soluble in water 
[16,17,21,26,30,31,36,38-42]. DESs are also customizable solvents, meaning that their physical and 
chemical properties can be adjusted by changing their constituents [36,41]. Consequently, it is very 
easily to obtain a large variety of DESs with different properties and applications, always with a 
maximum efficiency [30,32,33,41,42].  
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The most used HBA is choline chloride due to its low cost and biodegradability [42]. Choline 
chloride is the most economical synthetic way to obtain choline and can be produced on a large scale, 
it can be extracted from biomass, or it can be synthesized from fossil reserves [34]. However, other 
compounds are also used as HBAs, namely betaine, alanine, glycine, lidocaine, among others. 
Regarding HBDs, compounds such as thiourea, urea, citric acid, malic acid, tartaric acid, glycerol, 
menthol, xylitol, and oxalic acid are often used (Figure 2) [16,34,36,39,41,43-46]. Water can also be 
present in its composition and can play various roles, such as HBA, hydrogen bond donor (HBD), or 
simply as a dilution solvent [36]. 

 

 

(a) (b) 

Figure 2. Typical (a) hydrogen bond acceptors (HBAs) and (b) hydrogen bond donors (HBDs) used 
in the preparations of DESs. 

DESs have several advantages when compared with other neoteric solvents, as for example ILs. 
DESs are extremely easy to prepare with a high purity and a 100 % atom economy and without 
forming any by-product [16,47]. DESs do not require any purification step or waste disposal, have a 
low toxicity, reducing adverse environmental and human effects [16]. 

The main disadvantages of DESs are their high density and viscosity [40,41] which reduce their 
fluidity, making it difficult to transfer solvents and masses, especially in continuous operations, and 
in dissolutions [9]. This obstacle can be overcome by applying external physical forces such as 
microwaves and high temperatures or addition of water [40,41]. Furthermore, low vapor pressures 
contribute to the low volatility of DESs, which makes it difficult to separate them when needed. This 
especially important in their use as extraction solvents.  

The applications and potential applications of deep eutectic solvents are immense, highlighting 
their use as solvents [38], extraction solvents [31,44,48-54], electrolytes for lithium batteries [55], in 
nanotechnology [56], gas capture [57], for the synthesis of new materials [58-60], in chromatography 
[44,61], for electrochemical analysis [62], in biomedical applications [63], for removing excess glycerol 
in biodiesel [64]. More recently, deep eutectic solvents have been applied in the pharmaceutical 
industry with the aim of improving the bioavailability of drugs [65]. This is achieved by increasing 
the active pharmaceutical ingredient (API) solubility [66-68], permeability [69,70], stability [71,72], as 
well as a controlled release of drugs [73,74]. 

In this review we will focus on the applications of DESs for the extraction of bioactive 
compounds with pharmacological interest. 

2.1. Deep Eutectic Solvents Classification 

DESs can be classified as hydrophobic or hydrophilic according to their solubility in water [16]. 
The majority of the DESs are hydrophilic due to the extensive network of hydrogen bonds [30,75]. 
Hydrophobic DESs are defined as insoluble or very poorly soluble substances in water, composed of 
two or more compounds insoluble in water. [30,76]. Hydrophobic DESs have been successfully 
applied in several areas, namely for water purification [77], in the preparation of new materials such 
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as magnetic gels, in nanoparticles consisting of carbon nanotubes and graphene for the removal of 
organic micropollutants and metallic ions from water [78,79], in the capture of carbon dioxide [80], 
in electrolyte medium for solar cells [81] and for the extraction of bioactive compounds [82,83]. 

DESs are usually classified according to the type of compounds used in their preparation and 
are subdivided into four subclasses: Natural deep eutectic solvents (NADESs), Therapeutic deep 
eutectic solvents (THEDESs), Polymeric deep eutectic solvents (PDESs) and Poly-quasi eutectic 
solvents (PQDESs) [30]. 

NADES was discovered in 2011 when trying to elucidate the solubility of intracellular 
compounds, which were insoluble in water and lipids [30]. NADESs contain in their composition 
cellular metabolites such as amino acids, alcohols, sugars, and organic acids [40,42,84]. In addition, 
water can also be part of its composition, forming a ternary system [36]. In nature we can easily find 
this type DESs in different cells and organisms. For example, nectar is nothing more than a mixture 
of sugars that are solid at room temperature when separated, but liquid when combined. Another 
example is honey, with such interesting and unique properties that are not yet fully understood, but 
with tested medical applications [40,85-87]. NADESs play a key role in cellular metabolism and in 
many biological processes such as resistance to drought, germination, and dehydration. In addition, 
all living organisms have a process called organ cryopreservation, which is a defence mechanism to 
withstand extreme conditions, such as temperature variations between winter and summer. NADESs 
act as cryoprotective agents for the simple fact that membranes, enzymes, and metabolites remain 
stable with the addition of this type of eutectic mixtures [30,42]. In terms of applications, NADESs 
have been used in biocatalysts processes [35,88], in the extraction of compounds [89,90], in pre-
treatment of biomass [91,92], in electrochemistry for detection of bioactive materials [93], for drug 
solubilization [94], permeation enhancement [95], and as extraction solvents [26,43]. 

THEDESs, emerged as one of the strategies to promote increased solubility, permeability and, 
consequently bioavailability of drugs [96,97]. THEDESs are a class of DESs that use at least one active 
pharmaceutical ingredient (API) as one of its components [30,73,98-100]. These solvents have raised 
a lot of interest and THEDESs are currently being studied, namely for increasing the solubility of 
drugs in aqueous solutions or increasing their permeability in different biological barriers such as the 
skin or intestinal wall, among others [66,95,99,101].  

Another class of DESs are polymeric, so named because a portion of DES is polymerizable 
[30,102,103]. The polymer completely converted can be used in various applications, namely in 
nanotechnology [104] electrochromatography [105] and gas capture [102]. In 2017, a new class of 
DESs was proposed: the quasi-polymeric deep eutectic solvents [102].  

2.2. Deep Eutectic Solvents Synthesis 

DESs can be synthesized in varied ways depending on the equipment available (Figure 3). 
Independent on the type of equipment that is used, the synthesis involves the mixture of the two (or 
more) components normally without the need of any solvent, and then provide energy to the system 
during a certain amount of time in the form of a temperature increase (heating and stirring), 
irradiation (microwave and ultrasound), mechanical forces (grinding) or a combination between 
temperature and mechanical forces (twin screw extrusion). There also methods in which the initial 
components are dissolved in a solvent (normally water) and then heated in vacuum to evaporate the 
solvent (vacuum evaporation), or frozen and lyophilized (lyophilization) [30,41]. Another method 
that seems interesting in terms of sustainability is the use of concentrated solar radiation [106]. 

The temperature is needed it should be carefully chosen due to the possibility of degradation of 
the initial compounds [30,36,107-110]. 

The time needed to the DESs be synthesized may vary from minutes to hours and depending on 
the method of preparation and on the initial components and their ratio. 
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Figure 3. Deep eutectic solvents synthesis methods. 

2.3. Deep Eutectic Solvents Properties 

Deep eutectic solvents have a set of properties that make them quite useful as extraction solvents.  

One of the features of DESs is the possibility of being used as extraction solvents for a wide range 
of solutes [13]. The main characteristic that makes them good extraction solvents is their solvation 
capacity, that is, the fact that they can accept and transfer protons and electrons, establishing 
hydrogen bonds with the compounds and retrieve them from their matrix [111]. DESs, are known for 
their enormous capacity to dissolve very poorly soluble metabolites in water. They are also able to 
dissolve natural products such as rutin, paclitaxel, gingilido b and quercetin, starch, deoxyribonucleic 
acid (DNA) and high molecular weight proteins [43]. Dai et al. [112] verified that, small molecules, 
such as rutin, paclitaxel, gingilido b increased the solubility values in DESs when compared with 
water. It was found that, for example, rutin is 50-100 times more soluble in DESs than in water. DESs 
are also capable of stabilizing natural products [42]. Natural pigments such as carthamine are more 
stable to light, elevated temperatures, and storage time in various DESs with sugars than in water or 
a 40% ethanol solution [113]. The same stabilizing effect was later observed in anthocyanins [114]. 

Polarity expresses the strength of a solvent, that is, it determines its solvation power and is an 
important characteristic for a solvent [36,42,115]. The polarity of a DES can be adjusted by changing 
its constituents, making it more polar or apolar accordingly to the necessities, improving the 
selectivity of the solvent towards a particular bioactive component or class of components. A relative 
polarity scale could be established, but there are few publications about the polarity of DESs. The 
most used scales are the Dimroth and Reichardt, however, these scales are not universal and depend 
on probes. This means that the polarity parameters obtained by different probes cannot be compared 
[30,36,116]. Variations in the polarity of DESs depend on the compositions of their individual 
constituents and are believed to be related to the molecular structure of the HBD [115,116]. As a rule, 
polarity increases with increasing intermolecular attractions. Omar et al. [116] found that for the same 
DES choline chloride/glycerol in different molar ratios 1:1, 1:2 and 1:3, the polarity values were of 
58.49 kcal/mol, 58.00 kcal/mol and 57.96 kcal/mol, respectively. 

DESs thermal stability is an important property because limits the maximum operating 
temperature for which DESs can be useful. Between the temperature of glass transition (Tg) and the 
decomposition temperature, the DESs maintains its liquid state and the properties that arise from 
that condition [117]. Delgado-Mellado et al. [117] studied the thermal stability of eight different 
choline chloride-based DESs and found out that the volatility of the HBDs was the main contributor 
to the decomposition of the DESs. The authors also emphasized the importance of establishing the 
real range of operational temperatures for DESs to be able to use them at industrial level. All DESs 
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are normally glass formers with a Tg bellow 0ºC, however this property can be modified with the 
inclusion of water in the DESs structure due to the plasticizing effect of water. Craveiro et al showed 
that an increase in 5 wt% of water in a chlorine chloride:xylitol (2:1) DES, decreased the Tg in 4ºC 
[118]. The presence of water (added or absorbed during preparation) can also influence the thermal 
stability of the DESs if the water is lost upon heating. This can be observed in thermogravimetric 
analysis with mass lost around 100ºC due to water evaporation [119]. 

The toxicity of any compound depends on its ability to cross or interact with biological 
membranes and is affected if its structure is disrupted [120]. DESs are considered green solvents, 
presenting a low toxicity, which comes from the use of initial constituents of natural or little toxic 
origin. However, studies of the toxicity, cytotoxicity and ecotoxicity of DESs and respective aqueous 
mixtures are still too rare for them to be classified as safe [42,121,122]. Initial studies showed that 
DESs were biodegradable and non-toxic [123]. However, some DESs proved to be more toxic than 
their initial constituents [124]. 

Toxicity and cytoxicity studies made with DESs composed by different HBAs and HBDs in 
Gram-positive and Gram-negative bacteria and shrimp larva gave diverse results depending on the 
DESs. Some DESs showed to be toxic for some of the bacteria used and its toxicity was associated 
with the pH and with the charge delocalization between the HBA and HBD. The DESs also showed 
higher cytoxicity when compared to the initial components. The authors concluded that the lack of 
oxygen and their high viscosity may be the reason for this behaviour [124]. Fish cells and a human 
cell line were used to study the toxicity of three choline chloride DESs. One of the DESs showed a 
moderate toxicity due to the formation of calcium ions in addition with a pH decrease when the DES 
was added to the culture medium [123]. Lapena et al. [120] studied and evaluated the ecotoxicity of 
six DESs on algae, bacteria, and crustaceans. The authors concluded that the inclusion of water in the 
DESs can change the DES toxicity, because water it can be a part of the DESs or disrupt the 
intermolecular forces between the DESs components. Juneidi et al. [125] evaluated the toxicological 
profile of ten DESs on fungi and establish that the toxicity of the acidic DESs was higher since it is 
known that acid compounds can cause cell membrane and protein damage. Nevertheless, the DESs 
showed a lower toxicity than the respective acids when used isolated. The authors consider that this 
decrease can be explained by a pH change during the formation of the DESs or by a synergetic effect 
between the two initial compounds. The acidity of DESs was also considered a problem on a study 
made by Passos et al. [126] which evaluated the toxicological profile of nine DESs on an enzyme. All 
the DESs were constituted by sugars, organic acids, and water. The variation of the sugars was found 
to have no relation with the toxicity of the DESs, however the acidity of the organic acids was linked 
to have a direct relation with the increase on the DESs toxicity. Zhao et al. [127] studied twenty DESs 
that contained amines, alcohols, sugars, and organic acids as HBDs. Toxicity was evaluated for Gram-
positive and Gram-negative bacteria. All DESs containing amines, alcohols, and sugars as HBDs 
showed no inhibition of any of the bacteria. Only the DESs constituted by the organic acids as HBDs 
significantly inhibited all bacteria (seven DESs out of twenty). Higher inhibition was found for Gram-
negative bacteria. The authors concluded that the characteristic acidity of these compounds must be 
responsible for the damage caused to their outer membrane. This is extremely important, since Gram-
negative bacteria have their own external membrane, which acts as a protective barrier, making them 
more resistant to external aggressions, therefore, these DESs are a hypothesis to combat this type of 
very resistant bacteria. Li et al [128] proposed a rating scale for DES toxicity: Type 1, Type 2, and Type 
3. Type 1 is the DES that has a higher toxicity then the individual constituents due to new interactions 
created during the formation of DES. Type 2 is the DES that has lower toxicity then the initial 
constituents. In this case the properties that make the initial components toxic are modified in the 
DESs. Finally, Type 3 is the DESs whose toxicity is the combination of the toxicity of its constituents. 
The authors studied DESs with amino acids in their constitution and observed, for the first time, that 
DESs containing amino acids can also present toxicity. 

There are few studies that evaluate the biodegradability of DESs. All DESs biodegradability 
studies follow the Standard OECD No.301 D which allows the classification of a compound as easily 
biodegradable or not in an aqueous aerobic medium. According to this standard, to consider a 
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material easily biodegradable it is necessary that the level of biodegradation is 60% on the 10th day 
out of 28 for respirometry methods [129]. Lapena et al. [120] studied the biodegradability of six DESs 
and concluded that the addition of water to the DESs affects their biodegradability, increasing or 
decreasing it depending on the DES. The number of hydroxyl groups was also a factor in the 
percentage of biodegradability of the DESs. The same conclusion was retrieved by Radošević et al. 
[123] that evaluated the aerobic biodegradability of three DESs with components containing different 
number of hydroxyl groups. The authors concluded that the higher the amount of hydroxyl groups 
the higher the percentage of biodegradability. 

The density of the DESs is an extremely important property due to the implication it has on their 
use and handling. Very high densities can cause the DESs not to flow, which can impair their 
processing. The density values of DESs are higher than those of their pure constituents, and as a rule, 
DESs have values higher than those of water, except for hydrophobic DESs [36,39,115,116,130]. DESs 
are usually highly viscous solvents, which can impede mass transfer and decrease the extraction 
efficiency [111]. Viscosity translates resistance to deformation at a given shear rate of a given fluid 
[16,109,131,132]. A liquid with low viscosities flows very easily, while more viscous one’s flow more 
slowly This is particularly important, as it will influence and determine its commercial applicability 
and the cost of the process [39,42,131]. The high density and viscosity of DESs can be circumvent by 
adding water to the DESs and/or to handle them at temperatures higher than the ambient 
temperature.  

One of the characteristics of the DESs is their low vapor pressure. This intrinsic characteristic of 
these compounds can be an advantage or a disadvantage depending on the application. In an 
extraction process it is preferable that the DESs have a lower vapor pressure, considering that the 
extraction temperature is reached without loss of extraction solvents by evaporation. However, if we 
intend to separate the DES from the extract à posteriori, a low vapor pressure is a disadvantage because 
it hinders its evaporation, unless that the DESs can be incorporated in the extracts or other methods 
are used to separate the DESs from the extracts [9,46,133]. 

3. Bioactive Compounds 

Bioactive compounds are secondary metabolites that are present in plants, fungi, 
microorganisms, and animals and can cause pharmacological or toxicological effects in humans and 
animals [49,134,135]. Phytochemicals are bioactive compounds present in plants, such as fruits, 
vegetables, and cereals [136]. These compounds are classified into phenolic compounds 
(polyphenols), terpenoids and nitrogen-containing compounds. Phenolic compounds are the largest 
group of phytochemicals and are present in almost all plants in the form of secondary metabolites, 
where they play a key role both in growth and reproduction processes, as well as in protection against 
pathogens and predators [46,137,138]. Phenolic compounds can in turn be divided into flavonoids 
(anthocyanins, flavonols, flavones, isoflavones and flavols) and non-flavonoids (phenolic acids, 
stilbenes, lignin’s, and tannins), [139]. 

Bioactive compounds have been extensively investigated and their application as therapeutic 
agents has increased due to the important biological properties they possess, namely anti-
inflammatory, antidiabetic, analgesic, anticancer, antimicrobial (antifungal and antiviral) and 
antioxidant activities, which makes them useful for the prevention of various diseases such as 
cardiovascular diseases [140], neurodegenerative diseases [97], and cancer [141]. Some of these 
compounds have also been shown to have anti-aging properties [142] and the ability to absorb 
ultraviolet radiation through the presence of chromophores in their composition, causing the entry 
of radiation into the skin to be blocked by these compounds, protecting it [143]. Hair growth 
promoting [144] and nail damage prevention [145] properties have also been reported. These 
characteristics make them extremely interesting compounds for applications in the pharmaceutical 
industry [135,137] (Figure 4)  
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Figure 4. Some of the main properties of the bioactive compounds. 

3.1. Extraction of bioactive compounds 

To obtain bioactive compounds, it is necessary to extract them from natural sources (Figure 5). 
The objective is to obtain sustainable compounds, so the entire process involving their extraction 
must comply with this requirement. This implies a raw material of natural and environmentally 
friendly origin, an environmentally friendly solvent and extraction method, and the lowest possible 
energy expenditure with the lowest possible waste production [146-148]. 

 

Figure 5. Process for obtaining bioactive compounds. Adapted from [146]. 

3.1.1. Extraction techniques 

The extraction of compounds with a bioactive potential is the first step in the research and 
development of new natural products. These extraction methods must be selective, economical, 
reproducible, environmentally friendly, safe, and effective [149]. Natural bioactive compound 
extraction techniques are divided into conventional and modern techniques (Figure 6). 

 

Figure 6. Techniques normally used for the extraction of bioactive compounds. 

Maceration, percolation, decoction, reflux and Soxhlet are some examples of conventional 
extraction methods and use solvents such as water or organic solvents such as methanol, ethanol, 
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propanol, acetone, and ethyl acetate [149,150]. The non-selectivity of these conventional methods, the 
possibility of degradation or isomerization of the bioactive compounds due to prolonged heating, 
their low extraction yield, the negative environmental effects, their long extraction times, the high 
extraction costs associated with large amounts of organic solvents and energy costs, and the wrong 
methodologies for recycling the hazardous solvents that are used, have made it necessary to develop 
other more environmentally friendly techniques [135,149,150].  

The so-called modern techniques were developed with the intention to reduce the use of toxic 
solvents, reducing the waste and energy consumption and at the same time increasing the extraction 
yield [115]. New methods were then proposed, such as enzyme-assisted extraction (EAE), 
fermentation-assisted extraction (FAE), mechanochemically assisted extraction (MCAE), ultrasound-
assisted extraction (UAE), microwave-assisted extraction (MCAE), supercritical fluid extraction 
(SFE), and subcritical water extraction (SWE).  

Enzyme-assisted extraction (EAE) is a biological extraction method that is based on the ability 
of enzymes to hydrolyse plant compounds, breaking their cell wall to release the cytoplasmic content, 
namely bioactive compounds, in an extraction solvent. Regarding its advantages, this extraction is a 
specific technology, given that the enzymes used are specific, such as cellulase, α-amylase, 
hemicellulose, pectinase, among many others [149,151-153]. Most of these enzymes are derived from 
microbial organisms or other various sources, such as plants and animals [115]. However, and this 
being its biggest disadvantage, some enzymes are expensive, especially on a large scale or on an 
industrial scale if there is a large substrate enzyme ratio, making this method expensive [153]. 

In fermentation-assisted extraction (FAE) microorganisms are used for fermentation of 
substrates in plant materials to facilitate the selective extraction and separation of target biomolecules 
from their complex matrices. Only microorganisms are used that already exist in the material itself, 
so it has a low associated cost. However, this technique is not specific, and sometimes there is 
formation of by-products or hydrolysis of the target compounds [149]. 

The extraction of pulsed electric field (PEF) is based on the application of intermittent pulses of 
high voltage current during short periods of time, in the order of micro to milliseconds, in a 
previously placed inside a chamber, located between two electrodes. This voltage generates an 
electric field, and its intensity is dependent both on the distance between the electrodes and on the 
applied voltage. When electric field exceeds the critical value, an electroporation phenomenon occurs. 
This phenomenon consists of the increased permeability of the cytoplasmic membrane to the passage 
of ions and macromolecules due to the repulsion between charged molecules. Plant materials are 
destroyed by disruption of their membrane and there is an increase in mass transfer during 
extraction, reducing extraction time. The main advantage of this method is the non-use of heating, 
which minimizes the degradation of thermolabile compounds and requires less energy. Moreover, 
the addition of chemicals is not necessary, which reduces the associated cost without affecting the 
quality of the product. This technique has some disadvantages such as an exceedingly high initial 
cost and a dependence on the conductivity of the environment [152]. 

Currently, mechanochemical methods have attracted a lot of attention due to the much higher 
extraction yields they present, their low cost, short extraction time, mild experimental conditions, 
simplicity of equipment and ease of coupling a posteriori with various methods of analysis. 
Mechanochemically assisted extraction (MCAE) is an extraction method that consists of applying a 
mechanical force (high-speed grinding) to the tissues and cell membranes of plant materials. This 
force facilitates the release of intracellular molecules and consequently the extraction of target 
compounds from their matrix. A solvent can be used in extremely low amounts to react with the 
target compounds under mechanical force improving the extraction yield. The purpose of this 
technique is not simply to increase the contact area between the target compounds and the solvent, 
but also to chemically transform them into forms that are more soluble in water or in the solvent 
[149,154]. The main advantages of this method include the simplicity of the extraction process, the 
use of a lower extraction temperature that allows the extraction of thermolabile compounds and 
reduces the cost of the process, a shorter extraction time, the use of low amount of solvents, if needed, 
and an increase in the selectivity of the extraction [155,156]. This technique proves to be far superior 
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in the fragmentation of cells and tissues, homogenization of materials. However, the method has 
disadvantages, namely the difficulty of extracting compounds that are hydrophobic and neutral 
[149].  

Ultrasound-assisted extraction (UAE) is one of the most used modern extraction techniques and 
is a technique already used to extract bioactive compounds since 1980. This method is based on the 
use of low frequency energy (20-1000 kHz) and high power (80-200 W), ultrasonic waves 
[115,152,157]. Upon application and penetration of ultrasonic waves into the plant matrix, cycles of 
compression and expansion occur in the medium that result in the phenomenon of cavitation and 
consequently the formation of air bubbles. The size of these bubbles varies during the expansion and 
compression cycle until it reaches its critical size and collapses with consequent release of energy. 
This causes the rupture of the cell wall of the plant material and the release of the bioactive 
compounds that are inside the cells [84,150,158]. As advantages, this method is quite simple since it 
only needs an ultrasonic bath, or an ultrasonic probe and it is not necessary a dispersive solvent to 
increase the surface area of contact between the extraction solvent and the sample [115,157,159]. In 
addition, it uses low amounts of solvent, consumes little energy and the extraction times are short. 
The phenomenon of cavitation improves the efficiency of the extraction, as it not only accelerates the 
dissolution and diffusion of bioactive compounds, but also allows heat transfer. Thus, significantly 
higher extraction yields are obtained than with other techniques. As disadvantages, this method is 
not applicable to thermolabile compounds and the noise from ultrasonic waves is annoying for the 
operator [151]. 

Microwave-assisted extraction (MAE) consists of using microwaves with frequencies in the 0.3–
300 GHz range, which interact directly with the sample through dielectric heating. In this process, 
microwave electromagnetic radiation heats a dielectric material through a dipole rotation of the polar 
components present in the matrix. In this way, it leads to the degradation of plant cell tissues and 
induces the flow of ions, releasing the active compounds from the intracellular and cellular 
membrane [84,115,150]. As advantages, it is an easy-to-handle and efficient technique, with high 
extraction yields, short extraction times, low energy expenditure and lower consumption of solvents. 
Contrary to some techniques, it can analyse several samples simultaneously, which leads to a low 
extraction time [84,149]. Its major limitations are the fact that it is not applicable to thermolabile 
compounds or production at an industrial level due to the associated cost and to the impurities of the 
extracts obtained due to the intense extraction conditions that make it possible to extract different 
analytes, even the undesirable ones [149,150]. 

When a gas undergoes compression and heating, its physical properties as a gas change and it 
becomes a supercritical fluid. This fluid has the solvation power of a liquid and the diffusivity of a 
gas at temperature and pressure below the critical point [152,153]. The supercritical extraction 
technique is based on the introduction of a supercritical fluid into a plant material that will extract 
bioactive compounds according to their solubility. Co-solvents such as water, ethanol and methanol 
can be added to increase the solvation power of the supercritical fluid, which may allow the extraction 
of polar compounds [152,153]. Supercritical carbon dioxide is the most used. It allows the extraction 
of lipophilic compounds and fats, without the need for a concentration step [157]. In terms of 
advantages, the method uses green solvents without the need to use organic solvents which makes it 
environmentally friendly, the process can be automated, it is selective, it prevents sample oxidation, 
the extracted compounds are very stable, and it uses low temperatures. Furthermore, the low 
viscosities and high diffusivities of these fluids increase mass transfer, reducing extraction time. As 
disadvantages, the technique has a high associated cost, the equipment used is complex, consumes a 
high amount of energy and has low selectivity for polar compounds [152,153]. 

Subcritical water extraction (SWE) consists of extracting less polar compounds using water as 
the extraction solvent. Subcritical water is kept in liquid state under high pressure (10-60 bar) and 
temperature (100-374°C). At 25°C, the dielectric constant of water is 80. If the temperature is increased 
to, for example, 250°C and the pressure to 25 bar, the dielectric constant drops dramatically to 25, 
lying between that of methanol and ethanol, at 25°C. In this way, at these temperatures and pressures, 
water can extract compounds of medium to low polarity [152,160-162]. The advantages of this 
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extraction method are its simplicity and the fact that it only uses water as a solvent, which makes the 
extraction technique green and with a lower associated cost. Polar, moderately polar, and non-polar 
compounds can be extracted separately using this technique, which is a great advantage, for example, 
compared to supercritical extraction. In addition, the technique has a short extraction time, high 
efficiency and enables a continuous process. However, it has disadvantages, namely the difficulty in 
separating the bioactive compounds from the extracts, the thermal degradation and oxidative 
damage that can occur when using high temperatures, the difficulty in cleaning the equipment 
[152,162].  

4. Deep Eutectic Solvents for the extraction of Bioactive Compounds  

The use of DESs for bioactive extraction gained a lot of interest by the scientific community in 
the last 10 years. A rapid search in the WebofKnowledge platform with the keywords “Deep Eutectic 
Solvents Bioactive Compounds Extraction,” shows a rapid increase in the number of papers 
published in this last decade (Figure 7). 

 

Figure 7. Number of papers in WebofKnowlege at 21 of November 2023 with the search “Deep 
Eutectic Solvents Bioactive Compounds Extraction”. 

The increase used of these solvents is due to their unique chemical properties such as low 
melting point, low vapor pressure, chemical and thermal stability, polarity, and miscibility solubility. 
Moreover, they present a 100% atom economy, low environmental impact due to their low cost and 
simplicity to produce using natural and environmentally friendly substances [163]. Polarity is a key 
property to solubilizing compounds in an extraction process. The HBAs and HBDs used to for the 
DESs play a significant role in the final polarity, as well as the addition of water [112,164]. For 
example, Craveiro et al showed that DESs composed of choline chloride and organic acids were more 
polar than the ones with sugars [118]. Depending on the target compound, the DESs can be more 
hydrophobic or hydrophilic. Most of them are hydrophilic, however the use of hydrophobic DESs in 
extractions is increasing [165]. Hydrophobic DESs based on choline bromide with different chain 
lengths were synthesized to extract phytochemicals from Cannabis sativa. The hydrophobic and 
hydrophilic features of the DESs facilitated the interactions with polar and non-polar compounds 
present in the plant increasing the extraction efficiency [166]. 

Searching the application of the DESs for bioactive compounds extraction in 2023, many 
applications were developed to retrieve bioactive compounds from natural sources with 
pharmaceutical interest using these solvents (Table 1).  

From the components used to synthesize the DESs, choline chloride as the HBA was by far the 
most used one, however caution must be taken when using this compound since it is forbidden for 
cosmetic applications [167,168]. 

Most of the authors found that the extractions with DESs, independently of the extraction 
method, have high yields when compared with the use of traditional solvents (methanol, ethanol, 
acetone, etc.) with advantages of being used at milder temperatures without flammable solvents and 
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lower extraction times [169,170]. Liu et al [171] screen twenty-seven DESs combined with UAE to 
retrieve scutellarin from Erigerontis Herba, an herb used in Chinese medicine. From the DESs 
screened, twenty-five had a higher extraction yield than the conventional solvents (methanol and 
75% ethanol solution). Vinci et al. [172] used DESs to extract antioxidant compounds from dark 
chocolate. The DES of betaine and choline chloride showed a 35% higher extraction yield than 
traditional solvents. 

Evidently, that are several factors that influence the extraction yield and components extracted. 
Some of the most influential are the biomass-to-solvent ratio, the time and temperature of the 
extraction, the type and ratio of HBA and HBD, the viscosity and density of the DES, water content, 
and pH [170,172,173]. Chagnoleau et al [167] screened fifteen DESs for extracting antioxidants from 
out-of-calibre kiwifruits. The authors studied the influence of water on the extraction and 
demonstrated that up to 40% of water could be added to the system without compromising the 
antioxidant activity of the extracts. The number and type of hydrogen bonds present in the DESs has 
a profound impact, not only in the extraction yield but also in the nature of bioactive compound to 
be extracted. Theoretical studies demonstrated that hydrogen and π-bonds were the main factors 
affecting the extraction of hesperidin from orange peel using a DES of triethanolamine: 4-
methoxyphenol (1:1) with a water content of 35% [174]. 

One of the advantages associated with DESs is their capacity to be tailor-made solvents, i.e., by 
varying the HBA and HBD different bioactive compounds can be extracted [175]. This selectivity of 
the DESs can be explained by different chemical interactions with the target compounds [170]. Ojeda 
et al. [176] used mango by-product to extract bioactive compounds using DESs. To understand the 
relation between viscosity and the hydrogen bonds in the DESs they did a theoretical study and found 
out that the hydrogen bonds have a determining effect on the viscosity of the viscosity of the DES 
and in the specificity of the compounds extracted. The selectivity of the DESs in extraction was 
showed by Santos-Martín et al. [177] that used two DESs, one composed by lactate, sodium acetate 
and water, and a second composed by choline chloride and oxalic acid, to extract phenolic 
compounds from blueberry leaves using UAE. The authors conclude that not only the DESs had 
superior performance for the recovery of phenolic compounds when compared to traditional organic 
solvents, but also, that the lactic-based DES enabled the extraction of a wide range of 
hydroxycinnamic acids and flavonol derivatives, whereas the choline-based DES was selective 
towards anthocyanins.  

The higher extraction yields and selectivity that the extractions with DESs present can be 
explained by the damage that the DES provokes in the cell wall of the vegetable material. Scanning 
electron microscopy (SEM) was used to analyze the surface of the material before and after the 
extraction with DESs and compared with the extraction performed with conventional organic 
solvents, the materials extracted with DESs showed more pores and cracks due to the penetration of 
the DES into the cell structure due to the high hydrogen bonding, van der Waals forces and ionic 
interactions [178,179]. Chen et al. [180] studied the mechanism of extraction of artemisinin from the 
leaves of Artemisia annua L. by SEM and 1H nuclear magnetic resonance and verify that the hydrogen 
reformation and the pant tissue destruction play vital roles during the extraction process. The 
penetration of the DESs in the cell wall due to strong interactions is also possible when hydrophobic 
DESs are used. In this case the van der Waals interactions are the main mechanism [181]. The 
extraction performance is enhanced when the DESs are used in conjunction with UAE. In these cases, 
there is a synergetic effect between the cavitation phenomenon of the ultrasound and the ability of 
the DESs to bond to the target molecules [171,182,183]. 

The extracts with DESs also presented better results in terms of antimicrobial activity 
[170,179,184], antiproliferative activity in tumour Caco-2 cells and normal human keratinocyte cells 
[185], lower toxicity and increase bioavailability of the target compounds when administered to rats 
[186], higher antioxidant, [184] and anti-inflammatory effects as well as inhibitory effects against α-
glucosidase and pancreatic lipase [187] when compared to the extracts from the traditional solvents. 
The enhanced biological activity of the DESs extracts can be explained by the higher content of 
bioactive compounds [187,188]. Duarte et al [189] studied the effect of extracts rich in polyphenols 
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from a UAE based DES extraction and concluded those extracts showed a large antioxidant activity 
and a significant effect on the growth of Gram-positive and Gram-negative bacteria. The biological 
activity of the DESs extracts opens the possibility of using these extracts in pharmaceutical industry, 
to prevent and treat diseases or to develop new drugs.  

Another important advantage of the extracts containing DESs is their stability. Some studies 
were performed to study this parameter and found that the DESs extracts have a longer shelf-life 
when compared with conventional solvents extracts [133,185]. This stabilization was due to the ability 
of the DESs to stabilize the phenolic compounds [190]. Lee et al [165] used leaves from kale to extract 
several health-promoting phytochemicals using natural DESs with different 
hydrophilicity/hydrophobicity. The DES extracts provided the greatest stability of the bioactive 
polyphenols by retaining 91.7% and 88.6% of the original content after 30 days of storage at 4ºC and 
25ºC, respectively. 

One of the main drawbacks in using the DESs in an industrial scale is the difficulty to remove 
the DESs from the extracts and to recycle them form further use, however, new methods are being 
developed to be able to separate the DESs from the extracts and to reused them for subsequent 
extractions. Anstiss et al. [133] screen twenty-two hydrophobic DESs to extract fatty acids and instead 
of removing the DES from the extracts, reused the entire extract 5 times without losing the extraction 
efficiency. Another approach was used by Lanjekar et al. [191] that used a macroporous resin to 
entrap the compound of interest, glycyrrhizin acid and separate it from the extracts. They reused the 
DESs in two cycles with more than 90% of the extraction efficiency. Water as antisolvent was used to 
recover and recycle DES based-on choline chloride used to extract rutin form from Saphora japonica L. 
with a yield of 94.9%. The DESs was reused at least three times without loss of extraction yield [192]. 
The anti-solvent method was also used by Liu et al. [171] to recover 71.7% of scutellarin after the DES 
extraction. Biphasic systems were also developed to separate the DESs from the extracts. These 
systems were comprised of an aqueous DES phase, and a second organic phase (e.g., ethyl acetate). 
Using this system, the target compounds are extracted to the aqueous phase and then transferred to 
the hydrophobic phase. In this way the target compounds are separated from the DES and at the 
same time the extraction yield is increased [193]. Other approaches were developed to separate the 
DESs from the extracts based on temperature [194], pH [195], and CO2 [174]. Tang et al [194] prepared 
hydrophobic temperature-switchable DESs to extract Lycium barbarum polysaccharides. After the 
extraction, the temperature was changed to separate the two phases, the aqueous, rich in 
polysaccharides and the hydrophobic one with the DESs. The authors reused the DESs five extraction 
cycles with a percentage of recovery after the fifth cycle of 80.2%. Ca et al. [195] used pH responsive 
polymeric DESs with a phosphate salt to extract aromatic amino acids. By adjusting the pH, the DESs 
was separated and reused for further extractions. Wang et al [174] synthesized CO2-responsive DESs 
to extract hesperidin from orange peel. The reversible phase transformation of the DES solution was 
achieved by bubbling CO2/N2 in the DES solution to recover the hesperidin from the top phase. 

The type of extraction method used is the most significant factor affecting the extraction 
outcome. Methods such as MAE and UAE are often used in conjunction with the DESs. These 
methods drastically reduced the solvent requirement and extraction time, thereby minimizing energy 
consumption and cost compared with traditional extraction processes [196]. Additionally, the 
cavitation phenomenon of the UAE in junction with the DESs proven to be highly effective on 
disrupting the cell wall, increasing the extraction efficiency [178].  

MCAE using DESs was used to extract bioactive compounds from tea leaves, results showed 
that the extraction was complete within 20 seconds, therefore this method as the potential to be a 
powerful tool for efficient extraction of thermal sensitive bioactive compounds [197]. 

The choice of the DESs to use in the extraction process is normally based on trial-and-error 
approaches or acquired knowledge. However, some theoretical approaches have been used to choose 
the DESs. These approaches assume that the best DES to extract a pre-determine compound is one 
that allow to have a higher number of interactions (hydrogen bonds, van der Waals/electrostatic 
forces, etc.) with the target compound. Fan et al. [180] used COSMO-RS (short for COnductor like 
Screening MOdel for Real Solvents) to design DESs capable of extract artemisinin from the leaves of 
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Artemisia annua L. The program was used to predict the thermophysical properties and extraction 
performance of the DESs by simulating the intermolecular forces of the target in the mixed system. 
COSMO-RS was also used to screen twenty-two hydrophobic DESs by predicting their interactions 
with the two omega-3 polyunsaturated fatty acids [133]. In both cases, the DESs screen showed to be 
efficient and selective towards the target compound.  

Table 1. Application of DESs as extraction solvents of bioactive compounds from natural sources in 
the last year. 

Best DES(s) (molar ratio) Natural source Target compound 
Extraction 

technique(s) 
Reference 

ChCl:PG (1:2) Wolfberry 
Rhamnogalacturonan-I (RG-I) 

pectin 
CE [179] 

LA:water Vine shoots 
Phytochemicals (proanthocyanins, 
stilbenes, hydroxycinnamic acids, 

and flavonols) 
UAE/CE [189] 

ChChl:MA (1:1) 
ChChl:GLY (1:2) 

Orange 
Bioactive compounds and ascorbic 

acid 
CE [190] 

LA:GLY (1:2) Evodia lepta Alkaloids MAE [193] 
ChChl:EG (1:3) Abalone viscera Polysaccharides UAE [198] 
TET: LAU (1:1) Lycium barbarum Polysaccharides UAE [194] 

Terpenoid-based 
Rosmarinus 
officinalis L. 

Bioactive oxidants UAE [181] 

CAM:GLY (1:1) 
Micromelum 

minutum 
Polysaccharides CE [199] 

ChChl:GLY (1:2) 
ChCl:LAC (1:3) 
ChCl:CA (1:1). 

Apple Bioactive compounds UAE [169] 

BetHCl:EG (1:10) Kiwifruits Antioxidants CE [167] 
[N4444]Cl:AA (1:1). --- Aromatic amino acids --- [195] 

TEA:4-MP (1:1) Orange Hesperidin UAE [174] 
ChCl-ACA (1:2) Peanut Flavonoids UAE [183] 

BET-LAC 
Astragalus-
Safflower 

hydroxysafflor yellow A, 
anhydrosafflor yellow B, 

eleutheroside B, calycosin-7-O-
glucoside, 

kaempferol-3-O-rutinoside, 
ononin, calycosin, astraganoside, 

carthamin 

UAE [186] 

LACT: NAACE:H2O 
(3:1:2) 

ChCl:OA (1:1) 
Blueberry Phenolic compounds UAE [177] 

ChCl:ACE (1:4) Erigerontis Herb Scutellarin UAE [171] 
ChCl:CA (1:1) Curcuma longa Curcuminoids MAE [196] 
BET:GLY (1:3) Kale Polyphenols Solid/Liquid [165] 

BET:MA:PRO (1:1:1) Propolis Bioactive compunds UAE [200] 
ChCl:Gly (1:2) 
ChCl:URE(1:2) 

Rhamnus alaternus Polyphenols CE [184] 

ChCl:EG(1:2) Sophora japonica L. Rutin CE [192] 
BENZAC:FEN (1:4) Artemisia annua L. Artemisinin CE [192] 

β-ALA:MA:H2O (1:1:3) Mango Phenolic compounds 
CE/ 

UAE 
[176] 
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CA:MA:H2O (1:1:10) Persimmon Fibers/Antioxidants UAE [201] 
ChCl:GLY (1:1) Avocado Phenolics/Carbohydrates MAE [202] 
ChCl:GLY (1:2) Kiwifruits Polyphenols UAE [187] 
ChCl:GLY (1:2) Spice Polyphenols UAE [203] 
ChCl:ACA (1:4) Tarragon Bioactive compounds CE [204] 
LAC:GLY (1:2) Foxtail millet Husk Bioactive compounds UAE [178] 
ChCl:GLY (1:1) Violet Potato Bioactive compounds UAE/MAE [185] 
BET:TEG (1:2) 

ChCl:PROP (1:2) 
Coffee ground Polyphenols CE [170] 

BET: FRU (1:1) Dark Chocolate Bioactive compounds UAE [172] 
ACA:GLU (2:1) 
ACA:GLY (2:!) 

Tea Tannins/Flavonoids/Terpenoids UAE/EAE [188] 

MEN:LID (1:1) 
Perna 

canaliculus 
Omega-3 CE [133] 

DDBAC:LA (1:3) Gardenia Bioactive Compounds CE [205] 
[N1 1 16 (2OH)+][Br−]:THY 

(1:2) 
Cannabis sativa L. Phytochemicals Microextraction [166] 

ChCl:BUT (1:4) C. vulgaris Bioactive compounds CE [173] 
ChCl:MA (1:1) 
ChCl:LAC (1:3) 

Aralia elata  
Triterpene 
Saponins 

CE [206] 

CA:GLY:H2O 
(1:4:10/15/20) 

Chamaenerion 
angustifolium (L.) 

Scop. 
Bioactive compounds UAE [207] 

CA:MAL (1:2) Nettle Bioactive Compounds UAE [208] 
ChCl:LAC (1:1) Iris sibirica L. Bioactive compounds CE [209] 
ChCl:LAC (1:2) Edible Feijoa Flavonoids CE [210] 
ChCl:LAC (1:4) Mexican Oregano Flavonoids UAE [211]1 
ChCl-PHE (1:3) Hop Polyphenols CE/UAE/UHE [212] 

ChCl:GLU (1:0.8) Capsicum chinense Polyphenols UAE [175] 
ChCl:LAC (1:1) Glycyrrhiza glabra Glycyrrhizic acid MAE [175] 
ChCl:MA (1:2) 
ChCl:CA (1:2) 

ChCl:4BUT (1:2) 
Fenugreek Flavonoids UAE [213] 

ChCl:LAC (1:2) black mulberry Flavonoids/Phenolics UAE [182] 
ChCl:4BUT (1:2) Tea Flavonoids/Alkaloids/Catechins MCAE [197] 

4. Conclusions and future perspectives 

Researchers and the industrial community are responsible for introducing green chemistry into 
their research into industrial processes to promote sustainable development. Thus, the conventional 
chemical methods used by the industries in general and the pharmaceutical in particular must be 
replaced by new, more environmentally friendly methods. Organic solvents are widely used by these 
industries in processes of separation, purification, and concentration of compounds, being one of the 
main sources of pollution in these industries. Most of them carry environmental and health risks for 
workers and consumers due to their high volatility, toxicity, and flammability. 

Plants are a source of primary and secondary metabolites, which include bioactive compounds, 
compounds with beneficial biological for humans. Numerous of these natural compounds can satisfy 
the needs of various industries, and several are pharmacological active ingredients. Their extraction 
from natural sources has been the subject of intense research in the past decades. The extraction 
techniques evolved and nowadays the scientific and industrial community has at their disposal 
extraction techniques more effective and environmentally friendly. Techniques such as MAE and 
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UAE become increasingly popular as extraction techniques due to their high yields and low solvent 
and energy consumption. However, part of these techniques still uses organic toxic solvents.  

Neoteric solvents have emerged as possible substitutes for organic solvents. They are green 
solvents due to their low toxicity and high biodegradability. Within the neoteric solvents, DESs gain 
special attention due to their low cost, readily available materials, and easy production. From their 
properties, their high solubility capability for hydrophobic and hydrophilic compounds may be one 
of the most important for their use as extraction solvents. Moreover, the availability of a high number 
of possible HBAs and HBDs combination, modulating their properties as solvents, make DESs very 
attractive to target specific bioactive compounds. Is has been shown in several works that the use of 
DESs with extraction techniques, such as UAE, increase the extraction efficiency due to the capability 
of the DESs to form hydrogen bonds with the bioactive compounds. 

Despite the work developed on the last decade on understanding DESs, there are still some areas 
that need to be deepened. Toxicity and/or biodegradability of the DESs is still far from be fully 
understood as wee laws the synergetic effects of the DESs upon their use. The structure-activity 
relationship of the DESs needs to be explored to establish a more comprehensive way to choose the 
right DES for a certain application. Regarding the use of the DESs as extraction solvents more studies 
are needed with different extraction techniques. For example, the use of DESs in SWE is still almost 
unexplored. It is also necessary to deepen the knowledge about the possible synergistic effects that 
may occur between the DES and the bioactive compounds, whether they affect the bioavailability of 
the bioactive compounds in the extract, the way that they impact the stability of the extract, and their 
toxicity in the final extract. 

Overall, DESs have been proved to be good solvents for the extraction of bioactive compounds, 
regardless of the natural matrix or the extraction technique used and should be perused as 
alternatives to toxic organic solvents. 
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