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Abstract: The Spiking Neural Network (SNN) has attracted more and more attention recently. It

adopts binary spike signals to transmit information. Benefitting from the information passing

paradigm of SNNs, the multiplications of activations and weights can be replaced by additions,

which are more energy-efficient. However, its “Hard Reset" mechanism for the firing activity would

ignore the difference among membrane potentials when the membrane potential is above the firing

threshold, causing information loss. Meanwhile, quantifying the membrane potential to 0/1 spikes at

the firing instants will inevitably introduce the quantization error thus bringing about information

loss too. To address these problems, we propose to use the “Soft Reset" mechanism for the supervised

training-based SNNs, which will drive the membrane potential to a dynamic reset potential according

to its magnitude, and Membrane Potential Rectifier (MPR) to reduce the quantization error via

redistributing the membrane potential to a range close to the spikes. Results show that the SNNs

with the “Soft Reset" mechanism and MPR outperform their vanilla counterparts on both static and

dynamic datasets.

Keywords: Spiking Neural Network; Information Loss; Soft Reset; Quantization Error; Membrane

Potential rectificater

1. Introduction

Deep Neural Networks (DNNs) have greatly improved many applications in computational

vision, e.g., object detection and recognition [1], object segmentation [2], object tracking [3], etc. In

pursuit of models with better performance, more and more complex networks are proposed. However,

the increasing complexity poses a new challenge to model deployment on power-constrained devices,

thus becoming an impediment to the applications of these advanced complex models. There have

been several approaches to address this problem, such as quantization [4–6], pruning [7], knowledge

distillation [8], spiking neural networks (SNNs) [9–17], and so on. Among these approaches, the

biology-inspired method, SNNs provide a unique way to reduce energy consumption by mimicking

the spiking nature of brain neurons. A spiking neuron integrates the inputs over time and fires a

spike output whenever the membrane potential exceeds the firing threshold. And using 0/1 spike to

transmit information makes SNNs enjoy the advantage of multiplication-free inference by converting

multiplication to additions. Furthermore, SNNs are energy-efficient on neuromorphic hardwares, such

as SpiNNaker [18], TrueNorth [19], Darwin [20], Tianjic [21], and Loihi [22].

Despite the attractive benefits, there is still a huge performance gap between existing SNN models

and their DNN counterparts. We argue that the reason for the low accuracy is there exists information

loss in SNNs. First, the information processing of neurons in supervised training-based SNNs are

generally following the rules of the Integrate-and-Fire (IF) model or Leaky IF (LIF) model, where

once a membrane potential exceeds the firing threshold, a “Hard Reset” operation will force the

“residual” potential to be set to 0, i.e., once fired, all the information will be taken away. Obviously,
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this mechanism of “residual” membrane potential-ignored reset mode would fail to preserve the

diversity of various membrane potentials. Hence the information encoding capacity of the network

is compromised, such that the risk of information loss increases accordingly. Second, although the

0/1 spike information processing paradigm enables SNNs to enjoy the advantage of high efficiency,

quantifying the real-valued membrane potential to 0/1 spikes will inevitably introduce the quantization

error, which also brings about information loss.

To address the information loss problem, we propose a “Soft Reset”-based IF (SRIF) neuron model

that retains the “residual” membrane potential from subtracting its spike value at the firing instants.

Hence the diversity of the membrane potentials that exceed the firing threshold will be preserved.

Though “Soft Reset” is commonly used in converting methods from ANN to SNN (ANN2SNN) [15,23–

25] methods, rarely applied in supervised SNNs [26], and has not been discussed in SNN enhancement

from the perspective of information loss reducing. In addition, for alleviating quantization error, the

Membrane Potential Rectifier (MPR) is proposed, which is performed before the firing activity to adjust

the membrane potentials towards the spike values (i.e., 0/1). With MPR, the membrane potential will

be decoupled as an original one and a modulated one. The original one can keep the mechanism of a

neuron and the modulated one enjoys less quantization error than the original one without suffering

from any negative effects. The difference between our neuron and the vanilla neuron is illustrated in

Figure 1. Our main contributions are as follows:
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Figure 1. The difference of our “Soft Reset"-based neuron and vanilla “Hard Reset"-based neuron. The

membrane potential will be redistributed to reduce the quantization error in our neuron with MPR

while not in the vanilla neuron.

• We propose using the SRIF model for supervised training-based SNNs. By retaining the “residual”

membrane potential, SRIF enables the networks to distinguish the differences among those

membrane potentials that exceed the firing threshold via subtracting their spike values thus

enhancing the information encoding capacity of supervised training-based SNNs.
• We present MPR to mitigate the quantization error. By utilizing a non-linear function to modulate

the membrane potential close to 0/1 before firing activity triggers, the gap between the potential

and its corresponding 0/1 spike value is minified while maintaining the sparse spike activation

mechanism of SNNs. To our best knowledge, few works have noticed the quantization error in

SNNs, and a simple but effective method for addressing this problem is presented.
• Extensive experiments on both static and dynamic datasets were conducted to verify our method.

Results show that the SNN trained with the proposed method is highly effective and efficient

compared with other state-of-the-art SNN models, e.g., 96.49% top-1 accuracy and 79.41% top-1

accuracy are achieved on the CIFAR-10 and CIFAR-100. These results of our models even

outperform their DNN counterparts surprisingly, and it is very rare that SNNs may have a

chance to surpass their DNN counterparts.
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2. Related Work

2.1. Learning Methods of Spiking Neural Networks

The training methods of SNNs can be divided into two categories. The first one is ANN2SNN [15,

23–25]. ANN2SNN yields the same input-output mapping for the ANN-SNN pair via approximating

the continuous activation values of an ANN using ReLU by averaging the firing rate of an SNN under

the rate-coding scheme. Since the ANN has achieved great success in many fields, ANN2SNN can

maintain the smallest gap with ANNs in terms of performance and can be generalized to large-scale

structures. However, being restricted to rate-coding, ANN2SNN usually requires dozens or even

hundreds of timesteps to obtain well-performed networks. Lots of efforts have been done to reduce

the long inference time, such as weight normalization [27], threshold rescaling [28], soft reset [24],

threshold shift [15], and the quantization clip-floor-shift activation function [29], it is still hard to obtain

high-performance SNNs with ultra-low latency.

The second one is supervised learning-based SNNs. SNNs quantize the real-valued membrane

potentials into 0/1 spikes via the firing activity. Since the gradient of the firing activity function

is zero almost everywhere, the gradient descent-based optimizer can not be directly used for the

training of SNNs. To alleviate the optimization difficulty, the approximate gradient-based strategy

is commonly used, and some related approaches had been proposed to achieve trainable SNNs with

high performance. For example, by regarding the SNN as a special RNN, a training method of

back-propagation through time with different kinds of surrogate gradient was proposed [30]. The

spatio-temporal back-propagation (STBP) [31] method enables SNNs to be trained on the ANN

programming platform, which also significantly promotes the direct training research of SNNs.

Differentiable spike which can match the finite difference gradient of SNNs well was proposed in [16].

The temporal efficient training (TET) [32] method with a novel loss and a gradient descent regime that

succeeds in obtaining more generalized SNNs, has also attracted much attention. In RecDis-SNN [13],

a new perspective to understand the difficulty of training SNNs by analyzing undesired membrane

potential shifts is presented and the MPD-Loss to penalize the undesired shifts is proposed. Numerous

works verify that supervised learning can greatly reduce the number of timesteps and handle dynamic

datasets. It has increasingly aroused researchers’ interest in recent years. In this work, we focus on

improving the performance of the supervised learning-based SNNs by repressing information loss,

which is rarely mentioned in other works.

2.2. Threshold-dependent Batch Normalization

Batch Normalization (BN) is one of the most widely used normalization technologies, which

is initially designed for very deep Convolutional Neural Networks (CNNs). As it only focuses on

normalizing the spatial feature maps, directly applying BN to SNNs would damage the temporal

characteristic of SNNs, which stand with spatio-temporal feature maps, leading to low accuracy.

To address this issue, some specially-designed normalization methods for SNNs were proposed

recently. Typically, to simultaneously balance neural selectivity and normalize the neuron activity,

NeuNorm [31] was proposed. Then, a more effective normalization technique that can take good

care of the firing threshold, named threshold-dependent Batch Normalization (tdBN) was further

proposed in [33]. It can normalize the feature maps of SNNs in both spatial and temporal domains

[33]. Specifically, let Xt ∈ R
B×C×H×W represent the input maps at each timestep, where t = 1, . . . , T (B:

batch size; C: channel; (H, W): spatial domain). Then for each channel c, the spatio-temporal sequence

X(c) = {X
(c)
1 , · · · , X

(c)
T } is normalized by tdBN as follows,

X̃
(c)

= λ ·
αVth(X

(c) − x̄(c))
√

mean((X(c) − x̄(c))2) + ϵ

+ β, (1)
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where Vth is the firing threshold, α is a network-structure-dependent hyper-parameter, ϵ is a tiny

constant, λ and β are two learnable parameters, x̄(c) = mean(X(c)) is the mean value of X(c), X̃
(c)

is the

normalized maps. In this paper, tdBN is also adopted considering its spatio-temporal normalization

mechanism.

3. Preliminary and Methodology

To avoid the information loss in supervised training-based SNNs, we propose the “Soft Reset” IF

(SRIF) model and Membrance Potential Rectificater (MPR).

3.1. “Soft Reset" IF Model

An SNN adopts a biology-inspired spiking neuron that accumulates inputs along the time

dimension as its membrane potential and fires a spike when the potential exceeds the firing threshold.

This mechanism makes it much different from its DNN counterpart. For better introducing the

proposed SRIF neuron, a unified form defined by a recent work [9], is given to describe the dynamics

of all kinds of spiking neurons as follows,

H[t] = f (U[t − 1], X[t]), (2)

O[t] = Θ(H[t]− Vth), (3)

U[t] = H[t](1 − O[t]) + VresetO[t], (4)

where X[t], H[t], U[t], and O[t] are the input, membrane potentials before and after the trigger of a

spike, and output spike at the timestep t, respectively. Vth is the firing threshold, and is usually set to

0.5. Θ(·) is the step function defined by Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for x < 0. Vreset denotes the

reset potential, which is set as 0. The function f (·) describes the neuronal dynamics of spiking neuron

models, for the commonly used IF neuron and LIF neuron, f (·) can be respectively defined as follows,

H[t] = U[t − 1] + X[t], (5)

H[t] = τU[t − 1] + X[t], (6)

where τ denotes the membrane time constant.

Both LIF and IF neurons have some unique advantages, with decay characteristics introduced

by the membrane time constant, LIF neuron behaves more biologically compared with IF neuron,

while IF neuron is more efficient due to its addition-only processing manner. In terms of accuracy

performance, neither of them show an overwhelming advantage, and more detailed experimental

results of these two neurons are provided in Section 4. Considering the subtle gap in performance, we

prefer to use LIF model due to its neurodynamic characteristic, from the perspective of brain science

research. Conversely, from the perspective of computer science research, we recommend using IF

model, since it is more friendly to hardwares.

However, both the IF model and LIF model might undertake a greater or lesser risk of information

loss by the “Hard Reset" mechanism, i.e., when the input membrane potentials exceed the firing

threshold, the neurons will force the membrane potentials to a fixed value. Such mechanism ignores

the “residual" parts of those fired membrane potentials. These “residual" parts contain the diversity of

the input potentials, and we argue that a neuron model which can preserve the diversity or differences

of these membrane potentials that cause the firing is more suitable.

To this end, along with the consideration of efficiency, we propose using a “Soft Reset"

mechanism-based IF neuron, SRIF, which can keep the diversity of the membrane potentials by
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subtracting their firing spike values from themselves at the time where the threshold is exceeded.

Though this similar “Soft Reset” mechanism has been widely used in ANN2SNN [15,23–25], there are

few works to use it in supervised learning-based SNNs [26]. We found its value in this field from a

new perspective to reduce information loss. In SRIF neuron, Eq. (4) is updated as

U[t] = H[t](1 − O[t]) + (H[t]− O[t])O[t]. (7)

It can be further simplified as

U[t] = H[t]− O[t]. (8)

It can be seen that, similar to IF neuron, SRIF is also an addition-only model, thus enjoying

computational efficiency when implementing on hardwares. Figure 2 compares the difference between

IF neuron and SRIF neuron in an intuitive way. Suppose that both models receive weighted input

sequence of 1.5Vth, 1.2Vth, 1.5Vth, 0.9Vth, and 1.4Vth across 5 consecutive timesteps. Our SRIF neuron

will produce three spikes by retaining the residual potentials at the firing instants as depicted in

Figure 2. Whereas, the IF neuron will produce four spikes.

time
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Figure 2. The difference of “Hard Reset” IF neuron and “Soft Reset” IF (SRIF) neuron.

3.2. Membrane Potential Rectificater

To further mitigate the information loss, we present a non-linear function, called MPR by reducing

the quantization error. MPR aims to redistribute the membrane potential before it is operated by

the step function. It only modulates the membrane potential that is presented to the step function

but does not modify the value of membrane potential, which receives and accumulates spikes from

other neurons. Specifically, we further distinguish the membrane potentials as the original one, H

as in Eq. (2) and the modulated one, Ĥ, which is the membrane potential that will be presented to

the step function. In all previous works, H and Ĥ are treated as the same. While in this paper, we

would like to provide a new perspective that using a decoupling function to separate H and Ĥ can

be helpful. Specifically, H manages the original tasks as in other work, Ĥ derives from H with a

non-linear function, φ(·), and it will be fed into the step function with a modulated form that can
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shrink the quantization error. With this decoupling mechanism, a neuron model can not only keep the

membrane potential updating rule but also enjoy less quantization error.

Before giving the full details of the MPR, we try to formulate the quantization error first. It is

clear that the quantization errors corresponding to different membrane potentials should be different.

Hence, a value closer to its quantization spike, o, enjoys less quantization error. In specific, the firing

threshold divides the membrane potentials into two parts, the part with smaller values is assigned

to “0" spike, and the other with larger values is assigned to “1" spike. Then the quantization error

depends on the margin between the membrane potential and its corresponding spike. Therefore, the

quantization error can be defined as the square of the difference between the membrane potential and

its corresponding quantization spike value as follows:

Lq = (u − o)2, (9)

where u is the membrane potential and o ∈ {0, 1}. when u is below the firing threshold, o is 0,

otherwise, 1.

Hence, the design of MPR should obey the following two principles:

• Spike-approaching: the modulated membrane potential, Ĥ should be closer to the 0/1 spikes

than the original membrane potential, H. This principle ensures quantization error reduction.
• Firing-invariance: for the H less than Vth, the MPR should not produce the Ĥ greater than Vth

and vice versa. This principle ensures the neuron output be consistent with or without using

MPR.

Based on the above two principles, we define the MPR as the following symmetrical function:

φ(u) =











−(1 − u)1/3 + 1, u < 0,
1

2tanh(3/2)
tanh(3(u − 1/2)) + 1/2, 0 ≤ u ≤ 1,

(u)1/3, u > 1.

(10)

Figure 3 shows the response curve of the designed MPR function following the principles of

spike-approaching and firing-invariance.

0.5 0.0 0.5 1.0 1.5
u

0.5

0.0

0.5

1.0

1.5

(u
)

Step function
MPR function

Figure 3. The MPR function.

According to [33], the membrane potential follows a Gaussian distribution, N (µ; σ). Hence, to

visualize the effect of the MPR, we sample 1000,00 values from a Gaussian distribution with N (1/2; 1),

and present them to the MPR. Then the distribution of these 1000,00 MPR outputs is drawn in Figure 4.

It can be seen that the unimodal distribution, N (1/2; 1) is adjusted to a bimodal distribution which is

with less quantization error since it can naturally gather the membrane potentials near “0" and “1".
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MPR

Figure 4. The effect of the MPR. The original membrane potential distribution (left). The redistributed

membrane potential distribution by MPR (right).

Moreover, it is worth noting that, the redistributed membrane potential, Ĥ by MPR is only used

for narrowing the gap between the true membrane potential, H and its quantization spike. It will not

replace the original H in our SRIF neuron model. Then the complete new dynamics of the SRIF model

can be described as follows,

H[t] = U[t − 1] + X[t], (11)

Ĥ[t] = φ(H[t]), (12)

O[t] = Θ(Ĥ[t]− Vth), (13)

U[t] = H[t]− O[t]. (14)

The detailed Feed-Forward procedure for the SRIF neuron with MPR is given in Algorithm 1.

Algorithm 1 Feed-Forward procedures for the “soft reset" IF neuron with MPR.

Input: the input current, X.
Output: the output spike train, O.
Feed-Forward:

1: for for all t = 1, 2, . . . , T-th timesteps do
2: Update the membrane potential, H(t) by Eq. (11), which represents the membrane potential

accumulating the input current.
3: Redistribute the membrane potential, H(t) by Eq. (12) and denote the redistributed membrane

potential as Ĥ[t].
4: Calculate the output spike, O(t) by Eq. (13) using the new membrane potential, Ĥ[t].
5: Update the membrane potential, U(t) by Eq. (14), which represents the membrane potential

after the trigger of a spike.
6: end for

4. Experiment

The proposed methods were evaluated on various static datasets (CIFAR-10 [34], CIFAR-100 [34],

ImageNet [35]) and one neuromorphic dataset (CIFAR10-DVS [36]) with widely-used spiking

archetectures including ResNet20 [28,37], VGG16 [37], ResNet18 [38], ResNet19 [33], and ResNet34 [38].

4.1. Datasets and Settings

Datasets. The CIFAR-10(100) dataset consists of 60,000 images in 10(100) classes with 32 × 32

pixels. The number of the training images is 50,000, and that of the test images is 10,000. The

CIFAR10-DVS dataset is the neuromorphic version of the CIFAR-10 dataset. It is composed of 10,000
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images in 10 classes, with 1000 images per class. ImageNet dataset has more than 1,250,000 training

images and 50,000 test images.

Preprocessing. Data normalization is applied on all static datasets to ensure that input images

have 0 mean and 1 variance. Besides, the random horizontal flipping and cropping on these datasets

were conducted to avoid overfitting. For CIFAR-10, the AutoAugment [39] and Cutout [40] were

used for data augmentation. For the neuromorphic dataset, since the CIFAR10-DVS dataset does not

separate data into training and testing sets, we split the dataset into 9000 training images and 1000

test images similar to [17]. For data preprocessing and augmentation, we resized the training image

frames to 48 × 48 as in [33] and adopted random horizontal flip and random roll within 5 pixels. And

the test images are just resized to 48 × 48 without any additional processing.

Training setup. For all the datasets, the firing threshold Vth was set as 0.5 and Vreset as 0. For

static image datasets, the images were encoded to binary spike using the first layer of the SNN, as in

recent works [9,37,38]. This is similar to rate-coding. For the neuromorphic image dataset, we used the

0/1 spike format directly. The neuron models in the output layer accumulated the incoming inputs

without generating any spike as the output like in [37]. For CIFAR-10(100) and CIFAR10-DVS datasets,

the SGD optimizer with the momentum of 0.9 and learning rate of 0.01 with cosine decayed [41] to 0.

All models were trained within 400 epochs with the same batch size of 128. For the ImageNet dataset,

the SGD optimizer with a momentum set as 0.9 and a learning rate of 0.1 with cosine decayed [41] to 0.

All models are trained within 320 epochs as in [38]. The batch size is set to 64.

4.2. Ablation Study for Different Neuron Models

We first conducted a set of ablation experiments to verify the effectiveness of the proposed SRIF

model on CIFAR-10(100) using ResNet20 as the backbone under various timesteps without MPR. The

results are shown in Table 1.

It can be seen that whether on CIFAR-10 or CIFAR-100, the SRIF neuron always obtains the best

result ranging from 2 timesteps to 8 timesteps. This indicates the superiority of the SRIF neuron. On

the other hand, the LIF neuron performs better than the “Hard Reset" IF neuron on CIFAR-10, while

the IF neuron performs better on CIFAR-100, even though the LIF neuron is more like a biological

neuron. This comparison also shows that, although SNNs are proposed to imitate the biological

neural networks, for the implementation of large-scale networks, they still need to rely on computer

hardwares. Hence, the characteristics of computational science should also be considered. In this

respect, the SRIF neuron is more suitable for its advantage of low power consumption and capacity of

reducing information loss.
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Table 1. Ablation study for different neuron models without MPR.

Dataset Neuron model Timestep Accuracy

CIFAR-10

“Hard Reset" LIF 2 90.36%
“Hard Reset" IF 2 90.07%
“Soft Reset" IF (SRIF) 2 90.38%

“Hard Reset" LIF 4 92.22%
“Hard Reset" IF 4 92.04%
“Soft Reset" IF (SRIF) 4 92.46%

“Hard Reset" LIF 6 92.66%
“Hard Reset" IF 6 92.26%
“Soft Reset" IF (SRIF) 6 93.40%

“Hard Reset" LIF 8 92.90%
“Hard Reset" IF 8 92.86%
“Soft Reset" IF (SRIF) 8 94.09%

CIFAR-100

“Hard Reset" LIF 2 62.67%
“Hard Reset" IF 2 63.43%
“Soft Reset" IF (SRIF) 2 63.85%

“Hard Reset" LIF 4 66.00%
“Hard Reset" IF 4 66.95%
“Soft Reset" IF (SRIF) 4 67.90%

“Hard Reset" LIF 6 67.44%
“Hard Reset" IF 6 68.31%
“Soft Reset" IF (SRIF) 6 69.59%

“Hard Reset" LIF 8 67.85%
“Hard Reset" IF 8 69.14%
“Soft Reset" IF (SRIF) 8 69.90%

4.3. Addition of MPR

Then, a set of ablation experiments for the MPR were conducted on CIFAR-10(100) using ResNet20

and ResNet19 as backbones within 4 timesteps. Results in Table 2 show that the MPR can greatly

improve performance. Especially on CIFAR-100, where ResNet20 with MPR increases the accuracy by

2.73%. These results verify the effectiveness of MPR in terms of performance improvement.

Table 2. Ablation study for MPR.

Dataset Architecture Method Timestep Accuracy

CIFAR-10
ResNet20

SRIF w/o MPR 4 92.46%
SRIF w/ MPR 4 92.94%

ResNet19
SRIF w/o MPR 4 95.44%
SRIF w/ MPR 4 96.27%

CIFAR-100
ResNet20

SRIF w/o MPR 4 67.90%
SRIF w/ MPR 4 70.63%

ResNet19
SRIF w/o MPR 4 77.85%
SRIF w/ MPR 4 78.42%

We also computed the average quantization error of the first layer of the second block in the

ResNet20/19 before and after MPR on the test set of CIFAR-10(100), respectively. Results in Table 3

show that the quantization error is obviously reduced by the MPR. The overall original membrane

potential distribution and modulated membrane potential distribution by MPR of the first layer of

the second block in ResNet20 on CIFAR-10 and CIFAR-100 test sets are shown in Figure 5. It shows

that the MPR adjusts the membrane potential distribution near “0" and “1", which is closer to its
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quantization spike. Put together, these results quantitatively support the effectiveness of MPR in

reducing quantization error.

Table 3. Quantization error.

Dataset Architecture Method Timestep Avg. error

CIFAR-10
ResNet20

Before MPR 4 0.28
After MPR 4 0.04

ResNet19
Before MPR 4 0.20
After MPR 4 0.03

CIFAR-100
ResNet20

Before MPR 4 0.38
After MPR 4 0.05

ResNet19
Before MPR 4 0.32
After MPR 4 0.04

MPR

MPR

On CIFAR-10

On CIFAR-100

Figure 5. The effect of MPR. The overall original membrane potential distribution (left) and the

redistributed membrane potential distribution by MPR (right) of the first layer of the second block in

ResNet20 on CIFAR-10 and CIFAR-100 test sets.

4.4. Comparisons with Other Methods

Our method was further compared with other state-of-the-art SNNs on static and neuromorphic

datasets. Results are shown in Table 4, where for each run, the mean accuracy and standard deviation

of 3 trials are listed. For simplification, InfLoR (i.e., short for Information Loss Reducing) is used to

denote the combination of SRIF and MPR.
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Table 4. Comparison with SoTA methods.* denotes self-implementation results.

Dataset Method Type Architecture Timestep Accuracy

CIFAR-10

SpikeNorm [28] ANN2SNN VGG16 2500 91.55%
Hybrid-Train [42] Hybrid VGG16 200 92.02%
Spike-basedBP [43] SNN training ResNet11 100 90.95%
STBP [17] SNN training CIFARNet 12 90.53%
TSSL-BP [44] SNN training CIFARNet 5 91.41%
PLIF [9] SNN training PLIFNet 8 93.50%

Diet-SNN [37] SNN training
VGG16

5 92.70%
10 93.44%

ResNet20
5 91.78%

10 92.54%

STBP-tdBN [33] SNN training ResNet19
2 92.34%
4 92.92%
6 93.16%

ANN* ANN ResNet19 1 96.29%

InfLoR-SNN SNN training

ResNet19
2 94.44%±0.08
4 96.27%±0.07
6 96.49%±0.08

ResNet20
5 93.01%±0.06

10 93.65%±0.04

VGG16
5 94.06%±0.08

10 94.67%±0.07

CIFAR-100

BinarySNN [45] ANN2SNN VGG15 62 63.20%
Hybrid-Train [42] Hybrid VGG11 125 67.90%
T2FSNN [46] ANN2SNN VGG16 680 68.80%
Burst-coding [47] ANN2SNN VGG16 3100 68.77%
Phase-coding [48] ANN2SNN VGG16 8950 68.60%

Diet-SNN [37] SNN training
ResNet20 5 64.07%
VGG16 5 69.67%

ANN* ANN ResNet19 1 78.61%

InfLoR-SNN SNN training

ResNet20 5 71.19%±0.09

VGG16
5 71.56%±0.10

10 73.17%±0.08

ResNet19
2 75.56%±0.11
4 78.42%±0.09
6 79.51%±0.06

ImageNet

Hybrid-Train [42] Hybrid ResNet34 250 61.48%
SpikeNorm [28] ANN2SNN ResNet34 2500 69.96%
STBP-tdBN [33] SNN training ResNet34 6 63.72%

SEW ResNet [38] SNN training
ResNet18 4 63.18%
ResNet34 4 67.04%

Spiking ResNet [38] SNN training
ResNet18 4 62.32%
ResNet34 4 61.86%

InfLoR-SNN SNN training
ResNet18 4 64.78%±0.07
ResNet34 4 65.54%±0.08

CIFAR-10(100). For CIFAR-10, our method improves network performance across all commonly

used backbones in SNNs. ResNet19-based InfLoR-SNN achieved 96.49% top-1 accuracy with 6

timesteps, which outperforms its STBP-tdBN counterpart with 3.33% higher accuracy and its ANN

counterpart 0.20% higher accuracy even. The ResNet20-based InfLoR-SNN can reach to 93.65%,
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while only 92.54% in [37]. And our VGG16-based network also shows higher accuracy than other

methods with fewer timesteps. On CIFAR-100, InfLoR-SNN also performs better and achieves a 1.89%

increment on VGG16. Noteworthy, InfLoR-SNN significantly surpasses Diet-SNN [37] with 7.12%

higher accuracy, which is not easy to achieve in the SNN field. Again, our ResNet19 also outperforms

its ANN counterpart. To our best knowledge, it is the first time that the SNN can outperform its ANN

counterpart.

ImageNet. For the ImageNet dataset, ResNet18 and ResNet34 were used as the backbones.

Results show that our ResNet18 achieves a 1.60% increment on SEW ResNet18 and a 2.46% increment

on Spiking ResNet18. The accuracy of our ResNet34 does not exceed SEW ResNet34. However, SEW

ResNet34 [38] transmits information with integers, which is not a typical SNN. For a fair comparison,

we also report the result of Spiking ResNet34 in [38] which is worse than our method. Moreover, our

InfLoR-based ResNet34 with 4 timesteps still obviously outperforms STBP-tdBN-based RersNet34

with 6 timesteps.

Table 5. Training Spiking Neural Networks on CIFAR10-DVS.

Dataset Method Type Architecture Timestep Accuracy

CIFAR10-DVS

Rollout [49] Rollout DenseNet 10 66.80%
STBP-tdBN [33] SNN training ResNet19 10 67.80%

InfLoR SNN training
ResNet19 10 75.50%±0.12
ResNet20 10 75.10%±0.09

CIFAR10-DVS. For the neuromorphic dataset, CIFAR10-DVS, InfLoR-SNN achieves the best

performance with 75.50% and 75.10% top-1 accuracy in 10 timesteps with ResNet19 and ResNet18 as

backbones, and obtains 7.80% improvement compared with STBP-tdBN for ResNet19. It’s worth noting

that, as a more complex model, ResNet19 only performs a little better than ResNet20 on CIFAR10-DVS.

It might be that this neuromorphic dataset suffers much more noise than static ones, thus a more

complex model is easier to overfit.

5. Conclusions

This work aims at addressing the information loss problem caused by the “Hard Reset" mechanism

of neurons and the 0/1 spike quantification. Then, the SRIF model, which will drive the membrane

potential to a dynamic reset potential, and the MPR that can adjust the membrane potential to a

new value closer to quantification spikes than itself are proposed. A detailed analysis of why the

SRIF and MPR can reduce the information loss is provided. Furthermore, abundant ablation studies

of the proposed methods are given. Combining these two methods, our SNNs outperform other

state-of-the-art methods.
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