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Abstract: The paper aims to introduce user-friendly modelling approaches to analyze how abiotic
factors influence various trophic levels within the marine ecosystem, both naturally and through
human impact. It specifically investigates the connections between environmental parameters (like
temperature, salinity, and nutrients) and plankton along the Romanian Black Sea coast during the
warm season (May-September) over a decade. Utilizing machine learning (ML) algorithms and data
collected during this period, models were developed to project the proliferation of zooplankton.
During the warm season, water temperature emerged as a significant factor affecting copepods and
“other groups” zooplankton densities, while no discernible impact was noted on Noctiluca scintillans
blooms. Salinity fluctuations notably influenced typical phytoplankton proliferation, with
phosphate concentrations primarily driving widespread blooms. Two scenarios were explored for
forecasting zooplankton growth: Business as Usual, predicting modest increases in temperature,
salinity, and constant nutrient levels, and the Mild scenario, anticipating more substantial
temperature and salinity increases while nutrients decrease significantly by 2042. The findings
highlight that under both scenarios, Noctiluca scintillans displays notably high densities, with the
second scenario projecting even higher values, surpassing the first by around 70%. These densities
indicate characteristics of a eutrophic ecosystem, suggesting the potential implications of altered
abiotic factors on ecosystem health.
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1. Introduction

Marine plankton species diversity governs one of the most important ecosystem functions -
biological productivity [1]. Phytoplankton are responsible for the annual production of
approximately 50% of the Earth's net primary production [2]. It is mainly consumed by zooplankton
which in turn supports planktivorous fish production. Together with the structure of the ecosystem,
which contains its biotic and abiotic elements, these functions generate an essential service — the
habitat [3] which, if healthy, creates important social and economic benefits for the coastal
community. Romania’s "Blue Economy" sector is undeveloped, both in comparison with other
European Union (EU) member states and with other national economic sectors. With just over one
billion euros, it represented, in 2018, 0.6% of the national economy and 66,600 jobs [4]. Of these, the
living resources sector generated only 85 million euros and 6,200 jobs. Excluding issues related to
legislative gaps and organizational shortcomings (such as the absence of a maritime spatial plan and
the failure to designate areas for aquaculture), it can be said that the growth prospects rely on the
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well-being of the ecosystem. The health of the ecosystem depends mainly on the intensity of the
pressures to which it is subjected. The northwestern area of the Black Sea has endured, over time,
several abrupt changes in the transition from a low-production system (the 1970s) to a highly
eutrophicated system (1980s) and then an intermediate state with relatively low biomass (90s-00s),
when bacterioplankton, zooplankton and living marine resources had low quantities. Still, the
nonfodder component of zooplankton (Noctiluca scintillans), and gelatinous organisms were at
moderate levels, indicating a degraded ecosystem [5] and not a trend of improvement and
rehabilitation [6]. All these regimes were mainly driven by nutrient discharges from point and diffuse
sources. Nowadays, to these are added the effects of climate change, by warming the seawater, which
is expected to cause the extinction of some species in the future by exceeding their thermal limit and
the restructuring of the community’s composition, both associated with possible consequences on the
functioning of the marine food chain and biogeochemical cycles [1].

Unfortunately, current managerial practices are considered ineffective in managing complex
phenomena, such as ecosystem regime changes, due to the lack of adequate explanatory models [7].
Thus, the use of semi-quantitative modelling coupled with statistical methods (Machine Learning) to
assess the natural and anthropogenic variability of the relationships between abiotic factors and
different trophic levels of the marine ecosystem can facilitate the understanding of less known
processes that may occur within the ecosystem.

This was achieved in this study through the application of semi-quantitative modelling (Mental
Modeler — Fuzzy Cognitive Maps) and machine learning algorithms (Machine Learning) that create
the model for generating applicable predictions in decision-making regarding the management of
pressures on the marine ecosystem. Thus, for the success of decisions, the model can distinguish
between factors by generating robust results and improving case study analysis methods [8].

However, the purpose of the modelling is fully achieved if we run scenarios resulting from the
combination of variables and their variability to predict the behaviour of the ecosystem.

The objective of the study is to introduce qualitative and semi-quantitative modelling coupled
with machine learning algorithms to assess the natural variability and anthropogenic impact of the
relationships between abiotic factors and the first two trophic levels of the marine ecosystem and run
the scenarios to predict the behaviour of the ecosystem.

2. Materials and Methods

Seawater and biological (for phytoplankton and zooplankton) samples were collected in
expeditions organized in the warm season (from May to September) of 2008-2018, on the Black Sea
monitoring network consisting of 39 stations located in variable salinity, coastal and marine waters
(Figure 1). 2012 was not included in the analysis, as in this year expeditions were undertaken only in
the cold season.

Phytoplankton and zooplankton samples were collected and analysed according to the
methodology [9,10].

Temperature and salinity were measured using the reversible thermometer and the titration
method, as well as the CastAway CTD multiparameter probe (YSI Cast Away model).

Dissolved nutrient concentrations were determined according to standard methods for seawater
analysis [11].
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Figure 1. Map of the study area. The square shows the location of the sampling sites on the Romanian
coastline (A) and the position in the Black Sea region (B).

Data statistics and their visualization were performed with STATISTICA 14.0.0.15 [12], an
advanced software package that provides data analysis, data management, statistics, data mining,
machine learning, text analysis and data visualization procedures. The data were analyzed by general
descriptive statistics and visualized (boxplot) then the correlations between the parameters (Pearson
coefficient, r) were performed which determine the extent to which the values of two variables are
"proportional” to each other. The significance level (p) calculated for each correlation is a primary
source of information about the reliability of the correlation. In the statistical analysis, the threshold
value p=0.05 and a sufficient number of data (over 100) were used so that the hypothesis of normality
was respected.

The semi-quantitative modelling was carried out with the Mental Modeler software - a decision
support software (open-source, https://www.mentalmodeler.com/) that helps experts understand the
impact associated with environmental changes and develop strategies for reducing unwanted
outcomes by capturing, communicating, and representing knowledge. By building Cognitive
Knowledge Maps (FCMs), the Mental Modeler allows to development of the semi-quantitative model
that: (1) defines the important components (2) defines the strength of the relationships between the
components and (3) runs scenarios that determine how the system reacts in certain conditions [13].

ArcGIS Desktop 10.7 software (ESRI, 2019) [14] was used for creating distribution maps and
machine learning (ML) algorithms. The basic premise of ML is that a machine (ie an algorithm or
model) can make predictions based on existing data. The basic technique behind all ML methods is
an iterative combination of statistics and error minimization, applied and combined to varying
degrees. Many ML algorithms iteratively check all or a very large number of possible outcomes to
find the best outcome for the problem at hand. The potentially large number of iterations is
prohibitive for manual calculations and is a large part of the reason these methods are only now
widely available to individual researchers.

1. The first step in applying ML was to learn the algorithm using the training dataset (2008-2018)
which consists of the independent variables (abiotic components — T, S, POs, DIN) with dependent
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variables (total phytoplankton density). The training data is used to "learn" how the independent
(input) variables relate to the dependent (output) variable.

2. In step two, when the algorithm has applied to new input data, corresponding to the scenarios
to be tested, the model applies the learned relationship and returns a prediction. After the algorithm
is trained, it must be tested to obtain a measure of the quality of predictions from new data.

3. This requires another data set with independent and dependent variables, but the dependent
(target) variables are not provided (10-20% of the original data). Algorithm predictions (output) are
compared with retained data (target) to validate the algorithm. This comparison represents the
significant difference between ML and traditional statistical techniques that use p-values for
validation.

ArcGIS creates models and generates predictions using an adaptation of the random forest
algorithm (Leo Breinman) called Forest-based Classification and Regression, a supervised machine
learning method. Predictions can be made for both categorical (classification) and continuous
(regression) variables. By default, ML uses 90% of the data to build the model and 10% to validate it.

Two scenarios for forecasting the growth of phytoplankton and zooplankton were developed
and analysed: Bussiness as Usual in which temperature increases by 0.4 °C, salinity increases by
0.84%o0 and nutrient levels remains constant and the Mild scenario, in which sea water temperature
increases by 0.8 °C and salinity increases by 1.68%. and nutrients concentrations are decreased by
25% for phosphates and 70% for inorganic nitrogen until 2042.

3. Results

3.1. Semi-quantitative model of causal relationships between abiotic factors (temperature, salinity and
nutrients) and two trophic levels

The water temperature recorded values in the range of 13.5 - 28.0 °C, the variability - expressed
as standard deviation being 3.51 °C. Over the entire analyzed period, an increasing trend was
observed, with 0.18 °C, equivalent to an average of 0.02 °C/year. The salinity ranged from 0.11 to
20.00%o, with values lower than 6.06%o being uncharacteristic (outliers). During the warm season,
there is a noticeable upward trend in salinity variation, with an increase of 0.42%. (Table S1 and
Figure 2). This is primarily attributed to the significant influence of evaporation and the mixing of
water masses, which surpasses the impact of river and precipitation input.

Against the backdrop of increasingly dry summers, a slight decrease in phosphates and silicates
was also observed, nutrients whose external input is largely influenced by river input and continental
drainage (Figure 2) (tposs = -0.37; 1sios-s = -0.72). The levels of inorganic nitrogen forms (nitrites, nitrates,
ammonium) have different variations during the analyzed period. Thus, nitrites and nitrates have
increasing trends by 0.08 pM and 0.20 uM, respectively, while ammonium decreases by 0.28 pM
(Figure 2).

In all cases, uncharacteristic values (outliers) and extremes of the concentrations of nutrients
dissolved in seawater were also observed.
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Figure 2. Annual variation of temperature, salinity and nutrients - Romanian Black Sea coast, 2008-
2018, warm season.

Within the phytoplankton assembly, a total of 298 species were distinguished, spanning diverse
varieties and forms spread across 16 taxonomic classes (Bacillariophyceae, Chlorodendrophyceae,
Chlorophyceae, Chrysophyceae, Conjugatophyceae, Cryptophyceae, Cyanophyceae,
Dictyochophyceae, Dinophyceae, Ebriophyceae, Euglenoidea, Prasinophyceae, Prymnesiophyceae,
Trebouxiophyceae, Ulvophyceae, and Xanthophyceae). The peak species count, 160 species, occurred
in 2013, while the lowest count, 71 species, was recorded in 2016. Diatoms (102 species) and
dinoflagellates (76 species) constituted the majority, contributing to 60% of the overall species
diversity, followed by chlorophytes (46 species) and cyanobacteria (31 species) at 15% and 10%,
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respectively. In less diverse classes (comprising 5 to 14 species), the Trebouxiophyceae class
contributed 5% to the total species count, while both Euglenoidea and Cryptophyceae represented
2% each. Classes exhibiting lower diversity (containing 1-4 species), including Chlorodendrophyceae,
Conjugatophyceae, Chrysophyceae, Dictyochophyceae, Ebriophyceae, Prymnesiophyceae,
Ulvophyceae, and Xanthophyceae, collectively constituted 6% of the qualitative composition (Figure
3).The yearly means for overall phytoplankton density fluctuated between 245.33x103 cells/L (in 2016)
and 4.10x109¢ cells/L (in 2014). Regarding biomass, the average annual values ranged from 370 mg/m3
(in 2016) to 2820 mg/m? (in 2009) (Table S1).
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Figure 3. Phytoplankton composition from the Romanian Black Sea coast, 2008-2018, warm season.

Between 2008 and 2018, a total of 32 zooplankton taxa were identified, with the highest count
found in waters with variable salinity under the Danube's discharge influence. Copepods prevailed
across all marine regions, followed by ten species of cladocerans in areas with variable salinity. The
meroplanktonic group encompassed six taxa, while the "other groups" category included three
species (Figure 4). Along the entire Black Sea coast, the nonfodder component was evident, with the
dinoflagellate N. scintillans being the sole representative species (Figure 5). Fodder zooplankton
exhibited fluctuations in both density and biomass, reaching a peak annual density of 51,430 ind/m?
and a maximum annual biomass of 1,539 mg/m?, both in 2018 (Table S1).

35 M Copepoda
W Cladocera
M Meroplankton
M Other groups

| Noctiluca scintillans

30

26+
20
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Number of identified zooplankton taxa

Coastal
Marine

Variable salinity

Marine reporting units
Figure 4. Zooplankton composition from the Romanian Black Sea coast, 2008-2018, warm season.

N. scintillans exhibited notable quantitative fluctuations, particularly high biomass and density
were observed in 2010, 2015, and 2018, marked by some atypical values (outliers) (Figure 5).
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Figure 5. Distribution of Noctiluca scintillans from the Romanian Black Sea coast, 2008-2018, warm
season.

The analysis of significant correlations between the three levels of the marine ecosystem (abiotic
components - temperature, salinity and nutrients; phytoplankton - species densities and zooplankton
- group densities) led to the creation of the Mental Modeler model. Examining the noteworthy
correlations among the abiotic and biotic components resulted in the development of the Mental
Modeler model.

In this context, the aim of these "models" isn't to predict the state of this intricate ecosystem but
rather to semi-quantitatively assess (using significant correlation coefficients) the connections among
the various components. These connections serve as working hypotheses in the subsequent
development of scenarios. Thus, FCM uses three characteristics of the studied system:

- System components (N=89) — abiotic parameters (T, S, nutrients), phytoplankton species with
more than 10 presences, zooplankton groups,

- Positive or negative relationships between components (N=203) — significant correlations,
greater than +0.50, between components,

- The degree of influence that one component can have on another, defined by qualitative
weights (for example, high, medium or low influence) - the significant correlations (p<0.05) coefficient
between the system components.

Thus, apart from temperature as the main abiotic driver, the model identified as the main
"drivers" (out of a total of 31), in order of importance, the concentrations of silicates and ammonium,
and as "receivers" (out of a total of 26) the densities of “other groups” and copepods (Figure 6).

doi:10.20944/preprints202312.1289.v1
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Figure 6. Fuzzy Cognitive Map (FCM) - the result of applying statistically significant correlations
between abiotic factors (blue), phytoplankton species (grey) and zooplankton groups (magenta) and
N. scintillans (orange) — warm season, 2008-2018.

3.2. Ecosystem evolution scenarios under climate change conditions from the Romanian coast of the Black Sea
using FCM and ML

Models based on two data sets —normal phytoplankton (domain without outliers and extremes)
development (N=7107) and phytoplankton blooms (over 1 million cel/L) were analysed (N=756), to
which we applied two development scenarios aiming at predicting the density of copepods,
cladocerans, meroplankton, other zooplankton groups and the density of N. scintillans. The
explanatory variables used were temperature (0C), salinity (%o) and concentrations of phosphates
(POs) and inorganic nitrogen (DIN - the sum of nitrates, nitrites and ammonium) (uM) to which we
added the total phytoplankton density (cel/L ) in the case of zooplankton predictions.

A separate model was developed for each prediction resulting in 12 regression models with
different performances (Table 1). One of the performance parameters of the model is the regression
coefficient R? which represents the proportion of variation in the result that the model can predict
based on its characteristics and which is easily calculated with formula (1).

2
_ Z(yreal - ypredicted) (1)
Z(yreal - yreal)z

With one exception, good results are observed when validating the models, expressed in the form of
R? regression coefficients. Therefore, given the poor performance (0.17) of the model described by the
explanatory variables chosen for Total phytoplankton density - normal conditions, it will be excluded

R? =1

from the following discussions in applying the scenarios.

Table 1. Performance of models and importance of explanatory variables — 2008-2018, warm season.

R? T S PO: DIN Total FPK density

Model (validation) (°C) (%0) (uM) (uM) (cel/L)

Normal - Total phytoplankton density

1 17 26 45 17 12 -
(cells/L) 0 6 45
Normal —Noctzl'uca scintillans density 0.66 u 27 3 91 5
(ind/m3)
3 Normal - Copepoda density (ind/m?) 0.56 29 20 25 24 2

4 Normal — Meroplankton density (ind/m?) 0.55 28 31 24 15 2
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9
5 Normal — Cladocera density (ind/m?) 0.71 28 18 24 25 5
Normal - Othe?' gr?ups zooplankton 0.67 % 22 17 3 1
density (ind/m?)
o Blooms - Total phytoplankton density 0.91 0 20 37 23 i
(cells/L)
Blooms - Noctzl'uca scintillans density 0.95 v 13 42 12 6
(ind/m3)
9  Blooms —Copepoda density (ind/m?) 0.80 36 13 22 10 20
10 Blooms -Meroplankton density (ind/m?) 0.87 24 18 22 18 18
11 Blooms — Cladocera density (ind/m?) 0.99 22 9 25 18 27
1 Blooms — Other groups zooplankton 0.98 0 8 16 19 o7

density (ind/m?)

Although the collected data refer to a single season, the warm one, the importance of water
temperature is observed, which is the dominant variable in the case of the density of copepods (36%)
and “other” zooplankton groups (30%) during the blooming period. Water temperature had the least
influence on N. scintillans under normal conditions. Fluctuations in salinity, closely linked to
variations in silicate levels—typically associated with riverine input—have a significant impact on
the regular growth of phytoplankton. However, the proliferation of extensive phytoplankton blooms
is primarily attributed to phosphate concentrations, which, notably, did not exhibit significant
correlations with salinity throughout the study period. This suggests that the phosphate source
responsible for these blooms may not be the result of riverine input (Figure 7). It is well recognised
that certain taxonomic groups of zooplankton have strong relationships with particular
hydrographic, physical, and chemical circumstances, as well as with the phytoplankton composition
[15]. This most likely translates into particular characteristics or quantitative trait values that are more
or less strongly correlated with particular physico-chemical circumstances and phytoplankton
composition. Using fitness maximisation techniques, trait-based models may be able to forecast
which strategies will be chosen in a given environment [16].

Explanatory variables
Blooms - Other groups zpk density (ind/m3) B
Blooms - Cladocera density {ind/m3) [ I
Blooms -Meroplankton density (ind/m3) L I
Blooms —Copepoda density {ind/m3) A 0
Blooms — Noctiluca scintillans density (ind/m3) | [—
Blooms - Total phytoplankton density (cel/L) | [
Normal — Other groups zpk density (ind/m3) A 2020
Normal - Cladocera density {ind/m3) A 0 0
Normal— Meroplankton density (ind/m3) L I
Normal - Copepoda density {ind/m3) A0 e
Normal —Noctiluca scintillans density (indfm3) | [
Normal - Total phytoplankton density (cells/L) A 090 e
0 20 40 60 80 100

ET(oC) mS (%) PO4(uM) mDIN(uM) mTotal phytoplankton density (cells/L)

Figure 7. The importance of explanatory variables from the models made by Machine Learning -
Forest-based Classification and Regression algorithm for the ecosystem of the Romanian Black Sea
coast, 2008-2018, warm season.

Similar to previous research findings documented in Lomartire et al., [17], it has been observed
that the overall density of phytoplankton exerts a limited influence on the proliferation of non-fodder
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zooplankton, such as N. scintillans. However, it does facilitate the prevalence of "other groups" and
cladocerans, especially evident during expansive bloom occurrences.

3.3. Working hypotheses for future research on planktonic proliferations in the Romanian area of the Black
Sea

Taking into account the above, we developed and run two scenarios (which do not take into
account the socio-economic development aspects of the area) to predict the development of the
pelagic biological components (phytoplankton and zooplankton) in the warm season in the next 20
years (2042):

1. The BAU (Business As Usual) scenario in which the variables behave as they did during the
study period — temperature increases by 0.4 °C, salinity increases by 0.84%., and nutrient
concentrations remain constant.

2. The scenario corresponding to RCP2.6, the "mildest" climate warming scenario in which sea
water temperature increases by 0.8 °C by 2050 [18]. Associated with this increase, we consider an
increase in salinity by 1.68%o.. Given that such a scenario envisages environmental protection
measures and emission reduction, we consider that nutrient concentrations could also be reduced by
25% for phosphates and 70% for inorganic nitrogen [19].

For the dinoflagellate N. scintillans, it is observed that in both scenarios high densities of the
species are reached (with extreme values that in scenario 2 exceed scenario 1 by approximately 70%),
characteristic of a eutrophic ecosystem (Figure 8).

Spatial analysis indicates that in scenario 1, lacking nutrient reduction strategies, elevated
abundances are observed in the coastal region. However, in scenario 2, marked by substantial
nutrient reduction efforts amidst amplified climate change impacts, non-fodder zooplankton
displays comparable abundance levels in the coastal area and heightened values offshore. This shift
potentially introduces imbalances, underscoring the critical significance of reducing nutrients within
the context of climate change scenarios.
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Figure 8. Density of N. scintillans in scenario 1 (BAU) (left) and 2 (RCP2.6) (right) - ML prediction for
warm season (2042).

Copepods, a major component of marine zooplankton, are the main food source of fish larvae
[20], favoring the survival, growth and development of juvenile fish [21]. It is observed that in the
first scenario, copepods record optimal densities, which indicates a good trophic base for fish. The
second scenario involves reaching much higher densities of copepods, which would lead to the
development in more than favourable conditions of pelagic fish species, which prefer higher water
temperatures (Figure 9).
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warm season (2042).

Cladocerans are important components of food webs, consuming large amounts of microalgae
and detritus, in turn serving as food for copepods and larval and juvenile stages of fish [22]. In both
scenarios, cladocerans reach high densities, indicating, in certain areas, a sustainable trophic base for
higher trophic levels adapted to predicted temperature and salinity conditions (Figure 10).
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warm season (2042).

Meroplankton can represent a substantial part of the zooplankton community, with its
contributions to total density being greater in estuarine areas [23]. The main characteristic of shallow
areas is the abundance of meroplankton organisms, which can produce real explosions in the water
mass, constituting the dominant elements in the zooplankton composition [24]. In the two scenarios,
the meroplanktonic component reaches similar density values (Figure 11). It can compete for
resources with holoplanktonic species and serves as a food source for planktonic predators [25]. On
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the other hand, climate change can affect the reproduction and recruitment of benthic invertebrates,

affecting the abundance of meroplankton [26].
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Figure 11. Density of meroplankton in scenario 1 (BAU) (left) and 2 (RCP2.6) (right) — ML prediction

for warm season (2042).

The category “Other groups” consists of the appendicular Oikopleura dioica, the chaetognath
Parasagitta setosa and the mysid Mesopodopsis slabberi, the latter being much less represented and with
a low frequency of occurrence. Being important as food for fish larvae, appendicularians bridge the
gap between small primary producers and higher trophic consumers [27]. Parasagitta setosa can exert
high predation pressure on copepods and thus compete with the food available for the larval stages
of fish [28]. Scenario 2 experiences a significant increase in the density of the "Other groups" category,
in contrast to scenario 1, which shows minimal growth (Figure 12). This difference is primarily driven

by the overall phytoplankton density.
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4. Discussion

Zooplankton is crucial for moulding planktonic ecosystems, controlling phytoplankton growth,
and transferring energy from lower-trophic animals to higher ones [29]. The local community
structure is shaped by local environmental parameters, such as water temperature, pH, salinity,
trophic state, or combinations of these factors (i.e., the species-sorting hypothesis) [30]. Furthermore,
zooplankton is significantly influenced by nutrients in the environment [31,32], having an indirect
impact on zooplankton by having a top-down effect on phytoplankton [33].

The assessment of physico-chemical parameters is required to analyse the water quality and
energy succession of an aquatic environment. The physico-chemical parameters of an aquatic
ecosystem affect phytoplankton and zooplankton diversity and abundance [34]. A significant issue
for the aquatic food web is eutrophication which is caused by high phosphate and nitrate
concentrations. Algal blooms prevent phytoplankton and other organisms from getting enough
oxygen, which can lead to an organism's demise, leading to a decline in biodiversity and water body
toxicity [35].

Fuzzy-Logic Cognitive Mapping (FCM) was developed as early as 1986 as a way to structure
expert knowledge using a systems programming approach that is "fuzzy", thought to be similar to
how the human mind makes decisions. Because of their flexibility, FCMs were created to examine
perceptions of an environmental problem or to model a complex system where uncertainty is high
and there is little empirical data available.

The model created by us within the project has 89 components and 203 linear connections
(positive or negative) between them, connections that human thinking cannot make simultaneously
to allow a clear analysis of the evolution of the pelagic component of the marine ecosystem, the
concentrations of silicates and nitrates affecting the densities of meroplankton and copepods.
Copepods are usually known as ammonium-excreting microorganisms, hence positive associations
between copepods and nitrite (NO2) and nitrate (NOs) have also been documented [36,37].

A comprehensive approach to improving water quality must take into account the
macroenvironmental elements influencing it as well as the participation of many stakeholders in
water management decisions [38—44].

The results obtained with the help of FCM are further the basis of the system knowledge and the
generation of hypotheses for the predictions in different scenarios developed by us based on the
specialized literature.

In the next stage, based on the collected data and supervised machine learning (ML) algorithms
from ArcGIS, we obtained the models and proliferation scenarios of phytoplankton and zooplankton,
indicators of eutrophication in the waters of the Romanian Black Sea coast. Zooplankton
demonstrates a wide range of ecological strategies, dominance patterns, and effects on ecosystems in
marine habitats. It is difficult and still early to adequately express this variation in conceptual and
mathematical frameworks [16].

The advantage of ML over traditional statistical techniques, especially in earth sciences and
ecology, is the ability to model numerous variables, which may be non-linear, with complex
interactions between them and sometimes with missing values [45,46].

Several comparative studies have already shown that ML techniques can outperform traditional
statistical approaches in a wide variety of problems in earth sciences and ecology. However, this
requires a careful analysis which is why we chose to create the semi-quantitative model based on
FCM in the preliminary stage [46].

In both scenarios developed using ML, high densities of N. scintillans were observed. This
dinoflagellate produces impacts on the ecosystem in coastal areas around the world [47], generally
in the spring and summer seasons when it registers high abundances, establishing the blooming
phenomenon of the species [48]. The blooms generated by N. scintillans are closely related to food
availability, especially to the presence of diatoms, which it consumes, controlling the dynamics of
this phytoplankton group [37]. The phenomenon causes mortalities among fish, many of which are
of economic importance, as well as marine invertebrates due to the accumulation of high levels of
ammonia in the water [49]. N. scintillans plays an important role in marine food chains [48], feeding


https://doi.org/10.20944/preprints202312.1289.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 December 2023 doi:10.20944/preprints202312.1289.v1

14

on a wide variety of organisms such as phytoplankton (mainly diatoms), eggs, larvae and faecal
pellets of crustaceans, as well as with other mesozooplanktonic organisms [50]. High densities of this
dinoflagellate can limit local population growth of copepods, not only when they compete for food,
but also because they feed on their eggs and nauplii [51].

The run scenarios for copepods showed an increase in abundance, which can generate a positive
impact on the environment, especially for pelagic fish. There is evidence that recruitment is highly
dependent on copepod production [52], high prey availability encourages recruitment and early
survival by maximising food intake and growth throughout the larval stage of life in the plankton
[53]. These findings offer information regarding the presence of plankton prey, which can lead to a
more efficient management decision regarding fisheries. Although it is not conclusive to conclude
that zooplankton biomass is the only factor affecting fish recruitment, high prey abundance available
at the time of fish spawning will promote recruitment [17]. Still, there remains a possibility that the
increase in temperature could lead to a reduction in copepod species diversity and a shift toward
smaller-sized copepod communities [54]. Additionally, another potential risk associated with
copepods, the predominant zooplankton in oceans, involves their influence on seawater through the
introduction of distinct polar lipids known as copepodamides. These lipids can stimulate toxin
production and bioluminescence in harmful dinoflagellates [55].

Meroplankton recorded similar abundance values in both scenarios. The ecological significance
of planktonic larvae is two-fold: they are a dispersal stage for benthic organisms [56], determining
the potential of benthic species to colonise adjacent habitats, but they can also constitute a major
portion of zooplankton [57], potentially competing for resources with holoplanktonic species, and
serving as food source for planktonic predators [25,28]. Larval movement is a crucial biophysical
mechanism in benthic ecosystems that, in advection-dominated environments, can result in a spatial
decoupling between local community production and settlement [59].

“Other groups” category does not know a very large development from a quantitative point of
view, in contrast to scenario 2 where a much greater increase in density is noted. Species belonging
to this group act as a crucial link in the food chain between pico- and nanophytoplankton and larger
zooplankton like fish larvae [60], copepods, ctenophores [61], jellyfish [62]. P. setosa grows and
matures at high copepod density and greater temperature, indicating that temperature and food are
the main factors influencing P. setosa growth in the Black Sea [63] as observed in scenario 2.

Jellyfish and ctenophores, acting as predators of young fish and zooplankton, indicate ecosystem
health decline or human-induced stress from overfishing and the reduction of zooplankton predators
when they form blooms. This scenario might lead to an excessive presence of gelatinous zooplankton,
causing a considerable adverse impact on fish recruitment [17]. The appearance of gelatinous
zooplankton indirectly affects the ecosystem by boosting phytoplankton and detritus levels,
consequently reducing water quality, triggering hypoxia, and causing harm to fish and other wildlife
[64].

The nutritional quality of phytoplankton significantly influences the entire food web, especially
through its relationship with zooplankton. Therefore, to ensure efficient stock management and
optimize fishing resources, it's crucial to consistently assess the trophic interactions among
phytoplankton, zooplankton, and fish within fishery management practices [65]. Diminished future
phytoplankton biomass will favor the development of gelatinous food webs. Hence, employing the
trait-based modelling framework showcased here becomes a potent method for uncovering fresh
perspectives on the impact of climate change on zooplankton and their crucial role in global marine
ecosystems, effectively linking planktonic organisms with fish populations [66].

Elevated organic matter levels could potentially initiate alterations in the nitrogen-to-
phosphorus ratio, significantly affecting the growth and diversity of phytoplankton and various
marine algae. These imbalances might lead to shorter trophic food webs, reduced predator numbers,
and potential decreases in biodiversity [67].
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5. Conclusions

To effectively mitigate the impact of climate change on marine ecosystems, we must adopt a
comprehensive approach that extends beyond focusing solely on climate issues. Our scientific efforts
need to innovate strategies that enhance ecosystem resilience in the face of climate change. For
instance, strengthening the resilience of zooplankton communities against climate effects entails
developing novel methods to minimize ballast-water introductions, refining farming practices to
reduce nutrient inputs, curbing pollution sources, and enhancing fishery management while
ensuring compliance to prevent the overexploitation of marine resources. Unlike climate change,
these non-climate stressors can be promptly managed through policy adjustments and improved
management practices at national and regional levels [68]. Urgent attention is needed for integrated
research that evaluates management solutions capable of addressing the combined impact of climate
change and other human-induced stressors [69]. Thus, the paper proposes an innovative approach to
modelling an important component of the pelagic habitat (plankton) on the Romanian Black Sea coast
by applying a machine-learning algorithm to the data collected in the warm season from 2008-2018.

The results can be used in future research for the spatial and temporal assessment and ecosystem
modelling (e.g, and Ecosim with Ecopath ) of the provision and use of ecosystem services that
underpin the Blue Economy. This approach exemplifies the need and urgency of knowing nutrient
sources and concentrations as well as making nutrient management decisions based on scientific
evidence aligned with the achievement of Sustainable Development Goal (UN) 14 (Aquatic Life) -
Conservation and sustainable use of oceans, seas and marine resources. It creates unique prediction
models that explicitly include features and related trade-offs, then use these qualities to describe and
forecast zooplankton community structure and dynamics in a variety of environmental contexts,
including those involving possible futures with global climatic change [16].

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org, Table S1. Descriptive statistics of physico-chemical parameters, nutrients,
phytoplankton, and zooplankton — warm season, 2008-2018.
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