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Article 
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and Biotic Factors in Two Climate Change Scenarios 
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and Elena Bișinicu 3,* 

1 Chemical Oceanography and Marine Pollution Department, National Institute for Marine Research and 
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3 Ecology and Marine Biology Department, National Institute for Marine Research and Development 

“Grigore Antipa”, 300 Mamaia Blvd., 900581 Constanta, Romania 

* Correspondence: llazar@alpha.rmri.ro (LL); ebisinicu@alpha.rmri.ro (EB) 

Abstract: The paper aims to introduce user-friendly modelling approaches to analyze how abiotic 

factors influence various trophic levels within the marine ecosystem, both naturally and through 

human impact. It specifically investigates the connections between environmental parameters (like 

temperature, salinity, and nutrients) and plankton along the Romanian Black Sea coast during the 

warm season (May-September) over a decade. Utilizing machine learning (ML) algorithms and data 

collected during this period, models were developed to project the proliferation of zooplankton. 

During the warm season, water temperature emerged as a significant factor affecting copepods and 

“other groups” zooplankton densities, while no discernible impact was noted on Noctiluca scintillans 

blooms. Salinity fluctuations notably influenced typical phytoplankton proliferation, with 

phosphate concentrations primarily driving widespread blooms. Two scenarios were explored for 

forecasting zooplankton growth: Business as Usual, predicting modest increases in temperature, 

salinity, and constant nutrient levels, and the Mild scenario, anticipating more substantial 

temperature and salinity increases while nutrients decrease significantly by 2042. The findings 

highlight that under both scenarios, Noctiluca scintillans displays notably high densities, with the 

second scenario projecting even higher values, surpassing the first by around 70%. These densities 

indicate characteristics of a eutrophic ecosystem, suggesting the potential implications of altered 

abiotic factors on ecosystem health. 

Keywords: abiotic; phytoplankton; zooplankton; scenario; blooms; climate change 

 

1. Introduction 

Marine plankton species diversity governs one of the most important ecosystem functions - 

biological productivity [1]. Phytoplankton are responsible for the annual production of 

approximately 50% of the Earth's net primary production [2]. It is mainly consumed by zooplankton 

which in turn supports planktivorous fish production. Together with the structure of the ecosystem, 

which contains its biotic and abiotic elements, these functions generate an essential service – the 

habitat [3] which, if healthy, creates important social and economic benefits for the coastal 

community. Romania’s "Blue Economy" sector is undeveloped, both in comparison with other 

European Union (EU) member states and with other national economic sectors. With just over one 

billion euros, it represented, in 2018, 0.6% of the national economy and 66,600 jobs [4]. Of these, the 

living resources sector generated only 85 million euros and 6,200 jobs. Excluding issues related to 

legislative gaps and organizational shortcomings (such as the absence of a maritime spatial plan and 

the failure to designate areas for aquaculture), it can be said that the growth prospects rely on the 
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well-being of the ecosystem. The health of the ecosystem depends mainly on the intensity of the 

pressures to which it is subjected. The northwestern area of the Black Sea has endured, over time, 

several abrupt changes in the transition from a low-production system (the 1970s) to a highly 

eutrophicated system (1980s) and then an intermediate state with relatively low biomass (90s-00s), 

when bacterioplankton, zooplankton and living marine resources had low quantities. Still, the 

nonfodder component of zooplankton (Noctiluca scintillans), and gelatinous organisms were at 

moderate levels, indicating a degraded ecosystem [5] and not a trend of improvement and 

rehabilitation [6]. All these regimes were mainly driven by nutrient discharges from point and diffuse 

sources. Nowadays, to these are added the effects of climate change, by warming the seawater, which 

is expected to cause the extinction of some species in the future by exceeding their thermal limit and 

the restructuring of the community’s composition, both associated with possible consequences on the 

functioning of the marine food chain and biogeochemical cycles [1]. 

Unfortunately, current managerial practices are considered ineffective in managing complex 

phenomena, such as ecosystem regime changes, due to the lack of adequate explanatory models [7]. 

Thus, the use of semi-quantitative modelling coupled with statistical methods (Machine Learning) to 

assess the natural and anthropogenic variability of the relationships between abiotic factors and 

different trophic levels of the marine ecosystem can facilitate the understanding of less known 

processes that may occur within the ecosystem.  

This was achieved in this study through the application of semi-quantitative modelling (Mental 

Modeler – Fuzzy Cognitive Maps) and machine learning algorithms (Machine Learning) that create 

the model for generating applicable predictions in decision-making regarding the management of 

pressures on the marine ecosystem. Thus, for the success of decisions, the model can distinguish 

between factors by generating robust results and improving case study analysis methods [8]. 

However, the purpose of the modelling is fully achieved if we run scenarios resulting from the 

combination of variables and their variability to predict the behaviour of the ecosystem.  

The objective of the study is to introduce qualitative and semi-quantitative modelling coupled 

with machine learning algorithms to assess the natural variability and anthropogenic impact of the 

relationships between abiotic factors and the first two trophic levels of the marine ecosystem and run 

the scenarios to predict the behaviour of the ecosystem. 

2. Materials and Methods 

Seawater and biological (for phytoplankton and zooplankton) samples were collected in 

expeditions organized in the warm season (from May to September) of 2008-2018, on the Black Sea 

monitoring network consisting of 39 stations located in variable salinity, coastal and marine waters 

(Figure 1). 2012 was not included in the analysis, as in this year expeditions were undertaken only in 

the cold season.  

Phytoplankton and zooplankton samples were collected and analysed according to the 

methodology [9,10].  

Temperature and salinity were measured using the reversible thermometer and the titration 

method, as well as the CastAway CTD multiparameter probe (YSI Cast Away model).  

Dissolved nutrient concentrations were determined according to standard methods for seawater 

analysis [11].  
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Figure 1. Map of the study area. The square shows the location of the sampling sites on the Romanian 

coastline (A) and the position in the Black Sea region (B). 

Data statistics and their visualization were performed with STATISTICA 14.0.0.15 [12], an 

advanced software package that provides data analysis, data management, statistics, data mining, 

machine learning, text analysis and data visualization procedures. The data were analyzed by general 

descriptive statistics and visualized (boxplot) then the correlations between the parameters (Pearson 

coefficient, r) were performed which determine the extent to which the values of two variables are 

"proportional" to each other. The significance level (p) calculated for each correlation is a primary 

source of information about the reliability of the correlation. In the statistical analysis, the threshold 

value p=0.05 and a sufficient number of data (over 100) were used so that the hypothesis of normality 

was respected. 

The semi-quantitative modelling was carried out with the Mental Modeler software - a decision 

support software (open-source, https://www.mentalmodeler.com/) that helps experts understand the 

impact associated with environmental changes and develop strategies for reducing unwanted 

outcomes by capturing, communicating, and representing knowledge. By building Cognitive 

Knowledge Maps (FCMs), the Mental Modeler allows to development of the semi-quantitative model 

that: (1) defines the important components (2) defines the strength of the relationships between the 

components and (3) runs scenarios that determine how the system reacts in certain conditions [13]. 

ArcGIS Desktop 10.7 software (ESRI, 2019) [14] was used for creating distribution maps and 

machine learning (ML) algorithms. The basic premise of ML is that a machine (ie an algorithm or 

model) can make predictions based on existing data. The basic technique behind all ML methods is 

an iterative combination of statistics and error minimization, applied and combined to varying 

degrees. Many ML algorithms iteratively check all or a very large number of possible outcomes to 

find the best outcome for the problem at hand. The potentially large number of iterations is 

prohibitive for manual calculations and is a large part of the reason these methods are only now 

widely available to individual researchers.  

1. The first step in applying ML was to learn the algorithm using the training dataset (2008-2018) 

which consists of the independent variables (abiotic components – T, S, PO4, DIN) with dependent 
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variables (total phytoplankton density). The training data is used to "learn" how the independent 

(input) variables relate to the dependent (output) variable.  

2. In step two, when the algorithm has applied to new input data, corresponding to the scenarios 

to be tested, the model applies the learned relationship and returns a prediction. After the algorithm 

is trained, it must be tested to obtain a measure of the quality of predictions from new data.  

3. This requires another data set with independent and dependent variables, but the dependent 

(target) variables are not provided (10-20% of the original data). Algorithm predictions (output) are 

compared with retained data (target) to validate the algorithm. This comparison represents the 

significant difference between ML and traditional statistical techniques that use p-values for 

validation. 

ArcGIS creates models and generates predictions using an adaptation of the random forest 

algorithm (Leo Breinman) called Forest-based Classification and Regression, a supervised machine 

learning method. Predictions can be made for both categorical (classification) and continuous 

(regression) variables. By default, ML uses 90% of the data to build the model and 10% to validate it. 

Two scenarios for forecasting the growth of phytoplankton and zooplankton were developed 

and analysed: Bussiness as Usual in which temperature increases by 0.4 oC, salinity increases by 

0.84‰ and nutrient levels remains constant and the Mild scenario, in which sea water temperature 

increases by 0.8 oC and salinity increases by 1.68‰ and nutrients concentrations are decreased by 

25% for phosphates and 70% for inorganic nitrogen until 2042. 

3. Results 

3.1. Semi-quantitative model of causal relationships between abiotic factors (temperature, salinity and 

nutrients) and two trophic levels 

The water temperature recorded values in the range of 13.5 - 28.0 oC, the variability - expressed 

as standard deviation being 3.51 oC. Over the entire analyzed period, an increasing trend was 

observed, with 0.18 oC, equivalent to an average of 0.02 oC/year. The salinity ranged from 0.11 to 

20.00‰, with values lower than 6.06‰ being uncharacteristic (outliers). During the warm season, 

there is a noticeable upward trend in salinity variation, with an increase of 0.42‰ (Table S1 and 
Figure 2). This is primarily attributed to the significant influence of evaporation and the mixing of 

water masses, which surpasses the impact of river and precipitation input.  

Against the backdrop of increasingly dry summers, a slight decrease in phosphates and silicates 

was also observed, nutrients whose external input is largely influenced by river input and continental 

drainage (Figure 2) (rpo4-s = -0.37; rsio4 -s = -0.72). The levels of inorganic nitrogen forms (nitrites, nitrates, 

ammonium) have different variations during the analyzed period. Thus, nitrites and nitrates have 

increasing trends by 0.08 µM and 0.20 µM, respectively, while ammonium decreases by 0.28 µM 

(Figure 2).  

In all cases, uncharacteristic values (outliers) and extremes of the concentrations of nutrients 

dissolved in seawater were also observed. 
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Figure 2. Annual variation of temperature, salinity and nutrients - Romanian Black Sea coast, 2008-

2018, warm season. 

Within the phytoplankton assembly, a total of 298 species were distinguished, spanning diverse 

varieties and forms spread across 16 taxonomic classes (Bacillariophyceae, Chlorodendrophyceae, 

Chlorophyceae, Chrysophyceae, Conjugatophyceae, Cryptophyceae, Cyanophyceae, 

Dictyochophyceae, Dinophyceae, Ebriophyceae, Euglenoidea, Prasinophyceae, Prymnesiophyceae, 

Trebouxiophyceae, Ulvophyceae, and Xanthophyceae). The peak species count, 160 species, occurred 

in 2013, while the lowest count, 71 species, was recorded in 2016. Diatoms (102 species) and 

dinoflagellates (76 species) constituted the majority, contributing to 60% of the overall species 

diversity, followed by chlorophytes (46 species) and cyanobacteria (31 species) at 15% and 10%, 
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respectively. In less diverse classes (comprising 5 to 14 species), the Trebouxiophyceae class 

contributed 5% to the total species count, while both Euglenoidea and Cryptophyceae represented 

2% each. Classes exhibiting lower diversity (containing 1-4 species), including Chlorodendrophyceae, 

Conjugatophyceae, Chrysophyceae, Dictyochophyceae, Ebriophyceae, Prymnesiophyceae, 

Ulvophyceae, and Xanthophyceae, collectively constituted 6% of the qualitative composition (Figure 

3).The yearly means for overall phytoplankton density fluctuated between 245.33x103 cells/L (in 2016) 

and 4.10x106 cells/L (in 2014). Regarding biomass, the average annual values ranged from 370 mg/m3 

(in 2016) to 2820 mg/m3 (in 2009) (Table S1). 

 

Figure 3. Phytoplankton composition from the Romanian Black Sea coast, 2008-2018, warm season. 

Between 2008 and 2018, a total of 32 zooplankton taxa were identified, with the highest count 

found in waters with variable salinity under the Danube's discharge influence. Copepods prevailed 

across all marine regions, followed by ten species of cladocerans in areas with variable salinity. The 

meroplanktonic group encompassed six taxa, while the "other groups" category included three 

species (Figure 4). Along the entire Black Sea coast, the nonfodder component was evident, with the 

dinoflagellate N. scintillans being the sole representative species (Figure 5). Fodder zooplankton 

exhibited fluctuations in both density and biomass, reaching a peak annual density of 51,430 ind/m3 

and a maximum annual biomass of 1,539 mg/m3, both in 2018 (Table S1). 

 

Figure 4. Zooplankton composition from the Romanian Black Sea coast, 2008-2018, warm season. 

N. scintillans exhibited notable quantitative fluctuations, particularly high biomass and density 

were observed in 2010, 2015, and 2018, marked by some atypical values (outliers) (Figure 5). 
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Figure 5. Distribution of Noctiluca scintillans from the Romanian Black Sea coast, 2008-2018, warm 

season. 

The analysis of significant correlations between the three levels of the marine ecosystem (abiotic 

components - temperature, salinity and nutrients; phytoplankton - species densities and zooplankton 

- group densities) led to the creation of the Mental Modeler model. Examining the noteworthy 

correlations among the abiotic and biotic components resulted in the development of the Mental 

Modeler model. 

In this context, the aim of these "models" isn't to predict the state of this intricate ecosystem but 

rather to semi-quantitatively assess (using significant correlation coefficients) the connections among 

the various components. These connections serve as working hypotheses in the subsequent 

development of scenarios. Thus, FCM uses three characteristics of the studied system:  

- System components (N=89) – abiotic parameters (T, S, nutrients), phytoplankton species with 

more than 10 presences, zooplankton groups, 

- Positive or negative relationships between components (N=203) – significant correlations, 

greater than ±0.50, between components, 

- The degree of influence that one component can have on another, defined by qualitative 

weights (for example, high, medium or low influence) - the significant correlations (p<0.05) coefficient 

between the system components. 

Thus, apart from temperature as the main abiotic driver, the model identified as the main 

"drivers" (out of a total of 31), in order of importance, the concentrations of silicates and ammonium, 

and as "receivers" (out of a total of 26) the densities of “other groups” and copepods (Figure 6). 
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Figure 6. Fuzzy Cognitive Map (FCM) – the result of applying statistically significant correlations 

between abiotic factors (blue), phytoplankton species (grey) and zooplankton groups (magenta) and 

N. scintillans (orange) – warm season, 2008-2018. 

3.2. Ecosystem evolution scenarios under climate change conditions from the Romanian coast of the Black Sea 

using FCM and ML 

Models based on two data sets – normal phytoplankton (domain without outliers and extremes) 

development (N=7107) and phytoplankton blooms (over 1 million cel/L) were analysed (N=756), to 

which we applied two development scenarios aiming at predicting the density of copepods, 

cladocerans, meroplankton, other zooplankton groups and the density of N. scintillans. The 

explanatory variables used were temperature (oC), salinity (‰) and concentrations of phosphates 
(PO4) and inorganic nitrogen (DIN - the sum of nitrates, nitrites and ammonium) (µM) to which we 

added the total phytoplankton density (cel/L ) in the case of zooplankton predictions.  

A separate model was developed for each prediction resulting in 12 regression models with 

different performances (Table 1). One of the performance parameters of the model is the regression 

coefficient R2 which represents the proportion of variation in the result that the model can predict 

based on its characteristics and which is easily calculated with formula (1). 

𝑅2 = 1 − 𝛴(𝑦𝑟𝑒𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2𝛴(𝑦𝑟𝑒𝑎𝑙 − 𝑦̅𝑟𝑒𝑎𝑙)2  (1) 

With one exception, good results are observed when validating the models, expressed in the form of 

R2 regression coefficients. Therefore, given the poor performance (0.17) of the model described by the 

explanatory variables chosen for Total phytoplankton density - normal conditions, it will be excluded 

from the following discussions in applying the scenarios. 

Table 1. Performance of models and importance of explanatory variables – 2008-2018, warm season. 

 Model 
R2 

(validation) 

T 

(oC) 

S 

(‰) 
PO4 

(µM) 

DIN 

(µM) 

Total FPK density 

(cel/L) 

1 
Normal  - Total phytoplankton density 

(cells/L) 
0.17 26 45 17 12 - 

2 
Normal –Noctiluca scintillans density 

(ind/m3) 
0.66 14 27 37 21 2 

3 Normal – Copepoda density (ind/m3) 0.56 29 20 25 24 2 

4 Normal – Meroplankton density (ind/m3) 0.55 28 31 24 15 2 
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5 Normal – Cladocera density (ind/m3) 0.71 28 18 24 25 5 

6 
Normal – Other groups zooplankton 

density (ind/m3) 
0.67 26 22 17 23 12 

7 
Blooms - Total phytoplankton density 

(cells/L) 
0.91 20 20 37 23 - 

 
Blooms – Noctiluca scintillans density 

(ind/m3) 
0.95 27 13 42 12 6 

9 Blooms –Copepoda density (ind/m3) 0.80 36 13 22 10 20 

10 Blooms –Meroplankton density (ind/m3) 0.87 24 18 22 18 18 

11 Blooms – Cladocera density (ind/m3) 0.99 22 9 25 18 27 

12 
Blooms – Other groups zooplankton 

density (ind/m3) 
0.98 30 8 16 19 27 

Although the collected data refer to a single season, the warm one, the importance of water 

temperature is observed, which is the dominant variable in the case of the density of copepods (36%) 

and “other” zooplankton groups (30%) during the blooming period. Water temperature had the least 

influence on N. scintillans under normal conditions. Fluctuations in salinity, closely linked to 

variations in silicate levels—typically associated with riverine input—have a significant impact on 

the regular growth of phytoplankton. However, the proliferation of extensive phytoplankton blooms 

is primarily attributed to phosphate concentrations, which, notably, did not exhibit significant 

correlations with salinity throughout the study period. This suggests that the phosphate source 

responsible for these blooms may not be the result of riverine input (Figure 7). It is well recognised 

that certain taxonomic groups of zooplankton have strong relationships with particular 

hydrographic, physical, and chemical circumstances, as well as with the phytoplankton composition 

[15]. This most likely translates into particular characteristics or quantitative trait values that are more 

or less strongly correlated with particular physico-chemical circumstances and phytoplankton 

composition. Using fitness maximisation techniques, trait-based models may be able to forecast 

which strategies will be chosen in a given environment [16]. 

 

Figure 7. The importance of explanatory variables from the models made by Machine Learning - 

Forest-based Classification and Regression algorithm for the ecosystem of the Romanian Black Sea 

coast, 2008-2018, warm season. 

Similar to previous research findings documented in Lomartire et al., [17], it has been observed 

that the overall density of phytoplankton exerts a limited influence on the proliferation of non-fodder 
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zooplankton, such as N. scintillans. However, it does facilitate the prevalence of "other groups" and 

cladocerans, especially evident during expansive bloom occurrences. 

3.3. Working hypotheses for future research on planktonic proliferations in the Romanian area of the Black 

Sea 

Taking into account the above, we developed and run two scenarios (which do not take into 

account the socio-economic development aspects of the area) to predict the development of the 

pelagic biological components (phytoplankton and zooplankton) in the warm season in the next 20 

years (2042): 

1. The BAU (Business As Usual) scenario in which the variables behave as they did during the 

study period – temperature increases by 0.4 oC, salinity increases by 0.84‰, and nutrient 
concentrations remain constant. 

2. The scenario corresponding to RCP2.6, the "mildest" climate warming scenario in which sea 

water temperature increases by 0.8 oC by 2050 [18]. Associated with this increase, we consider an 

increase in salinity by 1.68‰. Given that such a scenario envisages environmental protection 

measures and emission reduction, we consider that nutrient concentrations could also be reduced by 

25% for phosphates and 70% for inorganic nitrogen [19]. 

For the dinoflagellate N. scintillans, it is observed that in both scenarios high densities of the 

species are reached (with extreme values that in scenario 2 exceed scenario 1 by approximately 70%), 

characteristic of a eutrophic ecosystem (Figure 8).  

Spatial analysis indicates that in scenario 1, lacking nutrient reduction strategies, elevated 

abundances are observed in the coastal region. However, in scenario 2, marked by substantial 

nutrient reduction efforts amidst amplified climate change impacts, non-fodder zooplankton 

displays comparable abundance levels in the coastal area and heightened values offshore. This shift 

potentially introduces imbalances, underscoring the critical significance of reducing nutrients within 

the context of climate change scenarios. 

 

Figure 8. Density of N. scintillans in scenario 1 (BAU) (left) and 2 (RCP2.6) (right) – ML prediction for 

warm season (2042). 

Copepods, a major component of marine zooplankton, are the main food source of fish larvae 

[20], favoring the survival, growth and development of juvenile fish [21]. It is observed that in the 

first scenario, copepods record optimal densities, which indicates a good trophic base for fish. The 

second scenario involves reaching much higher densities of copepods, which would lead to the 

development in more than favourable conditions of pelagic fish species, which prefer higher water 

temperatures (Figure 9).  
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Figure 9. Density of Copepoda in scenario 1 (BAU) (left) and 2 (RCP2.6) (right) – ML prediction for 

warm season (2042). 

Cladocerans are important components of food webs, consuming large amounts of microalgae 

and detritus, in turn serving as food for copepods and larval and juvenile stages of fish [22]. In both 

scenarios, cladocerans reach high densities, indicating, in certain areas, a sustainable trophic base for 

higher trophic levels adapted to predicted temperature and salinity conditions (Figure 10).  

 

Figure 10. Density of Cladocera in scenario 1 (BAU) (left) and 2 (RCP2.6) (right) – ML prediction for 

warm season (2042). 

Meroplankton can represent a substantial part of the zooplankton community, with its 

contributions to total density being greater in estuarine areas [23]. The main characteristic of shallow 

areas is the abundance of meroplankton organisms, which can produce real explosions in the water 

mass, constituting the dominant elements in the zooplankton composition [24]. In the two scenarios, 

the meroplanktonic component reaches similar density values (Figure 11). It can compete for 

resources with holoplanktonic species and serves as a food source for planktonic predators [25]. On 
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the other hand, climate change can affect the reproduction and recruitment of benthic invertebrates, 

affecting the abundance of meroplankton [26]. 

 

Figure 11. Density of meroplankton in scenario 1 (BAU) (left) and 2 (RCP2.6) (right) – ML prediction 

for warm season (2042). 

The category “Other groups” consists of the appendicular Oikopleura dioica, the chaetognath 

Parasagitta setosa and the mysid Mesopodopsis slabberi, the latter being much less represented and with 

a low frequency of occurrence. Being important as food for fish larvae, appendicularians bridge the 

gap between small primary producers and higher trophic consumers [27]. Parasagitta setosa can exert 

high predation pressure on copepods and thus compete with the food available for the larval stages 

of fish [28]. Scenario 2 experiences a significant increase in the density of the "Other groups" category, 

in contrast to scenario 1, which shows minimal growth (Figure 12). This difference is primarily driven 

by the overall phytoplankton density. 

 

Figure 12. Density of other groups in scenario 1 (BAU) (left) and 2 (RCP2.6) (right) – ML prediction 

for warm season (2042). 
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4. Discussion 

Zooplankton is crucial for moulding planktonic ecosystems, controlling phytoplankton growth, 

and transferring energy from lower-trophic animals to higher ones [29]. The local community 

structure is shaped by local environmental parameters, such as water temperature, pH, salinity, 

trophic state, or combinations of these factors (i.e., the species-sorting hypothesis) [30]. Furthermore, 

zooplankton is significantly influenced by nutrients in the environment [31,32], having an indirect 

impact on zooplankton by having a top-down effect on phytoplankton [33]. 

The assessment of physico-chemical parameters is required to analyse the water quality and 

energy succession of an aquatic environment. The physico-chemical parameters of an aquatic 

ecosystem affect phytoplankton and zooplankton diversity and abundance [34]. A significant issue 

for the aquatic food web is eutrophication which is caused by high phosphate and nitrate 

concentrations. Algal blooms prevent phytoplankton and other organisms from getting enough 

oxygen, which can lead to an organism's demise, leading to a decline in biodiversity and water body 

toxicity [35]. 

Fuzzy-Logic Cognitive Mapping (FCM) was developed as early as 1986 as a way to structure 

expert knowledge using a systems programming approach that is "fuzzy", thought to be similar to 

how the human mind makes decisions. Because of their flexibility, FCMs were created to examine 

perceptions of an environmental problem or to model a complex system where uncertainty is high 

and there is little empirical data available.  

The model created by us within the project has 89 components and 203 linear connections 

(positive or negative) between them, connections that human thinking cannot make simultaneously 

to allow a clear analysis of the evolution of the pelagic component of the marine ecosystem, the 

concentrations of silicates and nitrates affecting the densities of meroplankton and copepods. 

Copepods are usually known as ammonium-excreting microorganisms, hence positive associations 

between copepods and nitrite (NO2) and nitrate (NO3) have also been documented [36,37]. 

A comprehensive approach to improving water quality must take into account the 

macroenvironmental elements influencing it as well as the participation of many stakeholders in 

water management decisions [38–44]. 

The results obtained with the help of FCM are further the basis of the system knowledge and the 

generation of hypotheses for the predictions in different scenarios developed by us based on the 

specialized literature.  

In the next stage, based on the collected data and supervised machine learning (ML) algorithms 

from ArcGIS, we obtained the models and proliferation scenarios of phytoplankton and zooplankton, 

indicators of eutrophication in the waters of the Romanian Black Sea coast. Zooplankton 

demonstrates a wide range of ecological strategies, dominance patterns, and effects on ecosystems in 

marine habitats. It is difficult and still early to adequately express this variation in conceptual and 

mathematical frameworks [16]. 

The advantage of ML over traditional statistical techniques, especially in earth sciences and 

ecology, is the ability to model numerous variables, which may be non-linear, with complex 

interactions between them and sometimes with missing values [45,46]. 

Several comparative studies have already shown that ML techniques can outperform traditional 

statistical approaches in a wide variety of problems in earth sciences and ecology. However, this 

requires a careful analysis which is why we chose to create the semi-quantitative model based on 

FCM in the preliminary stage [46]. 

In both scenarios developed using ML, high densities of N. scintillans were observed. This 

dinoflagellate produces impacts on the ecosystem in coastal areas around the world [47], generally 

in the spring and summer seasons when it registers high abundances, establishing the blooming 

phenomenon of the species [48]. The blooms generated by N. scintillans are closely related to food 

availability, especially to the presence of diatoms, which it consumes, controlling the dynamics of 

this phytoplankton group [37]. The phenomenon causes mortalities among fish, many of which are 

of economic importance, as well as marine invertebrates due to the accumulation of high levels of 

ammonia in the water [49]. N. scintillans plays an important role in marine food chains [48], feeding 
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on a wide variety of organisms such as phytoplankton (mainly diatoms), eggs, larvae and faecal 

pellets of crustaceans, as well as with other mesozooplanktonic organisms [50]. High densities of this 

dinoflagellate can limit local population growth of copepods, not only when they compete for food, 

but also because they feed on their eggs and nauplii [51]. 

The run scenarios for copepods showed an increase in abundance, which can generate a positive 

impact on the environment, especially for pelagic fish. There is evidence that recruitment is highly 

dependent on copepod production [52], high prey availability encourages recruitment and early 

survival by maximising food intake and growth throughout the larval stage of life in the plankton 

[53]. These findings offer information regarding the presence of plankton prey, which can lead to a 

more efficient management decision regarding fisheries. Although it is not conclusive to conclude 

that zooplankton biomass is the only factor affecting fish recruitment, high prey abundance available 

at the time of fish spawning will promote recruitment [17]. Still, there remains a possibility that the 

increase in temperature could lead to a reduction in copepod species diversity and a shift toward 

smaller-sized copepod communities [54]. Additionally, another potential risk associated with 

copepods, the predominant zooplankton in oceans, involves their influence on seawater through the 

introduction of distinct polar lipids known as copepodamides. These lipids can stimulate toxin 

production and bioluminescence in harmful dinoflagellates [55]. 

Meroplankton recorded similar abundance values in both scenarios. The ecological significance 

of planktonic larvae is two-fold: they are a dispersal stage for benthic organisms [56], determining 

the potential of benthic species to colonise adjacent habitats, but they can also constitute a major 

portion of zooplankton [57], potentially competing for resources with holoplanktonic species, and 

serving as food source for planktonic predators [25,28]. Larval movement is a crucial biophysical 

mechanism in benthic ecosystems that, in advection-dominated environments, can result in a spatial 

decoupling between local community production and settlement [59]. 

“Other groups” category does not know a very large development from a quantitative point of 

view, in contrast to scenario 2 where a much greater increase in density is noted. Species belonging 

to this group act as a crucial link in the food chain between pico- and nanophytoplankton and larger 

zooplankton like fish larvae [60], copepods, ctenophores [61], jellyfish [62]. P. setosa grows and 

matures at high copepod density and greater temperature, indicating that temperature and food are 

the main factors influencing P. setosa growth in the Black Sea [63] as observed in scenario 2. 

Jellyfish and ctenophores, acting as predators of young fish and zooplankton, indicate ecosystem 

health decline or human-induced stress from overfishing and the reduction of zooplankton predators 

when they form blooms. This scenario might lead to an excessive presence of gelatinous zooplankton, 

causing a considerable adverse impact on fish recruitment [17]. The appearance of gelatinous 

zooplankton indirectly affects the ecosystem by boosting phytoplankton and detritus levels, 

consequently reducing water quality, triggering hypoxia, and causing harm to fish and other wildlife 

[64]. 

The nutritional quality of phytoplankton significantly influences the entire food web, especially 

through its relationship with zooplankton. Therefore, to ensure efficient stock management and 

optimize fishing resources, it's crucial to consistently assess the trophic interactions among 

phytoplankton, zooplankton, and fish within fishery management practices [65]. Diminished future 

phytoplankton biomass will favor the development of gelatinous food webs. Hence, employing the 

trait-based modelling framework showcased here becomes a potent method for uncovering fresh 

perspectives on the impact of climate change on zooplankton and their crucial role in global marine 

ecosystems, effectively linking planktonic organisms with fish populations [66]. 

Elevated organic matter levels could potentially initiate alterations in the nitrogen-to-

phosphorus ratio, significantly affecting the growth and diversity of phytoplankton and various 

marine algae. These imbalances might lead to shorter trophic food webs, reduced predator numbers, 

and potential decreases in biodiversity [67]. 
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5. Conclusions 

To effectively mitigate the impact of climate change on marine ecosystems, we must adopt a 

comprehensive approach that extends beyond focusing solely on climate issues. Our scientific efforts 

need to innovate strategies that enhance ecosystem resilience in the face of climate change. For 

instance, strengthening the resilience of zooplankton communities against climate effects entails 

developing novel methods to minimize ballast-water introductions, refining farming practices to 

reduce nutrient inputs, curbing pollution sources, and enhancing fishery management while 

ensuring compliance to prevent the overexploitation of marine resources. Unlike climate change, 

these non-climate stressors can be promptly managed through policy adjustments and improved 

management practices at national and regional levels [68]. Urgent attention is needed for integrated 

research that evaluates management solutions capable of addressing the combined impact of climate 

change and other human-induced stressors [69]. Thus, the paper proposes an innovative approach to 

modelling an important component of the pelagic habitat (plankton) on the Romanian Black Sea coast 

by applying a machine-learning algorithm to the data collected in the warm season from 2008-2018. 

The results can be used in future research for the spatial and temporal assessment and ecosystem 

modelling (e.g, and Ecosim with Ecopath ) of the provision and use of ecosystem services that 

underpin the Blue Economy. This approach exemplifies the need and urgency of knowing nutrient 

sources and concentrations as well as making nutrient management decisions based on scientific 

evidence aligned with the achievement of Sustainable Development Goal (UN) 14 (Aquatic Life) - 

Conservation and sustainable use of oceans, seas and marine resources. It creates unique prediction 

models that explicitly include features and related trade-offs, then use these qualities to describe and 

forecast zooplankton community structure and dynamics in a variety of environmental contexts, 

including those involving possible futures with global climatic change [16]. 
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