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Abstract: The advent of Al in medicine has transformed various medical specialties, including orthodontics.
Al has shown promising results in enhancing the accuracy of diagnoses, treatment planning, and predicting
treatment outcomes. With the growing number of Al applications and commercially available tools, there is an
increase in their usage in orthodontic practices worldwide. This review aims to explore the principles of
artificial intelligence (Al), its applications in the diagnostic process of modern orthodontic practices, and
concerns associated with the implementation of Al algorithms in clinical practice. A comprehensive review of
the literature was conducted, focusing on five categories where Al has been applied in orthodontics: dental
diagnostics, cephalometric evaluation, skeletal age determination, temporomandibular joint (TM]) evaluation,
and extraction decision making. Al has demonstrated high efficacy in all those fields. However, variations in
performance and the necessity of manual supervision indicate that AI should be used cautiously in clinical
settings. Nevertheless, the high complexity and potential unpredictability of Al algorithms call for cautious
implementation and regular manual validation of results. Continuous Al learning, proper governance, and
addressing privacy and ethical concerns are crucial for the successful integration of Al into orthodontic
practice.

Keywords: orthodontics; artificial intelligence; deep learning; cephalometric analysis; radiology;
CBCT; skeletal age; treatment planning

1. Introduction

Artificial intelligence (Al), a term first introduced in 1955 by John McCarthy, describes the ability
of machines to perform tasks classified as intelligent [1]. Over the past nearly 70 years since the
coining of the term Al there have been cycles of significant optimism associated with the
development of Al, interspersed with periods of failures, reductions in research funding, and
pessimism [2]. The breakthrough that sparked renewed widespread interest in Al and heralded the
current boom in this technology was a victory of AlphaGo, a Deep Learning (DL)-based program
developed by Google over the world champion in the board game Go in 2015 [2]. This event,
accompanied by the introduction of Chat-GPT in 2022, foreshadowed the incredible growth of
numerous Al applications in everyday life and medicine, which we are familiar with today.

Al algorithms have already proven their effectiveness in a variety of tasks across different
medical specialties, even demonstrating the potential to outperform experienced clinicians [3-6].
Currently, Al enables the analysis, arrangement, depiction, and classification of healthcare data. The
development of Al algorithms in medicine has especially occurred in recent years, particularly in
radiology; medical imaging currently constitutes approximately 85% of FDA-approved Al programs
(data for 2023) [7]. There are three main domains of Al in diagnostic imaging: operational Al
improves healthcare delivery, diagnostic Al assists in interpreting clinical images, and predictive Al
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forecasts future outcomes [8]. Currently, the primary objectives of Al are to detect and segment
structures, and classify pathologies [9]. The Al tools can analyze images acquired in all radiological
modalities from X-ray to MRI [10-14]. The specific nature of orthodontics, associated with
cephalometric analysis and pretreatment imaging, predisposes orthodontics to the field where Al is
being implemented most rapidly. However, Al is being utilized in orthodontics in many other
applications beyond cephalometric analysis. The current body of literature regarding the use of Al in
orthodontics can be divided into five categories: diagnosis and treatment planning, automated
landmark detection and cephalometric analysis, assessment of growth and development, treatment
outcome evaluation, and a miscellaneous category [15].

The number of Al companies in the healthcare industry has increased exponentially, indicating
a significant growth in commercial prospects for Al [8]. Currently, Al tools, in addition to being
available to a specific group of researchers and scientists involved in particular research and
development projects, are now accessible through commercially available web-based products. The
adoption of Al in orthodontics has led to the development of several Al-based programs, such as
WeDoCeph (Audax, Ljubljana, Slovenia), WebCeph (Assemble Circle, Gyeonggi-do, Korea), and
CephX (ORCA Dental Al, Las Vegas, NV). These systems automatically identify cephalometric
landmarks, compute angles and distances, and generate cephalometric reports with significant
findings. This enables access to Al programs even from mobile devices and promotes the
"democratization" of access to Al tools and their widespread availability to all those interested in
implementing them. This, in turn, leads to a significant increase in the number of orthodontic
practices and the number of scientific researchers globally who are engaged in Al applications. It also
raises growing concerns related to patient safety, where Al is involved in diagnosis and treatment.

The main objectives of this article are: to elucidate the principles of Al outline its applications in
diagnostic process of modern orthodontic practices, and discuss the concerns associated with
implementation of the Al algorithms in clinical practice.

2. Al categories

Al can be classified into two main categories: symbolic Al and machine learning. Symbolic Al
involves structuring the algorithm in a human-readable symbolic manner. This approach was
dominant in Al research until the late 1980s and is known as GOFAI (Good Old-Fashioned Al) [16].
Symbolic Al is still useful for solving problems with limited outcomes, limited computational power,
or when human explainability is important. However, the efficiency of GOFAI in healthcare is low,
mainly due to the complexity of problems, multiple variables, and limited sets of rules [17]. Therefore,
with advancements in technology and computer sciences, the new powerful iterations of Al are
becoming more prevalent, replacing GOFAI in medical applications. The schematic representation of
Al in Figure 1.


https://doi.org/10.20944/preprints202312.1259.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 December 2023

DEEP LEARNING

ANN CNN

Figure 1. Simplified Al diagram.

2.1. Machine Learning

Machine learning (ML) is the predominant paradigm in the field of artificial intelligence. Coined
by Arthur Samuel in 1952, ML differs from symbolic Al in that it relies on models learning from
examples rather than predefined rules set by humans [18]. By leveraging statistical and probabilistic
techniques, machines can improve their performance by learning from previous models and adapting
their actions when new data is introduced. This can involve making predictions, identifying new
patterns, or classifying new data.

ML can be categorized into three types based on the algorithm's learning approach and the
desired outcome. The first type is supervised learning, which is used for classification or prediction
tasks where the outcome is already known. Here, the algorithm learns from a labeled dataset and
generalizes its knowledge to make accurate predictions on unseen data. The second type is
unsupervised learning, which aims to discover hidden patterns and structures in data without any
prior knowledge of the outcome. This type of learning is useful for tasks such as clustering and
anomaly detection. Lastly, reinforcement learning involves the machine developing an algorithm that
maximizes a predefined reward based on previous versions of itself. This type of learning is often
used in scenarios where an agent interacts with an environment and learns through trial and error
[19].
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2.2. Deep Learning

Deep learning (DL) refers to a subset of machine learning (ML) in which the machine is capable
of independently computing the specific characteristics of an input. The foundation of DL can be
traced back to artificial neural networks (ANN), which were developed in the 1990s. However, with
advancements in computational technology and increased computing power, researchers have been
able to construct more intricate and "deeper" neural networks to tackle increasingly complex tasks.
Currently, in the field of medical imaging, DL algorithms predominantly employ convolutional
neural networks (CNNs) with high diagnostic accuracy [20-22]. DL differs from traditional ML
approaches in that it allows the machine to automatically extract relevant features from input data.
Instead of relying on human engineers to manually engineer these features, DL models have the
ability to learn and recognize patterns directly from the raw data. Moreover, DL algorithms do not
require time consuming feature dentification and extraction [22]. This has proven to be particularly
useful in imaging, where DL tools are starting to surpass experienced readers in diagnostic accuracy
[20,23,24]. However, the DL is not limited only to image analysis tasks, it has shown promise in tasks
such as medical disease diagnosis, and personalized treatment recommendation [25-28].

3. Al applications in Orthodontics

3.1. Dental Diagnostics

The use of radiological diagnostic methods is fundamental in dental patient care. Recently, these
methods have served as a basic tool aiding the clinical diagnosis of pathologies associated with teeth
and their surrounding structures. They have also been a valuable tool in the assessment of treatment
outcomes [29-31]. Besides the standard pre-orthodontic treatment evaluation in lateral
cephalograms, orthopantomograms (OPG) remain valuable tools for orthodontic diagnosis,
treatment planning, and monitoring [32]. Although its role and indications are still being discussed,
CBCT plays an important role in decision making for orthodontic patients, where conventional
radiography fails to provide an accurate diagnosis of the pathology [32,33]. However, due to the
increasing number of examinations performed [34], there is a need for a tool that would
comprehensively support the process of radiological diagnosis. The response to such a market
demand was the emergence of multi-modular diagnostic systems based on Al These systems are
used for the analysis of both CBCT and OPG, as well as periapical radiographs (PR). The tool created
by Diagnocat Ltd. (San Francisco, CA, USA), based on CNN, would ideally serve for precise,
comprehensive dental diagnostics, allowing for teeth segmentation and enumeration, oral
pathologies diagnosis (for example, periapical lesions, caries), and volumetric assessment. Scientific
papers validating the diagnostic performance of the program have proved its high efficacy and
accuracy [35-39]. The study by Orhan et al [35], found that the Al system achieved 92.8% accuracy in
periapical lesions detection in CBCT images, and no statistically significant difference in volumetric
measurements compared to manual methods. Comparable results were achieved in a study assessing
the program's diagnostic accuracy in periapical lesion detection on PRs [36]. However, there are also
studies revealing conflicting results, showing unacceptable accuracy of Al in OPG assessment of
periapical lesions [40]. The study by Ezhov (2021) [41], compared the overall diagnostic performance
of two groups of Al-aided and unaided clinicians in oral CBCT evaluation. The Al system was
equipped with teeth and jaw segmentation, tooth-localization and enumeration, periodontitis, caries,
and periapical lesion-detection modules. The results of the study showed that the AI system
significantly improved the diagnostic capabilities of dentists (Al-aided vs unaided group sensitivity
values were 0.8537 and 0.7672, specificity values were 0.9672 and 0.9616 respectively). These results
suggest that such multimodal Al programs may serve as first-line diagnostic aids and decision
support systems, improving patient care on many levels. Sample Diagnocat report in Figure 2.
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Figure 2. Part of automatic diagnostic report from a CBCT scan, conducted prior to orthodontic
treatment on a 24-year-old male. The software has automatically identified the absence of teeth 18
and 28, as well as changes in the remaining teeth, primarily consisting of attrition and the presence of
dental fillings. The program has recommended further consultations as necessary.

3.2. Cephalometric Analysis

Cephalometric analysis (CA), first introduced in 1931, has evolved into a key diagnostic
instrument for cranial examination in orthodontics [42]. Advancements in technology have led to the
substitution of time-consuming manual assessments with digital CA software, simplifying the
measurement process and automatically displaying the results of the analysis. The results of
automated CA have proven to be relatively stable and repeatable compared with the highly operator-
dependent manual analysis with significant variability in landmark identification [43-46]. The
accuracy and repeatability of landmark identification are crucial for determining CA outcomes.
Numerous studies have been conducted to demonstrate the effectiveness of Al in identifying
cephalometric landmarks. Despite lateral radiography being the most widely used method in CA,
recent advancements in Al have brought the utilization of cone-beam computed tomography (CBCT)
back into discussion [47].

Initial attempts to evaluate the effectiveness of Al in identifying cephalometric landmarks can
be traced back to 1998 [48]. The authors found no statistical differences in the mean landmark
identification errors between the manual and automated methods. These results were supported by
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multiple other studies using different automated methods of cephalometric landmark identification,
with high levels of accuracy [45,46,48-63]. In a recent study conducted by Hwang et al. (2020) [46],
the authors concluded that automated cephalometric landmark identification can be as reliable as an
experienced human reader. Similar results, with accuracy in landmark definition between 88% and
92%, were achieved by Kim et al [53], Lee et al [62], and Dobratulin et al [49]. These authors concluded
that Al demonstrated greater accuracy in landmark detection and reduced the time and human labor
spent on anatomic landmark identification compared to manual methods. In other studies by be
Hwang et al [45], and Yu et al [60], the authors showed that the results of automated CA were not
statistically different from those calculated from manually identified landmarks. Moreover, Al can
significantly improve the workflow of the practices, reducing the analysis time by up to 80 times
compared to manual analysis [63]. Figure 3 presents sample cephalometric landmark definition.

Figure 3. Sample of automatic cephalometric landmarks tracings performed by Cephx (A) and

WebCeph (B) on 18-year-old male. Results of Downs cephalometric analysis superimposed on
tracings (B).

The first reports regarding the utilization of Cone Beam Computed Tomography (CBCT) in CA
can be traced back to the 2000s. However, due to the ineffective and time-consuming nature of this
method, it did not spread widely [64]. Recent advancements in the Al field, with the possibility of
automated assessment of the cranium in three dimensions, have revived the idea of CBCT-based CA.
Numerous studies [65-72] leveraging Al for automatic landmark identification and analysis have
demonstrated the accuracy and efficiency of these techniques compared to traditional, manual
analysis. The study by Kim et al [71] showed higher repeatability of the results than those achieved
by human readers. Muraev et al [72] found that ANNs could achieve accuracy in landmark
identification comparable to humans and even outperform inexperienced readers in this task.
However, a recent study by Bao et al (2023) [73] revealed that Al-automated analysis cannot
completely replace manual tracing, and manual supervision is crucial to increase the accuracy of the
results.

3.3. Determination of Skeletal Age

Growth and maturation are critical factors in the field of orthodontics, as they are closely linked
to the effectiveness of orthodontic devices, which are often timed to coincide with periods of rapid
growth and natural changes in facial structure. As previous studies have shown, the effectiveness of
treatment can be increased by tailoring treatments to align with the patient's growth phases [74,75].
The rate of growth and the stage of facial development are crucial elements for achieving lasting
results in orthodontic treatment, and precise assessment of these factors is necessary to minimize the
risk of post-treatment changes resulting from ongoing facial growth [76]. The dynamics of growth in
adolescence vary significantly among individuals, making chronological age alone insufficient for
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estimating the extent of remaining growth [77,78]. Skeletal age is a more suitable and well-established
parameter for individual growth assessment with the two leading methods: cervical vertebral
maturation (CVM) and wrist X-rays [74,79-82]. Since CVM can be assessed on lateral cephalometric
x-rays, wrist X-rays are contraindicated in standard diagnostic orthodontic routine [32].

The last few years have seen a rise in scientific evidence supporting the diagnostic accuracy and
effectiveness of Al in skeletal age assessment, based on both wrist X-rays [83,84] and CVM [85-88].
Although Al has already proven its diagnostic accuracy in skeletal age assessment, exceeding that of
experienced readers in wrist X-rays [83,84] and even index finger X-rays [89], the accuracy of CVM-
based models remains a concern [90,91]. Studies published on this topic have shown heterogeneous
results, with agreement rates with human observers ranging from 58% to over 90% [90,92-95]. In the
recent study by Seo et al. (2021) [92], the authors achieved over 90% accuracy with each of the tested
CNN-based models in CVM assessment. They concluded that automatic diagnosis using lateral
cephalometric radiographs can provide clinicians with accurate information on skeletal maturity.
However, the results of the other above-mentioned studies call for caution when evaluating the
outcomes of Al in CVM assessment and indicate significant discrepancies, especially during the
critical for orthodontic treatment stages around the growth peak, which generally show lower
accuracy [78,93].

We advise considering the results of AI CVM assessment studies with caution, as the gold
standard was established by evaluations from a few expert readers. Therefore, the results of the
studies might partially stem from errors made by the readers and their influence on Al algorithms.
However, consider those results as highly encouraging, and believe that future advancements in Al
technology will lead to an increase in the diagnostic accuracy of CVM tools, comparable to that of
wrist X-ray skeletal maturity assessments.

3.4. TM] Evaluation

Osteoarthritis (OA) is a condition that affects joints and is characterized by the gradual
deterioration of joint cartilage associated with bone remodeling and the formation of
osteoproliferative bodies. Temporomandibular joint osteoarthritis (TMJOA) is a specific type of
temporomandibular disorder that can cause significant joint pain, dysfunction, dental malocclusion,
and a decrease in overall quality of life [96]. The examination of TM] function and morphology is an
important part of every orthodontic or dental treatment [97], as the presence of TMJOA is one of
the causes of malocclusion and facial asymmetries [98,99]. The presence of TMJOA is confirmed by
bony changes observed on radiographic (OPG/CBCT) examination [100], whereas MRI remains the
modality of choice in joint disc evaluation [97].

There is growing scientific evidence proving that Al applications demonstrate high diagnostic
performance in the detection and staging of TMJOA [100-104]. The studies have shown the potential
for automated, detailed assessment of joint morphology using various imaging techniques such as
OPG, CBCT, and MRI. The authors anticipate that the utilization of Al systems for diagnostic imaging
of the TMJ will enhance future research on early detection and personalized treatments for OA. They
believe that the development of these Al systems, along with the proposed algorithms, will contribute
to the establishment of a comprehensive diagnostic system for the maxillofacial region.

3.5. Extraction Decision Making

One of the most challenging issues during orthodontic treatment is deciding whether extraction
is mandatory in a particular case. A variety of factors associated with the identified orthodontic
defect, patient preferences, expected outcomes, sociocultural factors, and the professional position of
the orthodontist, influence the patient's attitude towards the proposed orthodontic extraction therapy
[105-107]. Additionally, on the other hand, decisions related to extractions are influenced by the
experience, training, and philosophy of the orthodontist [108-111]. All these factors make the
extraction decision during the orthodontic treatment very challenging, even for an experienced
practitioner. Furthermore, conclusions regarding the treatment undertaken can greatly vary among
experts, especially in borderline cases [112-115].
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In recent years, several Al tools have been introduced, designed to support therapeutic decision-
making in orthodontics [77,116,117]. Initial studies evaluating the assistance of extraction decision
aids have shown promising results, with AI algorithms achieving more than 80% agreement with
decisions made by experts [118-122]. The study by Xie (2010) [122] demonstrated an 80% concurrence
in decisions related to extractions between Al and experts; however, the study only analyzed a mere
20 cases. The ANN system evaluated by Jung & King [120] showed a 93% success rate for diagnosing
extraction versus non-extraction cases based on 12 cephalometric variables and 84% for the detailed
diagnosis of specific extraction patterns. Similar results were achieved by Li et al. (2019) [121] with a
94% accuracy rate for extraction versus non-extraction predictions, 84.2% for extraction patterns, and
92.8% for anchorage patterns. The studies identified several features for predicting treatment, among
which crowding of the upper arch, the position of anterior teeth, lower incisors inclination, overjet,
overbite, and capability for lip closure were most important for the extraction decision. However,
significant limitations that substantially affect the risk of bias of the selected Al models in the
mentioned studies were pointed out [59]. In the majority of the manuscripts, the Al systems were
trained on the examples provided by limited number of experts, therefore they were based on
treatment philosophies of the examiners. Correctness of these approaches were not established.
Moreover, the occurrence of important dental findings such as the large dental fillings, periapical
lesions, periodontal damage, previous endodontic treatment and missing teeths were not
considered [107,119-122].

Considering the aforementioned limitations, it is crucial to acknowledge that, particularly in
borderline scenarios, a clear-cut decision regarding the implementation or avoidance of orthodontic
extraction therapy is often elusive. Clinicians must meticulously evaluate the pros and cons of each
treatment approach, considering ‘the entire clinical scenario. Moreover, the incorporation of
extraction decision-making tools into clinical practice carries the risk of a specific treatment
philosophy influencing patient care. Practitioners should strive to develop individualized treatment
plans for their patients and not be influenced by rigid treatment 'philosophies' [106].

4. Implementation Considerations

While the potential of Al to improve patient management in orthodontics is vast, its impact has
only been proven in a limited number of cases. Most of the literature on this subject consists of
retrospective studies, without support from large randomized controlled trials. However, we might
expect such studies in the coming years due to the exciting nature of this topic and the increasing
supply of Al solutions. Financial investments and the number of introduced Al technologies are
rapidly growing - in 2022, there were 69 new FDA-approved products associated with $4.8 billion in
funding. By 2035, product-year funding is projected to reach $30.8 billion, resulting in 350 new Al
products [7].

Despite many optimistic studies demonstrating the high performance of Al algorithms in a
variety of tasks, the further incorporation of Al algorithms into everyday clinical practice remains a
matter for the future. Most of the programs described above were launched in the last 2-3 years, and
as studies have shown, the average time for the introduction of innovation in medicine to application
in clinical practice is 17 years [123,124]. The process of implementing Al in workflows and clinical
practice requires meeting a number of requirements to ensure sufficient clinical quality and patient
safety. As indicated by Pianykh [8], here are still important issues to overcome. The first issue is the
lack of reproducibility, as Al models are typically developed using a limited number of specific
datasets and struggle to perform well on a wide range of data. The second issue is the lack of
adaptivity, as existing Al models are not designed to constantly adjust to changes in their
environment. The third issue is the absence of robust quality control mechanisms for Al, making it
more susceptible to data errors, outliers, and sudden shifts in trends. Lastly, there is a lack of
integration between Al algorithms and the workflow, preventing them from effectively adapting to
changes in the data environment. The solution to these issues is the creation of continuous learning
Al, enabling the Al tool to adapt continuously to changes in the data [8]. This would allow for live
adjustments of the Al algorithms, preventing performance deterioration.
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Like any technology used in medicine, there is a need for a sufficient Al governance process to
maintain the quality of results and ensure patients' safety [125]. The need for continuous evaluation
of algorithm quality should be kept in mind to prevent degradation in performance and allow for
appropriate early intervention. Moreover, privacy issues, safety concerns, and health inequities (such
as Al algorithms exacerbating racial or income disparities) are a few more general issues related to
the application of Al in medicine, which have recently been highlighted in The Lancet [126].

Despite the availability of a wide range of products, there is still limited scientific evidence
regarding the validation and effectiveness of Al products in general medicine and in a narrow field
such as orthodontics [127]. Despite generally optimistic test results of various Al tools, the issues
highlighted above underscore the necessity of exercising considerable caution when introducing Al
into daily practice.

5. Conclusions

Undoubtedly, Al has the potential to revolutionize medicine, particularly in the field of
diagnostic imaging, including orthodontics. The continuous advancement of Al algorithms
supporting pre-treatment diagnostic processes, allowing visualization of outcomes, and facilitating
decision-making during treatment, places orthodontics among the disciplines benefiting the most
from the introduction of Al technology. However, due to the high complexity and associated
unpredictability of Al these tools should be treated with caution and their results should be regularly
manually validated.
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